1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/RegisterPressure.h" 33 #include "llvm/CodeGen/ScheduleDAG.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "ppc-instr-info" 47 48 #define GET_INSTRMAP_INFO 49 #define GET_INSTRINFO_CTOR_DTOR 50 #include "PPCGenInstrInfo.inc" 51 52 STATISTIC(NumStoreSPILLVSRRCAsVec, 53 "Number of spillvsrrc spilled to stack as vec"); 54 STATISTIC(NumStoreSPILLVSRRCAsGpr, 55 "Number of spillvsrrc spilled to stack as gpr"); 56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 57 STATISTIC(CmpIselsConverted, 58 "Number of ISELs that depend on comparison of constants converted"); 59 STATISTIC(MissedConvertibleImmediateInstrs, 60 "Number of compare-immediate instructions fed by constants"); 61 STATISTIC(NumRcRotatesConvertedToRcAnd, 62 "Number of record-form rotates converted to record-form andi"); 63 64 static cl:: 65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 66 cl::desc("Disable analysis for CTR loops")); 67 68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 69 cl::desc("Disable compare instruction optimization"), cl::Hidden); 70 71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 77 cl::desc("Use the old (incorrect) instruction latency calculation")); 78 79 static cl::opt<float> 80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 81 cl::desc("register pressure factor for the transformations.")); 82 83 static cl::opt<bool> EnableFMARegPressureReduction( 84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 85 cl::desc("enable register pressure reduce in machine combiner pass.")); 86 87 // Pin the vtable to this file. 88 void PPCInstrInfo::anchor() {} 89 90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 92 /* CatchRetOpcode */ -1, 93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 94 Subtarget(STI), RI(STI.getTargetMachine()) {} 95 96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 97 /// this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 105 const InstrItineraryData *II = 106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 111 } 112 113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 114 /// to use for this target when scheduling the DAG. 115 ScheduleHazardRecognizer * 116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 117 const ScheduleDAG *DAG) const { 118 unsigned Directive = 119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 120 121 // FIXME: Leaving this as-is until we have POWER9 scheduling info 122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 124 125 // Most subtargets use a PPC970 recognizer. 126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 128 assert(DAG->TII && "No InstrInfo?"); 129 130 return new PPCHazardRecognizer970(*DAG); 131 } 132 133 return new ScoreboardHazardRecognizer(II, DAG); 134 } 135 136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 137 const MachineInstr &MI, 138 unsigned *PredCost) const { 139 if (!ItinData || UseOldLatencyCalc) 140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 141 142 // The default implementation of getInstrLatency calls getStageLatency, but 143 // getStageLatency does not do the right thing for us. While we have 144 // itinerary, most cores are fully pipelined, and so the itineraries only 145 // express the first part of the pipeline, not every stage. Instead, we need 146 // to use the listed output operand cycle number (using operand 0 here, which 147 // is an output). 148 149 unsigned Latency = 1; 150 unsigned DefClass = MI.getDesc().getSchedClass(); 151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 152 const MachineOperand &MO = MI.getOperand(i); 153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 154 continue; 155 156 int Cycle = ItinData->getOperandCycle(DefClass, i); 157 if (Cycle < 0) 158 continue; 159 160 Latency = std::max(Latency, (unsigned) Cycle); 161 } 162 163 return Latency; 164 } 165 166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 167 const MachineInstr &DefMI, unsigned DefIdx, 168 const MachineInstr &UseMI, 169 unsigned UseIdx) const { 170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 171 UseMI, UseIdx); 172 173 if (!DefMI.getParent()) 174 return Latency; 175 176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 177 Register Reg = DefMO.getReg(); 178 179 bool IsRegCR; 180 if (Register::isVirtualRegister(Reg)) { 181 const MachineRegisterInfo *MRI = 182 &DefMI.getParent()->getParent()->getRegInfo(); 183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 185 } else { 186 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 187 PPC::CRBITRCRegClass.contains(Reg); 188 } 189 190 if (UseMI.isBranch() && IsRegCR) { 191 if (Latency < 0) 192 Latency = getInstrLatency(ItinData, DefMI); 193 194 // On some cores, there is an additional delay between writing to a condition 195 // register, and using it from a branch. 196 unsigned Directive = Subtarget.getCPUDirective(); 197 switch (Directive) { 198 default: break; 199 case PPC::DIR_7400: 200 case PPC::DIR_750: 201 case PPC::DIR_970: 202 case PPC::DIR_E5500: 203 case PPC::DIR_PWR4: 204 case PPC::DIR_PWR5: 205 case PPC::DIR_PWR5X: 206 case PPC::DIR_PWR6: 207 case PPC::DIR_PWR6X: 208 case PPC::DIR_PWR7: 209 case PPC::DIR_PWR8: 210 // FIXME: Is this needed for POWER9? 211 Latency += 2; 212 break; 213 } 214 } 215 216 return Latency; 217 } 218 219 /// This is an architecture-specific helper function of reassociateOps. 220 /// Set special operand attributes for new instructions after reassociation. 221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 222 MachineInstr &OldMI2, 223 MachineInstr &NewMI1, 224 MachineInstr &NewMI2) const { 225 // Propagate FP flags from the original instructions. 226 // But clear poison-generating flags because those may not be valid now. 227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 228 NewMI1.setFlags(IntersectedFlags); 229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 232 233 NewMI2.setFlags(IntersectedFlags); 234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 237 } 238 239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 240 uint16_t Flags) const { 241 MI.setFlags(Flags); 242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 244 MI.clearFlag(MachineInstr::MIFlag::IsExact); 245 } 246 247 // This function does not list all associative and commutative operations, but 248 // only those worth feeding through the machine combiner in an attempt to 249 // reduce the critical path. Mostly, this means floating-point operations, 250 // because they have high latencies(>=5) (compared to other operations, such as 251 // and/or, which are also associative and commutative, but have low latencies). 252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 253 switch (Inst.getOpcode()) { 254 // Floating point: 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 274 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 275 // Fixed point: 276 // Multiply: 277 case PPC::MULHD: 278 case PPC::MULLD: 279 case PPC::MULHW: 280 case PPC::MULLW: 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 #define InfoArrayIdxFMAInst 0 288 #define InfoArrayIdxFAddInst 1 289 #define InfoArrayIdxFMULInst 2 290 #define InfoArrayIdxAddOpIdx 3 291 #define InfoArrayIdxMULOpIdx 4 292 #define InfoArrayIdxFSubInst 5 293 // Array keeps info for FMA instructions: 294 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 299 // second MUL operand index is plus 1; 300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 301 static const uint16_t FMAOpIdxInfo[][6] = { 302 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 309 310 // Check if an opcode is a FMA instruction. If it is, return the index in array 311 // FMAOpIdxInfo. Otherwise, return -1. 312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 315 return I; 316 return -1; 317 } 318 319 // On PowerPC target, we have two kinds of patterns related to FMA: 320 // 1: Improve ILP. 321 // Try to reassociate FMA chains like below: 322 // 323 // Pattern 1: 324 // A = FADD X, Y (Leaf) 325 // B = FMA A, M21, M22 (Prev) 326 // C = FMA B, M31, M32 (Root) 327 // --> 328 // A = FMA X, M21, M22 329 // B = FMA Y, M31, M32 330 // C = FADD A, B 331 // 332 // Pattern 2: 333 // A = FMA X, M11, M12 (Leaf) 334 // B = FMA A, M21, M22 (Prev) 335 // C = FMA B, M31, M32 (Root) 336 // --> 337 // A = FMUL M11, M12 338 // B = FMA X, M21, M22 339 // D = FMA A, M31, M32 340 // C = FADD B, D 341 // 342 // breaking the dependency between A and B, allowing FMA to be executed in 343 // parallel (or back-to-back in a pipeline) instead of depending on each other. 344 // 345 // 2: Reduce register pressure. 346 // Try to reassociate FMA with FSUB and a constant like below: 347 // C is a floatint point const. 348 // 349 // Pattern 1: 350 // A = FSUB X, Y (Leaf) 351 // D = FMA B, C, A (Root) 352 // --> 353 // A = FMA B, Y, -C 354 // D = FMA A, X, C 355 // 356 // Pattern 2: 357 // A = FSUB X, Y (Leaf) 358 // D = FMA B, A, C (Root) 359 // --> 360 // A = FMA B, Y, -C 361 // D = FMA A, X, C 362 // 363 // Before the transformation, A must be assigned with different hardware 364 // register with D. After the transformation, A and D must be assigned with 365 // same hardware register due to TIE attricute of FMA instructions. 366 // 367 bool PPCInstrInfo::getFMAPatterns( 368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 369 bool DoRegPressureReduce) const { 370 MachineBasicBlock *MBB = Root.getParent(); 371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 372 const TargetRegisterInfo *TRI = &getRegisterInfo(); 373 374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 375 for (const auto &MO : Instr.explicit_operands()) 376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 377 return false; 378 return true; 379 }; 380 381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 382 unsigned OpType) { 383 if (Instr.getOpcode() != 384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 385 return false; 386 387 // Instruction can be reassociated. 388 // fast math flags may prohibit reassociation. 389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 390 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 391 return false; 392 393 // Instruction operands are virtual registers for reassociation. 394 if (!IsAllOpsVirtualReg(Instr)) 395 return false; 396 397 // For register pressure reassociation, the FSub must have only one use as 398 // we want to delete the sub to save its def. 399 if (OpType == InfoArrayIdxFSubInst && 400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 401 return false; 402 403 return true; 404 }; 405 406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 407 int16_t &MulOpIdx, bool IsLeaf) { 408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 409 if (Idx < 0) 410 return false; 411 412 // Instruction can be reassociated. 413 // fast math flags may prohibit reassociation. 414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 415 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 416 return false; 417 418 // Instruction operands are virtual registers for reassociation. 419 if (!IsAllOpsVirtualReg(Instr)) 420 return false; 421 422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 423 if (IsLeaf) 424 return true; 425 426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 427 428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 430 // If 'add' operand's def is not in current block, don't do ILP related opt. 431 if (!MIAdd || MIAdd->getParent() != MBB) 432 return false; 433 434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 435 // as this fma will be changed later. 436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 437 }; 438 439 int16_t AddOpIdx = -1; 440 int16_t MulOpIdx = -1; 441 442 bool IsUsedOnceL = false; 443 bool IsUsedOnceR = false; 444 MachineInstr *MULInstrL = nullptr; 445 MachineInstr *MULInstrR = nullptr; 446 447 auto IsRPReductionCandidate = [&]() { 448 // Currently, we only support float and double. 449 // FIXME: add support for other types. 450 unsigned Opcode = Root.getOpcode(); 451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 452 return false; 453 454 // Root must be a valid FMA like instruction. 455 // Treat it as leaf as we don't care its add operand. 456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 457 assert((MulOpIdx >= 0) && "mul operand index not right!"); 458 Register MULRegL = TRI->lookThruSingleUseCopyChain( 459 Root.getOperand(MulOpIdx).getReg(), MRI); 460 Register MULRegR = TRI->lookThruSingleUseCopyChain( 461 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 462 if (!MULRegL && !MULRegR) 463 return false; 464 465 if (MULRegL && !MULRegR) { 466 MULRegR = 467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 468 IsUsedOnceL = true; 469 } else if (!MULRegL && MULRegR) { 470 MULRegL = 471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 472 IsUsedOnceR = true; 473 } else { 474 IsUsedOnceL = true; 475 IsUsedOnceR = true; 476 } 477 478 if (!Register::isVirtualRegister(MULRegL) || 479 !Register::isVirtualRegister(MULRegR)) 480 return false; 481 482 MULInstrL = MRI->getVRegDef(MULRegL); 483 MULInstrR = MRI->getVRegDef(MULRegR); 484 return true; 485 } 486 return false; 487 }; 488 489 // Register pressure fma reassociation patterns. 490 if (DoRegPressureReduce && IsRPReductionCandidate()) { 491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 492 // Register pressure pattern 1 493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 497 return true; 498 } 499 500 // Register pressure pattern 2 501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 505 return true; 506 } 507 } 508 509 // ILP fma reassociation patterns. 510 // Root must be a valid FMA like instruction. 511 AddOpIdx = -1; 512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 513 return false; 514 515 assert((AddOpIdx >= 0) && "add operand index not right!"); 516 517 Register RegB = Root.getOperand(AddOpIdx).getReg(); 518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 519 520 // Prev must be a valid FMA like instruction. 521 AddOpIdx = -1; 522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 523 return false; 524 525 assert((AddOpIdx >= 0) && "add operand index not right!"); 526 527 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 529 AddOpIdx = -1; 530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 533 return true; 534 } 535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 538 return true; 539 } 540 return false; 541 } 542 543 void PPCInstrInfo::finalizeInsInstrs( 544 MachineInstr &Root, MachineCombinerPattern &P, 545 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 547 548 MachineFunction *MF = Root.getMF(); 549 MachineRegisterInfo *MRI = &MF->getRegInfo(); 550 const TargetRegisterInfo *TRI = &getRegisterInfo(); 551 MachineConstantPool *MCP = MF->getConstantPool(); 552 553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 554 if (Idx < 0) 555 return; 556 557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 558 559 // For now we only need to fix up placeholder for register pressure reduce 560 // patterns. 561 Register ConstReg = 0; 562 switch (P) { 563 case MachineCombinerPattern::REASSOC_XY_BCA: 564 ConstReg = 565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 566 break; 567 case MachineCombinerPattern::REASSOC_XY_BAC: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 570 break; 571 default: 572 // Not register pressure reduce patterns. 573 return; 574 } 575 576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 577 // Get const value from const pool. 578 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 580 581 // Get negative fp const. 582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 583 F1.changeSign(); 584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 586 587 // Put negative fp const into constant pool. 588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 589 590 MachineOperand *Placeholder = nullptr; 591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 592 for (auto *Inst : InsInstrs) { 593 for (MachineOperand &Operand : Inst->explicit_operands()) { 594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 595 if (Operand.getReg() == PPC::ZERO8) { 596 Placeholder = &Operand; 597 break; 598 } 599 } 600 } 601 602 assert(Placeholder && "Placeholder does not exist!"); 603 604 // Generate instructions to load the const fp from constant pool. 605 // We only support PPC64 and medium code model. 606 Register LoadNewConst = 607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 608 609 // Fill the placeholder with the new load from constant pool. 610 Placeholder->setReg(LoadNewConst); 611 } 612 613 bool PPCInstrInfo::shouldReduceRegisterPressure( 614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 615 616 if (!EnableFMARegPressureReduction) 617 return false; 618 619 // Currently, we only enable register pressure reducing in machine combiner 620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 621 // support. 622 // 623 // So we need following instructions to access a TOC entry: 624 // 625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 628 // 629 // FIXME: add more supported targets, like Small and Large code model, PPC32, 630 // AIX. 631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 633 return false; 634 635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 636 MachineFunction *MF = MBB->getParent(); 637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 638 639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 640 RegionPressure Pressure; 641 RegPressureTracker RPTracker(Pressure); 642 643 // Initialize the register pressure tracker. 644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 646 647 for (MachineBasicBlock::iterator MII = MBB->instr_end(), 648 MIE = MBB->instr_begin(); 649 MII != MIE; --MII) { 650 MachineInstr &MI = *std::prev(MII); 651 if (MI.isDebugValue() || MI.isDebugLabel()) 652 continue; 653 RegisterOperands RegOpers; 654 RegOpers.collect(MI, *TRI, *MRI, false, false); 655 RPTracker.recedeSkipDebugValues(); 656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 657 RPTracker.recede(RegOpers); 658 } 659 660 // Close the RPTracker to finalize live ins. 661 RPTracker.closeRegion(); 662 663 return RPTracker.getPressure().MaxSetPressure; 664 }; 665 666 // For now we only care about float and double type fma. 667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 669 670 // Only reduce register pressure when pressure is high. 671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 672 (float)VSSRCLimit * FMARPFactor; 673 } 674 675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 676 // I has only one memory operand which is load from constant pool. 677 if (!I->hasOneMemOperand()) 678 return false; 679 680 MachineMemOperand *Op = I->memoperands()[0]; 681 return Op->isLoad() && Op->getPseudoValue() && 682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 683 } 684 685 Register PPCInstrInfo::generateLoadForNewConst( 686 unsigned Idx, MachineInstr *MI, Type *Ty, 687 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 688 // Now we only support PPC64, Medium code model and P9 with vector. 689 // We have immutable pattern to access const pool. See function 690 // shouldReduceRegisterPressure. 691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 693 "Target not supported!\n"); 694 695 MachineFunction *MF = MI->getMF(); 696 MachineRegisterInfo *MRI = &MF->getRegInfo(); 697 698 // Generate ADDIStocHA8 699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 700 MachineInstrBuilder TOCOffset = 701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 702 .addReg(PPC::X2) 703 .addConstantPoolIndex(Idx); 704 705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 706 "Only float and double are supported!"); 707 708 unsigned LoadOpcode; 709 // Should be float type or double type. 710 if (Ty->isFloatTy()) 711 LoadOpcode = PPC::DFLOADf32; 712 else 713 LoadOpcode = PPC::DFLOADf64; 714 715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 716 Register VReg2 = MRI->createVirtualRegister(RC); 717 MachineMemOperand *MMO = MF->getMachineMemOperand( 718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 720 721 // Generate Load from constant pool. 722 MachineInstrBuilder Load = 723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 724 .addConstantPoolIndex(Idx) 725 .addReg(VReg1, getKillRegState(true)) 726 .addMemOperand(MMO); 727 728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 729 730 // Insert the toc load instructions into InsInstrs. 731 InsInstrs.insert(InsInstrs.begin(), Load); 732 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 733 return VReg2; 734 } 735 736 // This function returns the const value in constant pool if the \p I is a load 737 // from constant pool. 738 const Constant * 739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 740 MachineFunction *MF = I->getMF(); 741 MachineRegisterInfo *MRI = &MF->getRegInfo(); 742 MachineConstantPool *MCP = MF->getConstantPool(); 743 assert(I->mayLoad() && "Should be a load instruction.\n"); 744 for (auto MO : I->uses()) { 745 if (!MO.isReg()) 746 continue; 747 Register Reg = MO.getReg(); 748 if (Reg == 0 || !Register::isVirtualRegister(Reg)) 749 continue; 750 // Find the toc address. 751 MachineInstr *DefMI = MRI->getVRegDef(Reg); 752 for (auto MO2 : DefMI->uses()) 753 if (MO2.isCPI()) 754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 755 } 756 return nullptr; 757 } 758 759 bool PPCInstrInfo::getMachineCombinerPatterns( 760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 761 bool DoRegPressureReduce) const { 762 // Using the machine combiner in this way is potentially expensive, so 763 // restrict to when aggressive optimizations are desired. 764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 765 return false; 766 767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 768 return true; 769 770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 771 DoRegPressureReduce); 772 } 773 774 void PPCInstrInfo::genAlternativeCodeSequence( 775 MachineInstr &Root, MachineCombinerPattern Pattern, 776 SmallVectorImpl<MachineInstr *> &InsInstrs, 777 SmallVectorImpl<MachineInstr *> &DelInstrs, 778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 779 switch (Pattern) { 780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 782 case MachineCombinerPattern::REASSOC_XY_BCA: 783 case MachineCombinerPattern::REASSOC_XY_BAC: 784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 785 break; 786 default: 787 // Reassociate default patterns. 