1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_SPE4Spill, 94 SOK_LastOpcodeSpill // This must be last on the enum. 95 }; 96 97 // Pin the vtable to this file. 98 void PPCInstrInfo::anchor() {} 99 100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 102 /* CatchRetOpcode */ -1, 103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 104 Subtarget(STI), RI(STI.getTargetMachine()) {} 105 106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 107 /// this target when scheduling the DAG. 108 ScheduleHazardRecognizer * 109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 110 const ScheduleDAG *DAG) const { 111 unsigned Directive = 112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 115 const InstrItineraryData *II = 116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 117 return new ScoreboardHazardRecognizer(II, DAG); 118 } 119 120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 121 } 122 123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 124 /// to use for this target when scheduling the DAG. 125 ScheduleHazardRecognizer * 126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 127 const ScheduleDAG *DAG) const { 128 unsigned Directive = 129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 130 131 // FIXME: Leaving this as-is until we have POWER9 scheduling info 132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 134 135 // Most subtargets use a PPC970 recognizer. 136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 138 assert(DAG->TII && "No InstrInfo?"); 139 140 return new PPCHazardRecognizer970(*DAG); 141 } 142 143 return new ScoreboardHazardRecognizer(II, DAG); 144 } 145 146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 147 const MachineInstr &MI, 148 unsigned *PredCost) const { 149 if (!ItinData || UseOldLatencyCalc) 150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 151 152 // The default implementation of getInstrLatency calls getStageLatency, but 153 // getStageLatency does not do the right thing for us. While we have 154 // itinerary, most cores are fully pipelined, and so the itineraries only 155 // express the first part of the pipeline, not every stage. Instead, we need 156 // to use the listed output operand cycle number (using operand 0 here, which 157 // is an output). 158 159 unsigned Latency = 1; 160 unsigned DefClass = MI.getDesc().getSchedClass(); 161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 162 const MachineOperand &MO = MI.getOperand(i); 163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 164 continue; 165 166 int Cycle = ItinData->getOperandCycle(DefClass, i); 167 if (Cycle < 0) 168 continue; 169 170 Latency = std::max(Latency, (unsigned) Cycle); 171 } 172 173 return Latency; 174 } 175 176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 177 const MachineInstr &DefMI, unsigned DefIdx, 178 const MachineInstr &UseMI, 179 unsigned UseIdx) const { 180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 181 UseMI, UseIdx); 182 183 if (!DefMI.getParent()) 184 return Latency; 185 186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 187 unsigned Reg = DefMO.getReg(); 188 189 bool IsRegCR; 190 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 191 const MachineRegisterInfo *MRI = 192 &DefMI.getParent()->getParent()->getRegInfo(); 193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 195 } else { 196 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 197 PPC::CRBITRCRegClass.contains(Reg); 198 } 199 200 if (UseMI.isBranch() && IsRegCR) { 201 if (Latency < 0) 202 Latency = getInstrLatency(ItinData, DefMI); 203 204 // On some cores, there is an additional delay between writing to a condition 205 // register, and using it from a branch. 206 unsigned Directive = Subtarget.getDarwinDirective(); 207 switch (Directive) { 208 default: break; 209 case PPC::DIR_7400: 210 case PPC::DIR_750: 211 case PPC::DIR_970: 212 case PPC::DIR_E5500: 213 case PPC::DIR_PWR4: 214 case PPC::DIR_PWR5: 215 case PPC::DIR_PWR5X: 216 case PPC::DIR_PWR6: 217 case PPC::DIR_PWR6X: 218 case PPC::DIR_PWR7: 219 case PPC::DIR_PWR8: 220 // FIXME: Is this needed for POWER9? 221 Latency += 2; 222 break; 223 } 224 } 225 226 return Latency; 227 } 228 229 // This function does not list all associative and commutative operations, but 230 // only those worth feeding through the machine combiner in an attempt to 231 // reduce the critical path. Mostly, this means floating-point operations, 232 // because they have high latencies (compared to other operations, such and 233 // and/or, which are also associative and commutative, but have low latencies). 234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 235 switch (Inst.getOpcode()) { 236 // FP Add: 237 case PPC::FADD: 238 case PPC::FADDS: 239 // FP Multiply: 240 case PPC::FMUL: 241 case PPC::FMULS: 242 // Altivec Add: 243 case PPC::VADDFP: 244 // VSX Add: 245 case PPC::XSADDDP: 246 case PPC::XVADDDP: 247 case PPC::XVADDSP: 248 case PPC::XSADDSP: 249 // VSX Multiply: 250 case PPC::XSMULDP: 251 case PPC::XVMULDP: 252 case PPC::XVMULSP: 253 case PPC::XSMULSP: 254 // QPX Add: 255 case PPC::QVFADD: 256 case PPC::QVFADDS: 257 case PPC::QVFADDSs: 258 // QPX Multiply: 259 case PPC::QVFMUL: 260 case PPC::QVFMULS: 261 case PPC::QVFMULSs: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 bool PPCInstrInfo::getMachineCombinerPatterns( 269 MachineInstr &Root, 270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 271 // Using the machine combiner in this way is potentially expensive, so 272 // restrict to when aggressive optimizations are desired. 273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 274 return false; 275 276 // FP reassociation is only legal when we don't need strict IEEE semantics. 277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 278 return false; 279 280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 281 } 282 283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 285 unsigned &SrcReg, unsigned &DstReg, 286 unsigned &SubIdx) const { 287 switch (MI.getOpcode()) { 288 default: return false; 289 case PPC::EXTSW: 290 case PPC::EXTSW_32: 291 case PPC::EXTSW_32_64: 292 SrcReg = MI.getOperand(1).getReg(); 293 DstReg = MI.getOperand(0).getReg(); 294 SubIdx = PPC::sub_32; 295 return true; 296 } 297 } 298 299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 300 int &FrameIndex) const { 301 unsigned Opcode = MI.getOpcode(); 302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 304 305 if (End != std::find(OpcodesForSpill, End, Opcode)) { 306 // Check for the operands added by addFrameReference (the immediate is the 307 // offset which defaults to 0). 308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 309 MI.getOperand(2).isFI()) { 310 FrameIndex = MI.getOperand(2).getIndex(); 311 return MI.getOperand(0).getReg(); 312 } 313 } 314 return 0; 315 } 316 317 // For opcodes with the ReMaterializable flag set, this function is called to 318 // verify the instruction is really rematable. 319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 320 AliasAnalysis *AA) const { 321 switch (MI.getOpcode()) { 322 default: 323 // This function should only be called for opcodes with the ReMaterializable 324 // flag set. 325 llvm_unreachable("Unknown rematerializable operation!"); 326 break; 327 case PPC::LI: 328 case PPC::LI8: 329 case PPC::LIS: 330 case PPC::LIS8: 331 case PPC::QVGPCI: 332 case PPC::ADDIStocHA: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::V_SET0B: 339 case PPC::V_SET0H: 340 case PPC::V_SET0: 341 case PPC::V_SETALLONESB: 342 case PPC::V_SETALLONESH: 343 case PPC::V_SETALLONES: 344 case PPC::CRSET: 345 case PPC::CRUNSET: 346 return true; 347 } 348 return false; 349 } 350 351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 352 int &FrameIndex) const { 353 unsigned Opcode = MI.getOpcode(); 354 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 355 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 356 357 if (End != std::find(OpcodesForSpill, End, Opcode)) { 358 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 359 MI.getOperand(2).isFI()) { 360 FrameIndex = MI.getOperand(2).getIndex(); 361 return MI.getOperand(0).getReg(); 362 } 363 } 364 return 0; 365 } 366 367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 368 unsigned OpIdx1, 369 unsigned OpIdx2) const { 370 MachineFunction &MF = *MI.getParent()->getParent(); 371 372 // Normal instructions can be commuted the obvious way. 373 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 374 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 377 // changing the relative order of the mask operands might change what happens 378 // to the high-bits of the mask (and, thus, the result). 379 380 // Cannot commute if it has a non-zero rotate count. 381 if (MI.getOperand(3).getImm() != 0) 382 return nullptr; 383 384 // If we have a zero rotate count, we have: 385 // M = mask(MB,ME) 386 // Op0 = (Op1 & ~M) | (Op2 & M) 387 // Change this to: 388 // M = mask((ME+1)&31, (MB-1)&31) 389 // Op0 = (Op2 & ~M) | (Op1 & M) 390 391 // Swap op1/op2 392 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 394 Register Reg0 = MI.getOperand(0).getReg(); 395 Register Reg1 = MI.getOperand(1).getReg(); 396 Register Reg2 = MI.getOperand(2).getReg(); 397 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 398 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 399 bool Reg1IsKill = MI.getOperand(1).isKill(); 400 bool Reg2IsKill = MI.getOperand(2).isKill(); 401 bool ChangeReg0 = false; 402 // If machine instrs are no longer in two-address forms, update 403 // destination register as well. 404 if (Reg0 == Reg1) { 405 // Must be two address instruction! 406 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 407 "Expecting a two-address instruction!"); 408 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 409 Reg2IsKill = false; 410 ChangeReg0 = true; 411 } 412 413 // Masks. 414 unsigned MB = MI.getOperand(4).getImm(); 415 unsigned ME = MI.getOperand(5).getImm(); 416 417 // We can't commute a trivial mask (there is no way to represent an all-zero 418 // mask). 419 if (MB == 0 && ME == 31) 420 return nullptr; 421 422 if (NewMI) { 423 // Create a new instruction. 424 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 425 bool Reg0IsDead = MI.getOperand(0).isDead(); 426 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 427 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 428 .addReg(Reg2, getKillRegState(Reg2IsKill)) 429 .addReg(Reg1, getKillRegState(Reg1IsKill)) 430 .addImm((ME + 1) & 31) 431 .addImm((MB - 1) & 31); 432 } 433 434 if (ChangeReg0) { 435 MI.getOperand(0).setReg(Reg2); 436 MI.getOperand(0).setSubReg(SubReg2); 437 } 438 MI.getOperand(2).setReg(Reg1); 439 MI.getOperand(1).setReg(Reg2); 440 MI.getOperand(2).setSubReg(SubReg1); 441 MI.getOperand(1).setSubReg(SubReg2); 442 MI.getOperand(2).setIsKill(Reg1IsKill); 443 MI.getOperand(1).setIsKill(Reg2IsKill); 444 445 // Swap the mask around. 446 MI.getOperand(4).setImm((ME + 1) & 31); 447 MI.getOperand(5).setImm((MB - 1) & 31); 448 return &MI; 449 } 450 451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 452 unsigned &SrcOpIdx2) const { 453 // For VSX A-Type FMA instructions, it is the first two operands that can be 454 // commuted, however, because the non-encoded tied input operand is listed 455 // first, the operands to swap are actually the second and third. 456 457 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 458 if (AltOpc == -1) 459 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 460 461 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 462 // and SrcOpIdx2. 463 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 464 } 465 466 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 467 MachineBasicBlock::iterator MI) const { 468 // This function is used for scheduling, and the nop wanted here is the type 469 // that terminates dispatch groups on the POWER cores. 470 unsigned Directive = Subtarget.getDarwinDirective(); 471 unsigned Opcode; 472 switch (Directive) { 473 default: Opcode = PPC::NOP; break; 474 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 475 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 476 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 477 // FIXME: Update when POWER9 scheduling model is ready. 478 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 479 } 480 481 DebugLoc DL; 482 BuildMI(MBB, MI, DL, get(Opcode)); 483 } 484 485 /// Return the noop instruction to use for a noop. 486 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 487 NopInst.setOpcode(PPC::NOP); 488 } 489 490 // Branch analysis. 491 // Note: If the condition register is set to CTR or CTR8 then this is a 492 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 494 MachineBasicBlock *&TBB, 495 MachineBasicBlock *&FBB, 496 SmallVectorImpl<MachineOperand> &Cond, 497 bool AllowModify) const { 498 bool isPPC64 = Subtarget.isPPC64(); 499 500 // If the block has no terminators, it just falls into the block after it. 501 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 502 if (I == MBB.end()) 503 return false; 504 505 if (!isUnpredicatedTerminator(*I)) 506 return false; 507 508 if (AllowModify) { 509 // If the BB ends with an unconditional branch to the fallthrough BB, 510 // we eliminate the branch instruction. 511 if (I->getOpcode() == PPC::B && 512 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 513 I->eraseFromParent(); 514 515 // We update iterator after deleting the last branch. 516 I = MBB.getLastNonDebugInstr(); 517 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 518 return false; 519 } 520 } 521 522 // Get the last instruction in the block. 523 MachineInstr &LastInst = *I; 524 525 // If there is only one terminator instruction, process it. 526 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 527 if (LastInst.getOpcode() == PPC::B) { 528 if (!LastInst.getOperand(0).isMBB()) 529 return true; 530 TBB = LastInst.getOperand(0).getMBB(); 531 return false; 532 } else if (LastInst.getOpcode() == PPC::BCC) { 533 if (!LastInst.getOperand(2).isMBB()) 534 return true; 535 // Block ends with fall-through condbranch. 536 TBB = LastInst.getOperand(2).getMBB(); 537 Cond.push_back(LastInst.getOperand(0)); 538 Cond.push_back(LastInst.getOperand(1)); 539 return false; 540 } else if (LastInst.getOpcode() == PPC::BC) { 541 if (!LastInst.getOperand(1).isMBB()) 542 return true; 543 // Block ends with fall-through condbranch. 544 TBB = LastInst.getOperand(1).getMBB(); 545 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 546 Cond.push_back(LastInst.getOperand(0)); 547 return false; 548 } else if (LastInst.getOpcode() == PPC::BCn) { 549 if (!LastInst.getOperand(1).isMBB()) 550 return true; 551 // Block ends with fall-through condbranch. 552 TBB = LastInst.getOperand(1).getMBB(); 553 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 554 Cond.push_back(LastInst.getOperand(0)); 555 return false; 556 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 557 LastInst.getOpcode() == PPC::BDNZ) { 558 if (!LastInst.getOperand(0).isMBB()) 559 return true; 560 if (DisableCTRLoopAnal) 561 return true; 562 TBB = LastInst.getOperand(0).getMBB(); 563 Cond.push_back(MachineOperand::CreateImm(1)); 564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 565 true)); 566 return false; 567 } else if (LastInst.getOpcode() == PPC::BDZ8 || 568 LastInst.getOpcode() == PPC::BDZ) { 569 if (!LastInst.getOperand(0).isMBB()) 570 return true; 571 if (DisableCTRLoopAnal) 572 return true; 573 TBB = LastInst.getOperand(0).getMBB(); 574 Cond.push_back(MachineOperand::CreateImm(0)); 575 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 576 true)); 577 return false; 578 } 579 580 // Otherwise, don't know what this is. 581 return true; 582 } 583 584 // Get the instruction before it if it's a terminator. 585 MachineInstr &SecondLastInst = *I; 586 587 // If there are three terminators, we don't know what sort of block this is. 588 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 589 return true; 590 591 // If the block ends with PPC::B and PPC:BCC, handle it. 592 if (SecondLastInst.getOpcode() == PPC::BCC && 593 LastInst.getOpcode() == PPC::B) { 594 if (!SecondLastInst.getOperand(2).isMBB() || 595 !LastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(2).getMBB(); 598 Cond.push_back(SecondLastInst.getOperand(0)); 599 Cond.push_back(SecondLastInst.getOperand(1)); 600 FBB = LastInst.getOperand(0).getMBB(); 601 return false; 602 } else if (SecondLastInst.getOpcode() == PPC::BC && 603 LastInst.getOpcode() == PPC::B) { 604 if (!SecondLastInst.getOperand(1).isMBB() || 605 !LastInst.getOperand(0).isMBB()) 606 return true; 607 TBB = SecondLastInst.getOperand(1).getMBB(); 608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 609 Cond.push_back(SecondLastInst.getOperand(0)); 610 FBB = LastInst.getOperand(0).getMBB(); 611 return false; 612 } else if (SecondLastInst.getOpcode() == PPC::BCn && 613 LastInst.getOpcode() == PPC::B) { 614 if (!SecondLastInst.getOperand(1).isMBB() || 615 !LastInst.getOperand(0).isMBB()) 616 return true; 617 TBB = SecondLastInst.getOperand(1).getMBB(); 618 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 619 Cond.push_back(SecondLastInst.getOperand(0)); 620 FBB = LastInst.getOperand(0).getMBB(); 621 return false; 622 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 623 SecondLastInst.getOpcode() == PPC::BDNZ) && 624 LastInst.getOpcode() == PPC::B) { 625 if (!SecondLastInst.getOperand(0).isMBB() || 626 !LastInst.getOperand(0).isMBB()) 627 return true; 628 if (DisableCTRLoopAnal) 629 return true; 630 TBB = SecondLastInst.getOperand(0).getMBB(); 631 Cond.push_back(MachineOperand::CreateImm(1)); 632 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 633 true)); 634 FBB = LastInst.getOperand(0).getMBB(); 635 return false; 636 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 637 SecondLastInst.getOpcode() == PPC::BDZ) && 638 LastInst.getOpcode() == PPC::B) { 639 if (!SecondLastInst.getOperand(0).isMBB() || 640 !LastInst.getOperand(0).isMBB()) 641 return true; 642 if (DisableCTRLoopAnal) 643 return true; 644 TBB = SecondLastInst.getOperand(0).getMBB(); 645 Cond.push_back(MachineOperand::CreateImm(0)); 646 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 647 true)); 648 FBB = LastInst.getOperand(0).getMBB(); 649 return false; 650 } 651 652 // If the block ends with two PPC:Bs, handle it. The second one is not 653 // executed, so remove it. 654 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 655 if (!SecondLastInst.getOperand(0).isMBB()) 656 return true; 657 TBB = SecondLastInst.getOperand(0).getMBB(); 658 I = LastInst; 659 if (AllowModify) 660 I->eraseFromParent(); 661 return false; 662 } 663 664 // Otherwise, can't handle this. 665 return true; 666 } 667 668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 669 int *BytesRemoved) const { 670 assert(!BytesRemoved && "code size not handled"); 671 672 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 673 if (I == MBB.end()) 674 return 0; 675 676 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 677 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 678 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 679 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 680 return 0; 681 682 // Remove the branch. 