1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineCombinerPattern.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/PseudoSourceValue.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "ppc-instr-info" 49 50 #define GET_INSTRMAP_INFO 51 #define GET_INSTRINFO_CTOR_DTOR 52 #include "PPCGenInstrInfo.inc" 53 54 STATISTIC(NumStoreSPILLVSRRCAsVec, 55 "Number of spillvsrrc spilled to stack as vec"); 56 STATISTIC(NumStoreSPILLVSRRCAsGpr, 57 "Number of spillvsrrc spilled to stack as gpr"); 58 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 59 STATISTIC(CmpIselsConverted, 60 "Number of ISELs that depend on comparison of constants converted"); 61 STATISTIC(MissedConvertibleImmediateInstrs, 62 "Number of compare-immediate instructions fed by constants"); 63 STATISTIC(NumRcRotatesConvertedToRcAnd, 64 "Number of record-form rotates converted to record-form andi"); 65 66 static cl:: 67 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 68 cl::desc("Disable analysis for CTR loops")); 69 70 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 71 cl::desc("Disable compare instruction optimization"), cl::Hidden); 72 73 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 74 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 75 cl::Hidden); 76 77 static cl::opt<bool> 78 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 79 cl::desc("Use the old (incorrect) instruction latency calculation")); 80 81 static cl::opt<float> 82 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 83 cl::desc("register pressure factor for the transformations.")); 84 85 static cl::opt<bool> EnableFMARegPressureReduction( 86 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 87 cl::desc("enable register pressure reduce in machine combiner pass.")); 88 89 // Pin the vtable to this file. 90 void PPCInstrInfo::anchor() {} 91 92 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 93 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 94 /* CatchRetOpcode */ -1, 95 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 96 Subtarget(STI), RI(STI.getTargetMachine()) {} 97 98 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 99 /// this target when scheduling the DAG. 100 ScheduleHazardRecognizer * 101 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 102 const ScheduleDAG *DAG) const { 103 unsigned Directive = 104 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 105 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 106 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 107 const InstrItineraryData *II = 108 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 109 return new ScoreboardHazardRecognizer(II, DAG); 110 } 111 112 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 113 } 114 115 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 116 /// to use for this target when scheduling the DAG. 117 ScheduleHazardRecognizer * 118 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 119 const ScheduleDAG *DAG) const { 120 unsigned Directive = 121 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 122 123 // FIXME: Leaving this as-is until we have POWER9 scheduling info 124 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 125 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 126 127 // Most subtargets use a PPC970 recognizer. 128 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 129 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 130 assert(DAG->TII && "No InstrInfo?"); 131 132 return new PPCHazardRecognizer970(*DAG); 133 } 134 135 return new ScoreboardHazardRecognizer(II, DAG); 136 } 137 138 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 139 const MachineInstr &MI, 140 unsigned *PredCost) const { 141 if (!ItinData || UseOldLatencyCalc) 142 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 143 144 // The default implementation of getInstrLatency calls getStageLatency, but 145 // getStageLatency does not do the right thing for us. While we have 146 // itinerary, most cores are fully pipelined, and so the itineraries only 147 // express the first part of the pipeline, not every stage. Instead, we need 148 // to use the listed output operand cycle number (using operand 0 here, which 149 // is an output). 150 151 unsigned Latency = 1; 152 unsigned DefClass = MI.getDesc().getSchedClass(); 153 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 154 const MachineOperand &MO = MI.getOperand(i); 155 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 156 continue; 157 158 std::optional<unsigned> Cycle = ItinData->getOperandCycle(DefClass, i); 159 if (!Cycle) 160 continue; 161 162 Latency = std::max(Latency, *Cycle); 163 } 164 165 return Latency; 166 } 167 168 std::optional<unsigned> PPCInstrInfo::getOperandLatency( 169 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 170 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { 171 std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency( 172 ItinData, DefMI, DefIdx, UseMI, UseIdx); 173 174 if (!DefMI.getParent()) 175 return Latency; 176 177 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 178 Register Reg = DefMO.getReg(); 179 180 bool IsRegCR; 181 if (Reg.isVirtual()) { 182 const MachineRegisterInfo *MRI = 183 &DefMI.getParent()->getParent()->getRegInfo(); 184 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 185 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 186 } else { 187 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 188 PPC::CRBITRCRegClass.contains(Reg); 189 } 190 191 if (UseMI.isBranch() && IsRegCR) { 192 if (!Latency) 193 Latency = getInstrLatency(ItinData, DefMI); 194 195 // On some cores, there is an additional delay between writing to a condition 196 // register, and using it from a branch. 197 unsigned Directive = Subtarget.getCPUDirective(); 198 switch (Directive) { 199 default: break; 200 case PPC::DIR_7400: 201 case PPC::DIR_750: 202 case PPC::DIR_970: 203 case PPC::DIR_E5500: 204 case PPC::DIR_PWR4: 205 case PPC::DIR_PWR5: 206 case PPC::DIR_PWR5X: 207 case PPC::DIR_PWR6: 208 case PPC::DIR_PWR6X: 209 case PPC::DIR_PWR7: 210 case PPC::DIR_PWR8: 211 // FIXME: Is this needed for POWER9? 212 Latency = *Latency + 2; 213 break; 214 } 215 } 216 217 return Latency; 218 } 219 220 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 221 uint32_t Flags) const { 222 MI.setFlags(Flags); 223 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 MI.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies(>=5) (compared to other operations, such as 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, 234 bool Invert) const { 235 if (Invert) 236 return false; 237 switch (Inst.getOpcode()) { 238 // Floating point: 239 // FP Add: 240 case PPC::FADD: 241 case PPC::FADDS: 242 // FP Multiply: 243 case PPC::FMUL: 244 case PPC::FMULS: 245 // Altivec Add: 246 case PPC::VADDFP: 247 // VSX Add: 248 case PPC::XSADDDP: 249 case PPC::XVADDDP: 250 case PPC::XVADDSP: 251 case PPC::XSADDSP: 252 // VSX Multiply: 253 case PPC::XSMULDP: 254 case PPC::XVMULDP: 255 case PPC::XVMULSP: 256 case PPC::XSMULSP: 257 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 258 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 259 // Fixed point: 260 // Multiply: 261 case PPC::MULHD: 262 case PPC::MULLD: 263 case PPC::MULHW: 264 case PPC::MULLW: 265 return true; 266 default: 267 return false; 268 } 269 } 270 271 #define InfoArrayIdxFMAInst 0 272 #define InfoArrayIdxFAddInst 1 273 #define InfoArrayIdxFMULInst 2 274 #define InfoArrayIdxAddOpIdx 3 275 #define InfoArrayIdxMULOpIdx 4 276 #define InfoArrayIdxFSubInst 5 277 // Array keeps info for FMA instructions: 278 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 279 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 280 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 281 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 282 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 283 // second MUL operand index is plus 1; 284 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 285 static const uint16_t FMAOpIdxInfo[][6] = { 286 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 287 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 288 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 289 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 290 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 291 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 292 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 293 294 // Check if an opcode is a FMA instruction. If it is, return the index in array 295 // FMAOpIdxInfo. Otherwise, return -1. 296 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 297 for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) 298 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 299 return I; 300 return -1; 301 } 302 303 // On PowerPC target, we have two kinds of patterns related to FMA: 304 // 1: Improve ILP. 305 // Try to reassociate FMA chains like below: 306 // 307 // Pattern 1: 308 // A = FADD X, Y (Leaf) 309 // B = FMA A, M21, M22 (Prev) 310 // C = FMA B, M31, M32 (Root) 311 // --> 312 // A = FMA X, M21, M22 313 // B = FMA Y, M31, M32 314 // C = FADD A, B 315 // 316 // Pattern 2: 317 // A = FMA X, M11, M12 (Leaf) 318 // B = FMA A, M21, M22 (Prev) 319 // C = FMA B, M31, M32 (Root) 320 // --> 321 // A = FMUL M11, M12 322 // B = FMA X, M21, M22 323 // D = FMA A, M31, M32 324 // C = FADD B, D 325 // 326 // breaking the dependency between A and B, allowing FMA to be executed in 327 // parallel (or back-to-back in a pipeline) instead of depending on each other. 328 // 329 // 2: Reduce register pressure. 330 // Try to reassociate FMA with FSUB and a constant like below: 331 // C is a floating point const. 332 // 333 // Pattern 1: 334 // A = FSUB X, Y (Leaf) 335 // D = FMA B, C, A (Root) 336 // --> 337 // A = FMA B, Y, -C 338 // D = FMA A, X, C 339 // 340 // Pattern 2: 341 // A = FSUB X, Y (Leaf) 342 // D = FMA B, A, C (Root) 343 // --> 344 // A = FMA B, Y, -C 345 // D = FMA A, X, C 346 // 347 // Before the transformation, A must be assigned with different hardware 348 // register with D. After the transformation, A and D must be assigned with 349 // same hardware register due to TIE attribute of FMA instructions. 350 // 351 bool PPCInstrInfo::getFMAPatterns( 352 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 353 bool DoRegPressureReduce) const { 354 MachineBasicBlock *MBB = Root.getParent(); 355 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 356 const TargetRegisterInfo *TRI = &getRegisterInfo(); 357 358 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 359 for (const auto &MO : Instr.explicit_operands()) 360 if (!(MO.isReg() && MO.getReg().isVirtual())) 361 return false; 362 return true; 363 }; 364 365 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 366 unsigned OpType) { 367 if (Instr.getOpcode() != 368 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 369 return false; 370 371 // Instruction can be reassociated. 372 // fast math flags may prohibit reassociation. 373 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 374 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 375 return false; 376 377 // Instruction operands are virtual registers for reassociation. 378 if (!IsAllOpsVirtualReg(Instr)) 379 return false; 380 381 // For register pressure reassociation, the FSub must have only one use as 382 // we want to delete the sub to save its def. 383 if (OpType == InfoArrayIdxFSubInst && 384 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 385 return false; 386 387 return true; 388 }; 389 390 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 391 int16_t &MulOpIdx, bool IsLeaf) { 392 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 393 if (Idx < 0) 394 return false; 395 396 // Instruction can be reassociated. 397 // fast math flags may prohibit reassociation. 398 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 399 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 400 return false; 401 402 // Instruction operands are virtual registers for reassociation. 403 if (!IsAllOpsVirtualReg(Instr)) 404 return false; 405 406 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 407 if (IsLeaf) 408 return true; 409 410 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 411 412 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 413 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 414 // If 'add' operand's def is not in current block, don't do ILP related opt. 415 if (!MIAdd || MIAdd->getParent() != MBB) 416 return false; 417 418 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 419 // as this fma will be changed later. 420 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 421 }; 422 423 int16_t AddOpIdx = -1; 424 int16_t MulOpIdx = -1; 425 426 bool IsUsedOnceL = false; 427 bool IsUsedOnceR = false; 428 MachineInstr *MULInstrL = nullptr; 429 MachineInstr *MULInstrR = nullptr; 430 431 auto IsRPReductionCandidate = [&]() { 432 // Currently, we only support float and double. 433 // FIXME: add support for other types. 434 unsigned Opcode = Root.getOpcode(); 435 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 436 return false; 437 438 // Root must be a valid FMA like instruction. 439 // Treat it as leaf as we don't care its add operand. 440 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 441 assert((MulOpIdx >= 0) && "mul operand index not right!"); 442 Register MULRegL = TRI->lookThruSingleUseCopyChain( 443 Root.getOperand(MulOpIdx).getReg(), MRI); 444 Register MULRegR = TRI->lookThruSingleUseCopyChain( 445 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 446 if (!MULRegL && !MULRegR) 447 return false; 448 449 if (MULRegL && !MULRegR) { 450 MULRegR = 451 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 452 IsUsedOnceL = true; 453 } else if (!MULRegL && MULRegR) { 454 MULRegL = 455 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 456 IsUsedOnceR = true; 457 } else { 458 IsUsedOnceL = true; 459 IsUsedOnceR = true; 460 } 461 462 if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) 463 return false; 464 465 MULInstrL = MRI->getVRegDef(MULRegL); 466 MULInstrR = MRI->getVRegDef(MULRegR); 467 return true; 468 } 469 return false; 470 }; 471 472 // Register pressure fma reassociation patterns. 473 if (DoRegPressureReduce && IsRPReductionCandidate()) { 474 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 475 // Register pressure pattern 1 476 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 477 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 478 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 479 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 480 return true; 481 } 482 483 // Register pressure pattern 2 484 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 485 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 486 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 487 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 488 return true; 489 } 490 } 491 492 // ILP fma reassociation patterns. 493 // Root must be a valid FMA like instruction. 494 AddOpIdx = -1; 495 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 496 return false; 497 498 assert((AddOpIdx >= 0) && "add operand index not right!"); 499 500 Register RegB = Root.getOperand(AddOpIdx).getReg(); 501 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 502 503 // Prev must be a valid FMA like instruction. 504 AddOpIdx = -1; 505 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 506 return false; 507 508 assert((AddOpIdx >= 0) && "add operand index not right!"); 509 510 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 511 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 512 AddOpIdx = -1; 513 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 514 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 515 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 516 return true; 517 } 518 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 519 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 520 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 521 return true; 522 } 523 return false; 524 } 525 526 void PPCInstrInfo::finalizeInsInstrs( 527 MachineInstr &Root, MachineCombinerPattern &P, 528 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 529 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 530 531 MachineFunction *MF = Root.getMF(); 532 MachineRegisterInfo *MRI = &MF->getRegInfo(); 533 const TargetRegisterInfo *TRI = &getRegisterInfo(); 534 MachineConstantPool *MCP = MF->getConstantPool(); 535 536 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 537 if (Idx < 0) 538 return; 539 540 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 541 542 // For now we only need to fix up placeholder for register pressure reduce 543 // patterns. 544 Register ConstReg = 0; 545 switch (P) { 546 case MachineCombinerPattern::REASSOC_XY_BCA: 547 ConstReg = 548 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 549 break; 550 case MachineCombinerPattern::REASSOC_XY_BAC: 551 ConstReg = 552 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 553 break; 554 default: 555 // Not register pressure reduce patterns. 556 return; 557 } 558 559 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 560 // Get const value from const pool. 561 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 562 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 563 564 // Get negative fp const. 565 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 566 F1.changeSign(); 567 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 568 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 569 570 // Put negative fp const into constant pool. 571 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 572 573 MachineOperand *Placeholder = nullptr; 574 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 575 for (auto *Inst : InsInstrs) { 576 for (MachineOperand &Operand : Inst->explicit_operands()) { 577 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 578 if (Operand.getReg() == PPC::ZERO8) { 579 Placeholder = &Operand; 580 break; 581 } 582 } 583 } 584 585 assert(Placeholder && "Placeholder does not exist!"); 586 587 // Generate instructions to load the const fp from constant pool. 588 // We only support PPC64 and medium code model. 589 Register LoadNewConst = 590 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 591 592 // Fill the placeholder with the new load from constant pool. 593 Placeholder->setReg(LoadNewConst); 594 } 595 596 bool PPCInstrInfo::shouldReduceRegisterPressure( 597 const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { 598 599 if (!EnableFMARegPressureReduction) 600 return false; 601 602 // Currently, we only enable register pressure reducing in machine combiner 603 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 604 // support. 605 // 606 // So we need following instructions to access a TOC entry: 607 // 608 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 609 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 610 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 611 // 612 // FIXME: add more supported targets, like Small and Large code model, PPC32, 613 // AIX. 614 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 615 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 616 return false; 617 618 const TargetRegisterInfo *TRI = &getRegisterInfo(); 619 const MachineFunction *MF = MBB->getParent(); 620 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 621 622 auto GetMBBPressure = 623 [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { 624 RegionPressure Pressure; 625 RegPressureTracker RPTracker(Pressure); 626 627 // Initialize the register pressure tracker. 