788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 789 DelInstrs, InstrIdxForVirtReg); 790 break; 791 } 792 } 793 794 void PPCInstrInfo::reassociateFMA( 795 MachineInstr &Root, MachineCombinerPattern Pattern, 796 SmallVectorImpl<MachineInstr *> &InsInstrs, 797 SmallVectorImpl<MachineInstr *> &DelInstrs, 798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 799 MachineFunction *MF = Root.getMF(); 800 MachineRegisterInfo &MRI = MF->getRegInfo(); 801 const TargetRegisterInfo *TRI = &getRegisterInfo(); 802 MachineOperand &OpC = Root.getOperand(0); 803 Register RegC = OpC.getReg(); 804 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 805 MRI.constrainRegClass(RegC, RC); 806 807 unsigned FmaOp = Root.getOpcode(); 808 int16_t Idx = getFMAOpIdxInfo(FmaOp); 809 assert(Idx >= 0 && "Root must be a FMA instruction"); 810 811 bool IsILPReassociate = 812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 814 815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 817 818 MachineInstr *Prev = nullptr; 819 MachineInstr *Leaf = nullptr; 820 switch (Pattern) { 821 default: 822 llvm_unreachable("not recognized pattern!"); 823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 827 break; 828 case MachineCombinerPattern::REASSOC_XY_BAC: { 829 Register MULReg = 830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 case MachineCombinerPattern::REASSOC_XY_BCA: { 835 Register MULReg = TRI->lookThruCopyLike( 836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 837 Leaf = MRI.getVRegDef(MULReg); 838 break; 839 } 840 } 841 842 uint16_t IntersectedFlags = 0; 843 if (IsILPReassociate) 844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 845 else 846 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 847 848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 849 bool &KillFlag) { 850 Reg = Operand.getReg(); 851 MRI.constrainRegClass(Reg, RC); 852 KillFlag = Operand.isKill(); 853 }; 854 855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 856 Register &MulOp2, Register &AddOp, 857 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 858 bool &AddOpKillFlag) { 859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 862 }; 863 864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 865 RegA21, RegB; 866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 868 KillA11 = false, KillA21 = false, KillB = false; 869 870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 871 872 if (IsILPReassociate) 873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 874 875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 881 } else { 882 // Get FSUB instruction info. 883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 885 } 886 887 // Create new virtual registers for the new results instead of 888 // recycling legacy ones because the MachineCombiner's computation of the 889 // critical path requires a new register definition rather than an existing 890 // one. 891 // For register pressure reassociation, we only need create one virtual 892 // register for the new fma. 893 Register NewVRA = MRI.createVirtualRegister(RC); 894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 895 896 Register NewVRB = 0; 897 if (IsILPReassociate) { 898 NewVRB = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 900 } 901 902 Register NewVRD = 0; 903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 904 NewVRD = MRI.createVirtualRegister(RC); 905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 906 } 907 908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 909 Register RegMul1, bool KillRegMul1, 910 Register RegMul2, bool KillRegMul2) { 911 MI->getOperand(AddOpIdx).setReg(RegAdd); 912 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 917 }; 918 919 MachineInstrBuilder NewARegPressure, NewCRegPressure; 920 switch (Pattern) { 921 default: 922 llvm_unreachable("not recognized pattern!"); 923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 924 // Create new instructions for insertion. 925 MachineInstrBuilder MINewB = 926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 927 .addReg(RegX, getKillRegState(KillX)) 928 .addReg(RegM21, getKillRegState(KillM21)) 929 .addReg(RegM22, getKillRegState(KillM22)); 930 MachineInstrBuilder MINewA = 931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 932 .addReg(RegY, getKillRegState(KillY)) 933 .addReg(RegM31, getKillRegState(KillM31)) 934 .addReg(RegM32, getKillRegState(KillM32)); 935 // If AddOpIdx is not 1, adjust the order. 936 if (AddOpIdx != 1) { 937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 939 } 940 941 MachineInstrBuilder MINewC = 942 BuildMI(*MF, Root.getDebugLoc(), 943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 944 .addReg(NewVRB, getKillRegState(true)) 945 .addReg(NewVRA, getKillRegState(true)); 946 947 // Update flags for newly created instructions. 948 setSpecialOperandAttr(*MINewA, IntersectedFlags); 949 setSpecialOperandAttr(*MINewB, IntersectedFlags); 950 setSpecialOperandAttr(*MINewC, IntersectedFlags); 951 952 // Record new instructions for insertion. 953 InsInstrs.push_back(MINewA); 954 InsInstrs.push_back(MINewB); 955 InsInstrs.push_back(MINewC); 956 break; 957 } 958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 959 assert(NewVRD && "new FMA register not created!"); 960 // Create new instructions for insertion. 961 MachineInstrBuilder MINewA = 962 BuildMI(*MF, Leaf->getDebugLoc(), 963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 964 .addReg(RegM11, getKillRegState(KillM11)) 965 .addReg(RegM12, getKillRegState(KillM12)); 966 MachineInstrBuilder MINewB = 967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 968 .addReg(RegX, getKillRegState(KillX)) 969 .addReg(RegM21, getKillRegState(KillM21)) 970 .addReg(RegM22, getKillRegState(KillM22)); 971 MachineInstrBuilder MINewD = 972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 973 .addReg(NewVRA, getKillRegState(true)) 974 .addReg(RegM31, getKillRegState(KillM31)) 975 .addReg(RegM32, getKillRegState(KillM32)); 976 // If AddOpIdx is not 1, adjust the order. 977 if (AddOpIdx != 1) { 978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 980 KillM32); 981 } 982 983 MachineInstrBuilder MINewC = 984 BuildMI(*MF, Root.getDebugLoc(), 985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 986 .addReg(NewVRB, getKillRegState(true)) 987 .addReg(NewVRD, getKillRegState(true)); 988 989 // Update flags for newly created instructions. 990 setSpecialOperandAttr(*MINewA, IntersectedFlags); 991 setSpecialOperandAttr(*MINewB, IntersectedFlags); 992 setSpecialOperandAttr(*MINewD, IntersectedFlags); 993 setSpecialOperandAttr(*MINewC, IntersectedFlags); 994 995 // Record new instructions for insertion. 996 InsInstrs.push_back(MINewA); 997 InsInstrs.push_back(MINewB); 998 InsInstrs.push_back(MINewD); 999 InsInstrs.push_back(MINewC); 1000 break; 1001 } 1002 case MachineCombinerPattern::REASSOC_XY_BAC: 1003 case MachineCombinerPattern::REASSOC_XY_BCA: { 1004 Register VarReg; 1005 bool KillVarReg = false; 1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1007 VarReg = RegM31; 1008 KillVarReg = KillM31; 1009 } else { 1010 VarReg = RegM32; 1011 KillVarReg = KillM32; 1012 } 1013 // We don't want to get negative const from memory pool too early, as the 1014 // created entry will not be deleted even if it has no users. Since all 1015 // operand of Leaf and Root are virtual register, we use zero register 1016 // here as a placeholder. When the InsInstrs is selected in 1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1018 // with a virtual register which is a load from constant pool. 1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1020 .addReg(RegB, getKillRegState(RegB)) 1021 .addReg(RegY, getKillRegState(KillY)) 1022 .addReg(PPC::ZERO8); 1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1024 .addReg(NewVRA, getKillRegState(true)) 1025 .addReg(RegX, getKillRegState(KillX)) 1026 .addReg(VarReg, getKillRegState(KillVarReg)); 1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1028 // both at index 1, no need to adjust. 1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1030 // the operand index here. 1031 break; 1032 } 1033 } 1034 1035 if (!IsILPReassociate) { 1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1038 1039 InsInstrs.push_back(NewARegPressure); 1040 InsInstrs.push_back(NewCRegPressure); 1041 } 1042 1043 assert(!InsInstrs.empty() && 1044 "Insertion instructions set should not be empty!"); 1045 1046 // Record old instructions for deletion. 1047 DelInstrs.push_back(Leaf); 1048 if (IsILPReassociate) 1049 DelInstrs.push_back(Prev); 1050 DelInstrs.push_back(&Root); 1051 } 1052 1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1055 Register &SrcReg, Register &DstReg, 1056 unsigned &SubIdx) const { 1057 switch (MI.getOpcode()) { 1058 default: return false; 1059 case PPC::EXTSW: 1060 case PPC::EXTSW_32: 1061 case PPC::EXTSW_32_64: 1062 SrcReg = MI.getOperand(1).getReg(); 1063 DstReg = MI.getOperand(0).getReg(); 1064 SubIdx = PPC::sub_32; 1065 return true; 1066 } 1067 } 1068 1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1070 int &FrameIndex) const { 1071 unsigned Opcode = MI.getOpcode(); 1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1074 1075 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1076 // Check for the operands added by addFrameReference (the immediate is the 1077 // offset which defaults to 0). 1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1079 MI.getOperand(2).isFI()) { 1080 FrameIndex = MI.getOperand(2).getIndex(); 1081 return MI.getOperand(0).getReg(); 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 // For opcodes with the ReMaterializable flag set, this function is called to 1088 // verify the instruction is really rematable. 1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 1090 AliasAnalysis *AA) const { 1091 switch (MI.getOpcode()) { 1092 default: 1093 // This function should only be called for opcodes with the ReMaterializable 1094 // flag set. 1095 llvm_unreachable("Unknown rematerializable operation!"); 1096 break; 1097 case PPC::LI: 1098 case PPC::LI8: 1099 case PPC::LIS: 1100 case PPC::LIS8: 1101 case PPC::ADDIStocHA: 1102 case PPC::ADDIStocHA8: 1103 case PPC::ADDItocL: 1104 case PPC::LOAD_STACK_GUARD: 1105 case PPC::XXLXORz: 1106 case PPC::XXLXORspz: 1107 case PPC::XXLXORdpz: 1108 case PPC::XXLEQVOnes: 1109 case PPC::V_SET0B: 1110 case PPC::V_SET0H: 1111 case PPC::V_SET0: 1112 case PPC::V_SETALLONESB: 1113 case PPC::V_SETALLONESH: 1114 case PPC::V_SETALLONES: 1115 case PPC::CRSET: 1116 case PPC::CRUNSET: 1117 case PPC::XXSETACCZ: 1118 return true; 1119 } 1120 return false; 1121 } 1122 1123 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1124 int &FrameIndex) const { 1125 unsigned Opcode = MI.getOpcode(); 1126 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1127 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1128 1129 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1130 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1131 MI.getOperand(2).isFI()) { 1132 FrameIndex = MI.getOperand(2).getIndex(); 1133 return MI.getOperand(0).getReg(); 1134 } 1135 } 1136 return 0; 1137 } 1138 1139 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1140 unsigned OpIdx1, 1141 unsigned OpIdx2) const { 1142 MachineFunction &MF = *MI.getParent()->getParent(); 1143 1144 // Normal instructions can be commuted the obvious way. 1145 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1146 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1147 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1148 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1149 // changing the relative order of the mask operands might change what happens 1150 // to the high-bits of the mask (and, thus, the result). 1151 1152 // Cannot commute if it has a non-zero rotate count. 1153 if (MI.getOperand(3).getImm() != 0) 1154 return nullptr; 1155 1156 // If we have a zero rotate count, we have: 1157 // M = mask(MB,ME) 1158 // Op0 = (Op1 & ~M) | (Op2 & M) 1159 // Change this to: 1160 // M = mask((ME+1)&31, (MB-1)&31) 1161 // Op0 = (Op2 & ~M) | (Op1 & M) 1162 1163 // Swap op1/op2 1164 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1165 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1166 Register Reg0 = MI.getOperand(0).getReg(); 1167 Register Reg1 = MI.getOperand(1).getReg(); 1168 Register Reg2 = MI.getOperand(2).getReg(); 1169 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1170 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1171 bool Reg1IsKill = MI.getOperand(1).isKill(); 1172 bool Reg2IsKill = MI.getOperand(2).isKill(); 1173 bool ChangeReg0 = false; 1174 // If machine instrs are no longer in two-address forms, update 1175 // destination register as well. 1176 if (Reg0 == Reg1) { 1177 // Must be two address instruction! 1178 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1179 "Expecting a two-address instruction!"); 1180 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1181 Reg2IsKill = false; 1182 ChangeReg0 = true; 1183 } 1184 1185 // Masks. 1186 unsigned MB = MI.getOperand(4).getImm(); 1187 unsigned ME = MI.getOperand(5).getImm(); 1188 1189 // We can't commute a trivial mask (there is no way to represent an all-zero 1190 // mask). 1191 if (MB == 0 && ME == 31) 1192 return nullptr; 1193 1194 if (NewMI) { 1195 // Create a new instruction. 1196 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1197 bool Reg0IsDead = MI.getOperand(0).isDead(); 1198 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1199 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1200 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1201 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1202 .addImm((ME + 1) & 31) 1203 .addImm((MB - 1) & 31); 1204 } 1205 1206 if (ChangeReg0) { 1207 MI.getOperand(0).setReg(Reg2); 1208 MI.getOperand(0).setSubReg(SubReg2); 1209 } 1210 MI.getOperand(2).setReg(Reg1); 1211 MI.getOperand(1).setReg(Reg2); 1212 MI.getOperand(2).setSubReg(SubReg1); 1213 MI.getOperand(1).setSubReg(SubReg2); 1214 MI.getOperand(2).setIsKill(Reg1IsKill); 1215 MI.getOperand(1).setIsKill(Reg2IsKill); 1216 1217 // Swap the mask around. 1218 MI.getOperand(4).setImm((ME + 1) & 31); 1219 MI.getOperand(5).setImm((MB - 1) & 31); 1220 return &MI; 1221 } 1222 1223 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1224 unsigned &SrcOpIdx1, 1225 unsigned &SrcOpIdx2) const { 1226 // For VSX A-Type FMA instructions, it is the first two operands that can be 1227 // commuted, however, because the non-encoded tied input operand is listed 1228 // first, the operands to swap are actually the second and third. 1229 1230 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1231 if (AltOpc == -1) 1232 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1233 1234 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1235 // and SrcOpIdx2. 1236 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1237 } 1238 1239 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1240 MachineBasicBlock::iterator MI) const { 1241 // This function is used for scheduling, and the nop wanted here is the type 1242 // that terminates dispatch groups on the POWER cores. 1243 unsigned Directive = Subtarget.getCPUDirective(); 1244 unsigned Opcode; 1245 switch (Directive) { 1246 default: Opcode = PPC::NOP; break; 1247 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1248 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1249 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1250 // FIXME: Update when POWER9 scheduling model is ready. 1251 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1252 } 1253 1254 DebugLoc DL; 1255 BuildMI(MBB, MI, DL, get(Opcode)); 1256 } 1257 1258 /// Return the noop instruction to use for a noop. 1259 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 1260 NopInst.setOpcode(PPC::NOP); 1261 } 1262 1263 // Branch analysis. 1264 // Note: If the condition register is set to CTR or CTR8 then this is a 1265 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1266 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1267 MachineBasicBlock *&TBB, 1268 MachineBasicBlock *&FBB, 1269 SmallVectorImpl<MachineOperand> &Cond, 1270 bool AllowModify) const { 1271 bool isPPC64 = Subtarget.isPPC64(); 1272 1273 // If the block has no terminators, it just falls into the block after it. 1274 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1275 if (I == MBB.end()) 1276 return false; 1277 1278 if (!isUnpredicatedTerminator(*I)) 1279 return false; 1280 1281 if (AllowModify) { 1282 // If the BB ends with an unconditional branch to the fallthrough BB, 1283 // we eliminate the branch instruction. 1284 if (I->getOpcode() == PPC::B && 1285 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1286 I->eraseFromParent(); 1287 1288 // We update iterator after deleting the last branch. 1289 I = MBB.getLastNonDebugInstr(); 1290 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1291 return false; 1292 } 1293 } 1294 1295 // Get the last instruction in the block. 1296 MachineInstr &LastInst = *I; 1297 1298 // If there is only one terminator instruction, process it. 1299 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1300 if (LastInst.getOpcode() == PPC::B) { 1301 if (!LastInst.getOperand(0).isMBB()) 1302 return true; 1303 TBB = LastInst.getOperand(0).getMBB(); 1304 return false; 1305 } else if (LastInst.getOpcode() == PPC::BCC) { 1306 if (!LastInst.getOperand(2).isMBB()) 1307 return true; 1308 // Block ends with fall-through condbranch. 1309 TBB = LastInst.getOperand(2).getMBB(); 1310 Cond.push_back(LastInst.getOperand(0)); 1311 Cond.push_back(LastInst.getOperand(1)); 1312 return false; 1313 } else if (LastInst.getOpcode() == PPC::BC) { 1314 if (!LastInst.getOperand(1).isMBB()) 1315 return true; 1316 // Block ends with fall-through condbranch. 1317 TBB = LastInst.getOperand(1).getMBB(); 1318 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1319 Cond.push_back(LastInst.getOperand(0)); 1320 return false; 1321 } else if (LastInst.getOpcode() == PPC::BCn) { 1322 if (!LastInst.getOperand(1).isMBB()) 1323 return true; 1324 // Block ends with fall-through condbranch. 1325 TBB = LastInst.getOperand(1).getMBB(); 1326 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1327 Cond.push_back(LastInst.getOperand(0)); 1328 return false; 1329 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1330 LastInst.getOpcode() == PPC::BDNZ) { 1331 if (!LastInst.getOperand(0).isMBB()) 1332 return true; 1333 if (DisableCTRLoopAnal) 1334 return true; 1335 TBB = LastInst.getOperand(0).getMBB(); 1336 Cond.push_back(MachineOperand::CreateImm(1)); 1337 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1338 true)); 1339 return false; 1340 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1341 LastInst.getOpcode() == PPC::BDZ) { 1342 if (!LastInst.getOperand(0).isMBB()) 1343 return true; 1344 if (DisableCTRLoopAnal) 1345 return true; 1346 TBB = LastInst.getOperand(0).getMBB(); 1347 Cond.push_back(MachineOperand::CreateImm(0)); 1348 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1349 true)); 1350 return false; 1351 } 1352 1353 // Otherwise, don't know what this is. 1354 return true; 1355 } 1356 1357 // Get the instruction before it if it's a terminator. 1358 MachineInstr &SecondLastInst = *I; 1359 1360 // If there are three terminators, we don't know what sort of block this is. 1361 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1362 return true; 1363 1364 // If the block ends with PPC::B and PPC:BCC, handle it. 1365 if (SecondLastInst.getOpcode() == PPC::BCC && 1366 LastInst.getOpcode() == PPC::B) { 1367 if (!SecondLastInst.getOperand(2).isMBB() || 1368 !LastInst.getOperand(0).isMBB()) 1369 return true; 1370 TBB = SecondLastInst.getOperand(2).getMBB(); 1371 Cond.push_back(SecondLastInst.getOperand(0)); 1372 Cond.push_back(SecondLastInst.getOperand(1)); 1373 FBB = LastInst.getOperand(0).getMBB(); 1374 return false; 1375 } else if (SecondLastInst.getOpcode() == PPC::BC && 1376 LastInst.getOpcode() == PPC::B) { 1377 if (!SecondLastInst.getOperand(1).isMBB() || 1378 !LastInst.getOperand(0).isMBB()) 1379 return true; 1380 TBB = SecondLastInst.getOperand(1).getMBB(); 1381 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1382 Cond.push_back(SecondLastInst.getOperand(0)); 1383 FBB = LastInst.getOperand(0).getMBB(); 1384 return false; 1385 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1386 LastInst.getOpcode() == PPC::B) { 1387 if (!SecondLastInst.getOperand(1).isMBB() || 1388 !LastInst.getOperand(0).isMBB()) 1389 return true; 1390 TBB = SecondLastInst.getOperand(1).getMBB(); 1391 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1392 Cond.push_back(SecondLastInst.getOperand(0)); 1393 FBB = LastInst.getOperand(0).getMBB(); 1394 return false; 1395 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1396 SecondLastInst.getOpcode() == PPC::BDNZ) && 1397 LastInst.getOpcode() == PPC::B) { 1398 if (!SecondLastInst.getOperand(0).isMBB() || 1399 !LastInst.getOperand(0).isMBB()) 1400 return true; 1401 if (DisableCTRLoopAnal) 1402 return true; 1403 TBB = SecondLastInst.getOperand(0).getMBB(); 1404 Cond.push_back(MachineOperand::CreateImm(1)); 1405 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1406 true)); 1407 FBB = LastInst.getOperand(0).getMBB(); 1408 return false; 1409 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1410 SecondLastInst.getOpcode() == PPC::BDZ) && 1411 LastInst.getOpcode() == PPC::B) { 1412 if (!SecondLastInst.getOperand(0).isMBB() || 1413 !LastInst.getOperand(0).isMBB()) 1414 return true; 1415 if (DisableCTRLoopAnal) 1416 return true; 1417 TBB = SecondLastInst.getOperand(0).getMBB(); 1418 Cond.push_back(MachineOperand::CreateImm(0)); 1419 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1420 true)); 1421 FBB = LastInst.getOperand(0).getMBB(); 1422 return false; 1423 } 1424 1425 // If the block ends with two PPC:Bs, handle it. The second one is not 1426 // executed, so remove it. 1427 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1428 if (!SecondLastInst.getOperand(0).isMBB()) 1429 return true; 1430 TBB = SecondLastInst.getOperand(0).getMBB(); 1431 I = LastInst; 1432 if (AllowModify) 1433 I->eraseFromParent(); 1434 return false; 1435 } 1436 1437 // Otherwise, can't handle this. 1438 return true; 1439 } 1440 1441 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1442 int *BytesRemoved) const { 1443 assert(!BytesRemoved && "code size not handled"); 1444 1445 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1446 if (I == MBB.end()) 1447 return 0; 1448 1449 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1450 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1451 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1452 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1453 return 0; 1454 1455 // Remove the branch. 1456 I->eraseFromParent(); 1457 1458 I = MBB.end(); 1459 1460 if (I == MBB.begin()) return 1; 1461 --I; 1462 if (I->getOpcode() != PPC::BCC && 1463 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1464 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1465 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1466 return 1; 1467 1468 // Remove the branch. 1469 I->eraseFromParent(); 1470 return 2; 1471 } 1472 1473 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1474 MachineBasicBlock *TBB, 1475 MachineBasicBlock *FBB, 1476 ArrayRef<MachineOperand> Cond, 1477 const DebugLoc &DL, 1478 int *BytesAdded) const { 1479 // Shouldn't be a fall through. 1480 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1481 assert((Cond.size() == 2 || Cond.size() == 0) && 1482 "PPC branch conditions have two components!"); 1483 assert(!BytesAdded && "code size not handled"); 1484 1485 bool isPPC64 = Subtarget.isPPC64(); 1486 1487 // One-way branch. 1488 if (!FBB) { 1489 if (Cond.empty()) // Unconditional branch 1490 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1491 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1492 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1493 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1494 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1495 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1496 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1497 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1498 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1499 else // Conditional branch 1500 BuildMI(&MBB, DL, get(PPC::BCC)) 1501 .addImm(Cond[0].getImm()) 1502 .add(Cond[1]) 1503 .addMBB(TBB); 1504 return 1; 1505 } 1506 1507 // Two-way Conditional Branch. 1508 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1509 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1510 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1511 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1512 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1513 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1514 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1515 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1516 else 1517 BuildMI(&MBB, DL, get(PPC::BCC)) 1518 .addImm(Cond[0].getImm()) 1519 .add(Cond[1]) 1520 .addMBB(TBB); 1521 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1522 return 2; 1523 } 1524 1525 // Select analysis. 1526 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1527 ArrayRef<MachineOperand> Cond, 1528 Register DstReg, Register TrueReg, 1529 Register FalseReg, int &CondCycles, 1530 int &TrueCycles, int &FalseCycles) const { 1531 if (Cond.size() != 2) 1532 return false; 1533 1534 // If this is really a bdnz-like condition, then it cannot be turned into a 1535 // select. 1536 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1537 return false; 1538 1539 // Check register classes. 