683 I->eraseFromParent(); 684 685 I = MBB.end(); 686 687 if (I == MBB.begin()) return 1; 688 --I; 689 if (I->getOpcode() != PPC::BCC && 690 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 691 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 692 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 693 return 1; 694 695 // Remove the branch. 696 I->eraseFromParent(); 697 return 2; 698 } 699 700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 701 MachineBasicBlock *TBB, 702 MachineBasicBlock *FBB, 703 ArrayRef<MachineOperand> Cond, 704 const DebugLoc &DL, 705 int *BytesAdded) const { 706 // Shouldn't be a fall through. 707 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 708 assert((Cond.size() == 2 || Cond.size() == 0) && 709 "PPC branch conditions have two components!"); 710 assert(!BytesAdded && "code size not handled"); 711 712 bool isPPC64 = Subtarget.isPPC64(); 713 714 // One-way branch. 715 if (!FBB) { 716 if (Cond.empty()) // Unconditional branch 717 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 718 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 719 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 720 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 721 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 722 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 723 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 725 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 726 else // Conditional branch 727 BuildMI(&MBB, DL, get(PPC::BCC)) 728 .addImm(Cond[0].getImm()) 729 .add(Cond[1]) 730 .addMBB(TBB); 731 return 1; 732 } 733 734 // Two-way Conditional Branch. 735 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 736 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 737 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 738 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 739 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 740 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 742 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 743 else 744 BuildMI(&MBB, DL, get(PPC::BCC)) 745 .addImm(Cond[0].getImm()) 746 .add(Cond[1]) 747 .addMBB(TBB); 748 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 749 return 2; 750 } 751 752 // Select analysis. 753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 754 ArrayRef<MachineOperand> Cond, 755 unsigned TrueReg, unsigned FalseReg, 756 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 757 if (Cond.size() != 2) 758 return false; 759 760 // If this is really a bdnz-like condition, then it cannot be turned into a 761 // select. 762 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 763 return false; 764 765 // Check register classes. 766 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 767 const TargetRegisterClass *RC = 768 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 769 if (!RC) 770 return false; 771 772 // isel is for regular integer GPRs only. 773 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 774 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 775 !PPC::G8RCRegClass.hasSubClassEq(RC) && 776 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 777 return false; 778 779 // FIXME: These numbers are for the A2, how well they work for other cores is 780 // an open question. On the A2, the isel instruction has a 2-cycle latency 781 // but single-cycle throughput. These numbers are used in combination with 782 // the MispredictPenalty setting from the active SchedMachineModel. 783 CondCycles = 1; 784 TrueCycles = 1; 785 FalseCycles = 1; 786 787 return true; 788 } 789 790 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 791 MachineBasicBlock::iterator MI, 792 const DebugLoc &dl, unsigned DestReg, 793 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 794 unsigned FalseReg) const { 795 assert(Cond.size() == 2 && 796 "PPC branch conditions have two components!"); 797 798 // Get the register classes. 799 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 800 const TargetRegisterClass *RC = 801 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 802 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 803 804 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 805 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 806 assert((Is64Bit || 807 PPC::GPRCRegClass.hasSubClassEq(RC) || 808 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 809 "isel is for regular integer GPRs only"); 810 811 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 812 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 813 814 unsigned SubIdx = 0; 815 bool SwapOps = false; 816 switch (SelectPred) { 817 case PPC::PRED_EQ: 818 case PPC::PRED_EQ_MINUS: 819 case PPC::PRED_EQ_PLUS: 820 SubIdx = PPC::sub_eq; SwapOps = false; break; 821 case PPC::PRED_NE: 822 case PPC::PRED_NE_MINUS: 823 case PPC::PRED_NE_PLUS: 824 SubIdx = PPC::sub_eq; SwapOps = true; break; 825 case PPC::PRED_LT: 826 case PPC::PRED_LT_MINUS: 827 case PPC::PRED_LT_PLUS: 828 SubIdx = PPC::sub_lt; SwapOps = false; break; 829 case PPC::PRED_GE: 830 case PPC::PRED_GE_MINUS: 831 case PPC::PRED_GE_PLUS: 832 SubIdx = PPC::sub_lt; SwapOps = true; break; 833 case PPC::PRED_GT: 834 case PPC::PRED_GT_MINUS: 835 case PPC::PRED_GT_PLUS: 836 SubIdx = PPC::sub_gt; SwapOps = false; break; 837 case PPC::PRED_LE: 838 case PPC::PRED_LE_MINUS: 839 case PPC::PRED_LE_PLUS: 840 SubIdx = PPC::sub_gt; SwapOps = true; break; 841 case PPC::PRED_UN: 842 case PPC::PRED_UN_MINUS: 843 case PPC::PRED_UN_PLUS: 844 SubIdx = PPC::sub_un; SwapOps = false; break; 845 case PPC::PRED_NU: 846 case PPC::PRED_NU_MINUS: 847 case PPC::PRED_NU_PLUS: 848 SubIdx = PPC::sub_un; SwapOps = true; break; 849 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 850 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 851 } 852 853 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 854 SecondReg = SwapOps ? TrueReg : FalseReg; 855 856 // The first input register of isel cannot be r0. If it is a member 857 // of a register class that can be r0, then copy it first (the 858 // register allocator should eliminate the copy). 859 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 860 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 861 const TargetRegisterClass *FirstRC = 862 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 863 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 864 unsigned OldFirstReg = FirstReg; 865 FirstReg = MRI.createVirtualRegister(FirstRC); 866 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 867 .addReg(OldFirstReg); 868 } 869 870 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 871 .addReg(FirstReg).addReg(SecondReg) 872 .addReg(Cond[1].getReg(), 0, SubIdx); 873 } 874 875 static unsigned getCRBitValue(unsigned CRBit) { 876 unsigned Ret = 4; 877 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 878 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 879 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 880 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 881 Ret = 3; 882 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 883 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 884 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 885 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 886 Ret = 2; 887 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 888 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 889 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 890 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 891 Ret = 1; 892 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 893 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 894 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 895 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 896 Ret = 0; 897 898 assert(Ret != 4 && "Invalid CR bit register"); 899 return Ret; 900 } 901 902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 903 MachineBasicBlock::iterator I, 904 const DebugLoc &DL, unsigned DestReg, 905 unsigned SrcReg, bool KillSrc) const { 906 // We can end up with self copies and similar things as a result of VSX copy 907 // legalization. Promote them here. 908 const TargetRegisterInfo *TRI = &getRegisterInfo(); 909 if (PPC::F8RCRegClass.contains(DestReg) && 910 PPC::VSRCRegClass.contains(SrcReg)) { 911 unsigned SuperReg = 912 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 913 914 if (VSXSelfCopyCrash && SrcReg == SuperReg) 915 llvm_unreachable("nop VSX copy"); 916 917 DestReg = SuperReg; 918 } else if (PPC::F8RCRegClass.contains(SrcReg) && 919 PPC::VSRCRegClass.contains(DestReg)) { 920 unsigned SuperReg = 921 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 922 923 if (VSXSelfCopyCrash && DestReg == SuperReg) 924 llvm_unreachable("nop VSX copy"); 925 926 SrcReg = SuperReg; 927 } 928 929 // Different class register copy 930 if (PPC::CRBITRCRegClass.contains(SrcReg) && 931 PPC::GPRCRegClass.contains(DestReg)) { 932 unsigned CRReg = getCRFromCRBit(SrcReg); 933 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 934 getKillRegState(KillSrc); 935 // Rotate the CR bit in the CR fields to be the least significant bit and 936 // then mask with 0x1 (MB = ME = 31). 937 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 938 .addReg(DestReg, RegState::Kill) 939 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 940 .addImm(31) 941 .addImm(31); 942 return; 943 } else if (PPC::CRRCRegClass.contains(SrcReg) && 944 PPC::G8RCRegClass.contains(DestReg)) { 945 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 946 getKillRegState(KillSrc); 947 return; 948 } else if (PPC::CRRCRegClass.contains(SrcReg) && 949 PPC::GPRCRegClass.contains(DestReg)) { 950 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 951 getKillRegState(KillSrc); 952 return; 953 } else if (PPC::G8RCRegClass.contains(SrcReg) && 954 PPC::VSFRCRegClass.contains(DestReg)) { 955 assert(Subtarget.hasDirectMove() && 956 "Subtarget doesn't support directmove, don't know how to copy."); 957 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 958 NumGPRtoVSRSpill++; 959 getKillRegState(KillSrc); 960 return; 961 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 962 PPC::G8RCRegClass.contains(DestReg)) { 963 assert(Subtarget.hasDirectMove() && 964 "Subtarget doesn't support directmove, don't know how to copy."); 965 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 966 getKillRegState(KillSrc); 967 return; 968 } else if (PPC::SPERCRegClass.contains(SrcReg) && 969 PPC::SPE4RCRegClass.contains(DestReg)) { 970 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 971 getKillRegState(KillSrc); 972 return; 973 } else if (PPC::SPE4RCRegClass.contains(SrcReg) && 974 PPC::SPERCRegClass.contains(DestReg)) { 975 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 976 getKillRegState(KillSrc); 977 return; 978 } 979 980 unsigned Opc; 981 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 982 Opc = PPC::OR; 983 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::OR8; 985 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::FMR; 987 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 988 Opc = PPC::MCRF; 989 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 990 Opc = PPC::VOR; 991 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 992 // There are two different ways this can be done: 993 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 994 // issue in VSU pipeline 0. 995 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 996 // can go to either pipeline. 997 // We'll always use xxlor here, because in practically all cases where 998 // copies are generated, they are close enough to some use that the 999 // lower-latency form is preferable. 1000 Opc = PPC::XXLOR; 1001 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1002 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1003 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1004 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1005 Opc = PPC::QVFMR; 1006 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1007 Opc = PPC::QVFMRs; 1008 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1009 Opc = PPC::QVFMRb; 1010 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1011 Opc = PPC::CROR; 1012 else if (PPC::SPE4RCRegClass.contains(DestReg, SrcReg)) 1013 Opc = PPC::OR; 1014 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1015 Opc = PPC::EVOR; 1016 else 1017 llvm_unreachable("Impossible reg-to-reg copy"); 1018 1019 const MCInstrDesc &MCID = get(Opc); 1020 if (MCID.getNumOperands() == 3) 1021 BuildMI(MBB, I, DL, MCID, DestReg) 1022 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1023 else 1024 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1025 } 1026 1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1028 const TargetRegisterClass *RC) 1029 const { 1030 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1031 int OpcodeIndex = 0; 1032 1033 if (RC != nullptr) { 1034 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1035 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1036 OpcodeIndex = SOK_Int4Spill; 1037 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1038 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_Int8Spill; 1040 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_Float8Spill; 1042 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_Float4Spill; 1044 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_SPESpill; 1046 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_SPE4Spill; 1048 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_CRSpill; 1050 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_CRBitSpill; 1052 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_VRVectorSpill; 1054 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1055 OpcodeIndex = SOK_VSXVectorSpill; 1056 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_VectorFloat8Spill; 1058 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_VectorFloat4Spill; 1060 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_VRSaveSpill; 1062 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_QuadFloat8Spill; 1064 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_QuadFloat4Spill; 1066 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_QuadBitSpill; 1068 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1069 OpcodeIndex = SOK_SpillToVSR; 1070 } else { 1071 llvm_unreachable("Unknown regclass!"); 1072 } 1073 } else { 1074 if (PPC::GPRCRegClass.contains(Reg) || 1075 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1076 OpcodeIndex = SOK_Int4Spill; 1077 } else if (PPC::G8RCRegClass.contains(Reg) || 1078 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_Int8Spill; 1080 } else if (PPC::F8RCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_Float8Spill; 1082 } else if (PPC::F4RCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_Float4Spill; 1084 } else if (PPC::SPERCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_SPESpill; 1086 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_SPE4Spill; 1088 } else if (PPC::CRRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_CRSpill; 1090 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_CRBitSpill; 1092 } else if (PPC::VRRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_VRVectorSpill; 1094 } else if (PPC::VSRCRegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_VSXVectorSpill; 1096 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_VectorFloat8Spill; 1098 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_VectorFloat4Spill; 1100 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_VRSaveSpill; 1102 } else if (PPC::QFRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_QuadFloat8Spill; 1104 } else if (PPC::QSRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_QuadFloat4Spill; 1106 } else if (PPC::QBRCRegClass.contains(Reg)) { 1107 OpcodeIndex = SOK_QuadBitSpill; 1108 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1109 OpcodeIndex = SOK_SpillToVSR; 1110 } else { 1111 llvm_unreachable("Unknown regclass!"); 1112 } 1113 } 1114 return OpcodesForSpill[OpcodeIndex]; 1115 } 1116 1117 unsigned 1118 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1119 const TargetRegisterClass *RC) const { 1120 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1121 int OpcodeIndex = 0; 1122 1123 if (RC != nullptr) { 1124 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1125 