628 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 629 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 630 631 for (const auto &MI : reverse(*MBB)) { 632 if (MI.isDebugValue() || MI.isDebugLabel()) 633 continue; 634 RegisterOperands RegOpers; 635 RegOpers.collect(MI, *TRI, *MRI, false, false); 636 RPTracker.recedeSkipDebugValues(); 637 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 638 RPTracker.recede(RegOpers); 639 } 640 641 // Close the RPTracker to finalize live ins. 642 RPTracker.closeRegion(); 643 644 return RPTracker.getPressure().MaxSetPressure; 645 }; 646 647 // For now we only care about float and double type fma. 648 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 649 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 650 651 // Only reduce register pressure when pressure is high. 652 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 653 (float)VSSRCLimit * FMARPFactor; 654 } 655 656 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 657 // I has only one memory operand which is load from constant pool. 658 if (!I->hasOneMemOperand()) 659 return false; 660 661 MachineMemOperand *Op = I->memoperands()[0]; 662 return Op->isLoad() && Op->getPseudoValue() && 663 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 664 } 665 666 Register PPCInstrInfo::generateLoadForNewConst( 667 unsigned Idx, MachineInstr *MI, Type *Ty, 668 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 669 // Now we only support PPC64, Medium code model and P9 with vector. 670 // We have immutable pattern to access const pool. See function 671 // shouldReduceRegisterPressure. 672 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 673 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 674 "Target not supported!\n"); 675 676 MachineFunction *MF = MI->getMF(); 677 MachineRegisterInfo *MRI = &MF->getRegInfo(); 678 679 // Generate ADDIStocHA8 680 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 681 MachineInstrBuilder TOCOffset = 682 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 683 .addReg(PPC::X2) 684 .addConstantPoolIndex(Idx); 685 686 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 687 "Only float and double are supported!"); 688 689 unsigned LoadOpcode; 690 // Should be float type or double type. 691 if (Ty->isFloatTy()) 692 LoadOpcode = PPC::DFLOADf32; 693 else 694 LoadOpcode = PPC::DFLOADf64; 695 696 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 697 Register VReg2 = MRI->createVirtualRegister(RC); 698 MachineMemOperand *MMO = MF->getMachineMemOperand( 699 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 700 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 701 702 // Generate Load from constant pool. 703 MachineInstrBuilder Load = 704 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 705 .addConstantPoolIndex(Idx) 706 .addReg(VReg1, getKillRegState(true)) 707 .addMemOperand(MMO); 708 709 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 710 711 // Insert the toc load instructions into InsInstrs. 712 InsInstrs.insert(InsInstrs.begin(), Load); 713 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 714 return VReg2; 715 } 716 717 // This function returns the const value in constant pool if the \p I is a load 718 // from constant pool. 719 const Constant * 720 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 721 MachineFunction *MF = I->getMF(); 722 MachineRegisterInfo *MRI = &MF->getRegInfo(); 723 MachineConstantPool *MCP = MF->getConstantPool(); 724 assert(I->mayLoad() && "Should be a load instruction.\n"); 725 for (auto MO : I->uses()) { 726 if (!MO.isReg()) 727 continue; 728 Register Reg = MO.getReg(); 729 if (Reg == 0 || !Reg.isVirtual()) 730 continue; 731 // Find the toc address. 732 MachineInstr *DefMI = MRI->getVRegDef(Reg); 733 for (auto MO2 : DefMI->uses()) 734 if (MO2.isCPI()) 735 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 736 } 737 return nullptr; 738 } 739 740 bool PPCInstrInfo::getMachineCombinerPatterns( 741 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 742 bool DoRegPressureReduce) const { 743 // Using the machine combiner in this way is potentially expensive, so 744 // restrict to when aggressive optimizations are desired. 745 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive) 746 return false; 747 748 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 749 return true; 750 751 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 752 DoRegPressureReduce); 753 } 754 755 void PPCInstrInfo::genAlternativeCodeSequence( 756 MachineInstr &Root, MachineCombinerPattern Pattern, 757 SmallVectorImpl<MachineInstr *> &InsInstrs, 758 SmallVectorImpl<MachineInstr *> &DelInstrs, 759 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 760 switch (Pattern) { 761 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 762 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 763 case MachineCombinerPattern::REASSOC_XY_BCA: 764 case MachineCombinerPattern::REASSOC_XY_BAC: 765 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 766 break; 767 default: 768 // Reassociate default patterns. 769 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 770 DelInstrs, InstrIdxForVirtReg); 771 break; 772 } 773 } 774 775 void PPCInstrInfo::reassociateFMA( 776 MachineInstr &Root, MachineCombinerPattern Pattern, 777 SmallVectorImpl<MachineInstr *> &InsInstrs, 778 SmallVectorImpl<MachineInstr *> &DelInstrs, 779 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 780 MachineFunction *MF = Root.getMF(); 781 MachineRegisterInfo &MRI = MF->getRegInfo(); 782 const TargetRegisterInfo *TRI = &getRegisterInfo(); 783 MachineOperand &OpC = Root.getOperand(0); 784 Register RegC = OpC.getReg(); 785 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 786 MRI.constrainRegClass(RegC, RC); 787 788 unsigned FmaOp = Root.getOpcode(); 789 int16_t Idx = getFMAOpIdxInfo(FmaOp); 790 assert(Idx >= 0 && "Root must be a FMA instruction"); 791 792 bool IsILPReassociate = 793 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 794 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 795 796 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 797 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 798 799 MachineInstr *Prev = nullptr; 800 MachineInstr *Leaf = nullptr; 801 switch (Pattern) { 802 default: 803 llvm_unreachable("not recognized pattern!"); 804 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 805 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 806 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 807 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 808 break; 809 case MachineCombinerPattern::REASSOC_XY_BAC: { 810 Register MULReg = 811 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 812 Leaf = MRI.getVRegDef(MULReg); 813 break; 814 } 815 case MachineCombinerPattern::REASSOC_XY_BCA: { 816 Register MULReg = TRI->lookThruCopyLike( 817 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 818 Leaf = MRI.getVRegDef(MULReg); 819 break; 820 } 821 } 822 823 uint32_t IntersectedFlags = 0; 824 if (IsILPReassociate) 825 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 826 else 827 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 828 829 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 830 bool &KillFlag) { 831 Reg = Operand.getReg(); 832 MRI.constrainRegClass(Reg, RC); 833 KillFlag = Operand.isKill(); 834 }; 835 836 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 837 Register &MulOp2, Register &AddOp, 838 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 839 bool &AddOpKillFlag) { 840 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 841 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 842 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 843 }; 844 845 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 846 RegA21, RegB; 847 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 848 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 849 KillA11 = false, KillA21 = false, KillB = false; 850 851 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 852 853 if (IsILPReassociate) 854 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 855 856 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 857 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 858 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 859 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 860 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 861 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 862 } else { 863 // Get FSUB instruction info. 864 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 865 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 866 } 867 868 // Create new virtual registers for the new results instead of 869 // recycling legacy ones because the MachineCombiner's computation of the 870 // critical path requires a new register definition rather than an existing 871 // one. 872 // For register pressure reassociation, we only need create one virtual 873 // register for the new fma. 874 Register NewVRA = MRI.createVirtualRegister(RC); 875 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 876 877 Register NewVRB = 0; 878 if (IsILPReassociate) { 879 NewVRB = MRI.createVirtualRegister(RC); 880 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 881 } 882 883 Register NewVRD = 0; 884 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 885 NewVRD = MRI.createVirtualRegister(RC); 886 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 887 } 888 889 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 890 Register RegMul1, bool KillRegMul1, 891 Register RegMul2, bool KillRegMul2) { 892 MI->getOperand(AddOpIdx).setReg(RegAdd); 893 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 894 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 895 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 896 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 897 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 898 }; 899 900 MachineInstrBuilder NewARegPressure, NewCRegPressure; 901 switch (Pattern) { 902 default: 903 llvm_unreachable("not recognized pattern!"); 904 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 905 // Create new instructions for insertion. 906 MachineInstrBuilder MINewB = 907 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 908 .addReg(RegX, getKillRegState(KillX)) 909 .addReg(RegM21, getKillRegState(KillM21)) 910 .addReg(RegM22, getKillRegState(KillM22)); 911 MachineInstrBuilder MINewA = 912 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 913 .addReg(RegY, getKillRegState(KillY)) 914 .addReg(RegM31, getKillRegState(KillM31)) 915 .addReg(RegM32, getKillRegState(KillM32)); 916 // If AddOpIdx is not 1, adjust the order. 917 if (AddOpIdx != 1) { 918 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 919 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 920 } 921 922 MachineInstrBuilder MINewC = 923 BuildMI(*MF, Root.getDebugLoc(), 924 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 925 .addReg(NewVRB, getKillRegState(true)) 926 .addReg(NewVRA, getKillRegState(true)); 927 928 // Update flags for newly created instructions. 929 setSpecialOperandAttr(*MINewA, IntersectedFlags); 930 setSpecialOperandAttr(*MINewB, IntersectedFlags); 931 setSpecialOperandAttr(*MINewC, IntersectedFlags); 932 933 // Record new instructions for insertion. 934 InsInstrs.push_back(MINewA); 935 InsInstrs.push_back(MINewB); 936 InsInstrs.push_back(MINewC); 937 break; 938 } 939 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 940 assert(NewVRD && "new FMA register not created!"); 941 // Create new instructions for insertion. 942 MachineInstrBuilder MINewA = 943 BuildMI(*MF, Leaf->getDebugLoc(), 944 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 945 .addReg(RegM11, getKillRegState(KillM11)) 946 .addReg(RegM12, getKillRegState(KillM12)); 947 MachineInstrBuilder MINewB = 948 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 949 .addReg(RegX, getKillRegState(KillX)) 950 .addReg(RegM21, getKillRegState(KillM21)) 951 .addReg(RegM22, getKillRegState(KillM22)); 952 MachineInstrBuilder MINewD = 953 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 954 .addReg(NewVRA, getKillRegState(true)) 955 .addReg(RegM31, getKillRegState(KillM31)) 956 .addReg(RegM32, getKillRegState(KillM32)); 957 // If AddOpIdx is not 1, adjust the order. 958 if (AddOpIdx != 1) { 959 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 960 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 961 KillM32); 962 } 963 964 MachineInstrBuilder MINewC = 965 BuildMI(*MF, Root.getDebugLoc(), 966 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 967 .addReg(NewVRB, getKillRegState(true)) 968 .addReg(NewVRD, getKillRegState(true)); 969 970 // Update flags for newly created instructions. 971 setSpecialOperandAttr(*MINewA, IntersectedFlags); 972 setSpecialOperandAttr(*MINewB, IntersectedFlags); 973 setSpecialOperandAttr(*MINewD, IntersectedFlags); 974 setSpecialOperandAttr(*MINewC, IntersectedFlags); 975 976 // Record new instructions for insertion. 977 InsInstrs.push_back(MINewA); 978 InsInstrs.push_back(MINewB); 979 InsInstrs.push_back(MINewD); 980 InsInstrs.push_back(MINewC); 981 break; 982 } 983 case MachineCombinerPattern::REASSOC_XY_BAC: 984 case MachineCombinerPattern::REASSOC_XY_BCA: { 985 Register VarReg; 986 bool KillVarReg = false; 987 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 988 VarReg = RegM31; 989 KillVarReg = KillM31; 990 } else { 991 VarReg = RegM32; 992 KillVarReg = KillM32; 993 } 994 // We don't want to get negative const from memory pool too early, as the 995 // created entry will not be deleted even if it has no users. Since all 996 // operand of Leaf and Root are virtual register, we use zero register 997 // here as a placeholder. When the InsInstrs is selected in 998 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 999 // with a virtual register which is a load from constant pool. 1000 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1001 .addReg(RegB, getKillRegState(RegB)) 1002 .addReg(RegY, getKillRegState(KillY)) 1003 .addReg(PPC::ZERO8); 1004 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1005 .addReg(NewVRA, getKillRegState(true)) 1006 .addReg(RegX, getKillRegState(KillX)) 1007 .addReg(VarReg, getKillRegState(KillVarReg)); 1008 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1009 // both at index 1, no need to adjust. 1010 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1011 // the operand index here. 1012 break; 1013 } 1014 } 1015 1016 if (!IsILPReassociate) { 1017 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1018 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1019 1020 InsInstrs.push_back(NewARegPressure); 1021 InsInstrs.push_back(NewCRegPressure); 1022 } 1023 1024 assert(!InsInstrs.empty() && 1025 "Insertion instructions set should not be empty!"); 1026 1027 // Record old instructions for deletion. 1028 DelInstrs.push_back(Leaf); 1029 if (IsILPReassociate) 1030 DelInstrs.push_back(Prev); 1031 DelInstrs.push_back(&Root); 1032 } 1033 1034 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1035 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1036 Register &SrcReg, Register &DstReg, 1037 unsigned &SubIdx) const { 1038 switch (MI.getOpcode()) { 1039 default: return false; 1040 case PPC::EXTSW: 1041 case PPC::EXTSW_32: 1042 case PPC::EXTSW_32_64: 1043 SrcReg = MI.getOperand(1).getReg(); 1044 DstReg = MI.getOperand(0).getReg(); 1045 SubIdx = PPC::sub_32; 1046 return true; 1047 } 1048 } 1049 1050 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1051 int &FrameIndex) const { 1052 if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) { 1053 // Check for the operands added by addFrameReference (the immediate is the 1054 // offset which defaults to 0). 1055 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1056 MI.getOperand(2).isFI()) { 1057 FrameIndex = MI.getOperand(2).getIndex(); 1058 return MI.getOperand(0).getReg(); 1059 } 1060 } 1061 return 0; 1062 } 1063 1064 // For opcodes with the ReMaterializable flag set, this function is called to 1065 // verify the instruction is really rematable. 1066 bool PPCInstrInfo::isReallyTriviallyReMaterializable( 1067 const MachineInstr &MI) const { 1068 switch (MI.getOpcode()) { 1069 default: 1070 // Let base implementaion decide. 1071 break; 1072 case PPC::LI: 1073 case PPC::LI8: 1074 case PPC::PLI: 1075 case PPC::PLI8: 1076 case PPC::LIS: 1077 case PPC::LIS8: 1078 case PPC::ADDIStocHA: 1079 case PPC::ADDIStocHA8: 1080 case PPC::ADDItocL: 1081 case PPC::LOAD_STACK_GUARD: 1082 case PPC::XXLXORz: 1083 case PPC::XXLXORspz: 1084 case PPC::XXLXORdpz: 1085 case PPC::XXLEQVOnes: 1086 case PPC::XXSPLTI32DX: 1087 case PPC::XXSPLTIW: 1088 case PPC::XXSPLTIDP: 1089 case PPC::V_SET0B: 1090 case PPC::V_SET0H: 1091 case PPC::V_SET0: 1092 case PPC::V_SETALLONESB: 1093 case PPC::V_SETALLONESH: 1094 case PPC::V_SETALLONES: 1095 case PPC::CRSET: 1096 case PPC::CRUNSET: 1097 case PPC::XXSETACCZ: 1098 case PPC::XXSETACCZW: 1099 return true; 1100 } 1101 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 1102 } 1103 1104 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1105 int &FrameIndex) const { 1106 if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) { 1107 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1108 MI.getOperand(2).isFI()) { 1109 FrameIndex = MI.getOperand(2).getIndex(); 1110 return MI.getOperand(0).getReg(); 1111 } 1112 } 1113 return 0; 1114 } 1115 1116 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1117 unsigned OpIdx1, 1118 unsigned OpIdx2) const { 1119 MachineFunction &MF = *MI.getParent()->getParent(); 1120 1121 // Normal instructions can be commuted the obvious way. 1122 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1123 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1124 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1125 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1126 // changing the relative order of the mask operands might change what happens 1127 // to the high-bits of the mask (and, thus, the result). 1128 1129 // Cannot commute if it has a non-zero rotate count. 1130 if (MI.getOperand(3).getImm() != 0) 1131 return nullptr; 1132 1133 // If we have a zero rotate count, we have: 1134 // M = mask(MB,ME) 1135 // Op0 = (Op1 & ~M) | (Op2 & M) 1136 // Change this to: 1137 // M = mask((ME+1)&31, (MB-1)&31) 1138 // Op0 = (Op2 & ~M) | (Op1 & M) 1139 1140 // Swap op1/op2 1141 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1142 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1143 Register Reg0 = MI.getOperand(0).getReg(); 1144 Register Reg1 = MI.getOperand(1).getReg(); 1145 Register Reg2 = MI.getOperand(2).getReg(); 1146 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1147 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1148 bool Reg1IsKill = MI.getOperand(1).isKill(); 1149 bool Reg2IsKill = MI.getOperand(2).isKill(); 1150 bool ChangeReg0 = false; 1151 // If machine instrs are no longer in two-address forms, update 1152 // destination register as well. 1153 if (Reg0 == Reg1) { 1154 // Must be two address instruction (i.e. op1 is tied to op0). 1155 assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 && 1156 "Expecting a two-address instruction!"); 1157 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1158 Reg2IsKill = false; 1159 ChangeReg0 = true; 1160 } 1161 1162 // Masks. 1163 unsigned MB = MI.getOperand(4).getImm(); 1164 unsigned ME = MI.getOperand(5).getImm(); 1165 1166 // We can't commute a trivial mask (there is no way to represent an all-zero 1167 // mask). 