1540 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1541 const TargetRegisterClass *RC = 1542 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1543 if (!RC) 1544 return false; 1545 1546 // isel is for regular integer GPRs only. 1547 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1548 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1549 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1550 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1551 return false; 1552 1553 // FIXME: These numbers are for the A2, how well they work for other cores is 1554 // an open question. On the A2, the isel instruction has a 2-cycle latency 1555 // but single-cycle throughput. These numbers are used in combination with 1556 // the MispredictPenalty setting from the active SchedMachineModel. 1557 CondCycles = 1; 1558 TrueCycles = 1; 1559 FalseCycles = 1; 1560 1561 return true; 1562 } 1563 1564 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1565 MachineBasicBlock::iterator MI, 1566 const DebugLoc &dl, Register DestReg, 1567 ArrayRef<MachineOperand> Cond, Register TrueReg, 1568 Register FalseReg) const { 1569 assert(Cond.size() == 2 && 1570 "PPC branch conditions have two components!"); 1571 1572 // Get the register classes. 1573 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1574 const TargetRegisterClass *RC = 1575 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1576 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1577 1578 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1579 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1580 assert((Is64Bit || 1581 PPC::GPRCRegClass.hasSubClassEq(RC) || 1582 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1583 "isel is for regular integer GPRs only"); 1584 1585 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1586 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1587 1588 unsigned SubIdx = 0; 1589 bool SwapOps = false; 1590 switch (SelectPred) { 1591 case PPC::PRED_EQ: 1592 case PPC::PRED_EQ_MINUS: 1593 case PPC::PRED_EQ_PLUS: 1594 SubIdx = PPC::sub_eq; SwapOps = false; break; 1595 case PPC::PRED_NE: 1596 case PPC::PRED_NE_MINUS: 1597 case PPC::PRED_NE_PLUS: 1598 SubIdx = PPC::sub_eq; SwapOps = true; break; 1599 case PPC::PRED_LT: 1600 case PPC::PRED_LT_MINUS: 1601 case PPC::PRED_LT_PLUS: 1602 SubIdx = PPC::sub_lt; SwapOps = false; break; 1603 case PPC::PRED_GE: 1604 case PPC::PRED_GE_MINUS: 1605 case PPC::PRED_GE_PLUS: 1606 SubIdx = PPC::sub_lt; SwapOps = true; break; 1607 case PPC::PRED_GT: 1608 case PPC::PRED_GT_MINUS: 1609 case PPC::PRED_GT_PLUS: 1610 SubIdx = PPC::sub_gt; SwapOps = false; break; 1611 case PPC::PRED_LE: 1612 case PPC::PRED_LE_MINUS: 1613 case PPC::PRED_LE_PLUS: 1614 SubIdx = PPC::sub_gt; SwapOps = true; break; 1615 case PPC::PRED_UN: 1616 case PPC::PRED_UN_MINUS: 1617 case PPC::PRED_UN_PLUS: 1618 SubIdx = PPC::sub_un; SwapOps = false; break; 1619 case PPC::PRED_NU: 1620 case PPC::PRED_NU_MINUS: 1621 case PPC::PRED_NU_PLUS: 1622 SubIdx = PPC::sub_un; SwapOps = true; break; 1623 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1624 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1625 } 1626 1627 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1628 SecondReg = SwapOps ? TrueReg : FalseReg; 1629 1630 // The first input register of isel cannot be r0. If it is a member 1631 // of a register class that can be r0, then copy it first (the 1632 // register allocator should eliminate the copy). 1633 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1634 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1635 const TargetRegisterClass *FirstRC = 1636 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1637 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1638 Register OldFirstReg = FirstReg; 1639 FirstReg = MRI.createVirtualRegister(FirstRC); 1640 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1641 .addReg(OldFirstReg); 1642 } 1643 1644 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1645 .addReg(FirstReg).addReg(SecondReg) 1646 .addReg(Cond[1].getReg(), 0, SubIdx); 1647 } 1648 1649 static unsigned getCRBitValue(unsigned CRBit) { 1650 unsigned Ret = 4; 1651 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1652 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1653 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1654 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1655 Ret = 3; 1656 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1657 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1658 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1659 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1660 Ret = 2; 1661 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1662 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1663 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1664 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1665 Ret = 1; 1666 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1667 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1668 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1669 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1670 Ret = 0; 1671 1672 assert(Ret != 4 && "Invalid CR bit register"); 1673 return Ret; 1674 } 1675 1676 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1677 MachineBasicBlock::iterator I, 1678 const DebugLoc &DL, MCRegister DestReg, 1679 MCRegister SrcReg, bool KillSrc) const { 1680 // We can end up with self copies and similar things as a result of VSX copy 1681 // legalization. Promote them here. 1682 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1683 if (PPC::F8RCRegClass.contains(DestReg) && 1684 PPC::VSRCRegClass.contains(SrcReg)) { 1685 MCRegister SuperReg = 1686 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1687 1688 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1689 llvm_unreachable("nop VSX copy"); 1690 1691 DestReg = SuperReg; 1692 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1693 PPC::VSRCRegClass.contains(DestReg)) { 1694 MCRegister SuperReg = 1695 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1696 1697 if (VSXSelfCopyCrash && DestReg == SuperReg) 1698 llvm_unreachable("nop VSX copy"); 1699 1700 SrcReg = SuperReg; 1701 } 1702 1703 // Different class register copy 1704 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1705 PPC::GPRCRegClass.contains(DestReg)) { 1706 MCRegister CRReg = getCRFromCRBit(SrcReg); 1707 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1708 getKillRegState(KillSrc); 1709 // Rotate the CR bit in the CR fields to be the least significant bit and 1710 // then mask with 0x1 (MB = ME = 31). 1711 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1712 .addReg(DestReg, RegState::Kill) 1713 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1714 .addImm(31) 1715 .addImm(31); 1716 return; 1717 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1718 (PPC::G8RCRegClass.contains(DestReg) || 1719 PPC::GPRCRegClass.contains(DestReg))) { 1720 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1721 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1722 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1723 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1724 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1725 getKillRegState(KillSrc); 1726 if (CRNum == 7) 1727 return; 1728 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1729 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1730 .addReg(DestReg, RegState::Kill) 1731 .addImm(CRNum * 4 + 4) 1732 .addImm(28) 1733 .addImm(31); 1734 return; 1735 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1736 PPC::VSFRCRegClass.contains(DestReg)) { 1737 assert(Subtarget.hasDirectMove() && 1738 "Subtarget doesn't support directmove, don't know how to copy."); 1739 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1740 NumGPRtoVSRSpill++; 1741 getKillRegState(KillSrc); 1742 return; 1743 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1744 PPC::G8RCRegClass.contains(DestReg)) { 1745 assert(Subtarget.hasDirectMove() && 1746 "Subtarget doesn't support directmove, don't know how to copy."); 1747 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1748 getKillRegState(KillSrc); 1749 return; 1750 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1751 PPC::GPRCRegClass.contains(DestReg)) { 1752 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1753 getKillRegState(KillSrc); 1754 return; 1755 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1756 PPC::SPERCRegClass.contains(DestReg)) { 1757 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1758 getKillRegState(KillSrc); 1759 return; 1760 } 1761 1762 unsigned Opc; 1763 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1764 Opc = PPC::OR; 1765 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1766 Opc = PPC::OR8; 1767 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1768 Opc = PPC::FMR; 1769 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1770 Opc = PPC::MCRF; 1771 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1772 Opc = PPC::VOR; 1773 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1774 // There are two different ways this can be done: 1775 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1776 // issue in VSU pipeline 0. 1777 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1778 // can go to either pipeline. 1779 // We'll always use xxlor here, because in practically all cases where 1780 // copies are generated, they are close enough to some use that the 1781 // lower-latency form is preferable. 1782 Opc = PPC::XXLOR; 1783 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1784 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1785 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1786 else if (Subtarget.pairedVectorMemops() && 1787 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1788 if (SrcReg > PPC::VSRp15) 1789 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1790 else 1791 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1792 if (DestReg > PPC::VSRp15) 1793 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1794 else 1795 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1796 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1797 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1798 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1799 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1800 return; 1801 } 1802 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1803 Opc = PPC::CROR; 1804 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1805 Opc = PPC::EVOR; 1806 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1807 PPC::UACCRCRegClass.contains(DestReg)) && 1808 (PPC::ACCRCRegClass.contains(SrcReg) || 1809 PPC::UACCRCRegClass.contains(SrcReg))) { 1810 // If primed, de-prime the source register, copy the individual registers 1811 // and prime the destination if needed. The vector subregisters are 1812 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1813 // source is primed, we need to re-prime it after the copy as well. 1814 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1815 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1816 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1817 MCRegister VSLSrcReg = 1818 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1819 MCRegister VSLDestReg = 1820 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1821 if (SrcPrimed) 1822 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1823 for (unsigned Idx = 0; Idx < 4; Idx++) 1824 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1825 .addReg(VSLSrcReg + Idx) 1826 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1827 if (DestPrimed) 1828 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1829 if (SrcPrimed && !KillSrc) 1830 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1831 return; 1832 } else 1833 llvm_unreachable("Impossible reg-to-reg copy"); 1834 1835 const MCInstrDesc &MCID = get(Opc); 1836 if (MCID.getNumOperands() == 3) 1837 BuildMI(MBB, I, DL, MCID, DestReg) 1838 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1839 else 1840 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1841 } 1842 1843 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1844 int OpcodeIndex = 0; 1845 1846 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1847 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1848 OpcodeIndex = SOK_Int4Spill; 1849 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1850 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1851 OpcodeIndex = SOK_Int8Spill; 1852 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1853 OpcodeIndex = SOK_Float8Spill; 1854 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1855 OpcodeIndex = SOK_Float4Spill; 1856 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1857 OpcodeIndex = SOK_SPESpill; 1858 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1859 OpcodeIndex = SOK_CRSpill; 1860 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1861 OpcodeIndex = SOK_CRBitSpill; 1862 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1863 OpcodeIndex = SOK_VRVectorSpill; 1864 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1865 OpcodeIndex = SOK_VSXVectorSpill; 1866 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1867 OpcodeIndex = SOK_VectorFloat8Spill; 1868 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1869 OpcodeIndex = SOK_VectorFloat4Spill; 1870 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1871 OpcodeIndex = SOK_SpillToVSR; 1872 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1873 assert(Subtarget.pairedVectorMemops() && 1874 "Register unexpected when paired memops are disabled."); 1875 OpcodeIndex = SOK_AccumulatorSpill; 1876 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1877 assert(Subtarget.pairedVectorMemops() && 1878 "Register unexpected when paired memops are disabled."); 1879 OpcodeIndex = SOK_UAccumulatorSpill; 1880 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1881 assert(Subtarget.pairedVectorMemops() && 1882 "Register unexpected when paired memops are disabled."); 1883 OpcodeIndex = SOK_PairedVecSpill; 1884 } else { 1885 llvm_unreachable("Unknown regclass!"); 1886 } 1887 return OpcodeIndex; 1888 } 1889 1890 unsigned 1891 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1892 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1893 return OpcodesForSpill[getSpillIndex(RC)]; 1894 } 1895 1896 unsigned 1897 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1898 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1899 return OpcodesForSpill[getSpillIndex(RC)]; 1900 } 1901 1902 void PPCInstrInfo::StoreRegToStackSlot( 1903 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1904 const TargetRegisterClass *RC, 1905 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1906 unsigned Opcode = getStoreOpcodeForSpill(RC); 1907 DebugLoc DL; 1908 1909 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1910 FuncInfo->setHasSpills(); 1911 1912 NewMIs.push_back(addFrameReference( 1913 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1914 FrameIdx)); 1915 1916 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1917 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1918 FuncInfo->setSpillsCR(); 1919 1920 if (isXFormMemOp(Opcode)) 1921 FuncInfo->setHasNonRISpills(); 1922 } 1923 1924 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1925 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1926 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1927 const TargetRegisterInfo *TRI) const { 1928 MachineFunction &MF = *MBB.getParent(); 1929 SmallVector<MachineInstr *, 4> NewMIs; 1930 1931 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1932 1933 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1934 MBB.insert(MI, NewMIs[i]); 1935 1936 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1937 MachineMemOperand *MMO = MF.getMachineMemOperand( 1938 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1939 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1940 MFI.getObjectAlign(FrameIdx)); 1941 NewMIs.back()->addMemOperand(MF, MMO); 1942 } 1943 1944 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1945 MachineBasicBlock::iterator MI, 1946 Register SrcReg, bool isKill, 1947 int FrameIdx, 1948 const TargetRegisterClass *RC, 1949 const TargetRegisterInfo *TRI) const { 1950 // We need to avoid a situation in which the value from a VRRC register is 1951 // spilled using an Altivec instruction and reloaded into a VSRC register 1952 // using a VSX instruction. The issue with this is that the VSX 1953 // load/store instructions swap the doublewords in the vector and the Altivec 1954 // ones don't. The register classes on the spill/reload may be different if 1955 // the register is defined using an Altivec instruction and is then used by a 1956 // VSX instruction. 1957 RC = updatedRC(RC); 1958 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1959 } 1960 1961 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1962 unsigned DestReg, int FrameIdx, 1963 const TargetRegisterClass *RC, 1964 SmallVectorImpl<MachineInstr *> &NewMIs) 1965 const { 1966 unsigned Opcode = getLoadOpcodeForSpill(RC); 1967 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1968 FrameIdx)); 1969 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1970 1971 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1972 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1973 FuncInfo->setSpillsCR(); 1974 1975 if (isXFormMemOp(Opcode)) 1976 FuncInfo->setHasNonRISpills(); 1977 } 1978 1979 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1980 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1981 int FrameIdx, const TargetRegisterClass *RC, 1982 const TargetRegisterInfo *TRI) const { 1983 MachineFunction &MF = *MBB.getParent(); 1984 SmallVector<MachineInstr*, 4> NewMIs; 1985 DebugLoc DL; 1986 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1987 1988 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1989 FuncInfo->setHasSpills(); 1990 1991 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1992 1993 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1994 MBB.insert(MI, NewMIs[i]); 1995 1996 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1997 MachineMemOperand *MMO = MF.getMachineMemOperand( 1998 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1999 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2000 MFI.getObjectAlign(FrameIdx)); 2001 NewMIs.back()->addMemOperand(MF, MMO); 2002 } 2003 2004 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2005 MachineBasicBlock::iterator MI, 2006 Register DestReg, int FrameIdx, 2007 const TargetRegisterClass *RC, 2008 const TargetRegisterInfo *TRI) const { 2009 // We need to avoid a situation in which the value from a VRRC register is 2010 // spilled using an Altivec instruction and reloaded into a VSRC register 2011 // using a VSX instruction. The issue with this is that the VSX 2012 // load/store instructions swap the doublewords in the vector and the Altivec 2013 // ones don't. The register classes on the spill/reload may be different if 2014 // the register is defined using an Altivec instruction and is then used by a 2015 // VSX instruction. 2016 RC = updatedRC(RC); 2017 2018 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2019 } 2020 2021 bool PPCInstrInfo:: 2022 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2023 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2024 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2025 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2026 else 2027 // Leave the CR# the same, but invert the condition. 2028 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2029 return false; 2030 } 2031 2032 // For some instructions, it is legal to fold ZERO into the RA register field. 2033 // This function performs that fold by replacing the operand with PPC::ZERO, 2034 // it does not consider whether the load immediate zero is no longer in use. 2035 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2036 Register Reg) const { 2037 // A zero immediate should always be loaded with a single li. 2038 unsigned DefOpc = DefMI.getOpcode(); 2039 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2040 return false; 2041 if (!DefMI.getOperand(1).isImm()) 2042 return false; 2043 if (DefMI.getOperand(1).getImm() != 0) 2044 return false; 2045 2046 // Note that we cannot here invert the arguments of an isel in order to fold 2047 // a ZERO into what is presented as the second argument. All we have here 2048 // is the condition bit, and that might come from a CR-logical bit operation. 2049 2050 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2051 2052 // Only fold into real machine instructions. 2053 if (UseMCID.isPseudo()) 2054 return false; 2055 2056 // We need to find which of the User's operands is to be folded, that will be 2057 // the operand that matches the given register ID. 2058 unsigned UseIdx; 2059 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2060 if (UseMI.getOperand(UseIdx).isReg() && 2061 UseMI.getOperand(UseIdx).getReg() == Reg) 2062 break; 2063 2064 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2065 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2066 2067 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 2068 2069 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2070 // register (which might also be specified as a pointer class kind). 2071 if (UseInfo->isLookupPtrRegClass()) { 2072 if (UseInfo->RegClass /* Kind */ != 1) 2073 return false; 2074 } else { 2075 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2076 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2077 return false; 2078 } 2079 2080 // Make sure this is not tied to an output register (or otherwise 2081 // constrained). This is true for ST?UX registers, for example, which 2082 // are tied to their output registers. 2083 if (UseInfo->Constraints != 0) 2084 return false; 2085 2086 MCRegister ZeroReg; 2087 if (UseInfo->isLookupPtrRegClass()) { 2088 bool isPPC64 = Subtarget.isPPC64(); 2089 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2090 } else { 2091 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2092 PPC::ZERO8 : PPC::ZERO; 2093 } 2094 2095 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2096 return true; 2097 } 2098 2099 // Folds zero into instructions which have a load immediate zero as an operand 2100 // but also recognize zero as immediate zero. If the definition of the load 2101 // has no more users it is deleted. 2102 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2103 Register Reg, MachineRegisterInfo *MRI) const { 2104 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2105 if (MRI->use_nodbg_empty(Reg)) 2106 DefMI.eraseFromParent(); 2107 return Changed; 2108 } 2109 2110 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2111 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2112 I != IE; ++I) 2113 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 2114 return true; 2115 return false; 2116 } 2117 2118 // We should make sure that, if we're going to predicate both sides of a 2119 // condition (a diamond), that both sides don't define the counter register. We 2120 // can predicate counter-decrement-based branches, but while that predicates 2121 // the branching, it does not predicate the counter decrement. If we tried to 2122 // merge the triangle into one predicated block, we'd decrement the counter 2123 // twice. 2124 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2125 unsigned NumT, unsigned ExtraT, 2126 MachineBasicBlock &FMBB, 2127 unsigned NumF, unsigned ExtraF, 2128 BranchProbability Probability) const { 2129 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2130 } 2131 2132 2133 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2134 // The predicated branches are identified by their type, not really by the 2135 // explicit presence of a predicate. Furthermore, some of them can be 2136 // predicated more than once. Because if conversion won't try to predicate 2137 // any instruction which already claims to be predicated (by returning true 2138 // here), always return false. In doing so, we let isPredicable() be the 2139 // final word on whether not the instruction can be (further) predicated. 