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1126 OpcodeIndex = SOK_Int4Spill; 1127 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1128 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_Int8Spill; 1130 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_Float8Spill; 1132 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_Float4Spill; 1134 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_SPESpill; 1136 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_SPE4Spill; 1138 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_CRSpill; 1140 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_CRBitSpill; 1142 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_VRVectorSpill; 1144 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_VSXVectorSpill; 1146 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_VectorFloat8Spill; 1148 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_VectorFloat4Spill; 1150 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_VRSaveSpill; 1152 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_QuadFloat8Spill; 1154 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1155 OpcodeIndex = SOK_QuadFloat4Spill; 1156 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1157 OpcodeIndex = SOK_QuadBitSpill; 1158 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1159 OpcodeIndex = SOK_SpillToVSR; 1160 } else { 1161 llvm_unreachable("Unknown regclass!"); 1162 } 1163 } else { 1164 if (PPC::GPRCRegClass.contains(Reg) || 1165 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1166 OpcodeIndex = SOK_Int4Spill; 1167 } else if (PPC::G8RCRegClass.contains(Reg) || 1168 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_Int8Spill; 1170 } else if (PPC::F8RCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_Float8Spill; 1172 } else if (PPC::F4RCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_Float4Spill; 1174 } else if (PPC::SPERCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_SPESpill; 1176 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_SPE4Spill; 1178 } else if (PPC::CRRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_CRSpill; 1180 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_CRBitSpill; 1182 } else if (PPC::VRRCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_VRVectorSpill; 1184 } else if (PPC::VSRCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_VSXVectorSpill; 1186 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_VectorFloat8Spill; 1188 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_VectorFloat4Spill; 1190 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_VRSaveSpill; 1192 } else if (PPC::QFRCRegClass.contains(Reg)) { 1193 OpcodeIndex = SOK_QuadFloat8Spill; 1194 } else if (PPC::QSRCRegClass.contains(Reg)) { 1195 OpcodeIndex = SOK_QuadFloat4Spill; 1196 } else if (PPC::QBRCRegClass.contains(Reg)) { 1197 OpcodeIndex = SOK_QuadBitSpill; 1198 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1199 OpcodeIndex = SOK_SpillToVSR; 1200 } else { 1201 llvm_unreachable("Unknown regclass!"); 1202 } 1203 } 1204 return OpcodesForSpill[OpcodeIndex]; 1205 } 1206 1207 void PPCInstrInfo::StoreRegToStackSlot( 1208 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1209 const TargetRegisterClass *RC, 1210 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1211 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1212 DebugLoc DL; 1213 1214 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1215 FuncInfo->setHasSpills(); 1216 1217 NewMIs.push_back(addFrameReference( 1218 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1219 FrameIdx)); 1220 1221 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1222 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1223 FuncInfo->setSpillsCR(); 1224 1225 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1226 FuncInfo->setSpillsVRSAVE(); 1227 1228 if (isXFormMemOp(Opcode)) 1229 FuncInfo->setHasNonRISpills(); 1230 } 1231 1232 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1233 MachineBasicBlock::iterator MI, 1234 unsigned SrcReg, bool isKill, 1235 int FrameIdx, 1236 const TargetRegisterClass *RC, 1237 const TargetRegisterInfo *TRI) const { 1238 MachineFunction &MF = *MBB.getParent(); 1239 SmallVector<MachineInstr *, 4> NewMIs; 1240 1241 // We need to avoid a situation in which the value from a VRRC register is 1242 // spilled using an Altivec instruction and reloaded into a VSRC register 1243 // using a VSX instruction. The issue with this is that the VSX 1244 // load/store instructions swap the doublewords in the vector and the Altivec 1245 // ones don't. The register classes on the spill/reload may be different if 1246 // the register is defined using an Altivec instruction and is then used by a 1247 // VSX instruction. 1248 RC = updatedRC(RC); 1249 1250 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1251 1252 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1253 MBB.insert(MI, NewMIs[i]); 1254 1255 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1256 MachineMemOperand *MMO = MF.getMachineMemOperand( 1257 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1258 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1259 MFI.getObjectAlignment(FrameIdx)); 1260 NewMIs.back()->addMemOperand(MF, MMO); 1261 } 1262 1263 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1264 unsigned DestReg, int FrameIdx, 1265 const TargetRegisterClass *RC, 1266 SmallVectorImpl<MachineInstr *> &NewMIs) 1267 const { 1268 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1269 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1270 FrameIdx)); 1271 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1272 1273 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1274 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1275 FuncInfo->setSpillsCR(); 1276 1277 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1278 FuncInfo->setSpillsVRSAVE(); 1279 1280 if (isXFormMemOp(Opcode)) 1281 FuncInfo->setHasNonRISpills(); 1282 } 1283 1284 void 1285 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1286 MachineBasicBlock::iterator MI, 1287 unsigned DestReg, int FrameIdx, 1288 const TargetRegisterClass *RC, 1289 const TargetRegisterInfo *TRI) const { 1290 MachineFunction &MF = *MBB.getParent(); 1291 SmallVector<MachineInstr*, 4> NewMIs; 1292 DebugLoc DL; 1293 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1294 1295 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1296 FuncInfo->setHasSpills(); 1297 1298 // We need to avoid a situation in which the value from a VRRC register is 1299 // spilled using an Altivec instruction and reloaded into a VSRC register 1300 // using a VSX instruction. The issue with this is that the VSX 1301 // load/store instructions swap the doublewords in the vector and the Altivec 1302 // ones don't. The register classes on the spill/reload may be different if 1303 // the register is defined using an Altivec instruction and is then used by a 1304 // VSX instruction. 1305 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1306 RC = &PPC::VSRCRegClass; 1307 1308 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1309 1310 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1311 MBB.insert(MI, NewMIs[i]); 1312 1313 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1314 MachineMemOperand *MMO = MF.getMachineMemOperand( 1315 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1316 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1317 MFI.getObjectAlignment(FrameIdx)); 1318 NewMIs.back()->addMemOperand(MF, MMO); 1319 } 1320 1321 bool PPCInstrInfo:: 1322 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1323 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1324 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1325 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1326 else 1327 // Leave the CR# the same, but invert the condition. 1328 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1329 return false; 1330 } 1331 1332 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1333 unsigned Reg, MachineRegisterInfo *MRI) const { 1334 // For some instructions, it is legal to fold ZERO into the RA register field. 1335 // A zero immediate should always be loaded with a single li. 1336 unsigned DefOpc = DefMI.getOpcode(); 1337 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1338 return false; 1339 if (!DefMI.getOperand(1).isImm()) 1340 return false; 1341 if (DefMI.getOperand(1).getImm() != 0) 1342 return false; 1343 1344 // Note that we cannot here invert the arguments of an isel in order to fold 1345 // a ZERO into what is presented as the second argument. All we have here 1346 // is the condition bit, and that might come from a CR-logical bit operation. 1347 1348 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1349 1350 // Only fold into real machine instructions. 1351 if (UseMCID.isPseudo()) 1352 return false; 1353 1354 unsigned UseIdx; 1355 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1356 if (UseMI.getOperand(UseIdx).isReg() && 1357 UseMI.getOperand(UseIdx).getReg() == Reg) 1358 break; 1359 1360 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1361 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1362 1363 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1364 1365 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1366 // register (which might also be specified as a pointer class kind). 1367 if (UseInfo->isLookupPtrRegClass()) { 1368 if (UseInfo->RegClass /* Kind */ != 1) 1369 return false; 1370 } else { 1371 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1372 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1373 return false; 1374 } 1375 1376 // Make sure this is not tied to an output register (or otherwise 1377 // constrained). This is true for ST?UX registers, for example, which 1378 // are tied to their output registers. 1379 if (UseInfo->Constraints != 0) 1380 return false; 1381 1382 unsigned ZeroReg; 1383 if (UseInfo->isLookupPtrRegClass()) { 1384 bool isPPC64 = Subtarget.isPPC64(); 1385 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1386 } else { 1387 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1388 PPC::ZERO8 : PPC::ZERO; 1389 } 1390 1391 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1392 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1393 1394 if (DeleteDef) 1395 DefMI.eraseFromParent(); 1396 1397 return true; 1398 } 1399 1400 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1401 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1402 I != IE; ++I) 1403 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1404 return true; 1405 return false; 1406 } 1407 1408 // We should make sure that, if we're going to predicate both sides of a 1409 // condition (a diamond), that both sides don't define the counter register. We 1410 // can predicate counter-decrement-based branches, but while that predicates 1411 // the branching, it does not predicate the counter decrement. If we tried to 1412 // merge the triangle into one predicated block, we'd decrement the counter 1413 // twice. 1414 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1415 unsigned NumT, unsigned ExtraT, 1416 MachineBasicBlock &FMBB, 1417 unsigned NumF, unsigned ExtraF, 1418 BranchProbability Probability) const { 1419 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1420 } 1421 1422 1423 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1424 // The predicated branches are identified by their type, not really by the 1425 // explicit presence of a predicate. Furthermore, some of them can be 1426 // predicated more than once. Because if conversion won't try to predicate 1427 // any instruction which already claims to be predicated (by returning true 1428 // here), always return false. In doing so, we let isPredicable() be the 1429 // final word on whether not the instruction can be (further) predicated. 1430 1431 return false; 1432 } 1433 1434 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1435 if (!MI.isTerminator()) 1436 return false; 1437 1438 // Conditional branch is a special case. 1439 if (MI.isBranch() && !MI.isBarrier()) 1440 return true; 1441 1442 return !isPredicated(MI); 1443 } 1444 1445 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1446 ArrayRef<MachineOperand> Pred) const { 1447 unsigned OpC = MI.getOpcode(); 1448 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1449 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1450 bool isPPC64 = Subtarget.isPPC64(); 1451 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1452 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1453 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1454 MI.setDesc(get(PPC::BCLR)); 1455 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1456 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1457 MI.setDesc(get(PPC::BCLRn)); 1458 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1459 } else { 1460 MI.setDesc(get(PPC::BCCLR)); 1461 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1462 .addImm(Pred[0].getImm()) 1463 .add(Pred[1]); 1464 } 1465 1466 return true; 1467 } else if (OpC == PPC::B) { 1468 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1469 bool isPPC64 = Subtarget.isPPC64(); 1470 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1471 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1472 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1474 MI.RemoveOperand(0); 1475 1476 MI.setDesc(get(PPC::BC)); 1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1478 .add(Pred[1]) 1479 .addMBB(MBB); 1480 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1481 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1482 MI.RemoveOperand(0); 1483 1484 MI.setDesc(get(PPC::BCn)); 1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1486 .add(Pred[1]) 1487 .addMBB(MBB); 1488 } else { 1489 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1490 MI.RemoveOperand(0); 1491 1492 MI.setDesc(get(PPC::BCC)); 1493 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1494 .addImm(Pred[0].getImm()) 1495 .add(Pred[1]) 1496 .addMBB(MBB); 1497 } 1498 1499 return true; 1500 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1501 OpC == PPC::BCTRL8) { 1502 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1503 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1504 1505 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1506 bool isPPC64 = Subtarget.isPPC64(); 1507 1508 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1509 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1510 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1511 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1512 return true; 1513 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1514 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1515 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1516 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1517 return true; 1518 } 1519 1520 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1521 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1522 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1523 .addImm(Pred[0].getImm()) 1524 .add(Pred[1]); 1525 return true; 1526 } 1527 1528 return false; 1529 } 1530 1531 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1532 ArrayRef<MachineOperand> Pred2) const { 1533 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1534 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1535 1536 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1537 return false; 1538 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1539 return false; 1540 1541 // P1 can only subsume P2 if they test the same condition register. 1542 if (Pred1[1].getReg() != Pred2[1].getReg()) 1543 return false; 1544 1545 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1546 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1547 1548 if (P1 == P2) 1549 return true; 1550 1551 // Does P1 subsume P2, e.g. GE subsumes GT. 1552 if (P1 == PPC::PRED_LE && 1553 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1554 return true; 1555 if (P1 == PPC::PRED_GE && 1556 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1557 return true; 1558 1559 return false; 1560 } 1561 1562 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1563 std::vector<MachineOperand> &Pred) const { 1564 // Note: At the present time, the contents of Pred from this function is 1565 // unused by IfConversion. This implementation follows ARM by pushing the 1566 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1567 // predicate, instructions defining CTR or CTR8 are also included as 1568 // predicate-defining instructions. 