1168 if (MB == 0 && ME == 31) 1169 return nullptr; 1170 1171 if (NewMI) { 1172 // Create a new instruction. 1173 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1174 bool Reg0IsDead = MI.getOperand(0).isDead(); 1175 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1176 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1177 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1178 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1179 .addImm((ME + 1) & 31) 1180 .addImm((MB - 1) & 31); 1181 } 1182 1183 if (ChangeReg0) { 1184 MI.getOperand(0).setReg(Reg2); 1185 MI.getOperand(0).setSubReg(SubReg2); 1186 } 1187 MI.getOperand(2).setReg(Reg1); 1188 MI.getOperand(1).setReg(Reg2); 1189 MI.getOperand(2).setSubReg(SubReg1); 1190 MI.getOperand(1).setSubReg(SubReg2); 1191 MI.getOperand(2).setIsKill(Reg1IsKill); 1192 MI.getOperand(1).setIsKill(Reg2IsKill); 1193 1194 // Swap the mask around. 1195 MI.getOperand(4).setImm((ME + 1) & 31); 1196 MI.getOperand(5).setImm((MB - 1) & 31); 1197 return &MI; 1198 } 1199 1200 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1201 unsigned &SrcOpIdx1, 1202 unsigned &SrcOpIdx2) const { 1203 // For VSX A-Type FMA instructions, it is the first two operands that can be 1204 // commuted, however, because the non-encoded tied input operand is listed 1205 // first, the operands to swap are actually the second and third. 1206 1207 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1208 if (AltOpc == -1) 1209 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1210 1211 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1212 // and SrcOpIdx2. 1213 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1214 } 1215 1216 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1217 MachineBasicBlock::iterator MI) const { 1218 // This function is used for scheduling, and the nop wanted here is the type 1219 // that terminates dispatch groups on the POWER cores. 1220 unsigned Directive = Subtarget.getCPUDirective(); 1221 unsigned Opcode; 1222 switch (Directive) { 1223 default: Opcode = PPC::NOP; break; 1224 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1225 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1226 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1227 // FIXME: Update when POWER9 scheduling model is ready. 1228 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1229 } 1230 1231 DebugLoc DL; 1232 BuildMI(MBB, MI, DL, get(Opcode)); 1233 } 1234 1235 /// Return the noop instruction to use for a noop. 1236 MCInst PPCInstrInfo::getNop() const { 1237 MCInst Nop; 1238 Nop.setOpcode(PPC::NOP); 1239 return Nop; 1240 } 1241 1242 // Branch analysis. 1243 // Note: If the condition register is set to CTR or CTR8 then this is a 1244 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1245 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1246 MachineBasicBlock *&TBB, 1247 MachineBasicBlock *&FBB, 1248 SmallVectorImpl<MachineOperand> &Cond, 1249 bool AllowModify) const { 1250 bool isPPC64 = Subtarget.isPPC64(); 1251 1252 // If the block has no terminators, it just falls into the block after it. 1253 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1254 if (I == MBB.end()) 1255 return false; 1256 1257 if (!isUnpredicatedTerminator(*I)) 1258 return false; 1259 1260 if (AllowModify) { 1261 // If the BB ends with an unconditional branch to the fallthrough BB, 1262 // we eliminate the branch instruction. 1263 if (I->getOpcode() == PPC::B && 1264 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1265 I->eraseFromParent(); 1266 1267 // We update iterator after deleting the last branch. 1268 I = MBB.getLastNonDebugInstr(); 1269 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1270 return false; 1271 } 1272 } 1273 1274 // Get the last instruction in the block. 1275 MachineInstr &LastInst = *I; 1276 1277 // If there is only one terminator instruction, process it. 1278 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1279 if (LastInst.getOpcode() == PPC::B) { 1280 if (!LastInst.getOperand(0).isMBB()) 1281 return true; 1282 TBB = LastInst.getOperand(0).getMBB(); 1283 return false; 1284 } else if (LastInst.getOpcode() == PPC::BCC) { 1285 if (!LastInst.getOperand(2).isMBB()) 1286 return true; 1287 // Block ends with fall-through condbranch. 1288 TBB = LastInst.getOperand(2).getMBB(); 1289 Cond.push_back(LastInst.getOperand(0)); 1290 Cond.push_back(LastInst.getOperand(1)); 1291 return false; 1292 } else if (LastInst.getOpcode() == PPC::BC) { 1293 if (!LastInst.getOperand(1).isMBB()) 1294 return true; 1295 // Block ends with fall-through condbranch. 1296 TBB = LastInst.getOperand(1).getMBB(); 1297 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1298 Cond.push_back(LastInst.getOperand(0)); 1299 return false; 1300 } else if (LastInst.getOpcode() == PPC::BCn) { 1301 if (!LastInst.getOperand(1).isMBB()) 1302 return true; 1303 // Block ends with fall-through condbranch. 1304 TBB = LastInst.getOperand(1).getMBB(); 1305 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1306 Cond.push_back(LastInst.getOperand(0)); 1307 return false; 1308 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1309 LastInst.getOpcode() == PPC::BDNZ) { 1310 if (!LastInst.getOperand(0).isMBB()) 1311 return true; 1312 if (DisableCTRLoopAnal) 1313 return true; 1314 TBB = LastInst.getOperand(0).getMBB(); 1315 Cond.push_back(MachineOperand::CreateImm(1)); 1316 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1317 true)); 1318 return false; 1319 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1320 LastInst.getOpcode() == PPC::BDZ) { 1321 if (!LastInst.getOperand(0).isMBB()) 1322 return true; 1323 if (DisableCTRLoopAnal) 1324 return true; 1325 TBB = LastInst.getOperand(0).getMBB(); 1326 Cond.push_back(MachineOperand::CreateImm(0)); 1327 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1328 true)); 1329 return false; 1330 } 1331 1332 // Otherwise, don't know what this is. 1333 return true; 1334 } 1335 1336 // Get the instruction before it if it's a terminator. 1337 MachineInstr &SecondLastInst = *I; 1338 1339 // If there are three terminators, we don't know what sort of block this is. 1340 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1341 return true; 1342 1343 // If the block ends with PPC::B and PPC:BCC, handle it. 1344 if (SecondLastInst.getOpcode() == PPC::BCC && 1345 LastInst.getOpcode() == PPC::B) { 1346 if (!SecondLastInst.getOperand(2).isMBB() || 1347 !LastInst.getOperand(0).isMBB()) 1348 return true; 1349 TBB = SecondLastInst.getOperand(2).getMBB(); 1350 Cond.push_back(SecondLastInst.getOperand(0)); 1351 Cond.push_back(SecondLastInst.getOperand(1)); 1352 FBB = LastInst.getOperand(0).getMBB(); 1353 return false; 1354 } else if (SecondLastInst.getOpcode() == PPC::BC && 1355 LastInst.getOpcode() == PPC::B) { 1356 if (!SecondLastInst.getOperand(1).isMBB() || 1357 !LastInst.getOperand(0).isMBB()) 1358 return true; 1359 TBB = SecondLastInst.getOperand(1).getMBB(); 1360 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1361 Cond.push_back(SecondLastInst.getOperand(0)); 1362 FBB = LastInst.getOperand(0).getMBB(); 1363 return false; 1364 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1365 LastInst.getOpcode() == PPC::B) { 1366 if (!SecondLastInst.getOperand(1).isMBB() || 1367 !LastInst.getOperand(0).isMBB()) 1368 return true; 1369 TBB = SecondLastInst.getOperand(1).getMBB(); 1370 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1371 Cond.push_back(SecondLastInst.getOperand(0)); 1372 FBB = LastInst.getOperand(0).getMBB(); 1373 return false; 1374 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1375 SecondLastInst.getOpcode() == PPC::BDNZ) && 1376 LastInst.getOpcode() == PPC::B) { 1377 if (!SecondLastInst.getOperand(0).isMBB() || 1378 !LastInst.getOperand(0).isMBB()) 1379 return true; 1380 if (DisableCTRLoopAnal) 1381 return true; 1382 TBB = SecondLastInst.getOperand(0).getMBB(); 1383 Cond.push_back(MachineOperand::CreateImm(1)); 1384 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1385 true)); 1386 FBB = LastInst.getOperand(0).getMBB(); 1387 return false; 1388 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1389 SecondLastInst.getOpcode() == PPC::BDZ) && 1390 LastInst.getOpcode() == PPC::B) { 1391 if (!SecondLastInst.getOperand(0).isMBB() || 1392 !LastInst.getOperand(0).isMBB()) 1393 return true; 1394 if (DisableCTRLoopAnal) 1395 return true; 1396 TBB = SecondLastInst.getOperand(0).getMBB(); 1397 Cond.push_back(MachineOperand::CreateImm(0)); 1398 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1399 true)); 1400 FBB = LastInst.getOperand(0).getMBB(); 1401 return false; 1402 } 1403 1404 // If the block ends with two PPC:Bs, handle it. The second one is not 1405 // executed, so remove it. 1406 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1407 if (!SecondLastInst.getOperand(0).isMBB()) 1408 return true; 1409 TBB = SecondLastInst.getOperand(0).getMBB(); 1410 I = LastInst; 1411 if (AllowModify) 1412 I->eraseFromParent(); 1413 return false; 1414 } 1415 1416 // Otherwise, can't handle this. 1417 return true; 1418 } 1419 1420 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1421 int *BytesRemoved) const { 1422 assert(!BytesRemoved && "code size not handled"); 1423 1424 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1425 if (I == MBB.end()) 1426 return 0; 1427 1428 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1429 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1430 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1431 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1432 return 0; 1433 1434 // Remove the branch. 1435 I->eraseFromParent(); 1436 1437 I = MBB.end(); 1438 1439 if (I == MBB.begin()) return 1; 1440 --I; 1441 if (I->getOpcode() != PPC::BCC && 1442 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1443 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1444 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1445 return 1; 1446 1447 // Remove the branch. 1448 I->eraseFromParent(); 1449 return 2; 1450 } 1451 1452 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1453 MachineBasicBlock *TBB, 1454 MachineBasicBlock *FBB, 1455 ArrayRef<MachineOperand> Cond, 1456 const DebugLoc &DL, 1457 int *BytesAdded) const { 1458 // Shouldn't be a fall through. 1459 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1460 assert((Cond.size() == 2 || Cond.size() == 0) && 1461 "PPC branch conditions have two components!"); 1462 assert(!BytesAdded && "code size not handled"); 1463 1464 bool isPPC64 = Subtarget.isPPC64(); 1465 1466 // One-way branch. 1467 if (!FBB) { 1468 if (Cond.empty()) // Unconditional branch 1469 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1470 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1471 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1472 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1473 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1474 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1475 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1476 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1477 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1478 else // Conditional branch 1479 BuildMI(&MBB, DL, get(PPC::BCC)) 1480 .addImm(Cond[0].getImm()) 1481 .add(Cond[1]) 1482 .addMBB(TBB); 1483 return 1; 1484 } 1485 1486 // Two-way Conditional Branch. 1487 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1488 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1489 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1490 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1491 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1492 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1493 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1494 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1495 else 1496 BuildMI(&MBB, DL, get(PPC::BCC)) 1497 .addImm(Cond[0].getImm()) 1498 .add(Cond[1]) 1499 .addMBB(TBB); 1500 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1501 return 2; 1502 } 1503 1504 // Select analysis. 1505 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1506 ArrayRef<MachineOperand> Cond, 1507 Register DstReg, Register TrueReg, 1508 Register FalseReg, int &CondCycles, 1509 int &TrueCycles, int &FalseCycles) const { 1510 if (!Subtarget.hasISEL()) 1511 return false; 1512 1513 if (Cond.size() != 2) 1514 return false; 1515 1516 // If this is really a bdnz-like condition, then it cannot be turned into a 1517 // select. 1518 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1519 return false; 1520 1521 // If the conditional branch uses a physical register, then it cannot be 1522 // turned into a select. 1523 if (Cond[1].getReg().isPhysical()) 1524 return false; 1525 1526 // Check register classes. 1527 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1528 const TargetRegisterClass *RC = 1529 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1530 if (!RC) 1531 return false; 1532 1533 // isel is for regular integer GPRs only. 1534 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1535 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1536 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1537 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1538 return false; 1539 1540 // FIXME: These numbers are for the A2, how well they work for other cores is 1541 // an open question. On the A2, the isel instruction has a 2-cycle latency 1542 // but single-cycle throughput. These numbers are used in combination with 1543 // the MispredictPenalty setting from the active SchedMachineModel. 1544 CondCycles = 1; 1545 TrueCycles = 1; 1546 FalseCycles = 1; 1547 1548 return true; 1549 } 1550 1551 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1552 MachineBasicBlock::iterator MI, 1553 const DebugLoc &dl, Register DestReg, 1554 ArrayRef<MachineOperand> Cond, Register TrueReg, 1555 Register FalseReg) const { 1556 assert(Cond.size() == 2 && 1557 "PPC branch conditions have two components!"); 1558 1559 // Get the register classes. 1560 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1561 const TargetRegisterClass *RC = 1562 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1563 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1564 1565 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1566 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1567 assert((Is64Bit || 1568 PPC::GPRCRegClass.hasSubClassEq(RC) || 1569 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1570 "isel is for regular integer GPRs only"); 1571 1572 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1573 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1574 1575 unsigned SubIdx = 0; 1576 bool SwapOps = false; 1577 switch (SelectPred) { 1578 case PPC::PRED_EQ: 1579 case PPC::PRED_EQ_MINUS: 1580 case PPC::PRED_EQ_PLUS: 1581 SubIdx = PPC::sub_eq; SwapOps = false; break; 1582 case PPC::PRED_NE: 1583 case PPC::PRED_NE_MINUS: 1584 case PPC::PRED_NE_PLUS: 1585 SubIdx = PPC::sub_eq; SwapOps = true; break; 1586 case PPC::PRED_LT: 1587 case PPC::PRED_LT_MINUS: 1588 case PPC::PRED_LT_PLUS: 1589 SubIdx = PPC::sub_lt; SwapOps = false; break; 1590 case PPC::PRED_GE: 1591 case PPC::PRED_GE_MINUS: 1592 case PPC::PRED_GE_PLUS: 1593 SubIdx = PPC::sub_lt; SwapOps = true; break; 1594 case PPC::PRED_GT: 1595 case PPC::PRED_GT_MINUS: 1596 case PPC::PRED_GT_PLUS: 1597 SubIdx = PPC::sub_gt; SwapOps = false; break; 1598 case PPC::PRED_LE: 1599 case PPC::PRED_LE_MINUS: 1600 case PPC::PRED_LE_PLUS: 1601 SubIdx = PPC::sub_gt; SwapOps = true; break; 1602 case PPC::PRED_UN: 1603 case PPC::PRED_UN_MINUS: 1604 case PPC::PRED_UN_PLUS: 1605 SubIdx = PPC::sub_un; SwapOps = false; break; 1606 case PPC::PRED_NU: 1607 case PPC::PRED_NU_MINUS: 1608 case PPC::PRED_NU_PLUS: 1609 SubIdx = PPC::sub_un; SwapOps = true; break; 1610 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1611 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1612 } 1613 1614 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1615 SecondReg = SwapOps ? TrueReg : FalseReg; 1616 1617 // The first input register of isel cannot be r0. If it is a member 1618 // of a register class that can be r0, then copy it first (the 1619 // register allocator should eliminate the copy). 1620 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1621 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1622 const TargetRegisterClass *FirstRC = 1623 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1624 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1625 Register OldFirstReg = FirstReg; 1626 FirstReg = MRI.createVirtualRegister(FirstRC); 1627 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1628 .addReg(OldFirstReg); 1629 } 1630 1631 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1632 .addReg(FirstReg).addReg(SecondReg) 1633 .addReg(Cond[1].getReg(), 0, SubIdx); 1634 } 1635 1636 static unsigned getCRBitValue(unsigned CRBit) { 1637 unsigned Ret = 4; 1638 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1639 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1640 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1641 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1642 Ret = 3; 1643 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1644 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1645 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1646 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1647 Ret = 2; 1648 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1649 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1650 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1651 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1652 Ret = 1; 1653 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1654 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1655 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1656 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1657 Ret = 0; 1658 1659 assert(Ret != 4 && "Invalid CR bit register"); 1660 return Ret; 1661 } 1662 1663 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1664 MachineBasicBlock::iterator I, 1665 const DebugLoc &DL, MCRegister DestReg, 1666 MCRegister SrcReg, bool KillSrc) const { 1667 // We can end up with self copies and similar things as a result of VSX copy 1668 // legalization. Promote them here. 1669 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1670 if (PPC::F8RCRegClass.contains(DestReg) && 1671 PPC::VSRCRegClass.contains(SrcReg)) { 1672 MCRegister SuperReg = 1673 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1674 1675 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1676 llvm_unreachable("nop VSX copy"); 1677 1678 DestReg = SuperReg; 1679 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1680 PPC::VSRCRegClass.contains(DestReg)) { 1681 MCRegister SuperReg = 1682 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1683 1684 if (VSXSelfCopyCrash && DestReg == SuperReg) 1685 llvm_unreachable("nop VSX copy"); 1686 1687 SrcReg = SuperReg; 1688 } 1689 1690 // Different class register copy 1691 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1692 PPC::GPRCRegClass.contains(DestReg)) { 1693 MCRegister CRReg = getCRFromCRBit(SrcReg); 1694 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1695 getKillRegState(KillSrc); 1696 // Rotate the CR bit in the CR fields to be the least significant bit and 1697 // then mask with 0x1 (MB = ME = 31). 