2140 2141 return false; 2142 } 2143 2144 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2145 const MachineBasicBlock *MBB, 2146 const MachineFunction &MF) const { 2147 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2148 // across them, since some FP operations may change content of FPSCR. 2149 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2150 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2151 return true; 2152 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2153 } 2154 2155 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2156 ArrayRef<MachineOperand> Pred) const { 2157 unsigned OpC = MI.getOpcode(); 2158 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2159 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2160 bool isPPC64 = Subtarget.isPPC64(); 2161 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2162 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2163 // Need add Def and Use for CTR implicit operand. 2164 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2165 .addReg(Pred[1].getReg(), RegState::Implicit) 2166 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2167 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2168 MI.setDesc(get(PPC::BCLR)); 2169 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2170 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2171 MI.setDesc(get(PPC::BCLRn)); 2172 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2173 } else { 2174 MI.setDesc(get(PPC::BCCLR)); 2175 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2176 .addImm(Pred[0].getImm()) 2177 .add(Pred[1]); 2178 } 2179 2180 return true; 2181 } else if (OpC == PPC::B) { 2182 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2183 bool isPPC64 = Subtarget.isPPC64(); 2184 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2185 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2186 // Need add Def and Use for CTR implicit operand. 2187 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2188 .addReg(Pred[1].getReg(), RegState::Implicit) 2189 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2190 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2191 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2192 MI.RemoveOperand(0); 2193 2194 MI.setDesc(get(PPC::BC)); 2195 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2196 .add(Pred[1]) 2197 .addMBB(MBB); 2198 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2199 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2200 MI.RemoveOperand(0); 2201 2202 MI.setDesc(get(PPC::BCn)); 2203 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2204 .add(Pred[1]) 2205 .addMBB(MBB); 2206 } else { 2207 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2208 MI.RemoveOperand(0); 2209 2210 MI.setDesc(get(PPC::BCC)); 2211 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2212 .addImm(Pred[0].getImm()) 2213 .add(Pred[1]) 2214 .addMBB(MBB); 2215 } 2216 2217 return true; 2218 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2219 OpC == PPC::BCTRL8) { 2220 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2221 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2222 2223 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 2224 bool isPPC64 = Subtarget.isPPC64(); 2225 2226 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2227 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2228 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2229 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2230 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2231 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2232 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2233 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2234 } else { 2235 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2236 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2237 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2238 .addImm(Pred[0].getImm()) 2239 .add(Pred[1]); 2240 } 2241 2242 // Need add Def and Use for LR implicit operand. 2243 if (setLR) 2244 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2245 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2246 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2247 2248 return true; 2249 } 2250 2251 return false; 2252 } 2253 2254 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2255 ArrayRef<MachineOperand> Pred2) const { 2256 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2257 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2258 2259 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2260 return false; 2261 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2262 return false; 2263 2264 // P1 can only subsume P2 if they test the same condition register. 2265 if (Pred1[1].getReg() != Pred2[1].getReg()) 2266 return false; 2267 2268 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2269 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2270 2271 if (P1 == P2) 2272 return true; 2273 2274 // Does P1 subsume P2, e.g. GE subsumes GT. 2275 if (P1 == PPC::PRED_LE && 2276 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2277 return true; 2278 if (P1 == PPC::PRED_GE && 2279 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2280 return true; 2281 2282 return false; 2283 } 2284 2285 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2286 std::vector<MachineOperand> &Pred, 2287 bool SkipDead) const { 2288 // Note: At the present time, the contents of Pred from this function is 2289 // unused by IfConversion. This implementation follows ARM by pushing the 2290 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2291 // predicate, instructions defining CTR or CTR8 are also included as 2292 // predicate-defining instructions. 2293 2294 const TargetRegisterClass *RCs[] = 2295 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2296 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2297 2298 bool Found = false; 2299 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2300 const MachineOperand &MO = MI.getOperand(i); 2301 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 2302 const TargetRegisterClass *RC = RCs[c]; 2303 if (MO.isReg()) { 2304 if (MO.isDef() && RC->contains(MO.getReg())) { 2305 Pred.push_back(MO); 2306 Found = true; 2307 } 2308 } else if (MO.isRegMask()) { 2309 for (TargetRegisterClass::iterator I = RC->begin(), 2310 IE = RC->end(); I != IE; ++I) 2311 if (MO.clobbersPhysReg(*I)) { 2312 Pred.push_back(MO); 2313 Found = true; 2314 } 2315 } 2316 } 2317 } 2318 2319 return Found; 2320 } 2321 2322 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2323 Register &SrcReg2, int &Mask, 2324 int &Value) const { 2325 unsigned Opc = MI.getOpcode(); 2326 2327 switch (Opc) { 2328 default: return false; 2329 case PPC::CMPWI: 2330 case PPC::CMPLWI: 2331 case PPC::CMPDI: 2332 case PPC::CMPLDI: 2333 SrcReg = MI.getOperand(1).getReg(); 2334 SrcReg2 = 0; 2335 Value = MI.getOperand(2).getImm(); 2336 Mask = 0xFFFF; 2337 return true; 2338 case PPC::CMPW: 2339 case PPC::CMPLW: 2340 case PPC::CMPD: 2341 case PPC::CMPLD: 2342 case PPC::FCMPUS: 2343 case PPC::FCMPUD: 2344 SrcReg = MI.getOperand(1).getReg(); 2345 SrcReg2 = MI.getOperand(2).getReg(); 2346 Value = 0; 2347 Mask = 0; 2348 return true; 2349 } 2350 } 2351 2352 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2353 Register SrcReg2, int Mask, int Value, 2354 const MachineRegisterInfo *MRI) const { 2355 if (DisableCmpOpt) 2356 return false; 2357 2358 int OpC = CmpInstr.getOpcode(); 2359 Register CRReg = CmpInstr.getOperand(0).getReg(); 2360 2361 // FP record forms set CR1 based on the exception status bits, not a 2362 // comparison with zero. 2363 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2364 return false; 2365 2366 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2367 // The record forms set the condition register based on a signed comparison 2368 // with zero (so says the ISA manual). This is not as straightforward as it 2369 // seems, however, because this is always a 64-bit comparison on PPC64, even 2370 // for instructions that are 32-bit in nature (like slw for example). 2371 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2372 // for equality checks (as those don't depend on the sign). On PPC64, 2373 // we are restricted to equality for unsigned 64-bit comparisons and for 2374 // signed 32-bit comparisons the applicability is more restricted. 2375 bool isPPC64 = Subtarget.isPPC64(); 2376 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2377 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2378 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2379 2380 // Look through copies unless that gets us to a physical register. 2381 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2382 if (ActualSrc.isVirtual()) 2383 SrcReg = ActualSrc; 2384 2385 // Get the unique definition of SrcReg. 2386 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2387 if (!MI) return false; 2388 2389 bool equalityOnly = false; 2390 bool noSub = false; 2391 if (isPPC64) { 2392 if (is32BitSignedCompare) { 2393 // We can perform this optimization only if MI is sign-extending. 2394 if (isSignExtended(*MI)) 2395 noSub = true; 2396 else 2397 return false; 2398 } else if (is32BitUnsignedCompare) { 2399 // We can perform this optimization, equality only, if MI is 2400 // zero-extending. 2401 if (isZeroExtended(*MI)) { 2402 noSub = true; 2403 equalityOnly = true; 2404 } else 2405 return false; 2406 } else 2407 equalityOnly = is64BitUnsignedCompare; 2408 } else 2409 equalityOnly = is32BitUnsignedCompare; 2410 2411 if (equalityOnly) { 2412 // We need to check the uses of the condition register in order to reject 2413 // non-equality comparisons. 2414 for (MachineRegisterInfo::use_instr_iterator 2415 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2416 I != IE; ++I) { 2417 MachineInstr *UseMI = &*I; 2418 if (UseMI->getOpcode() == PPC::BCC) { 2419 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2420 unsigned PredCond = PPC::getPredicateCondition(Pred); 2421 // We ignore hint bits when checking for non-equality comparisons. 2422 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2423 return false; 2424 } else if (UseMI->getOpcode() == PPC::ISEL || 2425 UseMI->getOpcode() == PPC::ISEL8) { 2426 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2427 if (SubIdx != PPC::sub_eq) 2428 return false; 2429 } else 2430 return false; 2431 } 2432 } 2433 2434 MachineBasicBlock::iterator I = CmpInstr; 2435 2436 // Scan forward to find the first use of the compare. 2437 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2438 ++I) { 2439 bool FoundUse = false; 2440 for (MachineRegisterInfo::use_instr_iterator 2441 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2442 J != JE; ++J) 2443 if (&*J == &*I) { 2444 FoundUse = true; 2445 break; 2446 } 2447 2448 if (FoundUse) 2449 break; 2450 } 2451 2452 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2453 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2454 2455 // There are two possible candidates which can be changed to set CR[01]. 2456 // One is MI, the other is a SUB instruction. 2457 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2458 MachineInstr *Sub = nullptr; 2459 if (SrcReg2 != 0) 2460 // MI is not a candidate for CMPrr. 2461 MI = nullptr; 2462 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2463 // same BB as the comparison. This is to allow the check below to avoid calls 2464 // (and other explicit clobbers); instead we should really check for these 2465 // more explicitly (in at least a few predecessors). 2466 else if (MI->getParent() != CmpInstr.getParent()) 2467 return false; 2468 else if (Value != 0) { 2469 // The record-form instructions set CR bit based on signed comparison 2470 // against 0. We try to convert a compare against 1 or -1 into a compare 2471 // against 0 to exploit record-form instructions. For example, we change 2472 // the condition "greater than -1" into "greater than or equal to 0" 2473 // and "less than 1" into "less than or equal to 0". 2474 2475 // Since we optimize comparison based on a specific branch condition, 2476 // we don't optimize if condition code is used by more than once. 2477 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2478 return false; 2479 2480 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2481 if (UseMI->getOpcode() != PPC::BCC) 2482 return false; 2483 2484 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2485 unsigned PredCond = PPC::getPredicateCondition(Pred); 2486 unsigned PredHint = PPC::getPredicateHint(Pred); 2487 int16_t Immed = (int16_t)Value; 2488 2489 // When modifying the condition in the predicate, we propagate hint bits 2490 // from the original predicate to the new one. 2491 if (Immed == -1 && PredCond == PPC::PRED_GT) 2492 // We convert "greater than -1" into "greater than or equal to 0", 2493 // since we are assuming signed comparison by !equalityOnly 2494 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2495 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2496 // We convert "less than or equal to -1" into "less than 0". 2497 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2498 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2499 // We convert "less than 1" into "less than or equal to 0". 2500 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2501 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2502 // We convert "greater than or equal to 1" into "greater than 0". 2503 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2504 else 2505 return false; 2506 2507 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2508 } 2509 2510 // Search for Sub. 2511 --I; 2512 2513 // Get ready to iterate backward from CmpInstr. 2514 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2515 2516 for (; I != E && !noSub; --I) { 2517 const MachineInstr &Instr = *I; 2518 unsigned IOpC = Instr.getOpcode(); 2519 2520 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2521 Instr.readsRegister(PPC::CR0, TRI))) 2522 // This instruction modifies or uses the record condition register after 2523 // the one we want to change. While we could do this transformation, it 2524 // would likely not be profitable. This transformation removes one 2525 // instruction, and so even forcing RA to generate one move probably 2526 // makes it unprofitable. 2527 return false; 2528 2529 // Check whether CmpInstr can be made redundant by the current instruction. 2530 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2531 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2532 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2533 ((Instr.getOperand(1).getReg() == SrcReg && 2534 Instr.getOperand(2).getReg() == SrcReg2) || 2535 (Instr.getOperand(1).getReg() == SrcReg2 && 2536 Instr.getOperand(2).getReg() == SrcReg))) { 2537 Sub = &*I; 2538 break; 2539 } 2540 2541 if (I == B) 2542 // The 'and' is below the comparison instruction. 2543 return false; 2544 } 2545 2546 // Return false if no candidates exist. 2547 if (!MI && !Sub) 2548 return false; 2549 2550 // The single candidate is called MI. 2551 if (!MI) MI = Sub; 2552 2553 int NewOpC = -1; 2554 int MIOpC = MI->getOpcode(); 2555 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2556 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2557 NewOpC = MIOpC; 2558 else { 2559 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2560 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2561 NewOpC = MIOpC; 2562 } 2563 2564 // FIXME: On the non-embedded POWER architectures, only some of the record 2565 // forms are fast, and we should use only the fast ones. 2566 2567 // The defining instruction has a record form (or is already a record 2568 // form). It is possible, however, that we'll need to reverse the condition 2569 // code of the users. 2570 if (NewOpC == -1) 2571 return false; 2572 2573 // This transformation should not be performed if `nsw` is missing and is not 2574 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2575 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2576 // CRReg can reflect if compared values are equal, this optz is still valid. 2577 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2578 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2579 return false; 2580 2581 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2582 // needs to be updated to be based on SUB. Push the condition code 2583 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2584 // condition code of these operands will be modified. 2585 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2586 // comparison against 0, which may modify predicate. 2587 bool ShouldSwap = false; 2588 if (Sub && Value == 0) { 2589 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2590 Sub->getOperand(2).getReg() == SrcReg; 2591 2592 // The operands to subf are the opposite of sub, so only in the fixed-point 2593 // case, invert the order. 2594 ShouldSwap = !ShouldSwap; 2595 } 2596 2597 if (ShouldSwap) 2598 for (MachineRegisterInfo::use_instr_iterator 2599 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2600 I != IE; ++I) { 2601 MachineInstr *UseMI = &*I; 2602 if (UseMI->getOpcode() == PPC::BCC) { 2603 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2604 unsigned PredCond = PPC::getPredicateCondition(Pred); 2605 assert((!equalityOnly || 2606 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2607 "Invalid predicate for equality-only optimization"); 2608 (void)PredCond; // To suppress warning in release build. 2609 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2610 PPC::getSwappedPredicate(Pred))); 2611 } else if (UseMI->getOpcode() == PPC::ISEL || 2612 UseMI->getOpcode() == PPC::ISEL8) { 2613 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2614 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2615 "Invalid CR bit for equality-only optimization"); 2616 2617 if (NewSubReg == PPC::sub_lt) 2618 NewSubReg = PPC::sub_gt; 2619 else if (NewSubReg == PPC::sub_gt) 2620 NewSubReg = PPC::sub_lt; 2621 2622 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2623 NewSubReg)); 2624 } else // We need to abort on a user we don't understand. 2625 return false; 2626 } 2627 assert(!(Value != 0 && ShouldSwap) && 2628 "Non-zero immediate support and ShouldSwap" 2629 "may conflict in updating predicate"); 2630 2631 // Create a new virtual register to hold the value of the CR set by the 2632 // record-form instruction. If the instruction was not previously in 2633 // record form, then set the kill flag on the CR. 2634 CmpInstr.eraseFromParent(); 2635 2636 MachineBasicBlock::iterator MII = MI; 2637 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2638 get(TargetOpcode::COPY), CRReg) 2639 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2640 2641 // Even if CR0 register were dead before, it is alive now since the 2642 // instruction we just built uses it. 2643 MI->clearRegisterDeads(PPC::CR0); 2644 2645 if (MIOpC != NewOpC) { 2646 // We need to be careful here: we're replacing one instruction with 2647 // another, and we need to make sure that we get all of the right 2648 // implicit uses and defs. On the other hand, the caller may be holding 2649 // an iterator to this instruction, and so we can't delete it (this is 2650 // specifically the case if this is the instruction directly after the 2651 // compare). 2652 2653 // Rotates are expensive instructions. If we're emitting a record-form 2654 // rotate that can just be an andi/andis, we should just emit that. 2655 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2656 Register GPRRes = MI->getOperand(0).getReg(); 2657 int64_t SH = MI->getOperand(2).getImm(); 2658 int64_t MB = MI->getOperand(3).getImm(); 2659 int64_t ME = MI->getOperand(4).getImm(); 2660 // We can only do this if both the start and end of the mask are in the 2661 // same halfword. 2662 bool MBInLoHWord = MB >= 16; 2663 bool MEInLoHWord = ME >= 16; 2664 uint64_t Mask = ~0LLU; 2665 2666 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2667 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2668 // The mask value needs to shift right 16 if we're emitting andis. 2669 Mask >>= MBInLoHWord ? 0 : 16; 2670 NewOpC = MIOpC == PPC::RLWINM 2671 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2672 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2673 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2674 (ME - MB + 1 == SH) && (MB >= 16)) { 2675 // If we are rotating by the exact number of bits as are in the mask 2676 // and the mask is in the least significant bits of the register, 2677 // that's just an andis. (as long as the GPR result has no uses). 2678 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2679 Mask >>= 16; 2680 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2681 } 2682 // If we've set the mask, we can transform. 2683 if (Mask != ~0LLU) { 2684 MI->RemoveOperand(4); 2685 MI->RemoveOperand(3); 2686 MI->getOperand(2).setImm(Mask); 2687 NumRcRotatesConvertedToRcAnd++; 2688 } 2689 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2690 int64_t MB = MI->getOperand(3).getImm(); 2691 if (MB >= 48) { 2692 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2693 NewOpC = PPC::ANDI8_rec; 2694 MI->RemoveOperand(3); 2695 MI->getOperand(2).setImm(Mask); 2696 NumRcRotatesConvertedToRcAnd++; 2697 } 2698 } 2699 2700 const MCInstrDesc &NewDesc = get(NewOpC); 2701 MI->setDesc(NewDesc); 2702 2703 if (NewDesc.ImplicitDefs) 2704 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2705 *ImpDefs; ++ImpDefs) 2706 if (!MI->definesRegister(*ImpDefs)) 2707 MI->addOperand(*MI->getParent()->getParent(), 2708 MachineOperand::CreateReg(*ImpDefs, true, true)); 2709 if (NewDesc.ImplicitUses) 2710 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2711 *ImpUses; ++ImpUses) 2712 if (!MI->readsRegister(*ImpUses)) 2713 MI->addOperand(*MI->getParent()->getParent(), 2714 MachineOperand::CreateReg(*ImpUses, false, true)); 2715 } 2716 assert(MI->definesRegister(PPC::CR0) && 2717 "Record-form instruction does not define cr0?"); 2718 2719 // Modify the condition code of operands in OperandsToUpdate. 2720 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2721 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2722 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2723 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2724 2725 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2726 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2727 2728 return true; 2729 } 2730 2731 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2732 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2733 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2734 const TargetRegisterInfo *TRI) const { 2735 const MachineOperand *BaseOp; 2736 OffsetIsScalable = false; 2737 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2738 return false; 2739 BaseOps.push_back(BaseOp); 2740 return true; 2741 } 2742 2743 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2744 const TargetRegisterInfo *TRI) { 2745 // If this is a volatile load/store, don't mess with it. 2746 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2747 return false; 2748 2749 if (LdSt.getOperand(2).isFI()) 2750 return true; 2751 2752 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2753 // Can't cluster if the instruction modifies the base register 2754 // or it is update form. e.g. ld r2,3(r2) 2755 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2756 return false; 2757 2758 return true; 2759 } 2760 2761 // Only cluster instruction pair that have the same opcode, and they are 2762 // clusterable according to PowerPC specification. 2763 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2764 const PPCSubtarget &Subtarget) { 2765 switch (FirstOpc) { 2766 default: 2767 return false; 2768 case PPC::STD: 2769 case PPC::STFD: 2770 case PPC::STXSD: 2771 case PPC::DFSTOREf64: 2772 return FirstOpc == SecondOpc; 2773 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2774 // 32bit and 64bit instruction selection. They are clusterable pair though 2775 // they are different opcode. 