1569 1570 const TargetRegisterClass *RCs[] = 1571 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1572 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1573 1574 bool Found = false; 1575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1576 const MachineOperand &MO = MI.getOperand(i); 1577 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1578 const TargetRegisterClass *RC = RCs[c]; 1579 if (MO.isReg()) { 1580 if (MO.isDef() && RC->contains(MO.getReg())) { 1581 Pred.push_back(MO); 1582 Found = true; 1583 } 1584 } else if (MO.isRegMask()) { 1585 for (TargetRegisterClass::iterator I = RC->begin(), 1586 IE = RC->end(); I != IE; ++I) 1587 if (MO.clobbersPhysReg(*I)) { 1588 Pred.push_back(MO); 1589 Found = true; 1590 } 1591 } 1592 } 1593 } 1594 1595 return Found; 1596 } 1597 1598 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1599 unsigned OpC = MI.getOpcode(); 1600 switch (OpC) { 1601 default: 1602 return false; 1603 case PPC::B: 1604 case PPC::BLR: 1605 case PPC::BLR8: 1606 case PPC::BCTR: 1607 case PPC::BCTR8: 1608 case PPC::BCTRL: 1609 case PPC::BCTRL8: 1610 return true; 1611 } 1612 } 1613 1614 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1615 unsigned &SrcReg2, int &Mask, 1616 int &Value) const { 1617 unsigned Opc = MI.getOpcode(); 1618 1619 switch (Opc) { 1620 default: return false; 1621 case PPC::CMPWI: 1622 case PPC::CMPLWI: 1623 case PPC::CMPDI: 1624 case PPC::CMPLDI: 1625 SrcReg = MI.getOperand(1).getReg(); 1626 SrcReg2 = 0; 1627 Value = MI.getOperand(2).getImm(); 1628 Mask = 0xFFFF; 1629 return true; 1630 case PPC::CMPW: 1631 case PPC::CMPLW: 1632 case PPC::CMPD: 1633 case PPC::CMPLD: 1634 case PPC::FCMPUS: 1635 case PPC::FCMPUD: 1636 SrcReg = MI.getOperand(1).getReg(); 1637 SrcReg2 = MI.getOperand(2).getReg(); 1638 Value = 0; 1639 Mask = 0; 1640 return true; 1641 } 1642 } 1643 1644 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1645 unsigned SrcReg2, int Mask, int Value, 1646 const MachineRegisterInfo *MRI) const { 1647 if (DisableCmpOpt) 1648 return false; 1649 1650 int OpC = CmpInstr.getOpcode(); 1651 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1652 1653 // FP record forms set CR1 based on the exception status bits, not a 1654 // comparison with zero. 1655 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1656 return false; 1657 1658 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1659 // The record forms set the condition register based on a signed comparison 1660 // with zero (so says the ISA manual). This is not as straightforward as it 1661 // seems, however, because this is always a 64-bit comparison on PPC64, even 1662 // for instructions that are 32-bit in nature (like slw for example). 1663 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1664 // for equality checks (as those don't depend on the sign). On PPC64, 1665 // we are restricted to equality for unsigned 64-bit comparisons and for 1666 // signed 32-bit comparisons the applicability is more restricted. 1667 bool isPPC64 = Subtarget.isPPC64(); 1668 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1669 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1670 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1671 1672 // Look through copies unless that gets us to a physical register. 1673 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1674 if (TargetRegisterInfo::isVirtualRegister(ActualSrc)) 1675 SrcReg = ActualSrc; 1676 1677 // Get the unique definition of SrcReg. 1678 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1679 if (!MI) return false; 1680 1681 bool equalityOnly = false; 1682 bool noSub = false; 1683 if (isPPC64) { 1684 if (is32BitSignedCompare) { 1685 // We can perform this optimization only if MI is sign-extending. 1686 if (isSignExtended(*MI)) 1687 noSub = true; 1688 else 1689 return false; 1690 } else if (is32BitUnsignedCompare) { 1691 // We can perform this optimization, equality only, if MI is 1692 // zero-extending. 1693 if (isZeroExtended(*MI)) { 1694 noSub = true; 1695 equalityOnly = true; 1696 } else 1697 return false; 1698 } else 1699 equalityOnly = is64BitUnsignedCompare; 1700 } else 1701 equalityOnly = is32BitUnsignedCompare; 1702 1703 if (equalityOnly) { 1704 // We need to check the uses of the condition register in order to reject 1705 // non-equality comparisons. 1706 for (MachineRegisterInfo::use_instr_iterator 1707 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1708 I != IE; ++I) { 1709 MachineInstr *UseMI = &*I; 1710 if (UseMI->getOpcode() == PPC::BCC) { 1711 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1712 unsigned PredCond = PPC::getPredicateCondition(Pred); 1713 // We ignore hint bits when checking for non-equality comparisons. 1714 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1715 return false; 1716 } else if (UseMI->getOpcode() == PPC::ISEL || 1717 UseMI->getOpcode() == PPC::ISEL8) { 1718 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1719 if (SubIdx != PPC::sub_eq) 1720 return false; 1721 } else 1722 return false; 1723 } 1724 } 1725 1726 MachineBasicBlock::iterator I = CmpInstr; 1727 1728 // Scan forward to find the first use of the compare. 1729 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1730 ++I) { 1731 bool FoundUse = false; 1732 for (MachineRegisterInfo::use_instr_iterator 1733 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1734 J != JE; ++J) 1735 if (&*J == &*I) { 1736 FoundUse = true; 1737 break; 1738 } 1739 1740 if (FoundUse) 1741 break; 1742 } 1743 1744 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1745 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1746 1747 // There are two possible candidates which can be changed to set CR[01]. 1748 // One is MI, the other is a SUB instruction. 1749 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1750 MachineInstr *Sub = nullptr; 1751 if (SrcReg2 != 0) 1752 // MI is not a candidate for CMPrr. 1753 MI = nullptr; 1754 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1755 // same BB as the comparison. This is to allow the check below to avoid calls 1756 // (and other explicit clobbers); instead we should really check for these 1757 // more explicitly (in at least a few predecessors). 1758 else if (MI->getParent() != CmpInstr.getParent()) 1759 return false; 1760 else if (Value != 0) { 1761 // The record-form instructions set CR bit based on signed comparison 1762 // against 0. We try to convert a compare against 1 or -1 into a compare 1763 // against 0 to exploit record-form instructions. For example, we change 1764 // the condition "greater than -1" into "greater than or equal to 0" 1765 // and "less than 1" into "less than or equal to 0". 1766 1767 // Since we optimize comparison based on a specific branch condition, 1768 // we don't optimize if condition code is used by more than once. 1769 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1770 return false; 1771 1772 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1773 if (UseMI->getOpcode() != PPC::BCC) 1774 return false; 1775 1776 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1777 unsigned PredCond = PPC::getPredicateCondition(Pred); 1778 unsigned PredHint = PPC::getPredicateHint(Pred); 1779 int16_t Immed = (int16_t)Value; 1780 1781 // When modifying the condition in the predicate, we propagate hint bits 1782 // from the original predicate to the new one. 1783 if (Immed == -1 && PredCond == PPC::PRED_GT) 1784 // We convert "greater than -1" into "greater than or equal to 0", 1785 // since we are assuming signed comparison by !equalityOnly 1786 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1787 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1788 // We convert "less than or equal to -1" into "less than 0". 1789 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1790 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1791 // We convert "less than 1" into "less than or equal to 0". 1792 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1793 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1794 // We convert "greater than or equal to 1" into "greater than 0". 1795 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1796 else 1797 return false; 1798 1799 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1800 } 1801 1802 // Search for Sub. 1803 --I; 1804 1805 // Get ready to iterate backward from CmpInstr. 1806 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1807 1808 for (; I != E && !noSub; --I) { 1809 const MachineInstr &Instr = *I; 1810 unsigned IOpC = Instr.getOpcode(); 1811 1812 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1813 Instr.readsRegister(PPC::CR0, TRI))) 1814 // This instruction modifies or uses the record condition register after 1815 // the one we want to change. While we could do this transformation, it 1816 // would likely not be profitable. This transformation removes one 1817 // instruction, and so even forcing RA to generate one move probably 1818 // makes it unprofitable. 1819 return false; 1820 1821 // Check whether CmpInstr can be made redundant by the current instruction. 1822 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1823 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1824 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1825 ((Instr.getOperand(1).getReg() == SrcReg && 1826 Instr.getOperand(2).getReg() == SrcReg2) || 1827 (Instr.getOperand(1).getReg() == SrcReg2 && 1828 Instr.getOperand(2).getReg() == SrcReg))) { 1829 Sub = &*I; 1830 break; 1831 } 1832 1833 if (I == B) 1834 // The 'and' is below the comparison instruction. 1835 return false; 1836 } 1837 1838 // Return false if no candidates exist. 1839 if (!MI && !Sub) 1840 return false; 1841 1842 // The single candidate is called MI. 1843 if (!MI) MI = Sub; 1844 1845 int NewOpC = -1; 1846 int MIOpC = MI->getOpcode(); 1847 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1848 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1849 NewOpC = MIOpC; 1850 else { 1851 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1852 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1853 NewOpC = MIOpC; 1854 } 1855 1856 // FIXME: On the non-embedded POWER architectures, only some of the record 1857 // forms are fast, and we should use only the fast ones. 1858 1859 // The defining instruction has a record form (or is already a record 1860 // form). It is possible, however, that we'll need to reverse the condition 1861 // code of the users. 1862 if (NewOpC == -1) 1863 return false; 1864 1865 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1866 // needs to be updated to be based on SUB. Push the condition code 1867 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1868 // condition code of these operands will be modified. 1869 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1870 // comparison against 0, which may modify predicate. 1871 bool ShouldSwap = false; 1872 if (Sub && Value == 0) { 1873 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1874 Sub->getOperand(2).getReg() == SrcReg; 1875 1876 // The operands to subf are the opposite of sub, so only in the fixed-point 1877 // case, invert the order. 1878 ShouldSwap = !ShouldSwap; 1879 } 1880 1881 if (ShouldSwap) 1882 for (MachineRegisterInfo::use_instr_iterator 1883 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1884 I != IE; ++I) { 1885 MachineInstr *UseMI = &*I; 1886 if (UseMI->getOpcode() == PPC::BCC) { 1887 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1888 unsigned PredCond = PPC::getPredicateCondition(Pred); 1889 assert((!equalityOnly || 1890 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1891 "Invalid predicate for equality-only optimization"); 1892 (void)PredCond; // To suppress warning in release build. 1893 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1894 PPC::getSwappedPredicate(Pred))); 1895 } else if (UseMI->getOpcode() == PPC::ISEL || 1896 UseMI->getOpcode() == PPC::ISEL8) { 1897 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1898 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1899 "Invalid CR bit for equality-only optimization"); 1900 1901 if (NewSubReg == PPC::sub_lt) 1902 NewSubReg = PPC::sub_gt; 1903 else if (NewSubReg == PPC::sub_gt) 1904 NewSubReg = PPC::sub_lt; 1905 1906 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1907 NewSubReg)); 1908 } else // We need to abort on a user we don't understand. 1909 return false; 1910 } 1911 assert(!(Value != 0 && ShouldSwap) && 1912 "Non-zero immediate support and ShouldSwap" 1913 "may conflict in updating predicate"); 1914 1915 // Create a new virtual register to hold the value of the CR set by the 1916 // record-form instruction. If the instruction was not previously in 1917 // record form, then set the kill flag on the CR. 1918 CmpInstr.eraseFromParent(); 1919 1920 MachineBasicBlock::iterator MII = MI; 1921 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1922 get(TargetOpcode::COPY), CRReg) 1923 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1924 1925 // Even if CR0 register were dead before, it is alive now since the 1926 // instruction we just built uses it. 1927 MI->clearRegisterDeads(PPC::CR0); 1928 1929 if (MIOpC != NewOpC) { 1930 // We need to be careful here: we're replacing one instruction with 1931 // another, and we need to make sure that we get all of the right 1932 // implicit uses and defs. On the other hand, the caller may be holding 1933 // an iterator to this instruction, and so we can't delete it (this is 1934 // specifically the case if this is the instruction directly after the 1935 // compare). 1936 1937 // Rotates are expensive instructions. If we're emitting a record-form 1938 // rotate that can just be an andi/andis, we should just emit that. 1939 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1940 unsigned GPRRes = MI->getOperand(0).getReg(); 1941 int64_t SH = MI->getOperand(2).getImm(); 1942 int64_t MB = MI->getOperand(3).getImm(); 1943 int64_t ME = MI->getOperand(4).getImm(); 1944 // We can only do this if both the start and end of the mask are in the 1945 // same halfword. 1946 bool MBInLoHWord = MB >= 16; 1947 bool MEInLoHWord = ME >= 16; 1948 uint64_t Mask = ~0LLU; 1949 1950 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1951 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1952 // The mask value needs to shift right 16 if we're emitting andis. 1953 Mask >>= MBInLoHWord ? 0 : 16; 1954 NewOpC = MIOpC == PPC::RLWINM ? 1955 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1956 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1957 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1958 (ME - MB + 1 == SH) && (MB >= 16)) { 1959 // If we are rotating by the exact number of bits as are in the mask 1960 // and the mask is in the least significant bits of the register, 1961 // that's just an andis. (as long as the GPR result has no uses). 1962 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1963 Mask >>= 16; 1964 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1965 } 1966 // If we've set the mask, we can transform. 1967 if (Mask != ~0LLU) { 1968 MI->RemoveOperand(4); 1969 MI->RemoveOperand(3); 1970 MI->getOperand(2).setImm(Mask); 1971 NumRcRotatesConvertedToRcAnd++; 1972 } 1973 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1974 int64_t MB = MI->getOperand(3).getImm(); 1975 if (MB >= 48) { 1976 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1977 NewOpC = PPC::ANDIo8; 1978 MI->RemoveOperand(3); 1979 MI->getOperand(2).setImm(Mask); 1980 NumRcRotatesConvertedToRcAnd++; 1981 } 1982 } 1983 1984 const MCInstrDesc &NewDesc = get(NewOpC); 1985 MI->setDesc(NewDesc); 1986 1987 if (NewDesc.ImplicitDefs) 1988 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1989 *ImpDefs; ++ImpDefs) 1990 if (!MI->definesRegister(*ImpDefs)) 1991 MI->addOperand(*MI->getParent()->getParent(), 1992 MachineOperand::CreateReg(*ImpDefs, true, true)); 1993 if (NewDesc.ImplicitUses) 1994 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1995 *ImpUses; ++ImpUses) 1996 if (!MI->readsRegister(*ImpUses)) 1997 MI->addOperand(*MI->getParent()->getParent(), 1998 MachineOperand::CreateReg(*ImpUses, false, true)); 1999 } 2000 assert(MI->definesRegister(PPC::CR0) && 2001 "Record-form instruction does not define cr0?"); 2002 2003 // Modify the condition code of operands in OperandsToUpdate. 2004 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2005 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2006 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2007 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2008 2009 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2010 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2011 2012 return true; 2013 } 2014 2015 /// GetInstSize - Return the number of bytes of code the specified 2016 /// instruction may be. This returns the maximum number of bytes. 2017 /// 2018 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2019 unsigned Opcode = MI.getOpcode(); 2020 2021 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2022 const MachineFunction *MF = MI.getParent()->getParent(); 2023 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2024 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2025 } else if (Opcode == TargetOpcode::STACKMAP) { 2026 StackMapOpers Opers(&MI); 2027 return Opers.getNumPatchBytes(); 2028 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2029 PatchPointOpers Opers(&MI); 2030 return Opers.getNumPatchBytes(); 2031 } else { 2032 return get(Opcode).getSize(); 2033 } 2034 } 2035 2036 std::pair<unsigned, unsigned> 2037 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2038 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2039 return std::make_pair(TF & Mask, TF & ~Mask); 2040 } 2041 2042 ArrayRef<std::pair<unsigned, const char *>> 2043 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2044 using namespace PPCII; 2045 static const std::pair<unsigned, const char *> TargetFlags[] = { 2046 {MO_LO, "ppc-lo"}, 2047 {MO_HA, "ppc-ha"}, 2048 {MO_TPREL_LO, "ppc-tprel-lo"}, 2049 {MO_TPREL_HA, "ppc-tprel-ha"}, 2050 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2051 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2052 {MO_TOC_LO, "ppc-toc-lo"}, 2053 {MO_TLS, "ppc-tls"}}; 2054 return makeArrayRef(TargetFlags); 2055 } 2056 2057 ArrayRef<std::pair<unsigned, const char *>> 2058 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2059 using namespace PPCII; 2060 static const std::pair<unsigned, const char *> TargetFlags[] = { 2061 {MO_PLT, "ppc-plt"}, 2062 {MO_PIC_FLAG, "ppc-pic"}, 2063 {MO_NLP_FLAG, "ppc-nlp"}, 2064 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2065 return makeArrayRef(TargetFlags); 2066 } 2067 2068 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2069 // The VSX versions have the advantage of a full 64-register target whereas 2070 // the FP ones have the advantage of lower latency and higher throughput. So 2071 // what we are after is using the faster instructions in low register pressure 2072 // situations and using the larger register file in high register pressure 2073 // situations. 