1698 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1699 .addReg(DestReg, RegState::Kill) 1700 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1701 .addImm(31) 1702 .addImm(31); 1703 return; 1704 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1705 (PPC::G8RCRegClass.contains(DestReg) || 1706 PPC::GPRCRegClass.contains(DestReg))) { 1707 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1708 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1709 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1710 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1711 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1712 getKillRegState(KillSrc); 1713 if (CRNum == 7) 1714 return; 1715 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1716 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1717 .addReg(DestReg, RegState::Kill) 1718 .addImm(CRNum * 4 + 4) 1719 .addImm(28) 1720 .addImm(31); 1721 return; 1722 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1723 PPC::VSFRCRegClass.contains(DestReg)) { 1724 assert(Subtarget.hasDirectMove() && 1725 "Subtarget doesn't support directmove, don't know how to copy."); 1726 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1727 NumGPRtoVSRSpill++; 1728 getKillRegState(KillSrc); 1729 return; 1730 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1731 PPC::G8RCRegClass.contains(DestReg)) { 1732 assert(Subtarget.hasDirectMove() && 1733 "Subtarget doesn't support directmove, don't know how to copy."); 1734 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1735 getKillRegState(KillSrc); 1736 return; 1737 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1738 PPC::GPRCRegClass.contains(DestReg)) { 1739 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1740 getKillRegState(KillSrc); 1741 return; 1742 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1743 PPC::SPERCRegClass.contains(DestReg)) { 1744 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1745 getKillRegState(KillSrc); 1746 return; 1747 } 1748 1749 unsigned Opc; 1750 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1751 Opc = PPC::OR; 1752 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1753 Opc = PPC::OR8; 1754 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1755 Opc = PPC::FMR; 1756 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1757 Opc = PPC::MCRF; 1758 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1759 Opc = PPC::VOR; 1760 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1761 // There are two different ways this can be done: 1762 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1763 // issue in VSU pipeline 0. 1764 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1765 // can go to either pipeline. 1766 // We'll always use xxlor here, because in practically all cases where 1767 // copies are generated, they are close enough to some use that the 1768 // lower-latency form is preferable. 1769 Opc = PPC::XXLOR; 1770 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1771 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1772 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1773 else if (Subtarget.pairedVectorMemops() && 1774 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1775 if (SrcReg > PPC::VSRp15) 1776 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1777 else 1778 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1779 if (DestReg > PPC::VSRp15) 1780 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1781 else 1782 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1783 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1784 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1785 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1786 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1787 return; 1788 } 1789 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1790 Opc = PPC::CROR; 1791 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1792 Opc = PPC::EVOR; 1793 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1794 PPC::UACCRCRegClass.contains(DestReg)) && 1795 (PPC::ACCRCRegClass.contains(SrcReg) || 1796 PPC::UACCRCRegClass.contains(SrcReg))) { 1797 // If primed, de-prime the source register, copy the individual registers 1798 // and prime the destination if needed. The vector subregisters are 1799 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1800 // source is primed, we need to re-prime it after the copy as well. 1801 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1802 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1803 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1804 MCRegister VSLSrcReg = 1805 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1806 MCRegister VSLDestReg = 1807 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1808 if (SrcPrimed) 1809 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1810 for (unsigned Idx = 0; Idx < 4; Idx++) 1811 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1812 .addReg(VSLSrcReg + Idx) 1813 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1814 if (DestPrimed) 1815 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1816 if (SrcPrimed && !KillSrc) 1817 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1818 return; 1819 } else if (PPC::G8pRCRegClass.contains(DestReg) && 1820 PPC::G8pRCRegClass.contains(SrcReg)) { 1821 // TODO: Handle G8RC to G8pRC (and vice versa) copy. 1822 unsigned DestRegIdx = DestReg - PPC::G8p0; 1823 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; 1824 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; 1825 unsigned SrcRegIdx = SrcReg - PPC::G8p0; 1826 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; 1827 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; 1828 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) 1829 .addReg(SrcRegSub0) 1830 .addReg(SrcRegSub0, getKillRegState(KillSrc)); 1831 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) 1832 .addReg(SrcRegSub1) 1833 .addReg(SrcRegSub1, getKillRegState(KillSrc)); 1834 return; 1835 } else 1836 llvm_unreachable("Impossible reg-to-reg copy"); 1837 1838 const MCInstrDesc &MCID = get(Opc); 1839 if (MCID.getNumOperands() == 3) 1840 BuildMI(MBB, I, DL, MCID, DestReg) 1841 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1842 else 1843 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1844 } 1845 1846 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1847 int OpcodeIndex = 0; 1848 1849 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1850 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1851 OpcodeIndex = SOK_Int4Spill; 1852 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1853 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1854 OpcodeIndex = SOK_Int8Spill; 1855 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1856 OpcodeIndex = SOK_Float8Spill; 1857 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1858 OpcodeIndex = SOK_Float4Spill; 1859 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1860 OpcodeIndex = SOK_SPESpill; 1861 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1862 OpcodeIndex = SOK_CRSpill; 1863 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1864 OpcodeIndex = SOK_CRBitSpill; 1865 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1866 OpcodeIndex = SOK_VRVectorSpill; 1867 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1868 OpcodeIndex = SOK_VSXVectorSpill; 1869 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1870 OpcodeIndex = SOK_VectorFloat8Spill; 1871 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1872 OpcodeIndex = SOK_VectorFloat4Spill; 1873 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1874 OpcodeIndex = SOK_SpillToVSR; 1875 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1876 assert(Subtarget.pairedVectorMemops() && 1877 "Register unexpected when paired memops are disabled."); 1878 OpcodeIndex = SOK_AccumulatorSpill; 1879 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1880 assert(Subtarget.pairedVectorMemops() && 1881 "Register unexpected when paired memops are disabled."); 1882 OpcodeIndex = SOK_UAccumulatorSpill; 1883 } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { 1884 assert(Subtarget.pairedVectorMemops() && 1885 "Register unexpected when paired memops are disabled."); 1886 OpcodeIndex = SOK_WAccumulatorSpill; 1887 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1888 assert(Subtarget.pairedVectorMemops() && 1889 "Register unexpected when paired memops are disabled."); 1890 OpcodeIndex = SOK_PairedVecSpill; 1891 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { 1892 OpcodeIndex = SOK_PairedG8Spill; 1893 } else { 1894 llvm_unreachable("Unknown regclass!"); 1895 } 1896 return OpcodeIndex; 1897 } 1898 1899 unsigned 1900 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1901 ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); 1902 return OpcodesForSpill[getSpillIndex(RC)]; 1903 } 1904 1905 unsigned 1906 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1907 ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); 1908 return OpcodesForSpill[getSpillIndex(RC)]; 1909 } 1910 1911 void PPCInstrInfo::StoreRegToStackSlot( 1912 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1913 const TargetRegisterClass *RC, 1914 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1915 unsigned Opcode = getStoreOpcodeForSpill(RC); 1916 DebugLoc DL; 1917 1918 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1919 FuncInfo->setHasSpills(); 1920 1921 NewMIs.push_back(addFrameReference( 1922 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1923 FrameIdx)); 1924 1925 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1926 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1927 FuncInfo->setSpillsCR(); 1928 1929 if (isXFormMemOp(Opcode)) 1930 FuncInfo->setHasNonRISpills(); 1931 } 1932 1933 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1934 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1935 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1936 const TargetRegisterInfo *TRI) const { 1937 MachineFunction &MF = *MBB.getParent(); 1938 SmallVector<MachineInstr *, 4> NewMIs; 1939 1940 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1941 1942 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1943 MBB.insert(MI, NewMIs[i]); 1944 1945 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1946 MachineMemOperand *MMO = MF.getMachineMemOperand( 1947 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1948 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1949 MFI.getObjectAlign(FrameIdx)); 1950 NewMIs.back()->addMemOperand(MF, MMO); 1951 } 1952 1953 void PPCInstrInfo::storeRegToStackSlot( 1954 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 1955 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1956 const TargetRegisterInfo *TRI, Register VReg) const { 1957 // We need to avoid a situation in which the value from a VRRC register is 1958 // spilled using an Altivec instruction and reloaded into a VSRC register 1959 // using a VSX instruction. The issue with this is that the VSX 1960 // load/store instructions swap the doublewords in the vector and the Altivec 1961 // ones don't. The register classes on the spill/reload may be different if 1962 // the register is defined using an Altivec instruction and is then used by a 1963 // VSX instruction. 1964 RC = updatedRC(RC); 1965 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1966 } 1967 1968 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1969 unsigned DestReg, int FrameIdx, 1970 const TargetRegisterClass *RC, 1971 SmallVectorImpl<MachineInstr *> &NewMIs) 1972 const { 1973 unsigned Opcode = getLoadOpcodeForSpill(RC); 1974 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1975 FrameIdx)); 1976 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1977 1978 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1979 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1980 FuncInfo->setSpillsCR(); 1981 1982 if (isXFormMemOp(Opcode)) 1983 FuncInfo->setHasNonRISpills(); 1984 } 1985 1986 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1987 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1988 int FrameIdx, const TargetRegisterClass *RC, 1989 const TargetRegisterInfo *TRI) const { 1990 MachineFunction &MF = *MBB.getParent(); 1991 SmallVector<MachineInstr*, 4> NewMIs; 1992 DebugLoc DL; 1993 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1994 1995 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1996 FuncInfo->setHasSpills(); 1997 1998 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1999 2000 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 2001 MBB.insert(MI, NewMIs[i]); 2002 2003 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2004 MachineMemOperand *MMO = MF.getMachineMemOperand( 2005 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2006 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2007 MFI.getObjectAlign(FrameIdx)); 2008 NewMIs.back()->addMemOperand(MF, MMO); 2009 } 2010 2011 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2012 MachineBasicBlock::iterator MI, 2013 Register DestReg, int FrameIdx, 2014 const TargetRegisterClass *RC, 2015 const TargetRegisterInfo *TRI, 2016 Register VReg) const { 2017 // We need to avoid a situation in which the value from a VRRC register is 2018 // spilled using an Altivec instruction and reloaded into a VSRC register 2019 // using a VSX instruction. The issue with this is that the VSX 2020 // load/store instructions swap the doublewords in the vector and the Altivec 2021 // ones don't. The register classes on the spill/reload may be different if 2022 // the register is defined using an Altivec instruction and is then used by a 2023 // VSX instruction. 2024 RC = updatedRC(RC); 2025 2026 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2027 } 2028 2029 bool PPCInstrInfo:: 2030 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2031 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2032 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2033 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2034 else 2035 // Leave the CR# the same, but invert the condition. 2036 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2037 return false; 2038 } 2039 2040 // For some instructions, it is legal to fold ZERO into the RA register field. 2041 // This function performs that fold by replacing the operand with PPC::ZERO, 2042 // it does not consider whether the load immediate zero is no longer in use. 2043 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2044 Register Reg) const { 2045 // A zero immediate should always be loaded with a single li. 2046 unsigned DefOpc = DefMI.getOpcode(); 2047 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2048 return false; 2049 if (!DefMI.getOperand(1).isImm()) 2050 return false; 2051 if (DefMI.getOperand(1).getImm() != 0) 2052 return false; 2053 2054 // Note that we cannot here invert the arguments of an isel in order to fold 2055 // a ZERO into what is presented as the second argument. All we have here 2056 // is the condition bit, and that might come from a CR-logical bit operation. 2057 2058 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2059 2060 // Only fold into real machine instructions. 2061 if (UseMCID.isPseudo()) 2062 return false; 2063 2064 // We need to find which of the User's operands is to be folded, that will be 2065 // the operand that matches the given register ID. 2066 unsigned UseIdx; 2067 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2068 if (UseMI.getOperand(UseIdx).isReg() && 2069 UseMI.getOperand(UseIdx).getReg() == Reg) 2070 break; 2071 2072 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2073 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2074 2075 const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; 2076 2077 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2078 // register (which might also be specified as a pointer class kind). 2079 if (UseInfo->isLookupPtrRegClass()) { 2080 if (UseInfo->RegClass /* Kind */ != 1) 2081 return false; 2082 } else { 2083 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2084 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2085 return false; 2086 } 2087 2088 // Make sure this is not tied to an output register (or otherwise 2089 // constrained). This is true for ST?UX registers, for example, which 2090 // are tied to their output registers. 2091 if (UseInfo->Constraints != 0) 2092 return false; 2093 2094 MCRegister ZeroReg; 2095 if (UseInfo->isLookupPtrRegClass()) { 2096 bool isPPC64 = Subtarget.isPPC64(); 2097 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2098 } else { 2099 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2100 PPC::ZERO8 : PPC::ZERO; 2101 } 2102 2103 LLVM_DEBUG(dbgs() << "Folded immediate zero for: "); 2104 LLVM_DEBUG(UseMI.dump()); 2105 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2106 LLVM_DEBUG(dbgs() << "Into: "); 2107 LLVM_DEBUG(UseMI.dump()); 2108 return true; 2109 } 2110 2111 // Folds zero into instructions which have a load immediate zero as an operand 2112 // but also recognize zero as immediate zero. If the definition of the load 2113 // has no more users it is deleted. 2114 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2115 Register Reg, MachineRegisterInfo *MRI) const { 2116 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2117 if (MRI->use_nodbg_empty(Reg)) 2118 DefMI.eraseFromParent(); 2119 return Changed; 2120 } 2121 2122 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2123 for (MachineInstr &MI : MBB) 2124 if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8)) 2125 return true; 2126 return false; 2127 } 2128 2129 // We should make sure that, if we're going to predicate both sides of a 2130 // condition (a diamond), that both sides don't define the counter register. We 2131 // can predicate counter-decrement-based branches, but while that predicates 2132 // the branching, it does not predicate the counter decrement. If we tried to 2133 // merge the triangle into one predicated block, we'd decrement the counter 2134 // twice. 2135 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2136 unsigned NumT, unsigned ExtraT, 2137 MachineBasicBlock &FMBB, 2138 unsigned NumF, unsigned ExtraF, 2139 BranchProbability Probability) const { 2140 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2141 } 2142 2143 2144 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2145 // The predicated branches are identified by their type, not really by the 2146 // explicit presence of a predicate. Furthermore, some of them can be 2147 // predicated more than once. Because if conversion won't try to predicate 2148 // any instruction which already claims to be predicated (by returning true 2149 // here), always return false. In doing so, we let isPredicable() be the 2150 // final word on whether not the instruction can be (further) predicated. 2151 2152 return false; 2153 } 2154 2155 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2156 const MachineBasicBlock *MBB, 2157 const MachineFunction &MF) const { 2158 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2159 // across them, since some FP operations may change content of FPSCR. 2160 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2161 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2162 return true; 2163 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2164 } 2165 2166 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2167 ArrayRef<MachineOperand> Pred) const { 2168 unsigned OpC = MI.getOpcode(); 2169 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2170 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2171 bool isPPC64 = Subtarget.isPPC64(); 2172 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2173 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2174 // Need add Def and Use for CTR implicit operand. 