2776 case PPC::STW: 2777 case PPC::STW8: 2778 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2779 } 2780 } 2781 2782 bool PPCInstrInfo::shouldClusterMemOps( 2783 ArrayRef<const MachineOperand *> BaseOps1, 2784 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2785 unsigned NumBytes) const { 2786 2787 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2788 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2789 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2790 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2791 "Only base registers and frame indices are supported."); 2792 2793 // The NumLoads means the number of loads that has been clustered. 2794 // Don't cluster memory op if there are already two ops clustered at least. 2795 if (NumLoads > 2) 2796 return false; 2797 2798 // Cluster the load/store only when they have the same base 2799 // register or FI. 2800 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2801 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2802 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2803 return false; 2804 2805 // Check if the load/store are clusterable according to the PowerPC 2806 // specification. 2807 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2808 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2809 unsigned FirstOpc = FirstLdSt.getOpcode(); 2810 unsigned SecondOpc = SecondLdSt.getOpcode(); 2811 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2812 // Cluster the load/store only when they have the same opcode, and they are 2813 // clusterable opcode according to PowerPC specification. 2814 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2815 return false; 2816 2817 // Can't cluster load/store that have ordered or volatile memory reference. 2818 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2819 !isLdStSafeToCluster(SecondLdSt, TRI)) 2820 return false; 2821 2822 int64_t Offset1 = 0, Offset2 = 0; 2823 unsigned Width1 = 0, Width2 = 0; 2824 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2825 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2826 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2827 Width1 != Width2) 2828 return false; 2829 2830 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2831 "getMemOperandWithOffsetWidth return incorrect base op"); 2832 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2833 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2834 return Offset1 + Width1 == Offset2; 2835 } 2836 2837 /// GetInstSize - Return the number of bytes of code the specified 2838 /// instruction may be. This returns the maximum number of bytes. 2839 /// 2840 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2841 unsigned Opcode = MI.getOpcode(); 2842 2843 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2844 const MachineFunction *MF = MI.getParent()->getParent(); 2845 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2846 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2847 } else if (Opcode == TargetOpcode::STACKMAP) { 2848 StackMapOpers Opers(&MI); 2849 return Opers.getNumPatchBytes(); 2850 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2851 PatchPointOpers Opers(&MI); 2852 return Opers.getNumPatchBytes(); 2853 } else { 2854 return get(Opcode).getSize(); 2855 } 2856 } 2857 2858 std::pair<unsigned, unsigned> 2859 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2860 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2861 return std::make_pair(TF & Mask, TF & ~Mask); 2862 } 2863 2864 ArrayRef<std::pair<unsigned, const char *>> 2865 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2866 using namespace PPCII; 2867 static const std::pair<unsigned, const char *> TargetFlags[] = { 2868 {MO_LO, "ppc-lo"}, 2869 {MO_HA, "ppc-ha"}, 2870 {MO_TPREL_LO, "ppc-tprel-lo"}, 2871 {MO_TPREL_HA, "ppc-tprel-ha"}, 2872 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2873 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2874 {MO_TOC_LO, "ppc-toc-lo"}, 2875 {MO_TLS, "ppc-tls"}}; 2876 return makeArrayRef(TargetFlags); 2877 } 2878 2879 ArrayRef<std::pair<unsigned, const char *>> 2880 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2881 using namespace PPCII; 2882 static const std::pair<unsigned, const char *> TargetFlags[] = { 2883 {MO_PLT, "ppc-plt"}, 2884 {MO_PIC_FLAG, "ppc-pic"}, 2885 {MO_PCREL_FLAG, "ppc-pcrel"}, 2886 {MO_GOT_FLAG, "ppc-got"}, 2887 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2888 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2889 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2890 {MO_TPREL_FLAG, "ppc-tprel"}, 2891 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2892 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2893 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2894 return makeArrayRef(TargetFlags); 2895 } 2896 2897 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2898 // The VSX versions have the advantage of a full 64-register target whereas 2899 // the FP ones have the advantage of lower latency and higher throughput. So 2900 // what we are after is using the faster instructions in low register pressure 2901 // situations and using the larger register file in high register pressure 2902 // situations. 2903 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2904 unsigned UpperOpcode, LowerOpcode; 2905 switch (MI.getOpcode()) { 2906 case PPC::DFLOADf32: 2907 UpperOpcode = PPC::LXSSP; 2908 LowerOpcode = PPC::LFS; 2909 break; 2910 case PPC::DFLOADf64: 2911 UpperOpcode = PPC::LXSD; 2912 LowerOpcode = PPC::LFD; 2913 break; 2914 case PPC::DFSTOREf32: 2915 UpperOpcode = PPC::STXSSP; 2916 LowerOpcode = PPC::STFS; 2917 break; 2918 case PPC::DFSTOREf64: 2919 UpperOpcode = PPC::STXSD; 2920 LowerOpcode = PPC::STFD; 2921 break; 2922 case PPC::XFLOADf32: 2923 UpperOpcode = PPC::LXSSPX; 2924 LowerOpcode = PPC::LFSX; 2925 break; 2926 case PPC::XFLOADf64: 2927 UpperOpcode = PPC::LXSDX; 2928 LowerOpcode = PPC::LFDX; 2929 break; 2930 case PPC::XFSTOREf32: 2931 UpperOpcode = PPC::STXSSPX; 2932 LowerOpcode = PPC::STFSX; 2933 break; 2934 case PPC::XFSTOREf64: 2935 UpperOpcode = PPC::STXSDX; 2936 LowerOpcode = PPC::STFDX; 2937 break; 2938 case PPC::LIWAX: 2939 UpperOpcode = PPC::LXSIWAX; 2940 LowerOpcode = PPC::LFIWAX; 2941 break; 2942 case PPC::LIWZX: 2943 UpperOpcode = PPC::LXSIWZX; 2944 LowerOpcode = PPC::LFIWZX; 2945 break; 2946 case PPC::STIWX: 2947 UpperOpcode = PPC::STXSIWX; 2948 LowerOpcode = PPC::STFIWX; 2949 break; 2950 default: 2951 llvm_unreachable("Unknown Operation!"); 2952 } 2953 2954 Register TargetReg = MI.getOperand(0).getReg(); 2955 unsigned Opcode; 2956 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2957 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2958 Opcode = LowerOpcode; 2959 else 2960 Opcode = UpperOpcode; 2961 MI.setDesc(get(Opcode)); 2962 return true; 2963 } 2964 2965 static bool isAnImmediateOperand(const MachineOperand &MO) { 2966 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2967 } 2968 2969 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2970 auto &MBB = *MI.getParent(); 2971 auto DL = MI.getDebugLoc(); 2972 2973 switch (MI.getOpcode()) { 2974 case PPC::BUILD_UACC: { 2975 MCRegister ACC = MI.getOperand(0).getReg(); 2976 MCRegister UACC = MI.getOperand(1).getReg(); 2977 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2978 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2979 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2980 // FIXME: This can easily be improved to look up to the top of the MBB 2981 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2982 // we can just re-target any such XXLOR's to DstVSR + offset. 2983 for (int VecNo = 0; VecNo < 4; VecNo++) 2984 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2985 .addReg(SrcVSR + VecNo) 2986 .addReg(SrcVSR + VecNo); 2987 } 2988 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2989 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2990 // with a NOP. 2991 LLVM_FALLTHROUGH; 2992 } 2993 case PPC::KILL_PAIR: { 2994 MI.setDesc(get(PPC::UNENCODED_NOP)); 2995 MI.RemoveOperand(1); 2996 MI.RemoveOperand(0); 2997 return true; 2998 } 2999 case TargetOpcode::LOAD_STACK_GUARD: { 3000 assert(Subtarget.isTargetLinux() && 3001 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3002 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3003 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3004 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3005 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3006 .addImm(Offset) 3007 .addReg(Reg); 3008 return true; 3009 } 3010 case PPC::DFLOADf32: 3011 case PPC::DFLOADf64: 3012 case PPC::DFSTOREf32: 3013 case PPC::DFSTOREf64: { 3014 assert(Subtarget.hasP9Vector() && 3015 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3016 assert(MI.getOperand(2).isReg() && 3017 isAnImmediateOperand(MI.getOperand(1)) && 3018 "D-form op must have register and immediate operands"); 3019 return expandVSXMemPseudo(MI); 3020 } 3021 case PPC::XFLOADf32: 3022 case PPC::XFSTOREf32: 3023 case PPC::LIWAX: 3024 case PPC::LIWZX: 3025 case PPC::STIWX: { 3026 assert(Subtarget.hasP8Vector() && 3027 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3028 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3029 "X-form op must have register and register operands"); 3030 return expandVSXMemPseudo(MI); 3031 } 3032 case PPC::XFLOADf64: 3033 case PPC::XFSTOREf64: { 3034 assert(Subtarget.hasVSX() && 3035 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3036 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3037 "X-form op must have register and register operands"); 3038 return expandVSXMemPseudo(MI); 3039 } 3040 case PPC::SPILLTOVSR_LD: { 3041 Register TargetReg = MI.getOperand(0).getReg(); 3042 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3043 MI.setDesc(get(PPC::DFLOADf64)); 3044 return expandPostRAPseudo(MI); 3045 } 3046 else 3047 MI.setDesc(get(PPC::LD)); 3048 return true; 3049 } 3050 case PPC::SPILLTOVSR_ST: { 3051 Register SrcReg = MI.getOperand(0).getReg(); 3052 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3053 NumStoreSPILLVSRRCAsVec++; 3054 MI.setDesc(get(PPC::DFSTOREf64)); 3055 return expandPostRAPseudo(MI); 3056 } else { 3057 NumStoreSPILLVSRRCAsGpr++; 3058 MI.setDesc(get(PPC::STD)); 3059 } 3060 return true; 3061 } 3062 case PPC::SPILLTOVSR_LDX: { 3063 Register TargetReg = MI.getOperand(0).getReg(); 3064 if (PPC::VSFRCRegClass.contains(TargetReg)) 3065 MI.setDesc(get(PPC::LXSDX)); 3066 else 3067 MI.setDesc(get(PPC::LDX)); 3068 return true; 3069 } 3070 case PPC::SPILLTOVSR_STX: { 3071 Register SrcReg = MI.getOperand(0).getReg(); 3072 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3073 NumStoreSPILLVSRRCAsVec++; 3074 MI.setDesc(get(PPC::STXSDX)); 3075 } else { 3076 NumStoreSPILLVSRRCAsGpr++; 3077 MI.setDesc(get(PPC::STDX)); 3078 } 3079 return true; 3080 } 3081 3082 case PPC::CFENCE8: { 3083 auto Val = MI.getOperand(0).getReg(); 3084 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3085 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3086 .addImm(PPC::PRED_NE_MINUS) 3087 .addReg(PPC::CR7) 3088 .addImm(1); 3089 MI.setDesc(get(PPC::ISYNC)); 3090 MI.RemoveOperand(0); 3091 return true; 3092 } 3093 } 3094 return false; 3095 } 3096 3097 // Essentially a compile-time implementation of a compare->isel sequence. 3098 // It takes two constants to compare, along with the true/false registers 3099 // and the comparison type (as a subreg to a CR field) and returns one 3100 // of the true/false registers, depending on the comparison results. 3101 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3102 unsigned TrueReg, unsigned FalseReg, 3103 unsigned CRSubReg) { 3104 // Signed comparisons. The immediates are assumed to be sign-extended. 3105 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3106 switch (CRSubReg) { 3107 default: llvm_unreachable("Unknown integer comparison type."); 3108 case PPC::sub_lt: 3109 return Imm1 < Imm2 ? TrueReg : FalseReg; 3110 case PPC::sub_gt: 3111 return Imm1 > Imm2 ? TrueReg : FalseReg; 3112 case PPC::sub_eq: 3113 return Imm1 == Imm2 ? TrueReg : FalseReg; 3114 } 3115 } 3116 // Unsigned comparisons. 3117 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3118 switch (CRSubReg) { 3119 default: llvm_unreachable("Unknown integer comparison type."); 3120 case PPC::sub_lt: 3121 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3122 case PPC::sub_gt: 3123 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3124 case PPC::sub_eq: 3125 return Imm1 == Imm2 ? TrueReg : FalseReg; 3126 } 3127 } 3128 return PPC::NoRegister; 3129 } 3130 3131 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3132 unsigned OpNo, 3133 int64_t Imm) const { 3134 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3135 // Replace the REG with the Immediate. 3136 Register InUseReg = MI.getOperand(OpNo).getReg(); 3137 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3138 3139 if (MI.implicit_operands().empty()) 3140 return; 3141 3142 // We need to make sure that the MI didn't have any implicit use 3143 // of this REG any more. 3144 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3145 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3146 if (UseOpIdx >= 0) { 3147 MachineOperand &MO = MI.getOperand(UseOpIdx); 3148 if (MO.isImplicit()) 3149 // The operands must always be in the following order: 3150 // - explicit reg defs, 3151 // - other explicit operands (reg uses, immediates, etc.), 3152 // - implicit reg defs 3153 // - implicit reg uses 3154 // Therefore, removing the implicit operand won't change the explicit 3155 // operands layout. 3156 MI.RemoveOperand(UseOpIdx); 3157 } 3158 } 3159 3160 // Replace an instruction with one that materializes a constant (and sets 3161 // CR0 if the original instruction was a record-form instruction). 3162 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3163 const LoadImmediateInfo &LII) const { 3164 // Remove existing operands. 3165 int OperandToKeep = LII.SetCR ? 1 : 0; 3166 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3167 MI.RemoveOperand(i); 3168 3169 // Replace the instruction. 3170 if (LII.SetCR) { 3171 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3172 // Set the immediate. 3173 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3174 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3175 return; 3176 } 3177 else 3178 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3179 3180 // Set the immediate. 3181 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3182 .addImm(LII.Imm); 3183 } 3184 3185 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3186 bool &SeenIntermediateUse) const { 3187 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3188 "Should be called after register allocation."); 3189 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3190 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3191 It++; 3192 SeenIntermediateUse = false; 3193 for (; It != E; ++It) { 3194 if (It->modifiesRegister(Reg, TRI)) 3195 return &*It; 3196 if (It->readsRegister(Reg, TRI)) 3197 SeenIntermediateUse = true; 3198 } 3199 return nullptr; 3200 } 3201 3202 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3203 MachineInstr &MI, 3204 unsigned &OpNoForForwarding, 3205 bool &SeenIntermediateUse) const { 3206 OpNoForForwarding = ~0U; 3207 MachineInstr *DefMI = nullptr; 3208 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3209 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3210 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3211 // within the basic block to see if the register is defined using an 3212 // LI/LI8/ADDI/ADDI8. 3213 if (MRI->isSSA()) { 3214 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3215 if (!MI.getOperand(i).isReg()) 3216 continue; 3217 Register Reg = MI.getOperand(i).getReg(); 3218 if (!Register::isVirtualRegister(Reg)) 3219 continue; 3220 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3221 if (Register::isVirtualRegister(TrueReg)) { 3222 DefMI = MRI->getVRegDef(TrueReg); 3223 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 3224 DefMI->getOpcode() == PPC::ADDI || 3225 DefMI->getOpcode() == PPC::ADDI8) { 3226 OpNoForForwarding = i; 3227 // The ADDI and LI operand maybe exist in one instruction at same 3228 // time. we prefer to fold LI operand as LI only has one Imm operand 3229 // and is more possible to be converted. So if current DefMI is 3230 // ADDI/ADDI8, we continue to find possible LI/LI8. 3231 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3232 break; 3233 } 3234 } 3235 } 3236 } else { 3237 // Looking back through the definition for each operand could be expensive, 3238 // so exit early if this isn't an instruction that either has an immediate 3239 // form or is already an immediate form that we can handle. 3240 ImmInstrInfo III; 3241 unsigned Opc = MI.getOpcode(); 3242 bool ConvertibleImmForm = 3243 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3244 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3245 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3246 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3247 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3248 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3249 Opc == PPC::RLWINM8_rec; 3250 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3251 ? isVFRegister(MI.getOperand(0).getReg()) 3252 : false; 3253 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3254 return nullptr; 3255 3256 // Don't convert or %X, %Y, %Y since that's just a register move. 3257 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3258 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3259 return nullptr; 3260 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3261 MachineOperand &MO = MI.getOperand(i); 3262 SeenIntermediateUse = false; 3263 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3264 Register Reg = MI.getOperand(i).getReg(); 3265 // If we see another use of this reg between the def and the MI, 3266 // we want to flat it so the def isn't deleted. 3267 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3268 if (DefMI) { 3269 // Is this register defined by some form of add-immediate (including 3270 // load-immediate) within this basic block? 3271 switch (DefMI->getOpcode()) { 3272 default: 3273 break; 3274 case PPC::LI: 3275 case PPC::LI8: 3276 case PPC::ADDItocL: 3277 case PPC::ADDI: 3278 case PPC::ADDI8: 3279 OpNoForForwarding = i; 3280 return DefMI; 3281 } 3282 } 3283 } 3284 } 3285 } 3286 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3287 } 3288 3289 unsigned PPCInstrInfo::getSpillTarget() const { 3290 // With P10, we may need to spill paired vector registers or accumulator 3291 // registers. MMA implies paired vectors, so we can just check that. 3292 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3293 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 3294 } 3295 3296 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3297 return StoreSpillOpcodesArray[getSpillTarget()]; 3298 } 3299 3300 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3301 return LoadSpillOpcodesArray[getSpillTarget()]; 3302 } 3303 3304 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3305 unsigned RegNo) const { 3306 // Conservatively clear kill flag for the register if the instructions are in 3307 // different basic blocks and in SSA form, because the kill flag may no longer 3308 // be right. There is no need to bother with dead flags since defs with no 3309 // uses will be handled by DCE. 3310 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3311 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3312 MRI.clearKillFlags(RegNo); 3313 return; 3314 } 3315 3316 // Instructions between [StartMI, EndMI] should be in same basic block. 3317 assert((StartMI->getParent() == EndMI->getParent()) && 3318 "Instructions are not in same basic block"); 3319 3320 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3321 // real def. See function getForwardingDefMI. 3322 if (MRI.isSSA()) { 3323 bool Reads, Writes; 3324 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3325 if (!Reads && !Writes) { 3326 assert(Register::isVirtualRegister(RegNo) && 3327 "Must be a virtual register"); 3328 // Get real def and ignore copies. 3329 StartMI = MRI.getVRegDef(RegNo); 3330 } 3331 } 3332 3333 bool IsKillSet = false; 3334 3335 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3336 MachineOperand &MO = MI.getOperand(Index); 3337 if (MO.isReg() && MO.isUse() && MO.isKill() && 3338 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3339 MO.setIsKill(false); 3340 }; 3341 3342 // Set killed flag for EndMI. 3343 // No need to do anything if EndMI defines RegNo. 3344 int UseIndex = 3345 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3346 if (UseIndex != -1) { 3347 EndMI->getOperand(UseIndex).setIsKill(true); 3348 IsKillSet = true; 3349 // Clear killed flag for other EndMI operands related to RegNo. In some 3350 // upexpected cases, killed may be set multiple times for same register 3351 // operand in same MI. 3352 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3353 if (i != UseIndex) 3354 clearOperandKillInfo(*EndMI, i); 3355 } 3356 3357 // Walking the inst in reverse order (EndMI -> StartMI]. 3358 MachineBasicBlock::reverse_iterator It = *EndMI; 3359 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3360 // EndMI has been handled above, skip it here. 3361 It++; 3362 MachineOperand *MO = nullptr; 3363 for (; It != E; ++It) { 3364 // Skip insturctions which could not be a def/use of RegNo. 3365 if (It->isDebugInstr() || It->isPosition()) 3366 continue; 3367 3368 // Clear killed flag for all It operands related to RegNo. In some 3369 // upexpected cases, killed may be set multiple times for same register 3370 // operand in same MI. 3371 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3372 clearOperandKillInfo(*It, i); 3373 3374 // If killed is not set, set killed for its last use or set dead for its def 3375 // if no use found. 3376 if (!IsKillSet) { 3377 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3378 // Use found, set it killed. 3379 IsKillSet = true; 3380 MO->setIsKill(true); 3381 continue; 3382 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3383 &getRegisterInfo()))) { 3384 // No use found, set dead for its def. 3385 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3386 MO->setIsDead(true); 3387 break; 3388 } 3389 } 3390 3391 if ((&*It) == StartMI) 3392 break; 3393 } 3394 // Ensure RegMo liveness is killed after EndMI. 3395 assert((IsKillSet || (MO && MO->isDead())) && 3396 "RegNo should be killed or dead"); 3397 } 3398 3399 // This opt tries to convert the following imm form to an index form to save an 3400 // add for stack variables. 3401 // Return false if no such pattern found. 3402 // 3403 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3404 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3405 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3406 // 3407 // can be converted to: 3408 // 3409 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3410 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3411 // 3412 // In order to eliminate ADD instr, make sure that: 3413 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3414 // new ADDI instr and ADDI can only take int16 Imm. 3415 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3416 // between ADDI and ADD instr since its original def in ADDI will be changed 3417 // in new ADDI instr. And also there should be no new def for it between 3418 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3419 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3420 // between ADD and Imm instr since ADD instr will be eliminated. 3421 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3422 // moved to Index instr. 3423 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3424 MachineFunction *MF = MI.getParent()->getParent(); 3425 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3426 bool PostRA = !MRI->isSSA(); 3427 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3428 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3429 // frame base(OffsetAddi) are determined. 