2074 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2075 unsigned UpperOpcode, LowerOpcode; 2076 switch (MI.getOpcode()) { 2077 case PPC::DFLOADf32: 2078 UpperOpcode = PPC::LXSSP; 2079 LowerOpcode = PPC::LFS; 2080 break; 2081 case PPC::DFLOADf64: 2082 UpperOpcode = PPC::LXSD; 2083 LowerOpcode = PPC::LFD; 2084 break; 2085 case PPC::DFSTOREf32: 2086 UpperOpcode = PPC::STXSSP; 2087 LowerOpcode = PPC::STFS; 2088 break; 2089 case PPC::DFSTOREf64: 2090 UpperOpcode = PPC::STXSD; 2091 LowerOpcode = PPC::STFD; 2092 break; 2093 case PPC::XFLOADf32: 2094 UpperOpcode = PPC::LXSSPX; 2095 LowerOpcode = PPC::LFSX; 2096 break; 2097 case PPC::XFLOADf64: 2098 UpperOpcode = PPC::LXSDX; 2099 LowerOpcode = PPC::LFDX; 2100 break; 2101 case PPC::XFSTOREf32: 2102 UpperOpcode = PPC::STXSSPX; 2103 LowerOpcode = PPC::STFSX; 2104 break; 2105 case PPC::XFSTOREf64: 2106 UpperOpcode = PPC::STXSDX; 2107 LowerOpcode = PPC::STFDX; 2108 break; 2109 case PPC::LIWAX: 2110 UpperOpcode = PPC::LXSIWAX; 2111 LowerOpcode = PPC::LFIWAX; 2112 break; 2113 case PPC::LIWZX: 2114 UpperOpcode = PPC::LXSIWZX; 2115 LowerOpcode = PPC::LFIWZX; 2116 break; 2117 case PPC::STIWX: 2118 UpperOpcode = PPC::STXSIWX; 2119 LowerOpcode = PPC::STFIWX; 2120 break; 2121 default: 2122 llvm_unreachable("Unknown Operation!"); 2123 } 2124 2125 unsigned TargetReg = MI.getOperand(0).getReg(); 2126 unsigned Opcode; 2127 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2128 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2129 Opcode = LowerOpcode; 2130 else 2131 Opcode = UpperOpcode; 2132 MI.setDesc(get(Opcode)); 2133 return true; 2134 } 2135 2136 static bool isAnImmediateOperand(const MachineOperand &MO) { 2137 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2138 } 2139 2140 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2141 auto &MBB = *MI.getParent(); 2142 auto DL = MI.getDebugLoc(); 2143 2144 switch (MI.getOpcode()) { 2145 case TargetOpcode::LOAD_STACK_GUARD: { 2146 assert(Subtarget.isTargetLinux() && 2147 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2148 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2149 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2150 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2151 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2152 .addImm(Offset) 2153 .addReg(Reg); 2154 return true; 2155 } 2156 case PPC::DFLOADf32: 2157 case PPC::DFLOADf64: 2158 case PPC::DFSTOREf32: 2159 case PPC::DFSTOREf64: { 2160 assert(Subtarget.hasP9Vector() && 2161 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2162 assert(MI.getOperand(2).isReg() && 2163 isAnImmediateOperand(MI.getOperand(1)) && 2164 "D-form op must have register and immediate operands"); 2165 return expandVSXMemPseudo(MI); 2166 } 2167 case PPC::XFLOADf32: 2168 case PPC::XFSTOREf32: 2169 case PPC::LIWAX: 2170 case PPC::LIWZX: 2171 case PPC::STIWX: { 2172 assert(Subtarget.hasP8Vector() && 2173 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2174 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2175 "X-form op must have register and register operands"); 2176 return expandVSXMemPseudo(MI); 2177 } 2178 case PPC::XFLOADf64: 2179 case PPC::XFSTOREf64: { 2180 assert(Subtarget.hasVSX() && 2181 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2182 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2183 "X-form op must have register and register operands"); 2184 return expandVSXMemPseudo(MI); 2185 } 2186 case PPC::SPILLTOVSR_LD: { 2187 unsigned TargetReg = MI.getOperand(0).getReg(); 2188 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2189 MI.setDesc(get(PPC::DFLOADf64)); 2190 return expandPostRAPseudo(MI); 2191 } 2192 else 2193 MI.setDesc(get(PPC::LD)); 2194 return true; 2195 } 2196 case PPC::SPILLTOVSR_ST: { 2197 unsigned SrcReg = MI.getOperand(0).getReg(); 2198 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2199 NumStoreSPILLVSRRCAsVec++; 2200 MI.setDesc(get(PPC::DFSTOREf64)); 2201 return expandPostRAPseudo(MI); 2202 } else { 2203 NumStoreSPILLVSRRCAsGpr++; 2204 MI.setDesc(get(PPC::STD)); 2205 } 2206 return true; 2207 } 2208 case PPC::SPILLTOVSR_LDX: { 2209 unsigned TargetReg = MI.getOperand(0).getReg(); 2210 if (PPC::VSFRCRegClass.contains(TargetReg)) 2211 MI.setDesc(get(PPC::LXSDX)); 2212 else 2213 MI.setDesc(get(PPC::LDX)); 2214 return true; 2215 } 2216 case PPC::SPILLTOVSR_STX: { 2217 unsigned SrcReg = MI.getOperand(0).getReg(); 2218 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2219 NumStoreSPILLVSRRCAsVec++; 2220 MI.setDesc(get(PPC::STXSDX)); 2221 } else { 2222 NumStoreSPILLVSRRCAsGpr++; 2223 MI.setDesc(get(PPC::STDX)); 2224 } 2225 return true; 2226 } 2227 2228 case PPC::CFENCE8: { 2229 auto Val = MI.getOperand(0).getReg(); 2230 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2231 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2232 .addImm(PPC::PRED_NE_MINUS) 2233 .addReg(PPC::CR7) 2234 .addImm(1); 2235 MI.setDesc(get(PPC::ISYNC)); 2236 MI.RemoveOperand(0); 2237 return true; 2238 } 2239 } 2240 return false; 2241 } 2242 2243 // Essentially a compile-time implementation of a compare->isel sequence. 2244 // It takes two constants to compare, along with the true/false registers 2245 // and the comparison type (as a subreg to a CR field) and returns one 2246 // of the true/false registers, depending on the comparison results. 2247 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2248 unsigned TrueReg, unsigned FalseReg, 2249 unsigned CRSubReg) { 2250 // Signed comparisons. The immediates are assumed to be sign-extended. 2251 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2252 switch (CRSubReg) { 2253 default: llvm_unreachable("Unknown integer comparison type."); 2254 case PPC::sub_lt: 2255 return Imm1 < Imm2 ? TrueReg : FalseReg; 2256 case PPC::sub_gt: 2257 return Imm1 > Imm2 ? TrueReg : FalseReg; 2258 case PPC::sub_eq: 2259 return Imm1 == Imm2 ? TrueReg : FalseReg; 2260 } 2261 } 2262 // Unsigned comparisons. 2263 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2264 switch (CRSubReg) { 2265 default: llvm_unreachable("Unknown integer comparison type."); 2266 case PPC::sub_lt: 2267 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2268 case PPC::sub_gt: 2269 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2270 case PPC::sub_eq: 2271 return Imm1 == Imm2 ? TrueReg : FalseReg; 2272 } 2273 } 2274 return PPC::NoRegister; 2275 } 2276 2277 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2278 unsigned OpNo, 2279 int64_t Imm) const { 2280 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2281 // Replace the REG with the Immediate. 2282 unsigned InUseReg = MI.getOperand(OpNo).getReg(); 2283 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2284 2285 if (empty(MI.implicit_operands())) 2286 return; 2287 2288 // We need to make sure that the MI didn't have any implicit use 2289 // of this REG any more. 2290 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2291 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2292 if (UseOpIdx >= 0) { 2293 MachineOperand &MO = MI.getOperand(UseOpIdx); 2294 if (MO.isImplicit()) 2295 // The operands must always be in the following order: 2296 // - explicit reg defs, 2297 // - other explicit operands (reg uses, immediates, etc.), 2298 // - implicit reg defs 2299 // - implicit reg uses 2300 // Therefore, removing the implicit operand won't change the explicit 2301 // operands layout. 2302 MI.RemoveOperand(UseOpIdx); 2303 } 2304 } 2305 2306 // Replace an instruction with one that materializes a constant (and sets 2307 // CR0 if the original instruction was a record-form instruction). 2308 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2309 const LoadImmediateInfo &LII) const { 2310 // Remove existing operands. 2311 int OperandToKeep = LII.SetCR ? 1 : 0; 2312 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2313 MI.RemoveOperand(i); 2314 2315 // Replace the instruction. 2316 if (LII.SetCR) { 2317 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2318 // Set the immediate. 2319 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2320 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2321 return; 2322 } 2323 else 2324 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2325 2326 // Set the immediate. 2327 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2328 .addImm(LII.Imm); 2329 } 2330 2331 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2332 MachineInstr &MI, 2333 unsigned &OpNoForForwarding, 2334 bool &SeenIntermediateUse) const { 2335 OpNoForForwarding = ~0U; 2336 MachineInstr *DefMI = nullptr; 2337 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2338 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2339 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2340 // within the basic block to see if the register is defined using an LI/LI8. 2341 if (MRI->isSSA()) { 2342 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2343 if (!MI.getOperand(i).isReg()) 2344 continue; 2345 unsigned Reg = MI.getOperand(i).getReg(); 2346 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2347 continue; 2348 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2349 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2350 DefMI = MRI->getVRegDef(TrueReg); 2351 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2352 OpNoForForwarding = i; 2353 break; 2354 } 2355 } 2356 } 2357 } else { 2358 // Looking back through the definition for each operand could be expensive, 2359 // so exit early if this isn't an instruction that either has an immediate 2360 // form or is already an immediate form that we can handle. 2361 ImmInstrInfo III; 2362 unsigned Opc = MI.getOpcode(); 2363 bool ConvertibleImmForm = 2364 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2365 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2366 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2367 Opc == PPC::ORI || Opc == PPC::ORI8 || 2368 Opc == PPC::XORI || Opc == PPC::XORI8 || 2369 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2370 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2371 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2372 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2373 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) 2374 return nullptr; 2375 2376 // Don't convert or %X, %Y, %Y since that's just a register move. 2377 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2378 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2379 return nullptr; 2380 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2381 MachineOperand &MO = MI.getOperand(i); 2382 SeenIntermediateUse = false; 2383 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2384 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2385 It++; 2386 unsigned Reg = MI.getOperand(i).getReg(); 2387 2388 // Is this register defined by some form of add-immediate (including 2389 // load-immediate) within this basic block? 2390 for ( ; It != E; ++It) { 2391 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2392 switch (It->getOpcode()) { 2393 default: break; 2394 case PPC::LI: 2395 case PPC::LI8: 2396 case PPC::ADDItocL: 2397 case PPC::ADDI: 2398 case PPC::ADDI8: 2399 OpNoForForwarding = i; 2400 return &*It; 2401 } 2402 break; 2403 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2404 // If we see another use of this reg between the def and the MI, 2405 // we want to flat it so the def isn't deleted. 2406 SeenIntermediateUse = true; 2407 } 2408 } 2409 } 2410 } 2411 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2412 } 2413 2414 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2415 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2416 // Power 8 2417 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2418 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2419 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2420 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, 2421 // Power 9 2422 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2423 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2424 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2425 PPC::SPILLTOVSR_ST}}; 2426 2427 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2428 } 2429 2430 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2431 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2432 // Power 8 2433 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2434 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2435 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2436 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, 2437 // Power 9 2438 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2439 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2440 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2441 PPC::SPILLTOVSR_LD}}; 2442 2443 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2444 } 2445 2446 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2447 unsigned RegNo) const { 2448 const MachineRegisterInfo &MRI = 2449 StartMI.getParent()->getParent()->getRegInfo(); 2450 if (MRI.isSSA()) 2451 return; 2452 2453 // Instructions between [StartMI, EndMI] should be in same basic block. 2454 assert((StartMI.getParent() == EndMI.getParent()) && 2455 "Instructions are not in same basic block"); 2456 2457 bool IsKillSet = false; 2458 2459 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2460 MachineOperand &MO = MI.getOperand(Index); 2461 if (MO.isReg() && MO.isUse() && MO.isKill() && 2462 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2463 MO.setIsKill(false); 2464 }; 2465 2466 // Set killed flag for EndMI. 2467 // No need to do anything if EndMI defines RegNo. 2468 int UseIndex = 2469 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2470 if (UseIndex != -1) { 2471 EndMI.getOperand(UseIndex).setIsKill(true); 2472 IsKillSet = true; 2473 // Clear killed flag for other EndMI operands related to RegNo. In some 2474 // upexpected cases, killed may be set multiple times for same register 2475 // operand in same MI. 2476 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2477 if (i != UseIndex) 2478 clearOperandKillInfo(EndMI, i); 2479 } 2480 2481 // Walking the inst in reverse order (EndMI -> StartMI]. 2482 MachineBasicBlock::reverse_iterator It = EndMI; 2483 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2484 // EndMI has been handled above, skip it here. 2485 It++; 2486 MachineOperand *MO = nullptr; 2487 for (; It != E; ++It) { 2488 // Skip insturctions which could not be a def/use of RegNo. 2489 if (It->isDebugInstr() || It->isPosition()) 2490 continue; 2491 2492 // Clear killed flag for all It operands related to RegNo. In some 2493 // upexpected cases, killed may be set multiple times for same register 2494 // operand in same MI. 2495 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2496 clearOperandKillInfo(*It, i); 2497 2498 // If killed is not set, set killed for its last use or set dead for its def 2499 // if no use found. 2500 if (!IsKillSet) { 2501 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2502 // Use found, set it killed. 2503 IsKillSet = true; 2504 MO->setIsKill(true); 2505 continue; 2506 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2507 &getRegisterInfo()))) { 2508 // No use found, set dead for its def. 2509 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2510 MO->setIsDead(true); 2511 break; 2512 } 2513 } 2514 2515 if ((&*It) == &StartMI) 2516 break; 2517 } 2518 // Ensure RegMo liveness is killed after EndMI. 2519 assert((IsKillSet || (MO && MO->isDead())) && 2520 "RegNo should be killed or dead"); 2521 } 2522 2523 // If this instruction has an immediate form and one of its operands is a 2524 // result of a load-immediate or an add-immediate, convert it to 2525 // the immediate form if the constant is in range. 2526 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2527 MachineInstr **KilledDef) const { 2528 MachineFunction *MF = MI.getParent()->getParent(); 2529 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2530 bool PostRA = !MRI->isSSA(); 2531 bool SeenIntermediateUse = true; 2532 unsigned ForwardingOperand = ~0U; 2533 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2534 SeenIntermediateUse); 2535 if (!DefMI) 2536 return false; 2537 assert(ForwardingOperand < MI.getNumOperands() && 2538 "The forwarding operand needs to be valid at this point"); 2539 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2540 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2541 unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2542 if (KilledDef && KillFwdDefMI) 2543 *KilledDef = DefMI; 2544 2545 ImmInstrInfo III; 2546 bool HasImmForm = instrHasImmForm(MI, III, PostRA); 2547 // If this is a reg+reg instruction that has a reg+imm form, 2548 // and one of the operands is produced by an add-immediate, 2549 // try to convert it. 2550 if (HasImmForm && 2551 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2552 KillFwdDefMI)) 2553 return true; 2554 2555 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2556 !DefMI->getOperand(1).isImm()) 2557 return false; 2558 2559 int64_t Immediate = DefMI->getOperand(1).getImm(); 2560 // Sign-extend to 64-bits. 2561 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2562 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2563 2564 // If this is a reg+reg instruction that has a reg+imm form, 2565 // and one of the operands is produced by LI, convert it now. 2566 if (HasImmForm) 2567 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2568 2569 bool ReplaceWithLI = false; 2570 bool Is64BitLI = false; 2571 int64_t NewImm = 0; 2572 bool SetCR = false; 2573 unsigned Opc = MI.getOpcode(); 2574 switch (Opc) { 2575 default: return false; 2576 2577 // FIXME: Any branches conditional on such a comparison can be made 2578 // unconditional. At this time, this happens too infrequently to be worth 2579 // the implementation effort, but if that ever changes, we could convert 2580 // such a pattern here. 2581 case PPC::CMPWI: 2582 case PPC::CMPLWI: 2583 case PPC::CMPDI: 2584 case PPC::CMPLDI: { 2585 // Doing this post-RA would require dataflow analysis to reliably find uses 2586 // of the CR register set by the compare. 