2175 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2176 .addReg(Pred[1].getReg(), RegState::Implicit) 2177 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2178 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2179 MI.setDesc(get(PPC::BCLR)); 2180 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2181 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2182 MI.setDesc(get(PPC::BCLRn)); 2183 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2184 } else { 2185 MI.setDesc(get(PPC::BCCLR)); 2186 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2187 .addImm(Pred[0].getImm()) 2188 .add(Pred[1]); 2189 } 2190 2191 return true; 2192 } else if (OpC == PPC::B) { 2193 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2194 bool isPPC64 = Subtarget.isPPC64(); 2195 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2196 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2197 // Need add Def and Use for CTR implicit operand. 2198 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2199 .addReg(Pred[1].getReg(), RegState::Implicit) 2200 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2201 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2202 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2203 MI.removeOperand(0); 2204 2205 MI.setDesc(get(PPC::BC)); 2206 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2207 .add(Pred[1]) 2208 .addMBB(MBB); 2209 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2210 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2211 MI.removeOperand(0); 2212 2213 MI.setDesc(get(PPC::BCn)); 2214 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2215 .add(Pred[1]) 2216 .addMBB(MBB); 2217 } else { 2218 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2219 MI.removeOperand(0); 2220 2221 MI.setDesc(get(PPC::BCC)); 2222 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2223 .addImm(Pred[0].getImm()) 2224 .add(Pred[1]) 2225 .addMBB(MBB); 2226 } 2227 2228 return true; 2229 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2230 OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || 2231 OpC == PPC::BCTRL8_RM) { 2232 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2233 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2234 2235 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || 2236 OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; 2237 bool isPPC64 = Subtarget.isPPC64(); 2238 2239 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2240 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2241 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2242 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2243 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2244 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2245 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2246 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2247 } else { 2248 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2249 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2250 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2251 .addImm(Pred[0].getImm()) 2252 .add(Pred[1]); 2253 } 2254 2255 // Need add Def and Use for LR implicit operand. 2256 if (setLR) 2257 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2258 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2259 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2260 if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) 2261 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2262 .addReg(PPC::RM, RegState::ImplicitDefine); 2263 2264 return true; 2265 } 2266 2267 return false; 2268 } 2269 2270 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2271 ArrayRef<MachineOperand> Pred2) const { 2272 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2273 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2274 2275 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2276 return false; 2277 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2278 return false; 2279 2280 // P1 can only subsume P2 if they test the same condition register. 2281 if (Pred1[1].getReg() != Pred2[1].getReg()) 2282 return false; 2283 2284 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2285 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2286 2287 if (P1 == P2) 2288 return true; 2289 2290 // Does P1 subsume P2, e.g. GE subsumes GT. 2291 if (P1 == PPC::PRED_LE && 2292 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2293 return true; 2294 if (P1 == PPC::PRED_GE && 2295 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2296 return true; 2297 2298 return false; 2299 } 2300 2301 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2302 std::vector<MachineOperand> &Pred, 2303 bool SkipDead) const { 2304 // Note: At the present time, the contents of Pred from this function is 2305 // unused by IfConversion. This implementation follows ARM by pushing the 2306 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2307 // predicate, instructions defining CTR or CTR8 are also included as 2308 // predicate-defining instructions. 2309 2310 const TargetRegisterClass *RCs[] = 2311 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2312 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2313 2314 bool Found = false; 2315 for (const MachineOperand &MO : MI.operands()) { 2316 for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { 2317 const TargetRegisterClass *RC = RCs[c]; 2318 if (MO.isReg()) { 2319 if (MO.isDef() && RC->contains(MO.getReg())) { 2320 Pred.push_back(MO); 2321 Found = true; 2322 } 2323 } else if (MO.isRegMask()) { 2324 for (MCPhysReg R : *RC) 2325 if (MO.clobbersPhysReg(R)) { 2326 Pred.push_back(MO); 2327 Found = true; 2328 } 2329 } 2330 } 2331 } 2332 2333 return Found; 2334 } 2335 2336 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2337 Register &SrcReg2, int64_t &Mask, 2338 int64_t &Value) const { 2339 unsigned Opc = MI.getOpcode(); 2340 2341 switch (Opc) { 2342 default: return false; 2343 case PPC::CMPWI: 2344 case PPC::CMPLWI: 2345 case PPC::CMPDI: 2346 case PPC::CMPLDI: 2347 SrcReg = MI.getOperand(1).getReg(); 2348 SrcReg2 = 0; 2349 Value = MI.getOperand(2).getImm(); 2350 Mask = 0xFFFF; 2351 return true; 2352 case PPC::CMPW: 2353 case PPC::CMPLW: 2354 case PPC::CMPD: 2355 case PPC::CMPLD: 2356 case PPC::FCMPUS: 2357 case PPC::FCMPUD: 2358 SrcReg = MI.getOperand(1).getReg(); 2359 SrcReg2 = MI.getOperand(2).getReg(); 2360 Value = 0; 2361 Mask = 0; 2362 return true; 2363 } 2364 } 2365 2366 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2367 Register SrcReg2, int64_t Mask, 2368 int64_t Value, 2369 const MachineRegisterInfo *MRI) const { 2370 if (DisableCmpOpt) 2371 return false; 2372 2373 int OpC = CmpInstr.getOpcode(); 2374 Register CRReg = CmpInstr.getOperand(0).getReg(); 2375 2376 // FP record forms set CR1 based on the exception status bits, not a 2377 // comparison with zero. 2378 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2379 return false; 2380 2381 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2382 // The record forms set the condition register based on a signed comparison 2383 // with zero (so says the ISA manual). This is not as straightforward as it 2384 // seems, however, because this is always a 64-bit comparison on PPC64, even 2385 // for instructions that are 32-bit in nature (like slw for example). 2386 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2387 // for equality checks (as those don't depend on the sign). On PPC64, 2388 // we are restricted to equality for unsigned 64-bit comparisons and for 2389 // signed 32-bit comparisons the applicability is more restricted. 2390 bool isPPC64 = Subtarget.isPPC64(); 2391 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2392 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2393 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2394 2395 // Look through copies unless that gets us to a physical register. 2396 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2397 if (ActualSrc.isVirtual()) 2398 SrcReg = ActualSrc; 2399 2400 // Get the unique definition of SrcReg. 2401 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2402 if (!MI) return false; 2403 2404 bool equalityOnly = false; 2405 bool noSub = false; 2406 if (isPPC64) { 2407 if (is32BitSignedCompare) { 2408 // We can perform this optimization only if SrcReg is sign-extending. 2409 if (isSignExtended(SrcReg, MRI)) 2410 noSub = true; 2411 else 2412 return false; 2413 } else if (is32BitUnsignedCompare) { 2414 // We can perform this optimization, equality only, if SrcReg is 2415 // zero-extending. 2416 if (isZeroExtended(SrcReg, MRI)) { 2417 noSub = true; 2418 equalityOnly = true; 2419 } else 2420 return false; 2421 } else 2422 equalityOnly = is64BitUnsignedCompare; 2423 } else 2424 equalityOnly = is32BitUnsignedCompare; 2425 2426 if (equalityOnly) { 2427 // We need to check the uses of the condition register in order to reject 2428 // non-equality comparisons. 2429 for (MachineRegisterInfo::use_instr_iterator 2430 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2431 I != IE; ++I) { 2432 MachineInstr *UseMI = &*I; 2433 if (UseMI->getOpcode() == PPC::BCC) { 2434 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2435 unsigned PredCond = PPC::getPredicateCondition(Pred); 2436 // We ignore hint bits when checking for non-equality comparisons. 2437 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2438 return false; 2439 } else if (UseMI->getOpcode() == PPC::ISEL || 2440 UseMI->getOpcode() == PPC::ISEL8) { 2441 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2442 if (SubIdx != PPC::sub_eq) 2443 return false; 2444 } else 2445 return false; 2446 } 2447 } 2448 2449 MachineBasicBlock::iterator I = CmpInstr; 2450 2451 // Scan forward to find the first use of the compare. 2452 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2453 ++I) { 2454 bool FoundUse = false; 2455 for (MachineRegisterInfo::use_instr_iterator 2456 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2457 J != JE; ++J) 2458 if (&*J == &*I) { 2459 FoundUse = true; 2460 break; 2461 } 2462 2463 if (FoundUse) 2464 break; 2465 } 2466 2467 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2468 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2469 2470 // There are two possible candidates which can be changed to set CR[01]. 2471 // One is MI, the other is a SUB instruction. 2472 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2473 MachineInstr *Sub = nullptr; 2474 if (SrcReg2 != 0) 2475 // MI is not a candidate for CMPrr. 2476 MI = nullptr; 2477 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2478 // same BB as the comparison. This is to allow the check below to avoid calls 2479 // (and other explicit clobbers); instead we should really check for these 2480 // more explicitly (in at least a few predecessors). 2481 else if (MI->getParent() != CmpInstr.getParent()) 2482 return false; 2483 else if (Value != 0) { 2484 // The record-form instructions set CR bit based on signed comparison 2485 // against 0. We try to convert a compare against 1 or -1 into a compare 2486 // against 0 to exploit record-form instructions. For example, we change 2487 // the condition "greater than -1" into "greater than or equal to 0" 2488 // and "less than 1" into "less than or equal to 0". 2489 2490 // Since we optimize comparison based on a specific branch condition, 2491 // we don't optimize if condition code is used by more than once. 2492 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2493 return false; 2494 2495 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2496 if (UseMI->getOpcode() != PPC::BCC) 2497 return false; 2498 2499 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2500 unsigned PredCond = PPC::getPredicateCondition(Pred); 2501 unsigned PredHint = PPC::getPredicateHint(Pred); 2502 int16_t Immed = (int16_t)Value; 2503 2504 // When modifying the condition in the predicate, we propagate hint bits 2505 // from the original predicate to the new one. 2506 if (Immed == -1 && PredCond == PPC::PRED_GT) 2507 // We convert "greater than -1" into "greater than or equal to 0", 2508 // since we are assuming signed comparison by !equalityOnly 2509 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2510 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2511 // We convert "less than or equal to -1" into "less than 0". 2512 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2513 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2514 // We convert "less than 1" into "less than or equal to 0". 2515 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2516 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2517 // We convert "greater than or equal to 1" into "greater than 0". 2518 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2519 else 2520 return false; 2521 2522 // Convert the comparison and its user to a compare against zero with the 2523 // appropriate predicate on the branch. Zero comparison might provide 2524 // optimization opportunities post-RA (see optimization in 2525 // PPCPreEmitPeephole.cpp). 2526 UseMI->getOperand(0).setImm(Pred); 2527 CmpInstr.getOperand(2).setImm(0); 2528 } 2529 2530 // Search for Sub. 2531 --I; 2532 2533 // Get ready to iterate backward from CmpInstr. 2534 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2535 2536 for (; I != E && !noSub; --I) { 2537 const MachineInstr &Instr = *I; 2538 unsigned IOpC = Instr.getOpcode(); 2539 2540 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2541 Instr.readsRegister(PPC::CR0, TRI))) 2542 // This instruction modifies or uses the record condition register after 2543 // the one we want to change. While we could do this transformation, it 2544 // would likely not be profitable. This transformation removes one 2545 // instruction, and so even forcing RA to generate one move probably 2546 // makes it unprofitable. 2547 return false; 2548 2549 // Check whether CmpInstr can be made redundant by the current instruction. 2550 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2551 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2552 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2553 ((Instr.getOperand(1).getReg() == SrcReg && 2554 Instr.getOperand(2).getReg() == SrcReg2) || 2555 (Instr.getOperand(1).getReg() == SrcReg2 && 2556 Instr.getOperand(2).getReg() == SrcReg))) { 2557 Sub = &*I; 2558 break; 2559 } 2560 2561 if (I == B) 2562 // The 'and' is below the comparison instruction. 2563 return false; 2564 } 2565 2566 // Return false if no candidates exist. 2567 if (!MI && !Sub) 2568 return false; 2569 2570 // The single candidate is called MI. 2571 if (!MI) MI = Sub; 2572 2573 int NewOpC = -1; 2574 int MIOpC = MI->getOpcode(); 2575 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2576 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2577 NewOpC = MIOpC; 2578 else { 2579 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2580 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2581 NewOpC = MIOpC; 2582 } 2583 2584 // FIXME: On the non-embedded POWER architectures, only some of the record 2585 // forms are fast, and we should use only the fast ones. 2586 2587 // The defining instruction has a record form (or is already a record 2588 // form). It is possible, however, that we'll need to reverse the condition 2589 // code of the users. 2590 if (NewOpC == -1) 2591 return false; 2592 2593 // This transformation should not be performed if `nsw` is missing and is not 2594 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2595 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2596 // CRReg can reflect if compared values are equal, this optz is still valid. 2597 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2598 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2599 return false; 2600 2601 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2602 // needs to be updated to be based on SUB. Push the condition code 2603 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2604 // condition code of these operands will be modified. 2605 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2606 // comparison against 0, which may modify predicate. 2607 bool ShouldSwap = false; 2608 if (Sub && Value == 0) { 2609 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2610 Sub->getOperand(2).getReg() == SrcReg; 2611 2612 // The operands to subf are the opposite of sub, so only in the fixed-point 2613 // case, invert the order. 2614 ShouldSwap = !ShouldSwap; 2615 } 2616 2617 if (ShouldSwap) 2618 for (MachineRegisterInfo::use_instr_iterator 2619 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2620 I != IE; ++I) { 2621 MachineInstr *UseMI = &*I; 2622 if (UseMI->getOpcode() == PPC::BCC) { 2623 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2624 unsigned PredCond = PPC::getPredicateCondition(Pred); 2625 assert((!equalityOnly || 2626 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2627 "Invalid predicate for equality-only optimization"); 2628 (void)PredCond; // To suppress warning in release build. 2629 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2630 PPC::getSwappedPredicate(Pred))); 2631 } else if (UseMI->getOpcode() == PPC::ISEL || 2632 UseMI->getOpcode() == PPC::ISEL8) { 2633 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2634 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2635 "Invalid CR bit for equality-only optimization"); 2636 2637 if (NewSubReg == PPC::sub_lt) 2638 NewSubReg = PPC::sub_gt; 2639 else if (NewSubReg == PPC::sub_gt) 2640 NewSubReg = PPC::sub_lt; 2641 2642 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2643 NewSubReg)); 2644 } else // We need to abort on a user we don't understand. 2645 return false; 2646 } 2647 assert(!(Value != 0 && ShouldSwap) && 2648 "Non-zero immediate support and ShouldSwap" 2649 "may conflict in updating predicate"); 2650 2651 // Create a new virtual register to hold the value of the CR set by the 2652 // record-form instruction. If the instruction was not previously in 2653 // record form, then set the kill flag on the CR. 2654 CmpInstr.eraseFromParent(); 2655 2656 MachineBasicBlock::iterator MII = MI; 2657 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2658 get(TargetOpcode::COPY), CRReg) 2659 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2660 2661 // Even if CR0 register were dead before, it is alive now since the 2662 // instruction we just built uses it. 2663 MI->clearRegisterDeads(PPC::CR0); 2664 2665 if (MIOpC != NewOpC) { 2666 // We need to be careful here: we're replacing one instruction with 2667 // another, and we need to make sure that we get all of the right 2668 // implicit uses and defs. On the other hand, the caller may be holding 2669 // an iterator to this instruction, and so we can't delete it (this is 2670 // specifically the case if this is the instruction directly after the 2671 // compare). 2672 2673 // Rotates are expensive instructions. If we're emitting a record-form 2674 // rotate that can just be an andi/andis, we should just emit that. 2675 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2676 Register GPRRes = MI->getOperand(0).getReg(); 2677 int64_t SH = MI->getOperand(2).getImm(); 2678 int64_t MB = MI->getOperand(3).getImm(); 2679 int64_t ME = MI->getOperand(4).getImm(); 2680 // We can only do this if both the start and end of the mask are in the 2681 // same halfword. 2682 bool MBInLoHWord = MB >= 16; 2683 bool MEInLoHWord = ME >= 16; 2684 uint64_t Mask = ~0LLU; 2685 2686 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2687 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2688 // The mask value needs to shift right 16 if we're emitting andis. 2689 Mask >>= MBInLoHWord ? 