3430 if (!PostRA) 3431 return false; 3432 unsigned ToBeDeletedReg = 0; 3433 int64_t OffsetImm = 0; 3434 unsigned XFormOpcode = 0; 3435 ImmInstrInfo III; 3436 3437 // Check if Imm instr meets requirement. 3438 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3439 III)) 3440 return false; 3441 3442 bool OtherIntermediateUse = false; 3443 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3444 3445 // Exit if there is other use between ADD and Imm instr or no def found. 3446 if (OtherIntermediateUse || !ADDMI) 3447 return false; 3448 3449 // Check if ADD instr meets requirement. 3450 if (!isADDInstrEligibleForFolding(*ADDMI)) 3451 return false; 3452 3453 unsigned ScaleRegIdx = 0; 3454 int64_t OffsetAddi = 0; 3455 MachineInstr *ADDIMI = nullptr; 3456 3457 // Check if there is a valid ToBeChangedReg in ADDMI. 3458 // 1: It must be killed. 3459 // 2: Its definition must be a valid ADDIMI. 3460 // 3: It must satify int16 offset requirement. 3461 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3462 ScaleRegIdx = 2; 3463 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3464 ScaleRegIdx = 1; 3465 else 3466 return false; 3467 3468 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3469 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3470 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3471 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3472 MachineBasicBlock::iterator End) { 3473 for (auto It = ++Start; It != End; It++) 3474 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3475 return true; 3476 return false; 3477 }; 3478 3479 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3480 // treated as special zero when ScaleReg is R0/X0 register. 3481 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3482 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3483 return false; 3484 3485 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3486 // and Imm Instr. 3487 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3488 return false; 3489 3490 // Now start to do the transformation. 3491 LLVM_DEBUG(dbgs() << "Replace instruction: " 3492 << "\n"); 3493 LLVM_DEBUG(ADDIMI->dump()); 3494 LLVM_DEBUG(ADDMI->dump()); 3495 LLVM_DEBUG(MI.dump()); 3496 LLVM_DEBUG(dbgs() << "with: " 3497 << "\n"); 3498 3499 // Update ADDI instr. 3500 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3501 3502 // Update Imm instr. 3503 MI.setDesc(get(XFormOpcode)); 3504 MI.getOperand(III.ImmOpNo) 3505 .ChangeToRegister(ScaleReg, false, false, 3506 ADDMI->getOperand(ScaleRegIdx).isKill()); 3507 3508 MI.getOperand(III.OpNoForForwarding) 3509 .ChangeToRegister(ToBeChangedReg, false, false, true); 3510 3511 // Eliminate ADD instr. 3512 ADDMI->eraseFromParent(); 3513 3514 LLVM_DEBUG(ADDIMI->dump()); 3515 LLVM_DEBUG(MI.dump()); 3516 3517 return true; 3518 } 3519 3520 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3521 int64_t &Imm) const { 3522 unsigned Opc = ADDIMI.getOpcode(); 3523 3524 // Exit if the instruction is not ADDI. 3525 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3526 return false; 3527 3528 // The operand may not necessarily be an immediate - it could be a relocation. 3529 if (!ADDIMI.getOperand(2).isImm()) 3530 return false; 3531 3532 Imm = ADDIMI.getOperand(2).getImm(); 3533 3534 return true; 3535 } 3536 3537 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3538 unsigned Opc = ADDMI.getOpcode(); 3539 3540 // Exit if the instruction is not ADD. 3541 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3542 } 3543 3544 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3545 unsigned &ToBeDeletedReg, 3546 unsigned &XFormOpcode, 3547 int64_t &OffsetImm, 3548 ImmInstrInfo &III) const { 3549 // Only handle load/store. 3550 if (!MI.mayLoadOrStore()) 3551 return false; 3552 3553 unsigned Opc = MI.getOpcode(); 3554 3555 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3556 3557 // Exit if instruction has no index form. 3558 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3559 return false; 3560 3561 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3562 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3563 III, true)) 3564 return false; 3565 3566 if (!III.IsSummingOperands) 3567 return false; 3568 3569 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3570 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3571 // Only support imm operands, not relocation slots or others. 3572 if (!ImmOperand.isImm()) 3573 return false; 3574 3575 assert(RegOperand.isReg() && "Instruction format is not right"); 3576 3577 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3578 if (!RegOperand.isKill()) 3579 return false; 3580 3581 ToBeDeletedReg = RegOperand.getReg(); 3582 OffsetImm = ImmOperand.getImm(); 3583 3584 return true; 3585 } 3586 3587 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3588 MachineInstr *&ADDIMI, 3589 int64_t &OffsetAddi, 3590 int64_t OffsetImm) const { 3591 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3592 MachineOperand &MO = ADDMI->getOperand(Index); 3593 3594 if (!MO.isKill()) 3595 return false; 3596 3597 bool OtherIntermediateUse = false; 3598 3599 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3600 // Currently handle only one "add + Imminstr" pair case, exit if other 3601 // intermediate use for ToBeChangedReg found. 3602 // TODO: handle the cases where there are other "add + Imminstr" pairs 3603 // with same offset in Imminstr which is like: 3604 // 3605 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3606 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3607 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3608 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3609 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3610 // 3611 // can be converted to: 3612 // 3613 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3614 // (OffsetAddi + OffsetImm) 3615 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3616 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3617 3618 if (OtherIntermediateUse || !ADDIMI) 3619 return false; 3620 // Check if ADDI instr meets requirement. 3621 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3622 return false; 3623 3624 if (isInt<16>(OffsetAddi + OffsetImm)) 3625 return true; 3626 return false; 3627 } 3628 3629 // If this instruction has an immediate form and one of its operands is a 3630 // result of a load-immediate or an add-immediate, convert it to 3631 // the immediate form if the constant is in range. 3632 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3633 MachineInstr **KilledDef) const { 3634 MachineFunction *MF = MI.getParent()->getParent(); 3635 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3636 bool PostRA = !MRI->isSSA(); 3637 bool SeenIntermediateUse = true; 3638 unsigned ForwardingOperand = ~0U; 3639 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3640 SeenIntermediateUse); 3641 if (!DefMI) 3642 return false; 3643 assert(ForwardingOperand < MI.getNumOperands() && 3644 "The forwarding operand needs to be valid at this point"); 3645 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3646 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3647 if (KilledDef && KillFwdDefMI) 3648 *KilledDef = DefMI; 3649 3650 // If this is a imm instruction and its register operands is produced by ADDI, 3651 // put the imm into imm inst directly. 3652 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3653 PPC::INSTRUCTION_LIST_END && 3654 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3655 return true; 3656 3657 ImmInstrInfo III; 3658 bool IsVFReg = MI.getOperand(0).isReg() 3659 ? isVFRegister(MI.getOperand(0).getReg()) 3660 : false; 3661 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3662 // If this is a reg+reg instruction that has a reg+imm form, 3663 // and one of the operands is produced by an add-immediate, 3664 // try to convert it. 3665 if (HasImmForm && 3666 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3667 KillFwdDefMI)) 3668 return true; 3669 3670 // If this is a reg+reg instruction that has a reg+imm form, 3671 // and one of the operands is produced by LI, convert it now. 3672 if (HasImmForm && 3673 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3674 return true; 3675 3676 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3677 // can be simpified to LI. 3678 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3679 return true; 3680 3681 return false; 3682 } 3683 3684 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3685 MachineInstr **ToErase) const { 3686 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3687 unsigned FoldingReg = MI.getOperand(1).getReg(); 3688 if (!Register::isVirtualRegister(FoldingReg)) 3689 return false; 3690 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3691 if (SrcMI->getOpcode() != PPC::RLWINM && 3692 SrcMI->getOpcode() != PPC::RLWINM_rec && 3693 SrcMI->getOpcode() != PPC::RLWINM8 && 3694 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3695 return false; 3696 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3697 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3698 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3699 "Invalid PPC::RLWINM Instruction!"); 3700 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3701 uint64_t SHMI = MI.getOperand(2).getImm(); 3702 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3703 uint64_t MBMI = MI.getOperand(3).getImm(); 3704 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3705 uint64_t MEMI = MI.getOperand(4).getImm(); 3706 3707 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3708 "Invalid PPC::RLWINM Instruction!"); 3709 // If MBMI is bigger than MEMI, we always can not get run of ones. 3710 // RotatedSrcMask non-wrap: 3711 // 0........31|32........63 3712 // RotatedSrcMask: B---E B---E 3713 // MaskMI: -----------|--E B------ 3714 // Result: ----- --- (Bad candidate) 3715 // 3716 // RotatedSrcMask wrap: 3717 // 0........31|32........63 3718 // RotatedSrcMask: --E B----|--E B---- 3719 // MaskMI: -----------|--E B------ 3720 // Result: --- -----|--- ----- (Bad candidate) 3721 // 3722 // One special case is RotatedSrcMask is a full set mask. 3723 // RotatedSrcMask full: 3724 // 0........31|32........63 3725 // RotatedSrcMask: ------EB---|-------EB--- 3726 // MaskMI: -----------|--E B------ 3727 // Result: -----------|--- ------- (Good candidate) 3728 3729 // Mark special case. 3730 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3731 3732 // For other MBMI > MEMI cases, just return. 3733 if ((MBMI > MEMI) && !SrcMaskFull) 3734 return false; 3735 3736 // Handle MBMI <= MEMI cases. 3737 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3738 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3739 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3740 // while in PowerPC ISA, lowerest bit is at index 63. 3741 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3742 3743 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3744 APInt FinalMask = RotatedSrcMask & MaskMI; 3745 uint32_t NewMB, NewME; 3746 bool Simplified = false; 3747 3748 // If final mask is 0, MI result should be 0 too. 3749 if (FinalMask.isNullValue()) { 3750 bool Is64Bit = 3751 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3752 Simplified = true; 3753 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3754 LLVM_DEBUG(MI.dump()); 3755 3756 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3757 // Replace MI with "LI 0" 3758 MI.RemoveOperand(4); 3759 MI.RemoveOperand(3); 3760 MI.RemoveOperand(2); 3761 MI.getOperand(1).ChangeToImmediate(0); 3762 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3763 } else { 3764 // Replace MI with "ANDI_rec reg, 0" 3765 MI.RemoveOperand(4); 3766 MI.RemoveOperand(3); 3767 MI.getOperand(2).setImm(0); 3768 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3769 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3770 if (SrcMI->getOperand(1).isKill()) { 3771 MI.getOperand(1).setIsKill(true); 3772 SrcMI->getOperand(1).setIsKill(false); 3773 } else 3774 // About to replace MI.getOperand(1), clear its kill flag. 3775 MI.getOperand(1).setIsKill(false); 3776 } 3777 3778 LLVM_DEBUG(dbgs() << "With: "); 3779 LLVM_DEBUG(MI.dump()); 3780 3781 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3782 NewMB <= NewME) || 3783 SrcMaskFull) { 3784 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3785 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3786 // return a 32 bit value. 3787 Simplified = true; 3788 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3789 LLVM_DEBUG(MI.dump()); 3790 3791 uint16_t NewSH = (SHSrc + SHMI) % 32; 3792 MI.getOperand(2).setImm(NewSH); 3793 // If SrcMI mask is full, no need to update MBMI and MEMI. 3794 if (!SrcMaskFull) { 3795 MI.getOperand(3).setImm(NewMB); 3796 MI.getOperand(4).setImm(NewME); 3797 } 3798 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3799 if (SrcMI->getOperand(1).isKill()) { 3800 MI.getOperand(1).setIsKill(true); 3801 SrcMI->getOperand(1).setIsKill(false); 3802 } else 3803 // About to replace MI.getOperand(1), clear its kill flag. 3804 MI.getOperand(1).setIsKill(false); 3805 3806 LLVM_DEBUG(dbgs() << "To: "); 3807 LLVM_DEBUG(MI.dump()); 3808 } 3809 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3810 !SrcMI->hasImplicitDef()) { 3811 // If FoldingReg has no non-debug use and it has no implicit def (it 3812 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3813 // Otherwise keep it. 3814 *ToErase = SrcMI; 3815 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3816 LLVM_DEBUG(SrcMI->dump()); 3817 } 3818 return Simplified; 3819 } 3820 3821 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3822 ImmInstrInfo &III, bool PostRA) const { 3823 // The vast majority of the instructions would need their operand 2 replaced 3824 // with an immediate when switching to the reg+imm form. A marked exception 3825 // are the update form loads/stores for which a constant operand 2 would need 3826 // to turn into a displacement and move operand 1 to the operand 2 position. 3827 III.ImmOpNo = 2; 3828 III.OpNoForForwarding = 2; 3829 III.ImmWidth = 16; 3830 III.ImmMustBeMultipleOf = 1; 3831 III.TruncateImmTo = 0; 3832 III.IsSummingOperands = false; 3833 switch (Opc) { 3834 default: return false; 3835 case PPC::ADD4: 3836 case PPC::ADD8: 3837 III.SignedImm = true; 3838 III.ZeroIsSpecialOrig = 0; 3839 III.ZeroIsSpecialNew = 1; 3840 III.IsCommutative = true; 3841 III.IsSummingOperands = true; 3842 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3843 break; 3844 case PPC::ADDC: 3845 case PPC::ADDC8: 3846 III.SignedImm = true; 3847 III.ZeroIsSpecialOrig = 0; 3848 III.ZeroIsSpecialNew = 0; 3849 III.IsCommutative = true; 3850 III.IsSummingOperands = true; 3851 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3852 break; 3853 case PPC::ADDC_rec: 3854 III.SignedImm = true; 3855 III.ZeroIsSpecialOrig = 0; 3856 III.ZeroIsSpecialNew = 0; 3857 III.IsCommutative = true; 3858 III.IsSummingOperands = true; 3859 III.ImmOpcode = PPC::ADDIC_rec; 3860 break; 3861 case PPC::SUBFC: 3862 case PPC::SUBFC8: 3863 III.SignedImm = true; 3864 III.ZeroIsSpecialOrig = 0; 3865 III.ZeroIsSpecialNew = 0; 3866 III.IsCommutative = false; 3867 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3868 break; 3869 case PPC::CMPW: 3870 case PPC::CMPD: 3871 III.SignedImm = true; 3872 III.ZeroIsSpecialOrig = 0; 3873 III.ZeroIsSpecialNew = 0; 3874 III.IsCommutative = false; 3875 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3876 break; 3877 case PPC::CMPLW: 3878 case PPC::CMPLD: 3879 III.SignedImm = false; 3880 III.ZeroIsSpecialOrig = 0; 3881 III.ZeroIsSpecialNew = 0; 3882 III.IsCommutative = false; 3883 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3884 break; 3885 case PPC::AND_rec: 3886 case PPC::AND8_rec: 3887 case PPC::OR: 3888 case PPC::OR8: 3889 case PPC::XOR: 3890 case PPC::XOR8: 3891 III.SignedImm = false; 3892 III.ZeroIsSpecialOrig = 0; 3893 III.ZeroIsSpecialNew = 0; 3894 III.IsCommutative = true; 3895 switch(Opc) { 3896 default: llvm_unreachable("Unknown opcode"); 3897 case PPC::AND_rec: 3898 III.ImmOpcode = PPC::ANDI_rec; 3899 break; 3900 case PPC::AND8_rec: 3901 III.ImmOpcode = PPC::ANDI8_rec; 3902 break; 3903 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3904 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3905 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3906 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3907 } 3908 break; 3909 case PPC::RLWNM: 3910 case PPC::RLWNM8: 3911 case PPC::RLWNM_rec: 3912 case PPC::RLWNM8_rec: 3913 case PPC::SLW: 3914 case PPC::SLW8: 3915 case PPC::SLW_rec: 3916 case PPC::SLW8_rec: 3917 case PPC::SRW: 3918 case PPC::SRW8: 3919 case PPC::SRW_rec: 3920 case PPC::SRW8_rec: 3921 case PPC::SRAW: 3922 case PPC::SRAW_rec: 3923 III.SignedImm = false; 3924 III.ZeroIsSpecialOrig = 0; 3925 III.ZeroIsSpecialNew = 0; 3926 III.IsCommutative = false; 3927 // This isn't actually true, but the instructions ignore any of the 3928 // upper bits, so any immediate loaded with an LI is acceptable. 3929 // This does not apply to shift right algebraic because a value 3930 // out of range will produce a -1/0. 3931 III.ImmWidth = 16; 3932 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3933 Opc == PPC::RLWNM8_rec) 3934 III.TruncateImmTo = 5; 3935 else 3936 III.TruncateImmTo = 6; 3937 switch(Opc) { 3938 default: llvm_unreachable("Unknown opcode"); 3939 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3940 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3941 case PPC::RLWNM_rec: 3942 III.ImmOpcode = PPC::RLWINM_rec; 3943 break; 3944 case PPC::RLWNM8_rec: 3945 III.ImmOpcode = PPC::RLWINM8_rec; 3946 break; 3947 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3948 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3949 case PPC::SLW_rec: 3950 III.ImmOpcode = PPC::RLWINM_rec; 3951 break; 3952 case PPC::SLW8_rec: 3953 III.ImmOpcode = PPC::RLWINM8_rec; 3954 break; 3955 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3956 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3957 case PPC::SRW_rec: 3958 III.ImmOpcode = PPC::RLWINM_rec; 3959 break; 3960 case PPC::SRW8_rec: 3961 III.ImmOpcode = PPC::RLWINM8_rec; 3962 break; 3963 case PPC::SRAW: 3964 III.ImmWidth = 5; 3965 III.TruncateImmTo = 0; 3966 III.ImmOpcode = PPC::SRAWI; 3967 break; 3968 case PPC::SRAW_rec: 3969 III.ImmWidth = 5; 3970 III.TruncateImmTo = 0; 3971 III.ImmOpcode = PPC::SRAWI_rec; 3972 break; 3973 } 3974 break; 3975 case PPC::RLDCL: 3976 case PPC::RLDCL_rec: 3977 case PPC::RLDCR: 3978 case PPC::RLDCR_rec: 3979 case PPC::SLD: 3980 case PPC::SLD_rec: 3981 case PPC::SRD: 3982 case PPC::SRD_rec: 3983 case PPC::SRAD: 3984 case PPC::SRAD_rec: 3985 III.SignedImm = false; 3986 III.ZeroIsSpecialOrig = 0; 3987 III.ZeroIsSpecialNew = 0; 3988 III.IsCommutative = false; 3989 // This isn't actually true, but the instructions ignore any of the 3990 // upper bits, so any immediate loaded with an LI is acceptable. 3991 // This does not apply to shift right algebraic because a value 3992 // out of range will produce a -1/0. 3993 III.ImmWidth = 16; 3994 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3995 Opc == PPC::RLDCR_rec) 3996 III.TruncateImmTo = 6; 3997 else 3998 III.TruncateImmTo = 7; 3999 switch(Opc) { 4000 default: llvm_unreachable("Unknown opcode"); 4001 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4002 case PPC::RLDCL_rec: 4003 III.ImmOpcode = PPC::RLDICL_rec; 4004 break; 4005 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4006 case PPC::RLDCR_rec: 4007 III.ImmOpcode = PPC::RLDICR_rec; 4008 break; 4009 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4010 case PPC::SLD_rec: 4011 III.ImmOpcode = PPC::RLDICR_rec; 4012 break; 4013 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4014 case PPC::SRD_rec: 4015 III.ImmOpcode = PPC::RLDICL_rec; 4016 break; 4017 case PPC::SRAD: 4018 III.ImmWidth = 6; 4019 III.TruncateImmTo = 0; 4020 III.ImmOpcode = PPC::SRADI; 4021 break; 4022 case PPC::SRAD_rec: 4023 III.ImmWidth = 6; 4024 III.TruncateImmTo = 0; 4025 III.ImmOpcode = PPC::SRADI_rec; 4026 break; 4027 } 4028 break; 4029 // Loads and stores: 4030 case PPC::LBZX: 4031 case PPC::LBZX8: 4032 case PPC::LHZX: 4033 case PPC::LHZX8: 4034 case PPC::LHAX: 4035 case PPC::LHAX8: 4036 case PPC::LWZX: 4037 case PPC::LWZX8: 4038 case PPC::LWAX: 4039 case PPC::LDX: 4040 case PPC::LFSX: 4041 case PPC::LFDX: 4042 case PPC::STBX: 4043 case PPC::STBX8: 4044 case PPC::STHX: 4045 case PPC::STHX8: 4046 case PPC::STWX: 4047 case PPC::STWX8: 4048 case PPC::STDX: 4049 case PPC::STFSX: 4050 case PPC::STFDX: 4051 III.SignedImm = true; 4052 III.ZeroIsSpecialOrig = 1; 4053 III.ZeroIsSpecialNew = 2; 4054 III.IsCommutative = true; 4055 III.IsSummingOperands = true; 4056 III.ImmOpNo = 1; 4057 III.OpNoForForwarding = 2; 4058 switch(Opc) { 4059 default: llvm_unreachable("Unknown opcode"); 4060 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4061 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4062 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4063 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4064 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4065 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4066 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4067 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4068 case PPC::LWAX: 4069 III.ImmOpcode = PPC::LWA; 4070 III.ImmMustBeMultipleOf = 4; 4071 break; 4072 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4073 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4074 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4075 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4076 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4077 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4078 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4079 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4080 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4081 case PPC::STDX: 4082 III.ImmOpcode = PPC::STD; 4083 III.ImmMustBeMultipleOf = 4; 4084 break; 4085 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4086 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4087 } 4088 break; 4089 case PPC::LBZUX: 4090 case PPC::LBZUX8: 4091 case PPC::LHZUX: 4092 case PPC::LHZUX8: 4093 case PPC::LHAUX: 4094 case PPC::LHAUX8: 4095 case PPC::LWZUX: 4096 case PPC::LWZUX8: 4097 case PPC::LDUX: 4098 case PPC::LFSUX: 4099 case PPC::LFDUX: 4100 case PPC::STBUX: 4101 case PPC::STBUX8: 4102 case PPC::STHUX: 4103 case PPC::STHUX8: 4104 case PPC::STWUX: 4105 case PPC::STWUX8: 4106 case PPC::STDUX: 4107 case PPC::STFSUX: 4108 case PPC::STFDUX: 4109 III.SignedImm = true; 4110 III.ZeroIsSpecialOrig = 2; 4111 III.ZeroIsSpecialNew = 3; 4112 III.IsCommutative = false; 4113 III.IsSummingOperands = true; 4114 III.ImmOpNo = 2; 4115 III.OpNoForForwarding = 3; 4116 switch(Opc) { 4117 default: llvm_unreachable("Unknown opcode"); 4118 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4119 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4120 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4121 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4122 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4123 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4124 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4125 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4126 case PPC::LDUX: 4127 III.ImmOpcode = PPC::LDU; 4128 III.ImmMustBeMultipleOf = 4; 4129 break; 4130 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4131 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4132 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4133 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4134 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4135 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4136 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4137 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4138 case PPC::STDUX: 4139 III.ImmOpcode = PPC::STDU; 4140 III.ImmMustBeMultipleOf = 4; 4141 break; 4142 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4143 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4144 } 4145 break; 4146 // Power9 and up only. For some of these, the X-Form version has access to all 4147 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4148 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4149 // into or stored from is one of the VR registers. 