2587 // No need to fixup killed/dead flag since this transformation is only valid 2588 // before RA. 2589 if (PostRA) 2590 return false; 2591 // If a compare-immediate is fed by an immediate and is itself an input of 2592 // an ISEL (the most common case) into a COPY of the correct register. 2593 bool Changed = false; 2594 unsigned DefReg = MI.getOperand(0).getReg(); 2595 int64_t Comparand = MI.getOperand(2).getImm(); 2596 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2597 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2598 2599 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2600 unsigned UseOpc = CompareUseMI.getOpcode(); 2601 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2602 continue; 2603 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2604 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2605 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2606 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2607 FalseReg, CRSubReg); 2608 if (RegToCopy == PPC::NoRegister) 2609 continue; 2610 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2611 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2612 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2613 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2614 CompareUseMI.RemoveOperand(3); 2615 CompareUseMI.RemoveOperand(2); 2616 continue; 2617 } 2618 LLVM_DEBUG( 2619 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2620 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2621 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2622 // Convert to copy and remove unneeded operands. 2623 CompareUseMI.setDesc(get(PPC::COPY)); 2624 CompareUseMI.RemoveOperand(3); 2625 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2626 CmpIselsConverted++; 2627 Changed = true; 2628 LLVM_DEBUG(CompareUseMI.dump()); 2629 } 2630 if (Changed) 2631 return true; 2632 // This may end up incremented multiple times since this function is called 2633 // during a fixed-point transformation, but it is only meant to indicate the 2634 // presence of this opportunity. 2635 MissedConvertibleImmediateInstrs++; 2636 return false; 2637 } 2638 2639 // Immediate forms - may simply be convertable to an LI. 2640 case PPC::ADDI: 2641 case PPC::ADDI8: { 2642 // Does the sum fit in a 16-bit signed field? 2643 int64_t Addend = MI.getOperand(2).getImm(); 2644 if (isInt<16>(Addend + SExtImm)) { 2645 ReplaceWithLI = true; 2646 Is64BitLI = Opc == PPC::ADDI8; 2647 NewImm = Addend + SExtImm; 2648 break; 2649 } 2650 return false; 2651 } 2652 case PPC::RLDICL: 2653 case PPC::RLDICLo: 2654 case PPC::RLDICL_32: 2655 case PPC::RLDICL_32_64: { 2656 // Use APInt's rotate function. 2657 int64_t SH = MI.getOperand(2).getImm(); 2658 int64_t MB = MI.getOperand(3).getImm(); 2659 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2660 64 : 32, SExtImm, true); 2661 InVal = InVal.rotl(SH); 2662 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2663 InVal &= Mask; 2664 // Can't replace negative values with an LI as that will sign-extend 2665 // and not clear the left bits. If we're setting the CR bit, we will use 2666 // ANDIo which won't sign extend, so that's safe. 2667 if (isUInt<15>(InVal.getSExtValue()) || 2668 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2669 ReplaceWithLI = true; 2670 Is64BitLI = Opc != PPC::RLDICL_32; 2671 NewImm = InVal.getSExtValue(); 2672 SetCR = Opc == PPC::RLDICLo; 2673 break; 2674 } 2675 return false; 2676 } 2677 case PPC::RLWINM: 2678 case PPC::RLWINM8: 2679 case PPC::RLWINMo: 2680 case PPC::RLWINM8o: { 2681 int64_t SH = MI.getOperand(2).getImm(); 2682 int64_t MB = MI.getOperand(3).getImm(); 2683 int64_t ME = MI.getOperand(4).getImm(); 2684 APInt InVal(32, SExtImm, true); 2685 InVal = InVal.rotl(SH); 2686 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2687 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2688 InVal &= Mask; 2689 // Can't replace negative values with an LI as that will sign-extend 2690 // and not clear the left bits. If we're setting the CR bit, we will use 2691 // ANDIo which won't sign extend, so that's safe. 2692 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2693 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2694 isUInt<16>(InVal.getSExtValue())); 2695 if (ValueFits) { 2696 ReplaceWithLI = true; 2697 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2698 NewImm = InVal.getSExtValue(); 2699 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2700 break; 2701 } 2702 return false; 2703 } 2704 case PPC::ORI: 2705 case PPC::ORI8: 2706 case PPC::XORI: 2707 case PPC::XORI8: { 2708 int64_t LogicalImm = MI.getOperand(2).getImm(); 2709 int64_t Result = 0; 2710 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2711 Result = LogicalImm | SExtImm; 2712 else 2713 Result = LogicalImm ^ SExtImm; 2714 if (isInt<16>(Result)) { 2715 ReplaceWithLI = true; 2716 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2717 NewImm = Result; 2718 break; 2719 } 2720 return false; 2721 } 2722 } 2723 2724 if (ReplaceWithLI) { 2725 // We need to be careful with CR-setting instructions we're replacing. 2726 if (SetCR) { 2727 // We don't know anything about uses when we're out of SSA, so only 2728 // replace if the new immediate will be reproduced. 2729 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2730 if (PostRA && ImmChanged) 2731 return false; 2732 2733 if (!PostRA) { 2734 // If the defining load-immediate has no other uses, we can just replace 2735 // the immediate with the new immediate. 2736 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2737 DefMI->getOperand(1).setImm(NewImm); 2738 2739 // If we're not using the GPR result of the CR-setting instruction, we 2740 // just need to and with zero/non-zero depending on the new immediate. 2741 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2742 if (NewImm) { 2743 assert(Immediate && "Transformation converted zero to non-zero?"); 2744 NewImm = Immediate; 2745 } 2746 } 2747 else if (ImmChanged) 2748 return false; 2749 } 2750 } 2751 2752 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2753 LLVM_DEBUG(MI.dump()); 2754 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2755 LLVM_DEBUG(DefMI->dump()); 2756 LoadImmediateInfo LII; 2757 LII.Imm = NewImm; 2758 LII.Is64Bit = Is64BitLI; 2759 LII.SetCR = SetCR; 2760 // If we're setting the CR, the original load-immediate must be kept (as an 2761 // operand to ANDIo/ANDI8o). 2762 if (KilledDef && SetCR) 2763 *KilledDef = nullptr; 2764 replaceInstrWithLI(MI, LII); 2765 2766 // Fixup killed/dead flag after transformation. 2767 // Pattern: 2768 // ForwardingOperandReg = LI imm1 2769 // y = op2 imm2, ForwardingOperandReg(killed) 2770 if (IsForwardingOperandKilled) 2771 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2772 2773 LLVM_DEBUG(dbgs() << "With:\n"); 2774 LLVM_DEBUG(MI.dump()); 2775 return true; 2776 } 2777 return false; 2778 } 2779 2780 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2781 ImmInstrInfo &III, bool PostRA) const { 2782 unsigned Opc = MI.getOpcode(); 2783 // The vast majority of the instructions would need their operand 2 replaced 2784 // with an immediate when switching to the reg+imm form. A marked exception 2785 // are the update form loads/stores for which a constant operand 2 would need 2786 // to turn into a displacement and move operand 1 to the operand 2 position. 2787 III.ImmOpNo = 2; 2788 III.OpNoForForwarding = 2; 2789 III.ImmWidth = 16; 2790 III.ImmMustBeMultipleOf = 1; 2791 III.TruncateImmTo = 0; 2792 III.IsSummingOperands = false; 2793 switch (Opc) { 2794 default: return false; 2795 case PPC::ADD4: 2796 case PPC::ADD8: 2797 III.SignedImm = true; 2798 III.ZeroIsSpecialOrig = 0; 2799 III.ZeroIsSpecialNew = 1; 2800 III.IsCommutative = true; 2801 III.IsSummingOperands = true; 2802 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2803 break; 2804 case PPC::ADDC: 2805 case PPC::ADDC8: 2806 III.SignedImm = true; 2807 III.ZeroIsSpecialOrig = 0; 2808 III.ZeroIsSpecialNew = 0; 2809 III.IsCommutative = true; 2810 III.IsSummingOperands = true; 2811 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2812 break; 2813 case PPC::ADDCo: 2814 III.SignedImm = true; 2815 III.ZeroIsSpecialOrig = 0; 2816 III.ZeroIsSpecialNew = 0; 2817 III.IsCommutative = true; 2818 III.IsSummingOperands = true; 2819 III.ImmOpcode = PPC::ADDICo; 2820 break; 2821 case PPC::SUBFC: 2822 case PPC::SUBFC8: 2823 III.SignedImm = true; 2824 III.ZeroIsSpecialOrig = 0; 2825 III.ZeroIsSpecialNew = 0; 2826 III.IsCommutative = false; 2827 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2828 break; 2829 case PPC::CMPW: 2830 case PPC::CMPD: 2831 III.SignedImm = true; 2832 III.ZeroIsSpecialOrig = 0; 2833 III.ZeroIsSpecialNew = 0; 2834 III.IsCommutative = false; 2835 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2836 break; 2837 case PPC::CMPLW: 2838 case PPC::CMPLD: 2839 III.SignedImm = false; 2840 III.ZeroIsSpecialOrig = 0; 2841 III.ZeroIsSpecialNew = 0; 2842 III.IsCommutative = false; 2843 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2844 break; 2845 case PPC::ANDo: 2846 case PPC::AND8o: 2847 case PPC::OR: 2848 case PPC::OR8: 2849 case PPC::XOR: 2850 case PPC::XOR8: 2851 III.SignedImm = false; 2852 III.ZeroIsSpecialOrig = 0; 2853 III.ZeroIsSpecialNew = 0; 2854 III.IsCommutative = true; 2855 switch(Opc) { 2856 default: llvm_unreachable("Unknown opcode"); 2857 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2858 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2859 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2860 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2861 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2862 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2863 } 2864 break; 2865 case PPC::RLWNM: 2866 case PPC::RLWNM8: 2867 case PPC::RLWNMo: 2868 case PPC::RLWNM8o: 2869 case PPC::SLW: 2870 case PPC::SLW8: 2871 case PPC::SLWo: 2872 case PPC::SLW8o: 2873 case PPC::SRW: 2874 case PPC::SRW8: 2875 case PPC::SRWo: 2876 case PPC::SRW8o: 2877 case PPC::SRAW: 2878 case PPC::SRAWo: 2879 III.SignedImm = false; 2880 III.ZeroIsSpecialOrig = 0; 2881 III.ZeroIsSpecialNew = 0; 2882 III.IsCommutative = false; 2883 // This isn't actually true, but the instructions ignore any of the 2884 // upper bits, so any immediate loaded with an LI is acceptable. 2885 // This does not apply to shift right algebraic because a value 2886 // out of range will produce a -1/0. 2887 III.ImmWidth = 16; 2888 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2889 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2890 III.TruncateImmTo = 5; 2891 else 2892 III.TruncateImmTo = 6; 2893 switch(Opc) { 2894 default: llvm_unreachable("Unknown opcode"); 2895 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2896 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2897 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2898 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2899 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2900 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2901 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2902 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2903 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2904 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2905 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2906 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2907 case PPC::SRAW: 2908 III.ImmWidth = 5; 2909 III.TruncateImmTo = 0; 2910 III.ImmOpcode = PPC::SRAWI; 2911 break; 2912 case PPC::SRAWo: 2913 III.ImmWidth = 5; 2914 III.TruncateImmTo = 0; 2915 III.ImmOpcode = PPC::SRAWIo; 2916 break; 2917 } 2918 break; 2919 case PPC::RLDCL: 2920 case PPC::RLDCLo: 2921 case PPC::RLDCR: 2922 case PPC::RLDCRo: 2923 case PPC::SLD: 2924 case PPC::SLDo: 2925 case PPC::SRD: 2926 case PPC::SRDo: 2927 case PPC::SRAD: 2928 case PPC::SRADo: 2929 III.SignedImm = false; 2930 III.ZeroIsSpecialOrig = 0; 2931 III.ZeroIsSpecialNew = 0; 2932 III.IsCommutative = false; 2933 // This isn't actually true, but the instructions ignore any of the 2934 // upper bits, so any immediate loaded with an LI is acceptable. 2935 // This does not apply to shift right algebraic because a value 2936 // out of range will produce a -1/0. 2937 III.ImmWidth = 16; 2938 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2939 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2940 III.TruncateImmTo = 6; 2941 else 2942 III.TruncateImmTo = 7; 2943 switch(Opc) { 2944 default: llvm_unreachable("Unknown opcode"); 2945 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2946 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2947 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2948 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2949 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2950 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2951 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2952 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2953 case PPC::SRAD: 2954 III.ImmWidth = 6; 2955 III.TruncateImmTo = 0; 2956 III.ImmOpcode = PPC::SRADI; 2957 break; 2958 case PPC::SRADo: 2959 III.ImmWidth = 6; 2960 III.TruncateImmTo = 0; 2961 III.ImmOpcode = PPC::SRADIo; 2962 break; 2963 } 2964 break; 2965 // Loads and stores: 2966 case PPC::LBZX: 2967 case PPC::LBZX8: 2968 case PPC::LHZX: 2969 case PPC::LHZX8: 2970 case PPC::LHAX: 2971 case PPC::LHAX8: 2972 case PPC::LWZX: 2973 case PPC::LWZX8: 2974 case PPC::LWAX: 2975 case PPC::LDX: 2976 case PPC::LFSX: 2977 case PPC::LFDX: 2978 case PPC::STBX: 2979 case PPC::STBX8: 2980 case PPC::STHX: 2981 case PPC::STHX8: 2982 case PPC::STWX: 2983 case PPC::STWX8: 2984 case PPC::STDX: 2985 case PPC::STFSX: 2986 case PPC::STFDX: 2987 III.SignedImm = true; 2988 III.ZeroIsSpecialOrig = 1; 2989 III.ZeroIsSpecialNew = 2; 2990 III.IsCommutative = true; 2991 III.IsSummingOperands = true; 2992 III.ImmOpNo = 1; 2993 III.OpNoForForwarding = 2; 2994 switch(Opc) { 2995 default: llvm_unreachable("Unknown opcode"); 2996 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2997 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2998 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2999 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3000 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3001 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3002 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3003 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3004 case PPC::LWAX: 3005 III.ImmOpcode = PPC::LWA; 3006 III.ImmMustBeMultipleOf = 4; 3007 break; 3008 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3009 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3010 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3011 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3012 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3013 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3014 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3015 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3016 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3017 case PPC::STDX: 3018 III.ImmOpcode = PPC::STD; 3019 III.ImmMustBeMultipleOf = 4; 3020 break; 3021 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3022 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3023 } 3024 break; 3025 case PPC::LBZUX: 3026 case PPC::LBZUX8: 3027 case PPC::LHZUX: 3028 case PPC::LHZUX8: 3029 case PPC::LHAUX: 3030 case PPC::LHAUX8: 3031 case PPC::LWZUX: 3032 case PPC::LWZUX8: 3033 case PPC::LDUX: 3034 case PPC::LFSUX: 3035 case PPC::LFDUX: 3036 case PPC::STBUX: 3037 case PPC::STBUX8: 3038 case PPC::STHUX: 3039 case PPC::STHUX8: 3040 case PPC::STWUX: 3041 case PPC::STWUX8: 3042 case PPC::STDUX: 3043 case PPC::STFSUX: 3044 case PPC::STFDUX: 3045 III.SignedImm = true; 3046 III.ZeroIsSpecialOrig = 2; 3047 III.ZeroIsSpecialNew = 3; 3048 III.IsCommutative = false; 3049 III.IsSummingOperands = true; 3050 III.ImmOpNo = 2; 3051 III.OpNoForForwarding = 3; 3052 switch(Opc) { 3053 default: llvm_unreachable("Unknown opcode"); 3054 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3055 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3056 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3057 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3058 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3059 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3060 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3061 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3062 case PPC::LDUX: 3063 III.ImmOpcode = PPC::LDU; 3064 III.ImmMustBeMultipleOf = 4; 3065 break; 3066 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3067 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3068 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3069 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3070 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3071 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3072 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3073 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3074 case PPC::STDUX: 3075 III.ImmOpcode = PPC::STDU; 3076 III.ImmMustBeMultipleOf = 4; 3077 break; 3078 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3079 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3080 } 3081 break; 3082 // Power9 and up only. For some of these, the X-Form version has access to all 3083 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3084 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3085 // into or stored from is one of the VR registers. 