0 : 16; 2690 NewOpC = MIOpC == PPC::RLWINM 2691 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2692 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2693 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2694 (ME - MB + 1 == SH) && (MB >= 16)) { 2695 // If we are rotating by the exact number of bits as are in the mask 2696 // and the mask is in the least significant bits of the register, 2697 // that's just an andis. (as long as the GPR result has no uses). 2698 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2699 Mask >>= 16; 2700 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2701 } 2702 // If we've set the mask, we can transform. 2703 if (Mask != ~0LLU) { 2704 MI->removeOperand(4); 2705 MI->removeOperand(3); 2706 MI->getOperand(2).setImm(Mask); 2707 NumRcRotatesConvertedToRcAnd++; 2708 } 2709 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2710 int64_t MB = MI->getOperand(3).getImm(); 2711 if (MB >= 48) { 2712 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2713 NewOpC = PPC::ANDI8_rec; 2714 MI->removeOperand(3); 2715 MI->getOperand(2).setImm(Mask); 2716 NumRcRotatesConvertedToRcAnd++; 2717 } 2718 } 2719 2720 const MCInstrDesc &NewDesc = get(NewOpC); 2721 MI->setDesc(NewDesc); 2722 2723 for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { 2724 if (!MI->definesRegister(ImpDef)) { 2725 MI->addOperand(*MI->getParent()->getParent(), 2726 MachineOperand::CreateReg(ImpDef, true, true)); 2727 } 2728 } 2729 for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { 2730 if (!MI->readsRegister(ImpUse)) { 2731 MI->addOperand(*MI->getParent()->getParent(), 2732 MachineOperand::CreateReg(ImpUse, false, true)); 2733 } 2734 } 2735 } 2736 assert(MI->definesRegister(PPC::CR0) && 2737 "Record-form instruction does not define cr0?"); 2738 2739 // Modify the condition code of operands in OperandsToUpdate. 2740 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2741 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2742 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2743 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2744 2745 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2746 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2747 2748 return true; 2749 } 2750 2751 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { 2752 MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); 2753 if (MRI->isSSA()) 2754 return false; 2755 2756 Register SrcReg, SrcReg2; 2757 int64_t CmpMask, CmpValue; 2758 if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue)) 2759 return false; 2760 2761 // Try to optimize the comparison against 0. 2762 if (CmpValue || !CmpMask || SrcReg2) 2763 return false; 2764 2765 // The record forms set the condition register based on a signed comparison 2766 // with zero (see comments in optimizeCompareInstr). Since we can't do the 2767 // equality checks in post-RA, we are more restricted on a unsigned 2768 // comparison. 2769 unsigned Opc = CmpMI.getOpcode(); 2770 if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) 2771 return false; 2772 2773 // The record forms are always based on a 64-bit comparison on PPC64 2774 // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit 2775 // comparison. Since we can't do the equality checks in post-RA, we bail out 2776 // the case. 2777 if (Subtarget.isPPC64() && Opc == PPC::CMPWI) 2778 return false; 2779 2780 // CmpMI can't be deleted if it has implicit def. 2781 if (CmpMI.hasImplicitDef()) 2782 return false; 2783 2784 bool SrcRegHasOtherUse = false; 2785 MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse); 2786 if (!SrcMI || !SrcMI->definesRegister(SrcReg)) 2787 return false; 2788 2789 MachineOperand RegMO = CmpMI.getOperand(0); 2790 Register CRReg = RegMO.getReg(); 2791 if (CRReg != PPC::CR0) 2792 return false; 2793 2794 // Make sure there is no def/use of CRReg between SrcMI and CmpMI. 2795 bool SeenUseOfCRReg = false; 2796 bool IsCRRegKilled = false; 2797 if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled, 2798 SeenUseOfCRReg) || 2799 SrcMI->definesRegister(CRReg) || SeenUseOfCRReg) 2800 return false; 2801 2802 int SrcMIOpc = SrcMI->getOpcode(); 2803 int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc); 2804 if (NewOpC == -1) 2805 return false; 2806 2807 LLVM_DEBUG(dbgs() << "Replace Instr: "); 2808 LLVM_DEBUG(SrcMI->dump()); 2809 2810 const MCInstrDesc &NewDesc = get(NewOpC); 2811 SrcMI->setDesc(NewDesc); 2812 MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) 2813 .addReg(CRReg, RegState::ImplicitDefine); 2814 SrcMI->clearRegisterDeads(CRReg); 2815 2816 assert(SrcMI->definesRegister(PPC::CR0) && 2817 "Record-form instruction does not define cr0?"); 2818 2819 LLVM_DEBUG(dbgs() << "with: "); 2820 LLVM_DEBUG(SrcMI->dump()); 2821 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 2822 LLVM_DEBUG(CmpMI.dump()); 2823 return true; 2824 } 2825 2826 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2827 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2828 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2829 const TargetRegisterInfo *TRI) const { 2830 const MachineOperand *BaseOp; 2831 OffsetIsScalable = false; 2832 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2833 return false; 2834 BaseOps.push_back(BaseOp); 2835 return true; 2836 } 2837 2838 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2839 const TargetRegisterInfo *TRI) { 2840 // If this is a volatile load/store, don't mess with it. 2841 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2842 return false; 2843 2844 if (LdSt.getOperand(2).isFI()) 2845 return true; 2846 2847 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2848 // Can't cluster if the instruction modifies the base register 2849 // or it is update form. e.g. ld r2,3(r2) 2850 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2851 return false; 2852 2853 return true; 2854 } 2855 2856 // Only cluster instruction pair that have the same opcode, and they are 2857 // clusterable according to PowerPC specification. 2858 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2859 const PPCSubtarget &Subtarget) { 2860 switch (FirstOpc) { 2861 default: 2862 return false; 2863 case PPC::STD: 2864 case PPC::STFD: 2865 case PPC::STXSD: 2866 case PPC::DFSTOREf64: 2867 return FirstOpc == SecondOpc; 2868 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2869 // 32bit and 64bit instruction selection. They are clusterable pair though 2870 // they are different opcode. 2871 case PPC::STW: 2872 case PPC::STW8: 2873 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2874 } 2875 } 2876 2877 bool PPCInstrInfo::shouldClusterMemOps( 2878 ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1, 2879 bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2, 2880 int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize, 2881 unsigned NumBytes) const { 2882 2883 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2884 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2885 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2886 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2887 "Only base registers and frame indices are supported."); 2888 2889 // ClusterSize means the number of memory operations that will have been 2890 // clustered if this hook returns true. 2891 // Don't cluster memory op if there are already two ops clustered at least. 2892 if (ClusterSize > 2) 2893 return false; 2894 2895 // Cluster the load/store only when they have the same base 2896 // register or FI. 2897 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2898 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2899 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2900 return false; 2901 2902 // Check if the load/store are clusterable according to the PowerPC 2903 // specification. 2904 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2905 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2906 unsigned FirstOpc = FirstLdSt.getOpcode(); 2907 unsigned SecondOpc = SecondLdSt.getOpcode(); 2908 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2909 // Cluster the load/store only when they have the same opcode, and they are 2910 // clusterable opcode according to PowerPC specification. 2911 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2912 return false; 2913 2914 // Can't cluster load/store that have ordered or volatile memory reference. 2915 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2916 !isLdStSafeToCluster(SecondLdSt, TRI)) 2917 return false; 2918 2919 int64_t Offset1 = 0, Offset2 = 0; 2920 unsigned Width1 = 0, Width2 = 0; 2921 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2922 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2923 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2924 Width1 != Width2) 2925 return false; 2926 2927 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2928 "getMemOperandWithOffsetWidth return incorrect base op"); 2929 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2930 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2931 return Offset1 + Width1 == Offset2; 2932 } 2933 2934 /// GetInstSize - Return the number of bytes of code the specified 2935 /// instruction may be. This returns the maximum number of bytes. 2936 /// 2937 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2938 unsigned Opcode = MI.getOpcode(); 2939 2940 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2941 const MachineFunction *MF = MI.getParent()->getParent(); 2942 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2943 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2944 } else if (Opcode == TargetOpcode::STACKMAP) { 2945 StackMapOpers Opers(&MI); 2946 return Opers.getNumPatchBytes(); 2947 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2948 PatchPointOpers Opers(&MI); 2949 return Opers.getNumPatchBytes(); 2950 } else { 2951 return get(Opcode).getSize(); 2952 } 2953 } 2954 2955 std::pair<unsigned, unsigned> 2956 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2957 // PPC always uses a direct mask. 2958 return std::make_pair(TF, 0u); 2959 } 2960 2961 ArrayRef<std::pair<unsigned, const char *>> 2962 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2963 using namespace PPCII; 2964 static const std::pair<unsigned, const char *> TargetFlags[] = { 2965 {MO_PLT, "ppc-plt"}, 2966 {MO_PIC_FLAG, "ppc-pic"}, 2967 {MO_PCREL_FLAG, "ppc-pcrel"}, 2968 {MO_GOT_FLAG, "ppc-got"}, 2969 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2970 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2971 {MO_TPREL_FLAG, "ppc-tprel"}, 2972 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2973 {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, 2974 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2975 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2976 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}, 2977 {MO_LO, "ppc-lo"}, 2978 {MO_HA, "ppc-ha"}, 2979 {MO_TPREL_LO, "ppc-tprel-lo"}, 2980 {MO_TPREL_HA, "ppc-tprel-ha"}, 2981 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2982 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2983 {MO_TOC_LO, "ppc-toc-lo"}, 2984 {MO_TLS, "ppc-tls"}, 2985 {MO_PIC_HA_FLAG, "ppc-ha-pic"}, 2986 {MO_PIC_LO_FLAG, "ppc-lo-pic"}, 2987 {MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel"}, 2988 {MO_TLS_PCREL_FLAG, "ppc-tls-pcrel"}, 2989 {MO_GOT_PCREL_FLAG, "ppc-got-pcrel"}, 2990 }; 2991 return ArrayRef(TargetFlags); 2992 } 2993 2994 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2995 // The VSX versions have the advantage of a full 64-register target whereas 2996 // the FP ones have the advantage of lower latency and higher throughput. So 2997 // what we are after is using the faster instructions in low register pressure 2998 // situations and using the larger register file in high register pressure 2999 // situations. 3000 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 3001 unsigned UpperOpcode, LowerOpcode; 3002 switch (MI.getOpcode()) { 3003 case PPC::DFLOADf32: 3004 UpperOpcode = PPC::LXSSP; 3005 LowerOpcode = PPC::LFS; 3006 break; 3007 case PPC::DFLOADf64: 3008 UpperOpcode = PPC::LXSD; 3009 LowerOpcode = PPC::LFD; 3010 break; 3011 case PPC::DFSTOREf32: 3012 UpperOpcode = PPC::STXSSP; 3013 LowerOpcode = PPC::STFS; 3014 break; 3015 case PPC::DFSTOREf64: 3016 UpperOpcode = PPC::STXSD; 3017 LowerOpcode = PPC::STFD; 3018 break; 3019 case PPC::XFLOADf32: 3020 UpperOpcode = PPC::LXSSPX; 3021 LowerOpcode = PPC::LFSX; 3022 break; 3023 case PPC::XFLOADf64: 3024 UpperOpcode = PPC::LXSDX; 3025 LowerOpcode = PPC::LFDX; 3026 break; 3027 case PPC::XFSTOREf32: 3028 UpperOpcode = PPC::STXSSPX; 3029 LowerOpcode = PPC::STFSX; 3030 break; 3031 case PPC::XFSTOREf64: 3032 UpperOpcode = PPC::STXSDX; 3033 LowerOpcode = PPC::STFDX; 3034 break; 3035 case PPC::LIWAX: 3036 UpperOpcode = PPC::LXSIWAX; 3037 LowerOpcode = PPC::LFIWAX; 3038 break; 3039 case PPC::LIWZX: 3040 UpperOpcode = PPC::LXSIWZX; 3041 LowerOpcode = PPC::LFIWZX; 3042 break; 3043 case PPC::STIWX: 3044 UpperOpcode = PPC::STXSIWX; 3045 LowerOpcode = PPC::STFIWX; 3046 break; 3047 default: 3048 llvm_unreachable("Unknown Operation!"); 3049 } 3050 3051 Register TargetReg = MI.getOperand(0).getReg(); 3052 unsigned Opcode; 3053 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 3054 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 3055 Opcode = LowerOpcode; 3056 else 3057 Opcode = UpperOpcode; 3058 MI.setDesc(get(Opcode)); 3059 return true; 3060 } 3061 3062 static bool isAnImmediateOperand(const MachineOperand &MO) { 3063 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 3064 } 3065 3066 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 3067 auto &MBB = *MI.getParent(); 3068 auto DL = MI.getDebugLoc(); 3069 3070 switch (MI.getOpcode()) { 3071 case PPC::BUILD_UACC: { 3072 MCRegister ACC = MI.getOperand(0).getReg(); 3073 MCRegister UACC = MI.getOperand(1).getReg(); 3074 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 3075 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 3076 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 3077 // FIXME: This can easily be improved to look up to the top of the MBB 3078 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 3079 // we can just re-target any such XXLOR's to DstVSR + offset. 3080 for (int VecNo = 0; VecNo < 4; VecNo++) 3081 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 3082 .addReg(SrcVSR + VecNo) 3083 .addReg(SrcVSR + VecNo); 3084 } 3085 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. 3086 // So after building the 4 copies, we can replace the BUILD_UACC instruction 3087 // with a NOP. 3088 [[fallthrough]]; 3089 } 3090 case PPC::KILL_PAIR: { 3091 MI.setDesc(get(PPC::UNENCODED_NOP)); 3092 MI.removeOperand(1); 3093 MI.removeOperand(0); 3094 return true; 3095 } 3096 case TargetOpcode::LOAD_STACK_GUARD: { 3097 assert(Subtarget.isTargetLinux() && 3098 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3099 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3100 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3101 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3102 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3103 .addImm(Offset) 3104 .addReg(Reg); 3105 return true; 3106 } 3107 case PPC::DFLOADf32: 3108 case PPC::DFLOADf64: 3109 case PPC::DFSTOREf32: 3110 case PPC::DFSTOREf64: { 3111 assert(Subtarget.hasP9Vector() && 3112 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3113 assert(MI.getOperand(2).isReg() && 3114 isAnImmediateOperand(MI.getOperand(1)) && 3115 "D-form op must have register and immediate operands"); 3116 return expandVSXMemPseudo(MI); 3117 } 3118 case PPC::XFLOADf32: 3119 case PPC::XFSTOREf32: 3120 case PPC::LIWAX: 3121 case PPC::LIWZX: 3122 case PPC::STIWX: { 3123 assert(Subtarget.hasP8Vector() && 3124 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3125 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3126 "X-form op must have register and register operands"); 3127 return expandVSXMemPseudo(MI); 3128 } 3129 case PPC::XFLOADf64: 3130 case PPC::XFSTOREf64: { 3131 assert(Subtarget.hasVSX() && 3132 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3133 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3134 "X-form op must have register and register operands"); 3135 return expandVSXMemPseudo(MI); 3136 } 3137 case PPC::SPILLTOVSR_LD: { 3138 Register TargetReg = MI.getOperand(0).getReg(); 3139 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3140 MI.setDesc(get(PPC::DFLOADf64)); 3141 return expandPostRAPseudo(MI); 3142 } 3143 else 3144 MI.setDesc(get(PPC::LD)); 3145 return true; 3146 } 3147 case PPC::SPILLTOVSR_ST: { 3148 Register SrcReg = MI.getOperand(0).getReg(); 3149 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3150 NumStoreSPILLVSRRCAsVec++; 3151 MI.setDesc(get(PPC::DFSTOREf64)); 3152 return expandPostRAPseudo(MI); 3153 } else { 3154 NumStoreSPILLVSRRCAsGpr++; 3155 MI.setDesc(get(PPC::STD)); 3156 } 3157 return true; 3158 } 3159 case PPC::SPILLTOVSR_LDX: { 3160 Register TargetReg = MI.getOperand(0).getReg(); 3161 if (PPC::VSFRCRegClass.contains(TargetReg)) 3162 MI.setDesc(get(PPC::LXSDX)); 3163 else 3164 MI.setDesc(get(PPC::LDX)); 3165 return true; 3166 } 3167 case PPC::SPILLTOVSR_STX: { 3168 Register SrcReg = MI.getOperand(0).getReg(); 3169 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3170 NumStoreSPILLVSRRCAsVec++; 3171 MI.setDesc(get(PPC::STXSDX)); 3172 } else { 3173 NumStoreSPILLVSRRCAsGpr++; 3174 MI.setDesc(get(PPC::STDX)); 3175 } 3176 return true; 3177 } 3178 3179 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. 3180 case PPC::CFENCE: 3181 case PPC::CFENCE8: { 3182 auto Val = MI.getOperand(0).getReg(); 3183 unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW; 3184 BuildMI(MBB, MI, DL, get(CmpOp), PPC::CR7).addReg(Val).addReg(Val); 3185 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3186 .addImm(PPC::PRED_NE_MINUS) 3187 .addReg(PPC::CR7) 3188 .addImm(1); 3189 MI.setDesc(get(PPC::ISYNC)); 3190 MI.removeOperand(0); 3191 return true; 3192 } 3193 } 3194 return false; 3195 } 3196 3197 // Essentially a compile-time implementation of a compare->isel sequence. 3198 // It takes two constants to compare, along with the true/false registers 3199 // and the comparison type (as a subreg to a CR field) and returns one 3200 // of the true/false registers, depending on the comparison results. 3201 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3202 unsigned TrueReg, unsigned FalseReg, 3203 unsigned CRSubReg) { 3204 // Signed comparisons. The immediates are assumed to be sign-extended. 3205 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3206 switch (CRSubReg) { 3207 default: llvm_unreachable("Unknown integer comparison type."); 3208 case PPC::sub_lt: 3209 return Imm1 < Imm2 ? TrueReg : FalseReg; 3210 case PPC::sub_gt: 3211 return Imm1 > Imm2 ? TrueReg : FalseReg; 3212 case PPC::sub_eq: 3213 return Imm1 == Imm2 ? TrueReg : FalseReg; 3214 } 3215 } 3216 // Unsigned comparisons. 3217 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3218 switch (CRSubReg) { 3219 default: llvm_unreachable("Unknown integer comparison type."); 3220 case PPC::sub_lt: 3221 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3222 case PPC::sub_gt: 3223 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3224 case PPC::sub_eq: 3225 return Imm1 == Imm2 ? TrueReg : FalseReg; 3226 } 3227 } 3228 return PPC::NoRegister; 3229 } 3230 3231 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3232 unsigned OpNo, 3233 int64_t Imm) const { 3234 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3235 // Replace the REG with the Immediate. 