4150 case PPC::LXVX: 4151 case PPC::LXSSPX: 4152 case PPC::LXSDX: 4153 case PPC::STXVX: 4154 case PPC::STXSSPX: 4155 case PPC::STXSDX: 4156 case PPC::XFLOADf32: 4157 case PPC::XFLOADf64: 4158 case PPC::XFSTOREf32: 4159 case PPC::XFSTOREf64: 4160 if (!Subtarget.hasP9Vector()) 4161 return false; 4162 III.SignedImm = true; 4163 III.ZeroIsSpecialOrig = 1; 4164 III.ZeroIsSpecialNew = 2; 4165 III.IsCommutative = true; 4166 III.IsSummingOperands = true; 4167 III.ImmOpNo = 1; 4168 III.OpNoForForwarding = 2; 4169 III.ImmMustBeMultipleOf = 4; 4170 switch(Opc) { 4171 default: llvm_unreachable("Unknown opcode"); 4172 case PPC::LXVX: 4173 III.ImmOpcode = PPC::LXV; 4174 III.ImmMustBeMultipleOf = 16; 4175 break; 4176 case PPC::LXSSPX: 4177 if (PostRA) { 4178 if (IsVFReg) 4179 III.ImmOpcode = PPC::LXSSP; 4180 else { 4181 III.ImmOpcode = PPC::LFS; 4182 III.ImmMustBeMultipleOf = 1; 4183 } 4184 break; 4185 } 4186 LLVM_FALLTHROUGH; 4187 case PPC::XFLOADf32: 4188 III.ImmOpcode = PPC::DFLOADf32; 4189 break; 4190 case PPC::LXSDX: 4191 if (PostRA) { 4192 if (IsVFReg) 4193 III.ImmOpcode = PPC::LXSD; 4194 else { 4195 III.ImmOpcode = PPC::LFD; 4196 III.ImmMustBeMultipleOf = 1; 4197 } 4198 break; 4199 } 4200 LLVM_FALLTHROUGH; 4201 case PPC::XFLOADf64: 4202 III.ImmOpcode = PPC::DFLOADf64; 4203 break; 4204 case PPC::STXVX: 4205 III.ImmOpcode = PPC::STXV; 4206 III.ImmMustBeMultipleOf = 16; 4207 break; 4208 case PPC::STXSSPX: 4209 if (PostRA) { 4210 if (IsVFReg) 4211 III.ImmOpcode = PPC::STXSSP; 4212 else { 4213 III.ImmOpcode = PPC::STFS; 4214 III.ImmMustBeMultipleOf = 1; 4215 } 4216 break; 4217 } 4218 LLVM_FALLTHROUGH; 4219 case PPC::XFSTOREf32: 4220 III.ImmOpcode = PPC::DFSTOREf32; 4221 break; 4222 case PPC::STXSDX: 4223 if (PostRA) { 4224 if (IsVFReg) 4225 III.ImmOpcode = PPC::STXSD; 4226 else { 4227 III.ImmOpcode = PPC::STFD; 4228 III.ImmMustBeMultipleOf = 1; 4229 } 4230 break; 4231 } 4232 LLVM_FALLTHROUGH; 4233 case PPC::XFSTOREf64: 4234 III.ImmOpcode = PPC::DFSTOREf64; 4235 break; 4236 } 4237 break; 4238 } 4239 return true; 4240 } 4241 4242 // Utility function for swaping two arbitrary operands of an instruction. 4243 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4244 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4245 4246 unsigned MaxOp = std::max(Op1, Op2); 4247 unsigned MinOp = std::min(Op1, Op2); 4248 MachineOperand MOp1 = MI.getOperand(MinOp); 4249 MachineOperand MOp2 = MI.getOperand(MaxOp); 4250 MI.RemoveOperand(std::max(Op1, Op2)); 4251 MI.RemoveOperand(std::min(Op1, Op2)); 4252 4253 // If the operands we are swapping are the two at the end (the common case) 4254 // we can just remove both and add them in the opposite order. 4255 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4256 MI.addOperand(MOp2); 4257 MI.addOperand(MOp1); 4258 } else { 4259 // Store all operands in a temporary vector, remove them and re-add in the 4260 // right order. 4261 SmallVector<MachineOperand, 2> MOps; 4262 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4263 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4264 MOps.push_back(MI.getOperand(i)); 4265 MI.RemoveOperand(i); 4266 } 4267 // MOp2 needs to be added next. 4268 MI.addOperand(MOp2); 4269 // Now add the rest. 4270 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4271 if (i == MaxOp) 4272 MI.addOperand(MOp1); 4273 else { 4274 MI.addOperand(MOps.back()); 4275 MOps.pop_back(); 4276 } 4277 } 4278 } 4279 } 4280 4281 // Check if the 'MI' that has the index OpNoForForwarding 4282 // meets the requirement described in the ImmInstrInfo. 4283 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4284 const ImmInstrInfo &III, 4285 unsigned OpNoForForwarding 4286 ) const { 4287 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4288 // would not work pre-RA, we can only do the check post RA. 4289 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4290 if (MRI.isSSA()) 4291 return false; 4292 4293 // Cannot do the transform if MI isn't summing the operands. 4294 if (!III.IsSummingOperands) 4295 return false; 4296 4297 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4298 if (!III.ZeroIsSpecialOrig) 4299 return false; 4300 4301 // We cannot do the transform if the operand we are trying to replace 4302 // isn't the same as the operand the instruction allows. 4303 if (OpNoForForwarding != III.OpNoForForwarding) 4304 return false; 4305 4306 // Check if the instruction we are trying to transform really has 4307 // the special zero register as its operand. 4308 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4309 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4310 return false; 4311 4312 // This machine instruction is convertible if it is, 4313 // 1. summing the operands. 4314 // 2. one of the operands is special zero register. 4315 // 3. the operand we are trying to replace is allowed by the MI. 4316 return true; 4317 } 4318 4319 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4320 // accordingly. 4321 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4322 const ImmInstrInfo &III, 4323 MachineOperand *&ImmMO, 4324 MachineOperand *&RegMO) const { 4325 unsigned Opc = DefMI.getOpcode(); 4326 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4327 return false; 4328 4329 assert(DefMI.getNumOperands() >= 3 && 4330 "Add inst must have at least three operands"); 4331 RegMO = &DefMI.getOperand(1); 4332 ImmMO = &DefMI.getOperand(2); 4333 4334 // Before RA, ADDI first operand could be a frame index. 4335 if (!RegMO->isReg()) 4336 return false; 4337 4338 // This DefMI is elgible for forwarding if it is: 4339 // 1. add inst 4340 // 2. one of the operands is Imm/CPI/Global. 4341 return isAnImmediateOperand(*ImmMO); 4342 } 4343 4344 bool PPCInstrInfo::isRegElgibleForForwarding( 4345 const MachineOperand &RegMO, const MachineInstr &DefMI, 4346 const MachineInstr &MI, bool KillDefMI, 4347 bool &IsFwdFeederRegKilled) const { 4348 // x = addi y, imm 4349 // ... 4350 // z = lfdx 0, x -> z = lfd imm(y) 4351 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4352 // of "y" between the DEF of "x" and "z". 4353 // The query is only valid post RA. 4354 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4355 if (MRI.isSSA()) 4356 return false; 4357 4358 Register Reg = RegMO.getReg(); 4359 4360 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4361 MachineBasicBlock::const_reverse_iterator It = MI; 4362 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4363 It++; 4364 for (; It != E; ++It) { 4365 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4366 return false; 4367 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4368 IsFwdFeederRegKilled = true; 4369 // Made it to DefMI without encountering a clobber. 4370 if ((&*It) == &DefMI) 4371 break; 4372 } 4373 assert((&*It) == &DefMI && "DefMI is missing"); 4374 4375 // If DefMI also defines the register to be forwarded, we can only forward it 4376 // if DefMI is being erased. 4377 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4378 return KillDefMI; 4379 4380 return true; 4381 } 4382 4383 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4384 const MachineInstr &DefMI, 4385 const ImmInstrInfo &III, 4386 int64_t &Imm, 4387 int64_t BaseImm) const { 4388 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4389 if (DefMI.getOpcode() == PPC::ADDItocL) { 4390 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4391 // However, we know that, it is 16-bit width, and has the alignment of 4. 4392 // Check if the instruction met the requirement. 4393 if (III.ImmMustBeMultipleOf > 4 || 4394 III.TruncateImmTo || III.ImmWidth != 16) 4395 return false; 4396 4397 // Going from XForm to DForm loads means that the displacement needs to be 4398 // not just an immediate but also a multiple of 4, or 16 depending on the 4399 // load. A DForm load cannot be represented if it is a multiple of say 2. 4400 // XForm loads do not have this restriction. 4401 if (ImmMO.isGlobal()) { 4402 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4403 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4404 return false; 4405 } 4406 4407 return true; 4408 } 4409 4410 if (ImmMO.isImm()) { 4411 // It is Imm, we need to check if the Imm fit the range. 4412 // Sign-extend to 64-bits. 4413 // DefMI may be folded with another imm form instruction, the result Imm is 4414 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4415 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4416 4417 if (Imm % III.ImmMustBeMultipleOf) 4418 return false; 4419 if (III.TruncateImmTo) 4420 Imm &= ((1 << III.TruncateImmTo) - 1); 4421 if (III.SignedImm) { 4422 APInt ActualValue(64, Imm, true); 4423 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4424 return false; 4425 } else { 4426 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4427 if ((uint64_t)Imm > UnsignedMax) 4428 return false; 4429 } 4430 } 4431 else 4432 return false; 4433 4434 // This ImmMO is forwarded if it meets the requriement describle 4435 // in ImmInstrInfo 4436 return true; 4437 } 4438 4439 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4440 unsigned OpNoForForwarding, 4441 MachineInstr **KilledDef) const { 4442 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4443 !DefMI.getOperand(1).isImm()) 4444 return false; 4445 4446 MachineFunction *MF = MI.getParent()->getParent(); 4447 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4448 bool PostRA = !MRI->isSSA(); 4449 4450 int64_t Immediate = DefMI.getOperand(1).getImm(); 4451 // Sign-extend to 64-bits. 4452 int64_t SExtImm = SignExtend64<16>(Immediate); 4453 4454 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4455 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4456 4457 bool ReplaceWithLI = false; 4458 bool Is64BitLI = false; 4459 int64_t NewImm = 0; 4460 bool SetCR = false; 4461 unsigned Opc = MI.getOpcode(); 4462 switch (Opc) { 4463 default: 4464 return false; 4465 4466 // FIXME: Any branches conditional on such a comparison can be made 4467 // unconditional. At this time, this happens too infrequently to be worth 4468 // the implementation effort, but if that ever changes, we could convert 4469 // such a pattern here. 4470 case PPC::CMPWI: 4471 case PPC::CMPLWI: 4472 case PPC::CMPDI: 4473 case PPC::CMPLDI: { 4474 // Doing this post-RA would require dataflow analysis to reliably find uses 4475 // of the CR register set by the compare. 4476 // No need to fixup killed/dead flag since this transformation is only valid 4477 // before RA. 4478 if (PostRA) 4479 return false; 4480 // If a compare-immediate is fed by an immediate and is itself an input of 4481 // an ISEL (the most common case) into a COPY of the correct register. 4482 bool Changed = false; 4483 Register DefReg = MI.getOperand(0).getReg(); 4484 int64_t Comparand = MI.getOperand(2).getImm(); 4485 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4486 ? (Comparand | 0xFFFFFFFFFFFF0000) 4487 : Comparand; 4488 4489 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4490 unsigned UseOpc = CompareUseMI.getOpcode(); 4491 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4492 continue; 4493 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4494 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4495 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4496 unsigned RegToCopy = 4497 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4498 if (RegToCopy == PPC::NoRegister) 4499 continue; 4500 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4501 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4502 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4503 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4504 CompareUseMI.RemoveOperand(3); 4505 CompareUseMI.RemoveOperand(2); 4506 continue; 4507 } 4508 LLVM_DEBUG( 4509 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4510 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4511 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4512 // Convert to copy and remove unneeded operands. 4513 CompareUseMI.setDesc(get(PPC::COPY)); 4514 CompareUseMI.RemoveOperand(3); 4515 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4516 CmpIselsConverted++; 4517 Changed = true; 4518 LLVM_DEBUG(CompareUseMI.dump()); 4519 } 4520 if (Changed) 4521 return true; 4522 // This may end up incremented multiple times since this function is called 4523 // during a fixed-point transformation, but it is only meant to indicate the 4524 // presence of this opportunity. 4525 MissedConvertibleImmediateInstrs++; 4526 return false; 4527 } 4528 4529 // Immediate forms - may simply be convertable to an LI. 4530 case PPC::ADDI: 4531 case PPC::ADDI8: { 4532 // Does the sum fit in a 16-bit signed field? 4533 int64_t Addend = MI.getOperand(2).getImm(); 4534 if (isInt<16>(Addend + SExtImm)) { 4535 ReplaceWithLI = true; 4536 Is64BitLI = Opc == PPC::ADDI8; 4537 NewImm = Addend + SExtImm; 4538 break; 4539 } 4540 return false; 4541 } 4542 case PPC::SUBFIC: 4543 case PPC::SUBFIC8: { 4544 // Only transform this if the CARRY implicit operand is dead. 4545 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4546 return false; 4547 int64_t Minuend = MI.getOperand(2).getImm(); 4548 if (isInt<16>(Minuend - SExtImm)) { 4549 ReplaceWithLI = true; 4550 Is64BitLI = Opc == PPC::SUBFIC8; 4551 NewImm = Minuend - SExtImm; 4552 break; 4553 } 4554 return false; 4555 } 4556 case PPC::RLDICL: 4557 case PPC::RLDICL_rec: 4558 case PPC::RLDICL_32: 4559 case PPC::RLDICL_32_64: { 4560 // Use APInt's rotate function. 4561 int64_t SH = MI.getOperand(2).getImm(); 4562 int64_t MB = MI.getOperand(3).getImm(); 4563 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4564 SExtImm, true); 4565 InVal = InVal.rotl(SH); 4566 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4567 InVal &= Mask; 4568 // Can't replace negative values with an LI as that will sign-extend 4569 // and not clear the left bits. If we're setting the CR bit, we will use 4570 // ANDI_rec which won't sign extend, so that's safe. 4571 if (isUInt<15>(InVal.getSExtValue()) || 4572 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4573 ReplaceWithLI = true; 4574 Is64BitLI = Opc != PPC::RLDICL_32; 4575 NewImm = InVal.getSExtValue(); 4576 SetCR = Opc == PPC::RLDICL_rec; 4577 break; 4578 } 4579 return false; 4580 } 4581 case PPC::RLWINM: 4582 case PPC::RLWINM8: 4583 case PPC::RLWINM_rec: 4584 case PPC::RLWINM8_rec: { 4585 int64_t SH = MI.getOperand(2).getImm(); 4586 int64_t MB = MI.getOperand(3).getImm(); 4587 int64_t ME = MI.getOperand(4).getImm(); 4588 APInt InVal(32, SExtImm, true); 4589 InVal = InVal.rotl(SH); 4590 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4591 InVal &= Mask; 4592 // Can't replace negative values with an LI as that will sign-extend 4593 // and not clear the left bits. If we're setting the CR bit, we will use 4594 // ANDI_rec which won't sign extend, so that's safe. 4595 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4596 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4597 isUInt<16>(InVal.getSExtValue())); 4598 if (ValueFits) { 4599 ReplaceWithLI = true; 4600 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4601 NewImm = InVal.getSExtValue(); 4602 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4603 break; 4604 } 4605 return false; 4606 } 4607 case PPC::ORI: 4608 case PPC::ORI8: 4609 case PPC::XORI: 4610 case PPC::XORI8: { 4611 int64_t LogicalImm = MI.getOperand(2).getImm(); 4612 int64_t Result = 0; 4613 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4614 Result = LogicalImm | SExtImm; 4615 else 4616 Result = LogicalImm ^ SExtImm; 4617 if (isInt<16>(Result)) { 4618 ReplaceWithLI = true; 4619 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4620 NewImm = Result; 4621 break; 4622 } 4623 return false; 4624 } 4625 } 4626 4627 if (ReplaceWithLI) { 4628 // We need to be careful with CR-setting instructions we're replacing. 4629 if (SetCR) { 4630 // We don't know anything about uses when we're out of SSA, so only 4631 // replace if the new immediate will be reproduced. 4632 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4633 if (PostRA && ImmChanged) 4634 return false; 4635 4636 if (!PostRA) { 4637 // If the defining load-immediate has no other uses, we can just replace 4638 // the immediate with the new immediate. 4639 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4640 DefMI.getOperand(1).setImm(NewImm); 4641 4642 // If we're not using the GPR result of the CR-setting instruction, we 4643 // just need to and with zero/non-zero depending on the new immediate. 4644 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4645 if (NewImm) { 4646 assert(Immediate && "Transformation converted zero to non-zero?"); 4647 NewImm = Immediate; 4648 } 4649 } else if (ImmChanged) 4650 return false; 4651 } 4652 } 4653 4654 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4655 LLVM_DEBUG(MI.dump()); 4656 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4657 LLVM_DEBUG(DefMI.dump()); 4658 LoadImmediateInfo LII; 4659 LII.Imm = NewImm; 4660 LII.Is64Bit = Is64BitLI; 4661 LII.SetCR = SetCR; 4662 // If we're setting the CR, the original load-immediate must be kept (as an 4663 // operand to ANDI_rec/ANDI8_rec). 4664 if (KilledDef && SetCR) 4665 *KilledDef = nullptr; 4666 replaceInstrWithLI(MI, LII); 4667 4668 // Fixup killed/dead flag after transformation. 4669 // Pattern: 4670 // ForwardingOperandReg = LI imm1 4671 // y = op2 imm2, ForwardingOperandReg(killed) 4672 if (IsForwardingOperandKilled) 4673 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4674 4675 LLVM_DEBUG(dbgs() << "With:\n"); 4676 LLVM_DEBUG(MI.dump()); 4677 return true; 4678 } 4679 return false; 4680 } 4681 4682 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4683 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4684 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4685 bool PostRA = !MRI->isSSA(); 4686 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4687 // for post-ra. 4688 if (PostRA) 4689 return false; 4690 4691 // Only handle load/store. 4692 if (!MI.mayLoadOrStore()) 4693 return false; 4694 4695 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4696 4697 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4698 "MI must have x-form opcode"); 4699 4700 // get Imm Form info. 4701 ImmInstrInfo III; 4702 bool IsVFReg = MI.getOperand(0).isReg() 4703 ? isVFRegister(MI.getOperand(0).getReg()) 4704 : false; 4705 4706 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4707 return false; 4708 4709 if (!III.IsSummingOperands) 4710 return false; 4711 4712 if (OpNoForForwarding != III.OpNoForForwarding) 4713 return false; 4714 4715 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4716 if (!ImmOperandMI.isImm()) 4717 return false; 4718 4719 // Check DefMI. 4720 MachineOperand *ImmMO = nullptr; 4721 MachineOperand *RegMO = nullptr; 4722 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4723 return false; 4724 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4725 4726 // Check Imm. 4727 // Set ImmBase from imm instruction as base and get new Imm inside 4728 // isImmElgibleForForwarding. 4729 int64_t ImmBase = ImmOperandMI.getImm(); 4730 int64_t Imm = 0; 4731 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4732 return false; 4733 4734 // Get killed info in case fixup needed after transformation. 4735 unsigned ForwardKilledOperandReg = ~0U; 4736 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4737 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4738 4739 // Do the transform 4740 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4741 LLVM_DEBUG(MI.dump()); 4742 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4743 LLVM_DEBUG(DefMI.dump()); 4744 4745 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4746 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4747 MI.getOperand(III.ImmOpNo).setImm(Imm); 4748 4749 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4750 if (DefMI.getParent() == MI.getParent()) { 4751 // Check if reg is killed between MI and DefMI. 4752 auto IsKilledFor = [&](unsigned Reg) { 4753 MachineBasicBlock::const_reverse_iterator It = MI; 4754 MachineBasicBlock::const_reverse_iterator E = DefMI; 4755 It++; 4756 for (; It != E; ++It) { 4757 if (It->killsRegister(Reg)) 4758 return true; 4759 } 4760 return false; 4761 }; 4762 4763 // Update kill flag 4764 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4765 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4766 if (ForwardKilledOperandReg != ~0U) 4767 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4768 } 4769 4770 LLVM_DEBUG(dbgs() << "With:\n"); 4771 LLVM_DEBUG(MI.dump()); 4772 return true; 4773 } 4774 4775 // If an X-Form instruction is fed by an add-immediate and one of its operands 4776 // is the literal zero, attempt to forward the source of the add-immediate to 4777 // the corresponding D-Form instruction with the displacement coming from 4778 // the immediate being added. 4779 bool PPCInstrInfo::transformToImmFormFedByAdd( 4780 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4781 MachineInstr &DefMI, bool KillDefMI) const { 4782 // RegMO ImmMO 4783 // | | 4784 // x = addi reg, imm <----- DefMI 4785 // y = op 0 , x <----- MI 4786 // | 4787 // OpNoForForwarding 4788 // Check if the MI meet the requirement described in the III. 4789 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4790 return false; 4791 4792 // Check if the DefMI meet the requirement 4793 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4794 MachineOperand *ImmMO = nullptr; 4795 MachineOperand *RegMO = nullptr; 4796 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4797 return false; 4798 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4799 4800 // As we get the Imm operand now, we need to check if the ImmMO meet 4801 // the requirement described in the III. If yes set the Imm. 4802 int64_t Imm = 0; 4803 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4804 return false; 4805 4806 bool IsFwdFeederRegKilled = false; 4807 // Check if the RegMO can be forwarded to MI. 4808 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4809 IsFwdFeederRegKilled)) 4810 return false; 4811 4812 // Get killed info in case fixup needed after transformation. 4813 unsigned ForwardKilledOperandReg = ~0U; 4814 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4815 bool PostRA = !MRI.isSSA(); 4816 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4817 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4818 4819 // We know that, the MI and DefMI both meet the pattern, and 4820 // the Imm also meet the requirement with the new Imm-form. 4821 // It is safe to do the transformation now. 4822 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4823 LLVM_DEBUG(MI.dump()); 4824 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4825 LLVM_DEBUG(DefMI.dump()); 4826 4827 // Update the base reg first. 4828 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4829 false, false, 4830 RegMO->isKill()); 4831 4832 // Then, update the imm. 4833 if (ImmMO->isImm()) { 4834 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4835 // directly. 4836 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4837 } 4838 else { 4839 // Otherwise, it is Constant Pool Index(CPI) or Global, 4840 // which is relocation in fact. We need to replace the special zero 4841 // register with ImmMO. 4842 // Before that, we need to fixup the target flags for imm. 4843 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4844 if (DefMI.getOpcode() == PPC::ADDItocL) 4845 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4846 4847 // MI didn't have the interface such as MI.setOperand(i) though 4848 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4849 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4850 // and, add the ImmMO, then, move back all the operands behind ZERO. 4851 SmallVector<MachineOperand, 2> MOps; 4852 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4853 MOps.push_back(MI.getOperand(i)); 4854 MI.RemoveOperand(i); 4855 } 4856 4857 // Remove the last MO in the list, which is ZERO operand in fact. 4858 MOps.pop_back(); 4859 // Add the imm operand. 