3086 case PPC::LXVX: 3087 case PPC::LXSSPX: 3088 case PPC::LXSDX: 3089 case PPC::STXVX: 3090 case PPC::STXSSPX: 3091 case PPC::STXSDX: 3092 case PPC::XFLOADf32: 3093 case PPC::XFLOADf64: 3094 case PPC::XFSTOREf32: 3095 case PPC::XFSTOREf64: 3096 if (!Subtarget.hasP9Vector()) 3097 return false; 3098 III.SignedImm = true; 3099 III.ZeroIsSpecialOrig = 1; 3100 III.ZeroIsSpecialNew = 2; 3101 III.IsCommutative = true; 3102 III.IsSummingOperands = true; 3103 III.ImmOpNo = 1; 3104 III.OpNoForForwarding = 2; 3105 III.ImmMustBeMultipleOf = 4; 3106 switch(Opc) { 3107 default: llvm_unreachable("Unknown opcode"); 3108 case PPC::LXVX: 3109 III.ImmOpcode = PPC::LXV; 3110 III.ImmMustBeMultipleOf = 16; 3111 break; 3112 case PPC::LXSSPX: 3113 if (PostRA) { 3114 if (isVFRegister(MI.getOperand(0).getReg())) 3115 III.ImmOpcode = PPC::LXSSP; 3116 else { 3117 III.ImmOpcode = PPC::LFS; 3118 III.ImmMustBeMultipleOf = 1; 3119 } 3120 break; 3121 } 3122 LLVM_FALLTHROUGH; 3123 case PPC::XFLOADf32: 3124 III.ImmOpcode = PPC::DFLOADf32; 3125 break; 3126 case PPC::LXSDX: 3127 if (PostRA) { 3128 if (isVFRegister(MI.getOperand(0).getReg())) 3129 III.ImmOpcode = PPC::LXSD; 3130 else { 3131 III.ImmOpcode = PPC::LFD; 3132 III.ImmMustBeMultipleOf = 1; 3133 } 3134 break; 3135 } 3136 LLVM_FALLTHROUGH; 3137 case PPC::XFLOADf64: 3138 III.ImmOpcode = PPC::DFLOADf64; 3139 break; 3140 case PPC::STXVX: 3141 III.ImmOpcode = PPC::STXV; 3142 III.ImmMustBeMultipleOf = 16; 3143 break; 3144 case PPC::STXSSPX: 3145 if (PostRA) { 3146 if (isVFRegister(MI.getOperand(0).getReg())) 3147 III.ImmOpcode = PPC::STXSSP; 3148 else { 3149 III.ImmOpcode = PPC::STFS; 3150 III.ImmMustBeMultipleOf = 1; 3151 } 3152 break; 3153 } 3154 LLVM_FALLTHROUGH; 3155 case PPC::XFSTOREf32: 3156 III.ImmOpcode = PPC::DFSTOREf32; 3157 break; 3158 case PPC::STXSDX: 3159 if (PostRA) { 3160 if (isVFRegister(MI.getOperand(0).getReg())) 3161 III.ImmOpcode = PPC::STXSD; 3162 else { 3163 III.ImmOpcode = PPC::STFD; 3164 III.ImmMustBeMultipleOf = 1; 3165 } 3166 break; 3167 } 3168 LLVM_FALLTHROUGH; 3169 case PPC::XFSTOREf64: 3170 III.ImmOpcode = PPC::DFSTOREf64; 3171 break; 3172 } 3173 break; 3174 } 3175 return true; 3176 } 3177 3178 // Utility function for swaping two arbitrary operands of an instruction. 3179 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3180 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3181 3182 unsigned MaxOp = std::max(Op1, Op2); 3183 unsigned MinOp = std::min(Op1, Op2); 3184 MachineOperand MOp1 = MI.getOperand(MinOp); 3185 MachineOperand MOp2 = MI.getOperand(MaxOp); 3186 MI.RemoveOperand(std::max(Op1, Op2)); 3187 MI.RemoveOperand(std::min(Op1, Op2)); 3188 3189 // If the operands we are swapping are the two at the end (the common case) 3190 // we can just remove both and add them in the opposite order. 3191 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3192 MI.addOperand(MOp2); 3193 MI.addOperand(MOp1); 3194 } else { 3195 // Store all operands in a temporary vector, remove them and re-add in the 3196 // right order. 3197 SmallVector<MachineOperand, 2> MOps; 3198 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3199 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3200 MOps.push_back(MI.getOperand(i)); 3201 MI.RemoveOperand(i); 3202 } 3203 // MOp2 needs to be added next. 3204 MI.addOperand(MOp2); 3205 // Now add the rest. 3206 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3207 if (i == MaxOp) 3208 MI.addOperand(MOp1); 3209 else { 3210 MI.addOperand(MOps.back()); 3211 MOps.pop_back(); 3212 } 3213 } 3214 } 3215 } 3216 3217 // Check if the 'MI' that has the index OpNoForForwarding 3218 // meets the requirement described in the ImmInstrInfo. 3219 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3220 const ImmInstrInfo &III, 3221 unsigned OpNoForForwarding 3222 ) const { 3223 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3224 // would not work pre-RA, we can only do the check post RA. 3225 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3226 if (MRI.isSSA()) 3227 return false; 3228 3229 // Cannot do the transform if MI isn't summing the operands. 3230 if (!III.IsSummingOperands) 3231 return false; 3232 3233 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3234 if (!III.ZeroIsSpecialOrig) 3235 return false; 3236 3237 // We cannot do the transform if the operand we are trying to replace 3238 // isn't the same as the operand the instruction allows. 3239 if (OpNoForForwarding != III.OpNoForForwarding) 3240 return false; 3241 3242 // Check if the instruction we are trying to transform really has 3243 // the special zero register as its operand. 3244 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3245 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3246 return false; 3247 3248 // This machine instruction is convertible if it is, 3249 // 1. summing the operands. 3250 // 2. one of the operands is special zero register. 3251 // 3. the operand we are trying to replace is allowed by the MI. 3252 return true; 3253 } 3254 3255 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3256 // accordingly. 3257 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3258 const ImmInstrInfo &III, 3259 MachineOperand *&ImmMO, 3260 MachineOperand *&RegMO) const { 3261 unsigned Opc = DefMI.getOpcode(); 3262 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3263 return false; 3264 3265 assert(DefMI.getNumOperands() >= 3 && 3266 "Add inst must have at least three operands"); 3267 RegMO = &DefMI.getOperand(1); 3268 ImmMO = &DefMI.getOperand(2); 3269 3270 // This DefMI is elgible for forwarding if it is: 3271 // 1. add inst 3272 // 2. one of the operands is Imm/CPI/Global. 3273 return isAnImmediateOperand(*ImmMO); 3274 } 3275 3276 bool PPCInstrInfo::isRegElgibleForForwarding( 3277 const MachineOperand &RegMO, const MachineInstr &DefMI, 3278 const MachineInstr &MI, bool KillDefMI, 3279 bool &IsFwdFeederRegKilled) const { 3280 // x = addi y, imm 3281 // ... 3282 // z = lfdx 0, x -> z = lfd imm(y) 3283 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3284 // of "y" between the DEF of "x" and "z". 3285 // The query is only valid post RA. 3286 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3287 if (MRI.isSSA()) 3288 return false; 3289 3290 unsigned Reg = RegMO.getReg(); 3291 3292 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3293 MachineBasicBlock::const_reverse_iterator It = MI; 3294 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3295 It++; 3296 for (; It != E; ++It) { 3297 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3298 return false; 3299 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3300 IsFwdFeederRegKilled = true; 3301 // Made it to DefMI without encountering a clobber. 3302 if ((&*It) == &DefMI) 3303 break; 3304 } 3305 assert((&*It) == &DefMI && "DefMI is missing"); 3306 3307 // If DefMI also defines the register to be forwarded, we can only forward it 3308 // if DefMI is being erased. 3309 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3310 return KillDefMI; 3311 3312 return true; 3313 } 3314 3315 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3316 const MachineInstr &DefMI, 3317 const ImmInstrInfo &III, 3318 int64_t &Imm) const { 3319 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3320 if (DefMI.getOpcode() == PPC::ADDItocL) { 3321 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3322 // However, we know that, it is 16-bit width, and has the alignment of 4. 3323 // Check if the instruction met the requirement. 3324 if (III.ImmMustBeMultipleOf > 4 || 3325 III.TruncateImmTo || III.ImmWidth != 16) 3326 return false; 3327 3328 // Going from XForm to DForm loads means that the displacement needs to be 3329 // not just an immediate but also a multiple of 4, or 16 depending on the 3330 // load. A DForm load cannot be represented if it is a multiple of say 2. 3331 // XForm loads do not have this restriction. 3332 if (ImmMO.isGlobal() && 3333 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3334 return false; 3335 3336 return true; 3337 } 3338 3339 if (ImmMO.isImm()) { 3340 // It is Imm, we need to check if the Imm fit the range. 3341 int64_t Immediate = ImmMO.getImm(); 3342 // Sign-extend to 64-bits. 3343 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3344 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3345 3346 if (Imm % III.ImmMustBeMultipleOf) 3347 return false; 3348 if (III.TruncateImmTo) 3349 Imm &= ((1 << III.TruncateImmTo) - 1); 3350 if (III.SignedImm) { 3351 APInt ActualValue(64, Imm, true); 3352 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3353 return false; 3354 } else { 3355 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3356 if ((uint64_t)Imm > UnsignedMax) 3357 return false; 3358 } 3359 } 3360 else 3361 return false; 3362 3363 // This ImmMO is forwarded if it meets the requriement describle 3364 // in ImmInstrInfo 3365 return true; 3366 } 3367 3368 // If an X-Form instruction is fed by an add-immediate and one of its operands 3369 // is the literal zero, attempt to forward the source of the add-immediate to 3370 // the corresponding D-Form instruction with the displacement coming from 3371 // the immediate being added. 3372 bool PPCInstrInfo::transformToImmFormFedByAdd( 3373 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3374 MachineInstr &DefMI, bool KillDefMI) const { 3375 // RegMO ImmMO 3376 // | | 3377 // x = addi reg, imm <----- DefMI 3378 // y = op 0 , x <----- MI 3379 // | 3380 // OpNoForForwarding 3381 // Check if the MI meet the requirement described in the III. 3382 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3383 return false; 3384 3385 // Check if the DefMI meet the requirement 3386 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3387 MachineOperand *ImmMO = nullptr; 3388 MachineOperand *RegMO = nullptr; 3389 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3390 return false; 3391 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3392 3393 // As we get the Imm operand now, we need to check if the ImmMO meet 3394 // the requirement described in the III. If yes set the Imm. 3395 int64_t Imm = 0; 3396 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3397 return false; 3398 3399 bool IsFwdFeederRegKilled = false; 3400 // Check if the RegMO can be forwarded to MI. 3401 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3402 IsFwdFeederRegKilled)) 3403 return false; 3404 3405 // Get killed info in case fixup needed after transformation. 3406 unsigned ForwardKilledOperandReg = ~0U; 3407 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3408 bool PostRA = !MRI.isSSA(); 3409 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3410 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3411 3412 // We know that, the MI and DefMI both meet the pattern, and 3413 // the Imm also meet the requirement with the new Imm-form. 3414 // It is safe to do the transformation now. 3415 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3416 LLVM_DEBUG(MI.dump()); 3417 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3418 LLVM_DEBUG(DefMI.dump()); 3419 3420 // Update the base reg first. 3421 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3422 false, false, 3423 RegMO->isKill()); 3424 3425 // Then, update the imm. 3426 if (ImmMO->isImm()) { 3427 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3428 // directly. 3429 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3430 } 3431 else { 3432 // Otherwise, it is Constant Pool Index(CPI) or Global, 3433 // which is relocation in fact. We need to replace the special zero 3434 // register with ImmMO. 3435 // Before that, we need to fixup the target flags for imm. 3436 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3437 if (DefMI.getOpcode() == PPC::ADDItocL) 3438 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3439 3440 // MI didn't have the interface such as MI.setOperand(i) though 3441 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3442 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3443 // and, add the ImmMO, then, move back all the operands behind ZERO. 3444 SmallVector<MachineOperand, 2> MOps; 3445 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3446 MOps.push_back(MI.getOperand(i)); 3447 MI.RemoveOperand(i); 3448 } 3449 3450 // Remove the last MO in the list, which is ZERO operand in fact. 3451 MOps.pop_back(); 3452 // Add the imm operand. 3453 MI.addOperand(*ImmMO); 3454 // Now add the rest back. 3455 for (auto &MO : MOps) 3456 MI.addOperand(MO); 3457 } 3458 3459 // Update the opcode. 3460 MI.setDesc(get(III.ImmOpcode)); 3461 3462 // Fix up killed/dead flag after transformation. 3463 // Pattern 1: 3464 // x = ADD KilledFwdFeederReg, imm 3465 // n = opn KilledFwdFeederReg(killed), regn 3466 // y = XOP 0, x 3467 // Pattern 2: 3468 // x = ADD reg(killed), imm 3469 // y = XOP 0, x 3470 if (IsFwdFeederRegKilled || RegMO->isKill()) 3471 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3472 // Pattern 3: 3473 // ForwardKilledOperandReg = ADD reg, imm 3474 // y = XOP 0, ForwardKilledOperandReg(killed) 3475 if (ForwardKilledOperandReg != ~0U) 3476 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3477 3478 LLVM_DEBUG(dbgs() << "With:\n"); 3479 LLVM_DEBUG(MI.dump()); 3480 3481 return true; 3482 } 3483 3484 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3485 const ImmInstrInfo &III, 3486 unsigned ConstantOpNo, 3487 MachineInstr &DefMI, 3488 int64_t Imm) const { 3489 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3490 bool PostRA = !MRI.isSSA(); 3491 // Exit early if we can't convert this. 3492 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3493 return false; 3494 if (Imm % III.ImmMustBeMultipleOf) 3495 return false; 3496 if (III.TruncateImmTo) 3497 Imm &= ((1 << III.TruncateImmTo) - 1); 3498 if (III.SignedImm) { 3499 APInt ActualValue(64, Imm, true); 3500 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3501 return false; 3502 } else { 3503 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3504 if ((uint64_t)Imm > UnsignedMax) 3505 return false; 3506 } 3507 3508 // If we're post-RA, the instructions don't agree on whether register zero is 3509 // special, we can transform this as long as the register operand that will 3510 // end up in the location where zero is special isn't R0. 3511 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3512 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3513 III.ZeroIsSpecialNew + 1; 3514 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3515 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3516 // If R0 is in the operand where zero is special for the new instruction, 3517 // it is unsafe to transform if the constant operand isn't that operand. 3518 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3519 ConstantOpNo != III.ZeroIsSpecialNew) 3520 return false; 3521 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3522 ConstantOpNo != PosForOrigZero) 3523 return false; 3524 } 3525 3526 // Get killed info in case fixup needed after transformation. 3527 unsigned ForwardKilledOperandReg = ~0U; 3528 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3529 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3530 3531 unsigned Opc = MI.getOpcode(); 3532 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLWo || 3533 Opc == PPC::SRW || Opc == PPC::SRWo || 3534 Opc == PPC::SLW8 || Opc == PPC::SLW8o || 3535 Opc == PPC::SRW8 || Opc == PPC::SRW8o; 3536 bool SpecialShift64 = 3537 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3538 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3539 Opc == PPC::SLDo || Opc == PPC::SRDo; 3540 bool RightShift = 3541 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3542 3543 MI.setDesc(get(III.ImmOpcode)); 3544 if (ConstantOpNo == III.OpNoForForwarding) { 3545 // Converting shifts to immediate form is a bit tricky since they may do 3546 // one of three things: 3547 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3548 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3549 // setting CR0) 3550 // 3. If the shift amount is in [1, OpSize), it's just a shift 3551 if (SpecialShift32 || SpecialShift64) { 3552 LoadImmediateInfo LII; 3553 LII.Imm = 0; 3554 LII.SetCR = SetCR; 3555 LII.Is64Bit = SpecialShift64; 3556 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3557 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3558 replaceInstrWithLI(MI, LII); 3559 // Shifts by zero don't change the value. If we don't need to set CR0, 3560 // just convert this to a COPY. Can't do this post-RA since we've already 3561 // cleaned up the copies. 3562 else if (!SetCR && ShAmt == 0 && !PostRA) { 3563 MI.RemoveOperand(2); 3564 MI.setDesc(get(PPC::COPY)); 3565 } else { 3566 // The 32 bit and 64 bit instructions are quite different. 3567 if (SpecialShift32) { 3568 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3569 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3570 uint64_t MB = RightShift ? ShAmt : 0; 3571 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3572 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3573 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3574 .addImm(ME); 3575 } else { 3576 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3577 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3578 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3579 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3580 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3581 } 3582 } 3583 } else 3584 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3585 } 3586 // Convert commutative instructions (switch the operands and convert the 3587 // desired one to an immediate. 