3236 Register InUseReg = MI.getOperand(OpNo).getReg(); 3237 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3238 3239 // We need to make sure that the MI didn't have any implicit use 3240 // of this REG any more. We don't call MI.implicit_operands().empty() to 3241 // return early, since MI's MCID might be changed in calling context, as a 3242 // result its number of explicit operands may be changed, thus the begin of 3243 // implicit operand is changed. 3244 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3245 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3246 if (UseOpIdx >= 0) { 3247 MachineOperand &MO = MI.getOperand(UseOpIdx); 3248 if (MO.isImplicit()) 3249 // The operands must always be in the following order: 3250 // - explicit reg defs, 3251 // - other explicit operands (reg uses, immediates, etc.), 3252 // - implicit reg defs 3253 // - implicit reg uses 3254 // Therefore, removing the implicit operand won't change the explicit 3255 // operands layout. 3256 MI.removeOperand(UseOpIdx); 3257 } 3258 } 3259 3260 // Replace an instruction with one that materializes a constant (and sets 3261 // CR0 if the original instruction was a record-form instruction). 3262 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3263 const LoadImmediateInfo &LII) const { 3264 // Remove existing operands. 3265 int OperandToKeep = LII.SetCR ? 1 : 0; 3266 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3267 MI.removeOperand(i); 3268 3269 // Replace the instruction. 3270 if (LII.SetCR) { 3271 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3272 // Set the immediate. 3273 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3274 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3275 return; 3276 } 3277 else 3278 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3279 3280 // Set the immediate. 3281 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3282 .addImm(LII.Imm); 3283 } 3284 3285 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3286 bool &SeenIntermediateUse) const { 3287 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3288 "Should be called after register allocation."); 3289 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3290 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3291 It++; 3292 SeenIntermediateUse = false; 3293 for (; It != E; ++It) { 3294 if (It->modifiesRegister(Reg, TRI)) 3295 return &*It; 3296 if (It->readsRegister(Reg, TRI)) 3297 SeenIntermediateUse = true; 3298 } 3299 return nullptr; 3300 } 3301 3302 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, 3303 MachineBasicBlock::iterator MBBI, 3304 const DebugLoc &DL, Register Reg, 3305 int64_t Imm) const { 3306 assert(!MBB.getParent()->getRegInfo().isSSA() && 3307 "Register should be in non-SSA form after RA"); 3308 bool isPPC64 = Subtarget.isPPC64(); 3309 // FIXME: Materialization here is not optimal. 3310 // For some special bit patterns we can use less instructions. 3311 // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. 3312 if (isInt<16>(Imm)) { 3313 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm); 3314 } else if (isInt<32>(Imm)) { 3315 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg) 3316 .addImm(Imm >> 16); 3317 if (Imm & 0xFFFF) 3318 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg) 3319 .addReg(Reg, RegState::Kill) 3320 .addImm(Imm & 0xFFFF); 3321 } else { 3322 assert(isPPC64 && "Materializing 64-bit immediate to single register is " 3323 "only supported in PPC64"); 3324 BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48); 3325 if ((Imm >> 32) & 0xFFFF) 3326 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3327 .addReg(Reg, RegState::Kill) 3328 .addImm((Imm >> 32) & 0xFFFF); 3329 BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg) 3330 .addReg(Reg, RegState::Kill) 3331 .addImm(32) 3332 .addImm(31); 3333 BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg) 3334 .addReg(Reg, RegState::Kill) 3335 .addImm((Imm >> 16) & 0xFFFF); 3336 if (Imm & 0xFFFF) 3337 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3338 .addReg(Reg, RegState::Kill) 3339 .addImm(Imm & 0xFFFF); 3340 } 3341 } 3342 3343 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3344 MachineInstr &MI, 3345 unsigned &OpNoForForwarding, 3346 bool &SeenIntermediateUse) const { 3347 OpNoForForwarding = ~0U; 3348 MachineInstr *DefMI = nullptr; 3349 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3350 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3351 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3352 // within the basic block to see if the register is defined using an 3353 // LI/LI8/ADDI/ADDI8. 3354 if (MRI->isSSA()) { 3355 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3356 if (!MI.getOperand(i).isReg()) 3357 continue; 3358 Register Reg = MI.getOperand(i).getReg(); 3359 if (!Reg.isVirtual()) 3360 continue; 3361 Register TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3362 if (TrueReg.isVirtual()) { 3363 MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg); 3364 if (DefMIForTrueReg->getOpcode() == PPC::LI || 3365 DefMIForTrueReg->getOpcode() == PPC::LI8 || 3366 DefMIForTrueReg->getOpcode() == PPC::ADDI || 3367 DefMIForTrueReg->getOpcode() == PPC::ADDI8) { 3368 OpNoForForwarding = i; 3369 DefMI = DefMIForTrueReg; 3370 // The ADDI and LI operand maybe exist in one instruction at same 3371 // time. we prefer to fold LI operand as LI only has one Imm operand 3372 // and is more possible to be converted. So if current DefMI is 3373 // ADDI/ADDI8, we continue to find possible LI/LI8. 3374 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3375 break; 3376 } 3377 } 3378 } 3379 } else { 3380 // Looking back through the definition for each operand could be expensive, 3381 // so exit early if this isn't an instruction that either has an immediate 3382 // form or is already an immediate form that we can handle. 3383 ImmInstrInfo III; 3384 unsigned Opc = MI.getOpcode(); 3385 bool ConvertibleImmForm = 3386 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3387 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3388 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3389 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3390 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3391 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3392 Opc == PPC::RLWINM8_rec; 3393 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3394 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 3395 : false; 3396 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3397 return nullptr; 3398 3399 // Don't convert or %X, %Y, %Y since that's just a register move. 3400 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3401 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3402 return nullptr; 3403 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3404 MachineOperand &MO = MI.getOperand(i); 3405 SeenIntermediateUse = false; 3406 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3407 Register Reg = MI.getOperand(i).getReg(); 3408 // If we see another use of this reg between the def and the MI, 3409 // we want to flag it so the def isn't deleted. 3410 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3411 if (DefMI) { 3412 // Is this register defined by some form of add-immediate (including 3413 // load-immediate) within this basic block? 3414 switch (DefMI->getOpcode()) { 3415 default: 3416 break; 3417 case PPC::LI: 3418 case PPC::LI8: 3419 case PPC::ADDItocL: 3420 case PPC::ADDI: 3421 case PPC::ADDI8: 3422 OpNoForForwarding = i; 3423 return DefMI; 3424 } 3425 } 3426 } 3427 } 3428 } 3429 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3430 } 3431 3432 unsigned PPCInstrInfo::getSpillTarget() const { 3433 // With P10, we may need to spill paired vector registers or accumulator 3434 // registers. MMA implies paired vectors, so we can just check that. 3435 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3436 return Subtarget.isISAFuture() ? 3 : IsP10Variant ? 3437 2 : Subtarget.hasP9Vector() ? 3438 1 : 0; 3439 } 3440 3441 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3442 return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3443 } 3444 3445 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3446 return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3447 } 3448 3449 // This opt tries to convert the following imm form to an index form to save an 3450 // add for stack variables. 3451 // Return false if no such pattern found. 3452 // 3453 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3454 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3455 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3456 // 3457 // can be converted to: 3458 // 3459 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3460 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3461 // 3462 // In order to eliminate ADD instr, make sure that: 3463 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3464 // new ADDI instr and ADDI can only take int16 Imm. 3465 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3466 // between ADDI and ADD instr since its original def in ADDI will be changed 3467 // in new ADDI instr. And also there should be no new def for it between 3468 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3469 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3470 // between ADD and Imm instr since ADD instr will be eliminated. 3471 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3472 // moved to Index instr. 3473 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3474 MachineFunction *MF = MI.getParent()->getParent(); 3475 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3476 bool PostRA = !MRI->isSSA(); 3477 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3478 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3479 // frame base(OffsetAddi) are determined. 3480 if (!PostRA) 3481 return false; 3482 unsigned ToBeDeletedReg = 0; 3483 int64_t OffsetImm = 0; 3484 unsigned XFormOpcode = 0; 3485 ImmInstrInfo III; 3486 3487 // Check if Imm instr meets requirement. 3488 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3489 III)) 3490 return false; 3491 3492 bool OtherIntermediateUse = false; 3493 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3494 3495 // Exit if there is other use between ADD and Imm instr or no def found. 3496 if (OtherIntermediateUse || !ADDMI) 3497 return false; 3498 3499 // Check if ADD instr meets requirement. 3500 if (!isADDInstrEligibleForFolding(*ADDMI)) 3501 return false; 3502 3503 unsigned ScaleRegIdx = 0; 3504 int64_t OffsetAddi = 0; 3505 MachineInstr *ADDIMI = nullptr; 3506 3507 // Check if there is a valid ToBeChangedReg in ADDMI. 3508 // 1: It must be killed. 3509 // 2: Its definition must be a valid ADDIMI. 3510 // 3: It must satify int16 offset requirement. 3511 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3512 ScaleRegIdx = 2; 3513 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3514 ScaleRegIdx = 1; 3515 else 3516 return false; 3517 3518 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3519 Register ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3520 Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3521 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3522 MachineBasicBlock::iterator End) { 3523 for (auto It = ++Start; It != End; It++) 3524 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3525 return true; 3526 return false; 3527 }; 3528 3529 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3530 // treated as special zero when ScaleReg is R0/X0 register. 3531 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3532 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3533 return false; 3534 3535 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3536 // and Imm Instr. 3537 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3538 return false; 3539 3540 // Now start to do the transformation. 3541 LLVM_DEBUG(dbgs() << "Replace instruction: " 3542 << "\n"); 3543 LLVM_DEBUG(ADDIMI->dump()); 3544 LLVM_DEBUG(ADDMI->dump()); 3545 LLVM_DEBUG(MI.dump()); 3546 LLVM_DEBUG(dbgs() << "with: " 3547 << "\n"); 3548 3549 // Update ADDI instr. 3550 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3551 3552 // Update Imm instr. 3553 MI.setDesc(get(XFormOpcode)); 3554 MI.getOperand(III.ImmOpNo) 3555 .ChangeToRegister(ScaleReg, false, false, 3556 ADDMI->getOperand(ScaleRegIdx).isKill()); 3557 3558 MI.getOperand(III.OpNoForForwarding) 3559 .ChangeToRegister(ToBeChangedReg, false, false, true); 3560 3561 // Eliminate ADD instr. 3562 ADDMI->eraseFromParent(); 3563 3564 LLVM_DEBUG(ADDIMI->dump()); 3565 LLVM_DEBUG(MI.dump()); 3566 3567 return true; 3568 } 3569 3570 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3571 int64_t &Imm) const { 3572 unsigned Opc = ADDIMI.getOpcode(); 3573 3574 // Exit if the instruction is not ADDI. 3575 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3576 return false; 3577 3578 // The operand may not necessarily be an immediate - it could be a relocation. 3579 if (!ADDIMI.getOperand(2).isImm()) 3580 return false; 3581 3582 Imm = ADDIMI.getOperand(2).getImm(); 3583 3584 return true; 3585 } 3586 3587 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3588 unsigned Opc = ADDMI.getOpcode(); 3589 3590 // Exit if the instruction is not ADD. 3591 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3592 } 3593 3594 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3595 unsigned &ToBeDeletedReg, 3596 unsigned &XFormOpcode, 3597 int64_t &OffsetImm, 3598 ImmInstrInfo &III) const { 3599 // Only handle load/store. 3600 if (!MI.mayLoadOrStore()) 3601 return false; 3602 3603 unsigned Opc = MI.getOpcode(); 3604 3605 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3606 3607 // Exit if instruction has no index form. 3608 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3609 return false; 3610 3611 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3612 if (!instrHasImmForm(XFormOpcode, 3613 PPC::isVFRegister(MI.getOperand(0).getReg()), III, true)) 3614 return false; 3615 3616 if (!III.IsSummingOperands) 3617 return false; 3618 3619 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3620 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3621 // Only support imm operands, not relocation slots or others. 3622 if (!ImmOperand.isImm()) 3623 return false; 3624 3625 assert(RegOperand.isReg() && "Instruction format is not right"); 3626 3627 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3628 if (!RegOperand.isKill()) 3629 return false; 3630 3631 ToBeDeletedReg = RegOperand.getReg(); 3632 OffsetImm = ImmOperand.getImm(); 3633 3634 return true; 3635 } 3636 3637 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3638 MachineInstr *&ADDIMI, 3639 int64_t &OffsetAddi, 3640 int64_t OffsetImm) const { 3641 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3642 MachineOperand &MO = ADDMI->getOperand(Index); 3643 3644 if (!MO.isKill()) 3645 return false; 3646 3647 bool OtherIntermediateUse = false; 3648 3649 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3650 // Currently handle only one "add + Imminstr" pair case, exit if other 3651 // intermediate use for ToBeChangedReg found. 3652 // TODO: handle the cases where there are other "add + Imminstr" pairs 3653 // with same offset in Imminstr which is like: 3654 // 3655 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3656 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3657 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3658 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3659 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3660 // 3661 // can be converted to: 3662 // 3663 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3664 // (OffsetAddi + OffsetImm) 3665 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3666 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3667 3668 if (OtherIntermediateUse || !ADDIMI) 3669 return false; 3670 // Check if ADDI instr meets requirement. 3671 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3672 return false; 3673 3674 if (isInt<16>(OffsetAddi + OffsetImm)) 3675 return true; 3676 return false; 3677 } 3678 3679 // If this instruction has an immediate form and one of its operands is a 3680 // result of a load-immediate or an add-immediate, convert it to 3681 // the immediate form if the constant is in range. 3682 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3683 SmallSet<Register, 4> &RegsToUpdate, 3684 MachineInstr **KilledDef) const { 3685 MachineFunction *MF = MI.getParent()->getParent(); 3686 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3687 bool PostRA = !MRI->isSSA(); 3688 bool SeenIntermediateUse = true; 3689 unsigned ForwardingOperand = ~0U; 3690 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3691 SeenIntermediateUse); 3692 if (!DefMI) 3693 return false; 3694 assert(ForwardingOperand < MI.getNumOperands() && 3695 "The forwarding operand needs to be valid at this point"); 3696 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3697 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3698 if (KilledDef && KillFwdDefMI) 3699 *KilledDef = DefMI; 3700 3701 // Conservatively add defs from DefMI and defs/uses from MI to the set of 3702 // registers that need their kill flags updated. 3703 for (const MachineOperand &MO : DefMI->operands()) 3704 if (MO.isReg() && MO.isDef()) 3705 RegsToUpdate.insert(MO.getReg()); 3706 for (const MachineOperand &MO : MI.operands()) 3707 if (MO.isReg()) 3708 RegsToUpdate.insert(MO.getReg()); 3709 3710 // If this is a imm instruction and its register operands is produced by ADDI, 3711 // put the imm into imm inst directly. 3712 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3713 PPC::INSTRUCTION_LIST_END && 3714 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3715 return true; 3716 3717 ImmInstrInfo III; 3718 bool IsVFReg = MI.getOperand(0).isReg() 3719 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 3720 : false; 3721 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3722 // If this is a reg+reg instruction that has a reg+imm form, 3723 // and one of the operands is produced by an add-immediate, 3724 // try to convert it. 3725 if (HasImmForm && 3726 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3727 KillFwdDefMI)) 3728 return true; 3729 3730 // If this is a reg+reg instruction that has a reg+imm form, 3731 // and one of the operands is produced by LI, convert it now. 3732 if (HasImmForm && 3733 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3734 return true; 3735 3736 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3737 // can be simpified to LI. 3738 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3739 return true; 3740 3741 return false; 3742 } 3743 3744 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3745 MachineInstr **ToErase) const { 3746 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3747 Register FoldingReg = MI.getOperand(1).getReg(); 3748 if (!FoldingReg.isVirtual()) 3749 return false; 3750 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3751 if (SrcMI->getOpcode() != PPC::RLWINM && 3752 SrcMI->getOpcode() != PPC::RLWINM_rec && 3753 SrcMI->getOpcode() != PPC::RLWINM8 && 3754 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3755 return false; 3756 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3757 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3758 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3759 "Invalid PPC::RLWINM Instruction!"); 3760 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3761 uint64_t SHMI = MI.getOperand(2).getImm(); 3762 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3763 uint64_t MBMI = MI.getOperand(3).getImm(); 3764 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3765 uint64_t MEMI = MI.getOperand(4).getImm(); 3766 3767 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3768 "Invalid PPC::RLWINM Instruction!"); 3769 // If MBMI is bigger than MEMI, we always can not get run of ones. 3770 // RotatedSrcMask non-wrap: 3771 // 0........31|32........63 3772 // RotatedSrcMask: B---E B---E 3773 // MaskMI: -----------|--E B------ 3774 // Result: ----- --- (Bad candidate) 3775 // 3776 // RotatedSrcMask wrap: 3777 // 0........31|32........63 3778 // RotatedSrcMask: --E B----|--E B---- 3779 // MaskMI: -----------|--E B------ 3780 // Result: --- -----|--- ----- (Bad candidate) 3781 // 3782 // One special case is RotatedSrcMask is a full set mask. 3783 // RotatedSrcMask full: 3784 // 0........31|32........63 3785 // RotatedSrcMask: ------EB---|-------EB--- 3786 // MaskMI: -----------|--E B------ 3787 // Result: -----------|--- ------- (Good candidate) 3788 3789 // Mark special case. 3790 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3791 3792 // For other MBMI > MEMI cases, just return. 