4860 MI.addOperand(*ImmMO); 4861 // Now add the rest back. 4862 for (auto &MO : MOps) 4863 MI.addOperand(MO); 4864 } 4865 4866 // Update the opcode. 4867 MI.setDesc(get(III.ImmOpcode)); 4868 4869 // Fix up killed/dead flag after transformation. 4870 // Pattern 1: 4871 // x = ADD KilledFwdFeederReg, imm 4872 // n = opn KilledFwdFeederReg(killed), regn 4873 // y = XOP 0, x 4874 // Pattern 2: 4875 // x = ADD reg(killed), imm 4876 // y = XOP 0, x 4877 if (IsFwdFeederRegKilled || RegMO->isKill()) 4878 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4879 // Pattern 3: 4880 // ForwardKilledOperandReg = ADD reg, imm 4881 // y = XOP 0, ForwardKilledOperandReg(killed) 4882 if (ForwardKilledOperandReg != ~0U) 4883 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4884 4885 LLVM_DEBUG(dbgs() << "With:\n"); 4886 LLVM_DEBUG(MI.dump()); 4887 4888 return true; 4889 } 4890 4891 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4892 const ImmInstrInfo &III, 4893 unsigned ConstantOpNo, 4894 MachineInstr &DefMI) const { 4895 // DefMI must be LI or LI8. 4896 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4897 !DefMI.getOperand(1).isImm()) 4898 return false; 4899 4900 // Get Imm operand and Sign-extend to 64-bits. 4901 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4902 4903 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4904 bool PostRA = !MRI.isSSA(); 4905 // Exit early if we can't convert this. 4906 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4907 return false; 4908 if (Imm % III.ImmMustBeMultipleOf) 4909 return false; 4910 if (III.TruncateImmTo) 4911 Imm &= ((1 << III.TruncateImmTo) - 1); 4912 if (III.SignedImm) { 4913 APInt ActualValue(64, Imm, true); 4914 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4915 return false; 4916 } else { 4917 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4918 if ((uint64_t)Imm > UnsignedMax) 4919 return false; 4920 } 4921 4922 // If we're post-RA, the instructions don't agree on whether register zero is 4923 // special, we can transform this as long as the register operand that will 4924 // end up in the location where zero is special isn't R0. 4925 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4926 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4927 III.ZeroIsSpecialNew + 1; 4928 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4929 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4930 // If R0 is in the operand where zero is special for the new instruction, 4931 // it is unsafe to transform if the constant operand isn't that operand. 4932 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4933 ConstantOpNo != III.ZeroIsSpecialNew) 4934 return false; 4935 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4936 ConstantOpNo != PosForOrigZero) 4937 return false; 4938 } 4939 4940 // Get killed info in case fixup needed after transformation. 4941 unsigned ForwardKilledOperandReg = ~0U; 4942 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4943 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4944 4945 unsigned Opc = MI.getOpcode(); 4946 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4947 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4948 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4949 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4950 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4951 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4952 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4953 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4954 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4955 Opc == PPC::SRD_rec; 4956 4957 MI.setDesc(get(III.ImmOpcode)); 4958 if (ConstantOpNo == III.OpNoForForwarding) { 4959 // Converting shifts to immediate form is a bit tricky since they may do 4960 // one of three things: 4961 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4962 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4963 // setting CR0) 4964 // 3. If the shift amount is in [1, OpSize), it's just a shift 4965 if (SpecialShift32 || SpecialShift64) { 4966 LoadImmediateInfo LII; 4967 LII.Imm = 0; 4968 LII.SetCR = SetCR; 4969 LII.Is64Bit = SpecialShift64; 4970 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4971 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4972 replaceInstrWithLI(MI, LII); 4973 // Shifts by zero don't change the value. If we don't need to set CR0, 4974 // just convert this to a COPY. Can't do this post-RA since we've already 4975 // cleaned up the copies. 4976 else if (!SetCR && ShAmt == 0 && !PostRA) { 4977 MI.RemoveOperand(2); 4978 MI.setDesc(get(PPC::COPY)); 4979 } else { 4980 // The 32 bit and 64 bit instructions are quite different. 4981 if (SpecialShift32) { 4982 // Left shifts use (N, 0, 31-N). 4983 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4984 // use (0, 0, 31) if N == 0. 4985 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4986 uint64_t MB = RightShift ? ShAmt : 0; 4987 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4988 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4989 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4990 .addImm(ME); 4991 } else { 4992 // Left shifts use (N, 63-N). 4993 // Right shifts use (64-N, N) if 0 < N < 64. 4994 // use (0, 0) if N == 0. 4995 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4996 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4997 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4998 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4999 } 5000 } 5001 } else 5002 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5003 } 5004 // Convert commutative instructions (switch the operands and convert the 5005 // desired one to an immediate. 5006 else if (III.IsCommutative) { 5007 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5008 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5009 } else 5010 llvm_unreachable("Should have exited early!"); 5011 5012 // For instructions for which the constant register replaces a different 5013 // operand than where the immediate goes, we need to swap them. 5014 if (III.OpNoForForwarding != III.ImmOpNo) 5015 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5016 5017 // If the special R0/X0 register index are different for original instruction 5018 // and new instruction, we need to fix up the register class in new 5019 // instruction. 5020 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5021 if (III.ZeroIsSpecialNew) { 5022 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5023 // need to fix up register class. 5024 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5025 if (Register::isVirtualRegister(RegToModify)) { 5026 const TargetRegisterClass *NewRC = 5027 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5028 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5029 MRI.setRegClass(RegToModify, NewRC); 5030 } 5031 } 5032 } 5033 5034 // Fix up killed/dead flag after transformation. 5035 // Pattern: 5036 // ForwardKilledOperandReg = LI imm 5037 // y = XOP reg, ForwardKilledOperandReg(killed) 5038 if (ForwardKilledOperandReg != ~0U) 5039 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5040 return true; 5041 } 5042 5043 const TargetRegisterClass * 5044 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5045 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5046 return &PPC::VSRCRegClass; 5047 return RC; 5048 } 5049 5050 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5051 return PPC::getRecordFormOpcode(Opcode); 5052 } 5053 5054 // This function returns true if the machine instruction 5055 // always outputs a value by sign-extending a 32 bit value, 5056 // i.e. 0 to 31-th bits are same as 32-th bit. 5057 static bool isSignExtendingOp(const MachineInstr &MI) { 5058 int Opcode = MI.getOpcode(); 5059 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 5060 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 5061 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 5062 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 5063 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 5064 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 5065 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 5066 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5067 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 5068 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 5069 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 5070 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 5071 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 5072 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 5073 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 5074 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 5075 Opcode == PPC::EXTSB8_32_64) 5076 return true; 5077 5078 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 5079 return true; 5080 5081 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5082 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5083 MI.getOperand(3).getImm() > 0 && 5084 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5085 return true; 5086 5087 return false; 5088 } 5089 5090 // This function returns true if the machine instruction 5091 // always outputs zeros in higher 32 bits. 5092 static bool isZeroExtendingOp(const MachineInstr &MI) { 5093 int Opcode = MI.getOpcode(); 5094 // The 16-bit immediate is sign-extended in li/lis. 5095 // If the most significant bit is zero, all higher bits are zero. 5096 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5097 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5098 int64_t Imm = MI.getOperand(1).getImm(); 5099 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5100 return true; 5101 } 5102 5103 // We have some variations of rotate-and-mask instructions 5104 // that clear higher 32-bits. 5105 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5106 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5107 Opcode == PPC::RLDICL_32_64) && 5108 MI.getOperand(3).getImm() >= 32) 5109 return true; 5110 5111 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5112 MI.getOperand(3).getImm() >= 32 && 5113 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 5114 return true; 5115 5116 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5117 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5118 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5119 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5120 return true; 5121 5122 // There are other instructions that clear higher 32-bits. 5123 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 5124 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 5125 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 5126 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 5127 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 5128 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 5129 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 5130 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 5131 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 5132 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 5133 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 5134 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 5135 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 5136 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 5137 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 5138 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 5139 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 5140 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 5141 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5142 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 5143 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 5144 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 5145 Opcode == PPC::MFVSRWZ) 5146 return true; 5147 5148 return false; 5149 } 5150 5151 // This function returns true if the input MachineInstr is a TOC save 5152 // instruction. 5153 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5154 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5155 return false; 5156 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5157 unsigned StackOffset = MI.getOperand(1).getImm(); 5158 Register StackReg = MI.getOperand(2).getReg(); 5159 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 5160 return true; 5161 5162 return false; 5163 } 5164 5165 // We limit the max depth to track incoming values of PHIs or binary ops 5166 // (e.g. AND) to avoid excessive cost. 5167 const unsigned MAX_DEPTH = 1; 5168 5169 bool 5170 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 5171 const unsigned Depth) const { 5172 const MachineFunction *MF = MI.getParent()->getParent(); 5173 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 5174 5175 // If we know this instruction returns sign- or zero-extended result, 5176 // return true. 5177 if (SignExt ? isSignExtendingOp(MI): 5178 isZeroExtendingOp(MI)) 5179 return true; 5180 5181 switch (MI.getOpcode()) { 5182 case PPC::COPY: { 5183 Register SrcReg = MI.getOperand(1).getReg(); 5184 5185 // In both ELFv1 and v2 ABI, method parameters and the return value 5186 // are sign- or zero-extended. 5187 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5188 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5189 // We check the ZExt/SExt flags for a method parameter. 5190 if (MI.getParent()->getBasicBlock() == 5191 &MF->getFunction().getEntryBlock()) { 5192 Register VReg = MI.getOperand(0).getReg(); 5193 if (MF->getRegInfo().isLiveIn(VReg)) 5194 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 5195 FuncInfo->isLiveInZExt(VReg); 5196 } 5197 5198 // For a method return value, we check the ZExt/SExt flags in attribute. 5199 // We assume the following code sequence for method call. 5200 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5201 // BL8_NOP @func,... 5202 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5203 // %5 = COPY %x3; G8RC:%5 5204 if (SrcReg == PPC::X3) { 5205 const MachineBasicBlock *MBB = MI.getParent(); 5206 MachineBasicBlock::const_instr_iterator II = 5207 MachineBasicBlock::const_instr_iterator(&MI); 5208 if (II != MBB->instr_begin() && 5209 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 5210 const MachineInstr &CallMI = *(--II); 5211 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 5212 const Function *CalleeFn = 5213 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 5214 if (!CalleeFn) 5215 return false; 5216 const IntegerType *IntTy = 5217 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5218 const AttributeSet &Attrs = 5219 CalleeFn->getAttributes().getRetAttributes(); 5220 if (IntTy && IntTy->getBitWidth() <= 32) 5221 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 5222 Attribute::ZExt); 5223 } 5224 } 5225 } 5226 } 5227 5228 // If this is a copy from another register, we recursively check source. 5229 if (!Register::isVirtualRegister(SrcReg)) 5230 return false; 5231 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5232 if (SrcMI != NULL) 5233 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5234 5235 return false; 5236 } 5237 5238 case PPC::ANDI_rec: 5239 case PPC::ANDIS_rec: 5240 case PPC::ORI: 5241 case PPC::ORIS: 5242 case PPC::XORI: 5243 case PPC::XORIS: 5244 case PPC::ANDI8_rec: 5245 case PPC::ANDIS8_rec: 5246 case PPC::ORI8: 5247 case PPC::ORIS8: 5248 case PPC::XORI8: 5249 case PPC::XORIS8: { 5250 // logical operation with 16-bit immediate does not change the upper bits. 5251 // So, we track the operand register as we do for register copy. 5252 Register SrcReg = MI.getOperand(1).getReg(); 5253 if (!Register::isVirtualRegister(SrcReg)) 5254 return false; 5255 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5256 if (SrcMI != NULL) 5257 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5258 5259 return false; 5260 } 5261 5262 // If all incoming values are sign-/zero-extended, 5263 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5264 case PPC::OR: 5265 case PPC::OR8: 5266 case PPC::ISEL: 5267 case PPC::PHI: { 5268 if (Depth >= MAX_DEPTH) 5269 return false; 5270 5271 // The input registers for PHI are operand 1, 3, ... 5272 // The input registers for others are operand 1 and 2. 5273 unsigned E = 3, D = 1; 5274 if (MI.getOpcode() == PPC::PHI) { 5275 E = MI.getNumOperands(); 5276 D = 2; 5277 } 5278 5279 for (unsigned I = 1; I != E; I += D) { 5280 if (MI.getOperand(I).isReg()) { 5281 Register SrcReg = MI.getOperand(I).getReg(); 5282 if (!Register::isVirtualRegister(SrcReg)) 5283 return false; 5284 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5285 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 5286 return false; 5287 } 5288 else 5289 return false; 5290 } 5291 return true; 5292 } 5293 5294 // If at least one of the incoming values of an AND is zero extended 5295 // then the output is also zero-extended. If both of the incoming values 5296 // are sign-extended then the output is also sign extended. 5297 case PPC::AND: 5298 case PPC::AND8: { 5299 if (Depth >= MAX_DEPTH) 5300 return false; 5301 5302 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 5303 5304 Register SrcReg1 = MI.getOperand(1).getReg(); 5305 Register SrcReg2 = MI.getOperand(2).getReg(); 5306 5307 if (!Register::isVirtualRegister(SrcReg1) || 5308 !Register::isVirtualRegister(SrcReg2)) 5309 return false; 5310 5311 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 5312 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 5313 if (!MISrc1 || !MISrc2) 5314 return false; 5315 5316 if(SignExt) 5317 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 5318 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5319 else 5320 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 5321 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5322 } 5323 5324 default: 5325 break; 5326 } 5327 return false; 5328 } 5329 5330 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5331 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5332 } 5333 5334 namespace { 5335 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5336 MachineInstr *Loop, *EndLoop, *LoopCount; 5337 MachineFunction *MF; 5338 const TargetInstrInfo *TII; 5339 int64_t TripCount; 5340 5341 public: 5342 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5343 MachineInstr *LoopCount) 5344 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5345 MF(Loop->getParent()->getParent()), 5346 TII(MF->getSubtarget().getInstrInfo()) { 5347 // Inspect the Loop instruction up-front, as it may be deleted when we call 5348 // createTripCountGreaterCondition. 5349 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5350 TripCount = LoopCount->getOperand(1).getImm(); 5351 else 5352 TripCount = -1; 5353 } 5354 5355 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5356 // Only ignore the terminator. 5357 return MI == EndLoop; 5358 } 5359 5360 Optional<bool> 5361 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 5362 SmallVectorImpl<MachineOperand> &Cond) override { 5363 if (TripCount == -1) { 5364 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5365 // so we don't need to generate any thing here. 5366 Cond.push_back(MachineOperand::CreateImm(0)); 5367 Cond.push_back(MachineOperand::CreateReg( 5368 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5369 true)); 5370 return {}; 5371 } 5372 5373 return TripCount > TC; 5374 } 5375 5376 void setPreheader(MachineBasicBlock *NewPreheader) override { 5377 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5378 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5379 } 5380 5381 void adjustTripCount(int TripCountAdjust) override { 5382 // If the loop trip count is a compile-time value, then just change the 5383 // value. 5384 if (LoopCount->getOpcode() == PPC::LI8 || 5385 LoopCount->getOpcode() == PPC::LI) { 5386 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5387 LoopCount->getOperand(1).setImm(TripCount); 5388 return; 5389 } 5390 5391 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5392 // so we don't need to generate any thing here. 5393 } 5394 5395 void disposed() override { 5396 Loop->eraseFromParent(); 5397 // Ensure the loop setup instruction is deleted too. 5398 LoopCount->eraseFromParent(); 5399 } 5400 }; 5401 } // namespace 5402 5403 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5404 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5405 // We really "analyze" only hardware loops right now. 5406 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5407 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5408 if (Preheader == LoopBB) 5409 Preheader = *std::next(LoopBB->pred_begin()); 5410 MachineFunction *MF = Preheader->getParent(); 5411 5412 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5413 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5414 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5415 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5416 MachineRegisterInfo &MRI = MF->getRegInfo(); 5417 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5418 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5419 } 5420 } 5421 return nullptr; 5422 } 5423 5424 MachineInstr *PPCInstrInfo::findLoopInstr( 5425 MachineBasicBlock &PreHeader, 5426 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5427 5428 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5429 5430 // The loop set-up instruction should be in preheader 5431 for (auto &I : PreHeader.instrs()) 5432 if (I.getOpcode() == LOOPi) 5433 return &I; 5434 return nullptr; 5435 } 5436 5437 // Return true if get the base operand, byte offset of an instruction and the 5438 // memory width. Width is the size of memory that is being loaded/stored. 5439 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5440 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5441 unsigned &Width, const TargetRegisterInfo *TRI) const { 5442 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5443 return false; 5444 5445 // Handle only loads/stores with base register followed by immediate offset. 5446 if (!LdSt.getOperand(1).isImm() || 5447 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5448 return false; 5449 if (!LdSt.getOperand(1).isImm() || 5450 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5451 return false; 5452 5453 if (!LdSt.hasOneMemOperand()) 5454 return false; 5455 5456 Width = (*LdSt.memoperands_begin())->getSize(); 5457 Offset = LdSt.getOperand(1).getImm(); 5458 BaseReg = &LdSt.getOperand(2); 5459 return true; 5460 } 5461 5462 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5463 const MachineInstr &MIa, const MachineInstr &MIb) const { 5464 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5465 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5466 5467 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5468 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5469 return false; 5470 5471 // Retrieve the base register, offset from the base register and width. Width 5472 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5473 // base registers are identical, and the offset of a lower memory access + 5474 // the width doesn't overlap the offset of a higher memory access, 5475 // then the memory accesses are different. 5476 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5477 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5478 int64_t OffsetA = 0, OffsetB = 0; 5479 unsigned int WidthA = 0, WidthB = 0; 5480 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5481 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5482 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5483 int LowOffset = std::min(OffsetA, OffsetB); 5484 int HighOffset = std::max(OffsetA, OffsetB); 5485 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5486 if (LowOffset + LowWidth <= HighOffset) 5487 return true; 5488 } 5489 } 5490 return false; 5491 } 5492