3588 else if (III.IsCommutative) { 3589 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3590 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3591 } else 3592 llvm_unreachable("Should have exited early!"); 3593 3594 // For instructions for which the constant register replaces a different 3595 // operand than where the immediate goes, we need to swap them. 3596 if (III.OpNoForForwarding != III.ImmOpNo) 3597 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3598 3599 // If the special R0/X0 register index are different for original instruction 3600 // and new instruction, we need to fix up the register class in new 3601 // instruction. 3602 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3603 if (III.ZeroIsSpecialNew) { 3604 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3605 // need to fix up register class. 3606 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3607 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) { 3608 const TargetRegisterClass *NewRC = 3609 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3610 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3611 MRI.setRegClass(RegToModify, NewRC); 3612 } 3613 } 3614 } 3615 3616 // Fix up killed/dead flag after transformation. 3617 // Pattern: 3618 // ForwardKilledOperandReg = LI imm 3619 // y = XOP reg, ForwardKilledOperandReg(killed) 3620 if (ForwardKilledOperandReg != ~0U) 3621 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3622 return true; 3623 } 3624 3625 const TargetRegisterClass * 3626 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3627 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3628 return &PPC::VSRCRegClass; 3629 return RC; 3630 } 3631 3632 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3633 return PPC::getRecordFormOpcode(Opcode); 3634 } 3635 3636 // This function returns true if the machine instruction 3637 // always outputs a value by sign-extending a 32 bit value, 3638 // i.e. 0 to 31-th bits are same as 32-th bit. 3639 static bool isSignExtendingOp(const MachineInstr &MI) { 3640 int Opcode = MI.getOpcode(); 3641 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3642 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3643 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3644 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3645 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3646 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3647 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3648 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3649 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3650 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3651 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3652 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3653 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3654 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3655 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3656 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3657 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3658 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3659 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3660 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3661 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3662 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3663 Opcode == PPC::EXTSB8_32_64) 3664 return true; 3665 3666 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3667 return true; 3668 3669 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3670 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3671 MI.getOperand(3).getImm() > 0 && 3672 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3673 return true; 3674 3675 return false; 3676 } 3677 3678 // This function returns true if the machine instruction 3679 // always outputs zeros in higher 32 bits. 3680 static bool isZeroExtendingOp(const MachineInstr &MI) { 3681 int Opcode = MI.getOpcode(); 3682 // The 16-bit immediate is sign-extended in li/lis. 3683 // If the most significant bit is zero, all higher bits are zero. 3684 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3685 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3686 int64_t Imm = MI.getOperand(1).getImm(); 3687 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3688 return true; 3689 } 3690 3691 // We have some variations of rotate-and-mask instructions 3692 // that clear higher 32-bits. 3693 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3694 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3695 Opcode == PPC::RLDICL_32_64) && 3696 MI.getOperand(3).getImm() >= 32) 3697 return true; 3698 3699 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3700 MI.getOperand(3).getImm() >= 32 && 3701 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3702 return true; 3703 3704 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3705 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3706 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3707 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3708 return true; 3709 3710 // There are other instructions that clear higher 32-bits. 3711 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3712 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3713 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3714 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3715 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3716 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3717 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3718 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3719 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3720 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3721 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3722 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3723 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3724 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3725 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3726 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3727 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3728 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3729 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3730 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3731 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3732 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3733 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3734 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3735 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3736 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3737 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3738 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3739 Opcode == PPC::MFVSRWZ) 3740 return true; 3741 3742 return false; 3743 } 3744 3745 // This function returns true if the input MachineInstr is a TOC save 3746 // instruction. 3747 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3748 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3749 return false; 3750 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3751 unsigned StackOffset = MI.getOperand(1).getImm(); 3752 unsigned StackReg = MI.getOperand(2).getReg(); 3753 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3754 return true; 3755 3756 return false; 3757 } 3758 3759 // We limit the max depth to track incoming values of PHIs or binary ops 3760 // (e.g. AND) to avoid excessive cost. 3761 const unsigned MAX_DEPTH = 1; 3762 3763 bool 3764 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3765 const unsigned Depth) const { 3766 const MachineFunction *MF = MI.getParent()->getParent(); 3767 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3768 3769 // If we know this instruction returns sign- or zero-extended result, 3770 // return true. 3771 if (SignExt ? isSignExtendingOp(MI): 3772 isZeroExtendingOp(MI)) 3773 return true; 3774 3775 switch (MI.getOpcode()) { 3776 case PPC::COPY: { 3777 unsigned SrcReg = MI.getOperand(1).getReg(); 3778 3779 // In both ELFv1 and v2 ABI, method parameters and the return value 3780 // are sign- or zero-extended. 3781 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3782 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3783 // We check the ZExt/SExt flags for a method parameter. 3784 if (MI.getParent()->getBasicBlock() == 3785 &MF->getFunction().getEntryBlock()) { 3786 unsigned VReg = MI.getOperand(0).getReg(); 3787 if (MF->getRegInfo().isLiveIn(VReg)) 3788 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3789 FuncInfo->isLiveInZExt(VReg); 3790 } 3791 3792 // For a method return value, we check the ZExt/SExt flags in attribute. 3793 // We assume the following code sequence for method call. 3794 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3795 // BL8_NOP @func,... 3796 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3797 // %5 = COPY %x3; G8RC:%5 3798 if (SrcReg == PPC::X3) { 3799 const MachineBasicBlock *MBB = MI.getParent(); 3800 MachineBasicBlock::const_instr_iterator II = 3801 MachineBasicBlock::const_instr_iterator(&MI); 3802 if (II != MBB->instr_begin() && 3803 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3804 const MachineInstr &CallMI = *(--II); 3805 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3806 const Function *CalleeFn = 3807 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3808 if (!CalleeFn) 3809 return false; 3810 const IntegerType *IntTy = 3811 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3812 const AttributeSet &Attrs = 3813 CalleeFn->getAttributes().getRetAttributes(); 3814 if (IntTy && IntTy->getBitWidth() <= 32) 3815 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3816 Attribute::ZExt); 3817 } 3818 } 3819 } 3820 } 3821 3822 // If this is a copy from another register, we recursively check source. 3823 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3824 return false; 3825 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3826 if (SrcMI != NULL) 3827 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3828 3829 return false; 3830 } 3831 3832 case PPC::ANDIo: 3833 case PPC::ANDISo: 3834 case PPC::ORI: 3835 case PPC::ORIS: 3836 case PPC::XORI: 3837 case PPC::XORIS: 3838 case PPC::ANDIo8: 3839 case PPC::ANDISo8: 3840 case PPC::ORI8: 3841 case PPC::ORIS8: 3842 case PPC::XORI8: 3843 case PPC::XORIS8: { 3844 // logical operation with 16-bit immediate does not change the upper bits. 3845 // So, we track the operand register as we do for register copy. 3846 unsigned SrcReg = MI.getOperand(1).getReg(); 3847 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3848 return false; 3849 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3850 if (SrcMI != NULL) 3851 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3852 3853 return false; 3854 } 3855 3856 // If all incoming values are sign-/zero-extended, 3857 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3858 case PPC::OR: 3859 case PPC::OR8: 3860 case PPC::ISEL: 3861 case PPC::PHI: { 3862 if (Depth >= MAX_DEPTH) 3863 return false; 3864 3865 // The input registers for PHI are operand 1, 3, ... 3866 // The input registers for others are operand 1 and 2. 3867 unsigned E = 3, D = 1; 3868 if (MI.getOpcode() == PPC::PHI) { 3869 E = MI.getNumOperands(); 3870 D = 2; 3871 } 3872 3873 for (unsigned I = 1; I != E; I += D) { 3874 if (MI.getOperand(I).isReg()) { 3875 unsigned SrcReg = MI.getOperand(I).getReg(); 3876 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3877 return false; 3878 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3879 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3880 return false; 3881 } 3882 else 3883 return false; 3884 } 3885 return true; 3886 } 3887 3888 // If at least one of the incoming values of an AND is zero extended 3889 // then the output is also zero-extended. If both of the incoming values 3890 // are sign-extended then the output is also sign extended. 3891 case PPC::AND: 3892 case PPC::AND8: { 3893 if (Depth >= MAX_DEPTH) 3894 return false; 3895 3896 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3897 3898 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3899 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3900 3901 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3902 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3903 return false; 3904 3905 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3906 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3907 if (!MISrc1 || !MISrc2) 3908 return false; 3909 3910 if(SignExt) 3911 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3912 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3913 else 3914 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3915 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3916 } 3917 3918 default: 3919 break; 3920 } 3921 return false; 3922 } 3923 3924 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 3925 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 3926 } 3927 3928 bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, 3929 MachineInstr *&CmpInst) const { 3930 MachineBasicBlock *LoopEnd = L.getBottomBlock(); 3931 MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator(); 3932 // We really "analyze" only CTR loops right now. 3933 if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) { 3934 IndVarInst = nullptr; 3935 CmpInst = &*I; 3936 return false; 3937 } 3938 return true; 3939 } 3940 3941 MachineInstr * 3942 PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const { 3943 3944 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 3945 3946 // The loop set-up instruction should be in preheader 3947 for (auto &I : PreHeader.instrs()) 3948 if (I.getOpcode() == LOOPi) 3949 return &I; 3950 return nullptr; 3951 } 3952 3953 unsigned PPCInstrInfo::reduceLoopCount( 3954 MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, 3955 MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond, 3956 SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter, 3957 unsigned MaxIter) const { 3958 // We expect a hardware loop currently. This means that IndVar is set 3959 // to null, and the compare is the ENDLOOP instruction. 3960 assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop"); 3961 MachineFunction *MF = MBB.getParent(); 3962 DebugLoc DL = Cmp.getDebugLoc(); 3963 MachineInstr *Loop = findLoopInstr(PreHeader); 3964 if (!Loop) 3965 return 0; 3966 unsigned LoopCountReg = Loop->getOperand(0).getReg(); 3967 MachineRegisterInfo &MRI = MF->getRegInfo(); 3968 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 3969 3970 if (!LoopCount) 3971 return 0; 3972 // If the loop trip count is a compile-time value, then just change the 3973 // value. 3974 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) { 3975 int64_t Offset = LoopCount->getOperand(1).getImm(); 3976 if (Offset <= 1) { 3977 LoopCount->eraseFromParent(); 3978 Loop->eraseFromParent(); 3979 return 0; 3980 } 3981 LoopCount->getOperand(1).setImm(Offset - 1); 3982 return Offset - 1; 3983 } 3984 3985 // The loop trip count is a run-time value. 3986 // We need to subtract one from the trip count, 3987 // and insert branch later to check if we're done with the loop. 3988 3989 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 3990 // so we don't need to generate any thing here. 3991 Cond.push_back(MachineOperand::CreateImm(0)); 3992 Cond.push_back(MachineOperand::CreateReg( 3993 Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true)); 3994 return LoopCountReg; 3995 } 3996 3997 // Return true if get the base operand, byte offset of an instruction and the 3998 // memory width. Width is the size of memory that is being loaded/stored. 3999 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4000 const MachineInstr &LdSt, 4001 const MachineOperand *&BaseReg, 4002 int64_t &Offset, 4003 unsigned &Width, 4004 const TargetRegisterInfo *TRI) const { 4005 assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); 4006 4007 // Handle only loads/stores with base register followed by immediate offset. 4008 if (LdSt.getNumExplicitOperands() != 3) 4009 return false; 4010 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4011 return false; 4012 4013 if (!LdSt.hasOneMemOperand()) 4014 return false; 4015 4016 Width = (*LdSt.memoperands_begin())->getSize(); 4017 Offset = LdSt.getOperand(1).getImm(); 4018 BaseReg = &LdSt.getOperand(2); 4019 return true; 4020 } 4021 4022 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4023 const MachineInstr &MIa, const MachineInstr &MIb, 4024 AliasAnalysis * /*AA*/) const { 4025 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4026 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4027 4028 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4029 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4030 return false; 4031 4032 // Retrieve the base register, offset from the base register and width. Width 4033 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4034 // base registers are identical, and the offset of a lower memory access + 4035 // the width doesn't overlap the offset of a higher memory access, 4036 // then the memory accesses are different. 4037 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4038 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4039 int64_t OffsetA = 0, OffsetB = 0; 4040 unsigned int WidthA = 0, WidthB = 0; 4041 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4042 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4043 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4044 int LowOffset = std::min(OffsetA, OffsetB); 4045 int HighOffset = std::max(OffsetA, OffsetB); 4046 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4047 if (LowOffset + LowWidth <= HighOffset) 4048 return true; 4049 } 4050 } 4051 return false; 4052 } 4053