3793 if ((MBMI > MEMI) && !SrcMaskFull) 3794 return false; 3795 3796 // Handle MBMI <= MEMI cases. 3797 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3798 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3799 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3800 // while in PowerPC ISA, lowerest bit is at index 63. 3801 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3802 3803 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3804 APInt FinalMask = RotatedSrcMask & MaskMI; 3805 uint32_t NewMB, NewME; 3806 bool Simplified = false; 3807 3808 // If final mask is 0, MI result should be 0 too. 3809 if (FinalMask.isZero()) { 3810 bool Is64Bit = 3811 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3812 Simplified = true; 3813 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3814 LLVM_DEBUG(MI.dump()); 3815 3816 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3817 // Replace MI with "LI 0" 3818 MI.removeOperand(4); 3819 MI.removeOperand(3); 3820 MI.removeOperand(2); 3821 MI.getOperand(1).ChangeToImmediate(0); 3822 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3823 } else { 3824 // Replace MI with "ANDI_rec reg, 0" 3825 MI.removeOperand(4); 3826 MI.removeOperand(3); 3827 MI.getOperand(2).setImm(0); 3828 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3829 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3830 if (SrcMI->getOperand(1).isKill()) { 3831 MI.getOperand(1).setIsKill(true); 3832 SrcMI->getOperand(1).setIsKill(false); 3833 } else 3834 // About to replace MI.getOperand(1), clear its kill flag. 3835 MI.getOperand(1).setIsKill(false); 3836 } 3837 3838 LLVM_DEBUG(dbgs() << "With: "); 3839 LLVM_DEBUG(MI.dump()); 3840 3841 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3842 NewMB <= NewME) || 3843 SrcMaskFull) { 3844 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3845 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3846 // return a 32 bit value. 3847 Simplified = true; 3848 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3849 LLVM_DEBUG(MI.dump()); 3850 3851 uint16_t NewSH = (SHSrc + SHMI) % 32; 3852 MI.getOperand(2).setImm(NewSH); 3853 // If SrcMI mask is full, no need to update MBMI and MEMI. 3854 if (!SrcMaskFull) { 3855 MI.getOperand(3).setImm(NewMB); 3856 MI.getOperand(4).setImm(NewME); 3857 } 3858 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3859 if (SrcMI->getOperand(1).isKill()) { 3860 MI.getOperand(1).setIsKill(true); 3861 SrcMI->getOperand(1).setIsKill(false); 3862 } else 3863 // About to replace MI.getOperand(1), clear its kill flag. 3864 MI.getOperand(1).setIsKill(false); 3865 3866 LLVM_DEBUG(dbgs() << "To: "); 3867 LLVM_DEBUG(MI.dump()); 3868 } 3869 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3870 !SrcMI->hasImplicitDef()) { 3871 // If FoldingReg has no non-debug use and it has no implicit def (it 3872 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3873 // Otherwise keep it. 3874 *ToErase = SrcMI; 3875 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3876 LLVM_DEBUG(SrcMI->dump()); 3877 } 3878 return Simplified; 3879 } 3880 3881 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3882 ImmInstrInfo &III, bool PostRA) const { 3883 // The vast majority of the instructions would need their operand 2 replaced 3884 // with an immediate when switching to the reg+imm form. A marked exception 3885 // are the update form loads/stores for which a constant operand 2 would need 3886 // to turn into a displacement and move operand 1 to the operand 2 position. 3887 III.ImmOpNo = 2; 3888 III.OpNoForForwarding = 2; 3889 III.ImmWidth = 16; 3890 III.ImmMustBeMultipleOf = 1; 3891 III.TruncateImmTo = 0; 3892 III.IsSummingOperands = false; 3893 switch (Opc) { 3894 default: return false; 3895 case PPC::ADD4: 3896 case PPC::ADD8: 3897 III.SignedImm = true; 3898 III.ZeroIsSpecialOrig = 0; 3899 III.ZeroIsSpecialNew = 1; 3900 III.IsCommutative = true; 3901 III.IsSummingOperands = true; 3902 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3903 break; 3904 case PPC::ADDC: 3905 case PPC::ADDC8: 3906 III.SignedImm = true; 3907 III.ZeroIsSpecialOrig = 0; 3908 III.ZeroIsSpecialNew = 0; 3909 III.IsCommutative = true; 3910 III.IsSummingOperands = true; 3911 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3912 break; 3913 case PPC::ADDC_rec: 3914 III.SignedImm = true; 3915 III.ZeroIsSpecialOrig = 0; 3916 III.ZeroIsSpecialNew = 0; 3917 III.IsCommutative = true; 3918 III.IsSummingOperands = true; 3919 III.ImmOpcode = PPC::ADDIC_rec; 3920 break; 3921 case PPC::SUBFC: 3922 case PPC::SUBFC8: 3923 III.SignedImm = true; 3924 III.ZeroIsSpecialOrig = 0; 3925 III.ZeroIsSpecialNew = 0; 3926 III.IsCommutative = false; 3927 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3928 break; 3929 case PPC::CMPW: 3930 case PPC::CMPD: 3931 III.SignedImm = true; 3932 III.ZeroIsSpecialOrig = 0; 3933 III.ZeroIsSpecialNew = 0; 3934 III.IsCommutative = false; 3935 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3936 break; 3937 case PPC::CMPLW: 3938 case PPC::CMPLD: 3939 III.SignedImm = false; 3940 III.ZeroIsSpecialOrig = 0; 3941 III.ZeroIsSpecialNew = 0; 3942 III.IsCommutative = false; 3943 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3944 break; 3945 case PPC::AND_rec: 3946 case PPC::AND8_rec: 3947 case PPC::OR: 3948 case PPC::OR8: 3949 case PPC::XOR: 3950 case PPC::XOR8: 3951 III.SignedImm = false; 3952 III.ZeroIsSpecialOrig = 0; 3953 III.ZeroIsSpecialNew = 0; 3954 III.IsCommutative = true; 3955 switch(Opc) { 3956 default: llvm_unreachable("Unknown opcode"); 3957 case PPC::AND_rec: 3958 III.ImmOpcode = PPC::ANDI_rec; 3959 break; 3960 case PPC::AND8_rec: 3961 III.ImmOpcode = PPC::ANDI8_rec; 3962 break; 3963 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3964 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3965 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3966 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3967 } 3968 break; 3969 case PPC::RLWNM: 3970 case PPC::RLWNM8: 3971 case PPC::RLWNM_rec: 3972 case PPC::RLWNM8_rec: 3973 case PPC::SLW: 3974 case PPC::SLW8: 3975 case PPC::SLW_rec: 3976 case PPC::SLW8_rec: 3977 case PPC::SRW: 3978 case PPC::SRW8: 3979 case PPC::SRW_rec: 3980 case PPC::SRW8_rec: 3981 case PPC::SRAW: 3982 case PPC::SRAW_rec: 3983 III.SignedImm = false; 3984 III.ZeroIsSpecialOrig = 0; 3985 III.ZeroIsSpecialNew = 0; 3986 III.IsCommutative = false; 3987 // This isn't actually true, but the instructions ignore any of the 3988 // upper bits, so any immediate loaded with an LI is acceptable. 3989 // This does not apply to shift right algebraic because a value 3990 // out of range will produce a -1/0. 3991 III.ImmWidth = 16; 3992 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3993 Opc == PPC::RLWNM8_rec) 3994 III.TruncateImmTo = 5; 3995 else 3996 III.TruncateImmTo = 6; 3997 switch(Opc) { 3998 default: llvm_unreachable("Unknown opcode"); 3999 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 4000 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 4001 case PPC::RLWNM_rec: 4002 III.ImmOpcode = PPC::RLWINM_rec; 4003 break; 4004 case PPC::RLWNM8_rec: 4005 III.ImmOpcode = PPC::RLWINM8_rec; 4006 break; 4007 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 4008 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 4009 case PPC::SLW_rec: 4010 III.ImmOpcode = PPC::RLWINM_rec; 4011 break; 4012 case PPC::SLW8_rec: 4013 III.ImmOpcode = PPC::RLWINM8_rec; 4014 break; 4015 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 4016 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 4017 case PPC::SRW_rec: 4018 III.ImmOpcode = PPC::RLWINM_rec; 4019 break; 4020 case PPC::SRW8_rec: 4021 III.ImmOpcode = PPC::RLWINM8_rec; 4022 break; 4023 case PPC::SRAW: 4024 III.ImmWidth = 5; 4025 III.TruncateImmTo = 0; 4026 III.ImmOpcode = PPC::SRAWI; 4027 break; 4028 case PPC::SRAW_rec: 4029 III.ImmWidth = 5; 4030 III.TruncateImmTo = 0; 4031 III.ImmOpcode = PPC::SRAWI_rec; 4032 break; 4033 } 4034 break; 4035 case PPC::RLDCL: 4036 case PPC::RLDCL_rec: 4037 case PPC::RLDCR: 4038 case PPC::RLDCR_rec: 4039 case PPC::SLD: 4040 case PPC::SLD_rec: 4041 case PPC::SRD: 4042 case PPC::SRD_rec: 4043 case PPC::SRAD: 4044 case PPC::SRAD_rec: 4045 III.SignedImm = false; 4046 III.ZeroIsSpecialOrig = 0; 4047 III.ZeroIsSpecialNew = 0; 4048 III.IsCommutative = false; 4049 // This isn't actually true, but the instructions ignore any of the 4050 // upper bits, so any immediate loaded with an LI is acceptable. 4051 // This does not apply to shift right algebraic because a value 4052 // out of range will produce a -1/0. 4053 III.ImmWidth = 16; 4054 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4055 Opc == PPC::RLDCR_rec) 4056 III.TruncateImmTo = 6; 4057 else 4058 III.TruncateImmTo = 7; 4059 switch(Opc) { 4060 default: llvm_unreachable("Unknown opcode"); 4061 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4062 case PPC::RLDCL_rec: 4063 III.ImmOpcode = PPC::RLDICL_rec; 4064 break; 4065 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4066 case PPC::RLDCR_rec: 4067 III.ImmOpcode = PPC::RLDICR_rec; 4068 break; 4069 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4070 case PPC::SLD_rec: 4071 III.ImmOpcode = PPC::RLDICR_rec; 4072 break; 4073 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4074 case PPC::SRD_rec: 4075 III.ImmOpcode = PPC::RLDICL_rec; 4076 break; 4077 case PPC::SRAD: 4078 III.ImmWidth = 6; 4079 III.TruncateImmTo = 0; 4080 III.ImmOpcode = PPC::SRADI; 4081 break; 4082 case PPC::SRAD_rec: 4083 III.ImmWidth = 6; 4084 III.TruncateImmTo = 0; 4085 III.ImmOpcode = PPC::SRADI_rec; 4086 break; 4087 } 4088 break; 4089 // Loads and stores: 4090 case PPC::LBZX: 4091 case PPC::LBZX8: 4092 case PPC::LHZX: 4093 case PPC::LHZX8: 4094 case PPC::LHAX: 4095 case PPC::LHAX8: 4096 case PPC::LWZX: 4097 case PPC::LWZX8: 4098 case PPC::LWAX: 4099 case PPC::LDX: 4100 case PPC::LFSX: 4101 case PPC::LFDX: 4102 case PPC::STBX: 4103 case PPC::STBX8: 4104 case PPC::STHX: 4105 case PPC::STHX8: 4106 case PPC::STWX: 4107 case PPC::STWX8: 4108 case PPC::STDX: 4109 case PPC::STFSX: 4110 case PPC::STFDX: 4111 III.SignedImm = true; 4112 III.ZeroIsSpecialOrig = 1; 4113 III.ZeroIsSpecialNew = 2; 4114 III.IsCommutative = true; 4115 III.IsSummingOperands = true; 4116 III.ImmOpNo = 1; 4117 III.OpNoForForwarding = 2; 4118 switch(Opc) { 4119 default: llvm_unreachable("Unknown opcode"); 4120 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4121 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4122 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4123 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4124 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4125 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4126 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4127 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4128 case PPC::LWAX: 4129 III.ImmOpcode = PPC::LWA; 4130 III.ImmMustBeMultipleOf = 4; 4131 break; 4132 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4133 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4134 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4135 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4136 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4137 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4138 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4139 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4140 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4141 case PPC::STDX: 4142 III.ImmOpcode = PPC::STD; 4143 III.ImmMustBeMultipleOf = 4; 4144 break; 4145 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4146 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4147 } 4148 break; 4149 case PPC::LBZUX: 4150 case PPC::LBZUX8: 4151 case PPC::LHZUX: 4152 case PPC::LHZUX8: 4153 case PPC::LHAUX: 4154 case PPC::LHAUX8: 4155 case PPC::LWZUX: 4156 case PPC::LWZUX8: 4157 case PPC::LDUX: 4158 case PPC::LFSUX: 4159 case PPC::LFDUX: 4160 case PPC::STBUX: 4161 case PPC::STBUX8: 4162 case PPC::STHUX: 4163 case PPC::STHUX8: 4164 case PPC::STWUX: 4165 case PPC::STWUX8: 4166 case PPC::STDUX: 4167 case PPC::STFSUX: 4168 case PPC::STFDUX: 4169 III.SignedImm = true; 4170 III.ZeroIsSpecialOrig = 2; 4171 III.ZeroIsSpecialNew = 3; 4172 III.IsCommutative = false; 4173 III.IsSummingOperands = true; 4174 III.ImmOpNo = 2; 4175 III.OpNoForForwarding = 3; 4176 switch(Opc) { 4177 default: llvm_unreachable("Unknown opcode"); 4178 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4179 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4180 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4181 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4182 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4183 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4184 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4185 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4186 case PPC::LDUX: 4187 III.ImmOpcode = PPC::LDU; 4188 III.ImmMustBeMultipleOf = 4; 4189 break; 4190 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4191 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4192 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4193 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4194 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4195 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4196 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4197 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4198 case PPC::STDUX: 4199 III.ImmOpcode = PPC::STDU; 4200 III.ImmMustBeMultipleOf = 4; 4201 break; 4202 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4203 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4204 } 4205 break; 4206 // Power9 and up only. For some of these, the X-Form version has access to all 4207 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4208 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4209 // into or stored from is one of the VR registers. 4210 case PPC::LXVX: 4211 case PPC::LXSSPX: 4212 case PPC::LXSDX: 4213 case PPC::STXVX: 4214 case PPC::STXSSPX: 4215 case PPC::STXSDX: 4216 case PPC::XFLOADf32: 4217 case PPC::XFLOADf64: 4218 case PPC::XFSTOREf32: 4219 case PPC::XFSTOREf64: 4220 if (!Subtarget.hasP9Vector()) 4221 return false; 4222 III.SignedImm = true; 4223 III.ZeroIsSpecialOrig = 1; 4224 III.ZeroIsSpecialNew = 2; 4225 III.IsCommutative = true; 4226 III.IsSummingOperands = true; 4227 III.ImmOpNo = 1; 4228 III.OpNoForForwarding = 2; 4229 III.ImmMustBeMultipleOf = 4; 4230 switch(Opc) { 4231 default: llvm_unreachable("Unknown opcode"); 4232 case PPC::LXVX: 4233 III.ImmOpcode = PPC::LXV; 4234 III.ImmMustBeMultipleOf = 16; 4235 break; 4236 case PPC::LXSSPX: 4237 if (PostRA) { 4238 if (IsVFReg) 4239 III.ImmOpcode = PPC::LXSSP; 4240 else { 4241 III.ImmOpcode = PPC::LFS; 4242 III.ImmMustBeMultipleOf = 1; 4243 } 4244 break; 4245 } 4246 [[fallthrough]]; 4247 case PPC::XFLOADf32: 4248 III.ImmOpcode = PPC::DFLOADf32; 4249 break; 4250 case PPC::LXSDX: 4251 if (PostRA) { 4252 if (IsVFReg) 4253 III.ImmOpcode = PPC::LXSD; 4254 else { 4255 III.ImmOpcode = PPC::LFD; 4256 III.ImmMustBeMultipleOf = 1; 4257 } 4258 break; 4259 } 4260 [[fallthrough]]; 4261 case PPC::XFLOADf64: 4262 III.ImmOpcode = PPC::DFLOADf64; 4263 break; 4264 case PPC::STXVX: 4265 III.ImmOpcode = PPC::STXV; 4266 III.ImmMustBeMultipleOf = 16; 4267 break; 4268 case PPC::STXSSPX: 4269 if (PostRA) { 4270 if (IsVFReg) 4271 III.ImmOpcode = PPC::STXSSP; 4272 else { 4273 III.ImmOpcode = PPC::STFS; 4274 III.ImmMustBeMultipleOf = 1; 4275 } 4276 break; 4277 } 4278 [[fallthrough]]; 4279 case PPC::XFSTOREf32: 4280 III.ImmOpcode = PPC::DFSTOREf32; 4281 break; 4282 case PPC::STXSDX: 4283 if (PostRA) { 4284 if (IsVFReg) 4285 III.ImmOpcode = PPC::STXSD; 4286 else { 4287 III.ImmOpcode = PPC::STFD; 4288 III.ImmMustBeMultipleOf = 1; 4289 } 4290 break; 4291 } 4292 [[fallthrough]]; 4293 case PPC::XFSTOREf64: 4294 III.ImmOpcode = PPC::DFSTOREf64; 4295 break; 4296 } 4297 break; 4298 } 4299 return true; 4300 } 4301 4302 // Utility function for swaping two arbitrary operands of an instruction. 4303 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4304 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4305 4306 unsigned MaxOp = std::max(Op1, Op2); 4307 unsigned MinOp = std::min(Op1, Op2); 4308 MachineOperand MOp1 = MI.getOperand(MinOp); 4309 MachineOperand MOp2 = MI.getOperand(MaxOp); 4310 MI.removeOperand(std::max(Op1, Op2)); 4311 MI.removeOperand(std::min(Op1, Op2)); 4312 4313 // If the operands we are swapping are the two at the end (the common case) 4314 // we can just remove both and add them in the opposite order. 4315 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4316 MI.addOperand(MOp2); 4317 MI.addOperand(MOp1); 4318 } else { 4319 // Store all operands in a temporary vector, remove them and re-add in the 4320 // right order. 4321 SmallVector<MachineOperand, 2> MOps; 4322 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4323 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4324 MOps.push_back(MI.getOperand(i)); 4325 MI.removeOperand(i); 4326 } 4327 // MOp2 needs to be added next. 4328 MI.addOperand(MOp2); 4329 // Now add the rest. 4330 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4331 if (i == MaxOp) 4332 MI.addOperand(MOp1); 4333 else { 4334 MI.addOperand(MOps.back()); 4335 MOps.pop_back(); 4336 } 4337 } 4338 } 4339 } 4340 4341 // Check if the 'MI' that has the index OpNoForForwarding 4342 // meets the requirement described in the ImmInstrInfo. 4343 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4344 const ImmInstrInfo &III, 4345 unsigned OpNoForForwarding 4346 ) const { 4347 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4348 // would not work pre-RA, we can only do the check post RA. 4349 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4350 if (MRI.isSSA()) 4351 return false; 4352 4353 // Cannot do the transform if MI isn't summing the operands. 4354 if (!III.IsSummingOperands) 4355 return false; 4356 4357 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4358 if (!III.ZeroIsSpecialOrig) 4359 return false; 4360 4361 // We cannot do the transform if the operand we are trying to replace 4362 // isn't the same as the operand the instruction allows. 4363 if (OpNoForForwarding != III.OpNoForForwarding) 4364 return false; 4365 4366 // Check if the instruction we are trying to transform really has 4367 // the special zero register as its operand. 4368 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4369 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4370 return false; 4371 4372 // This machine instruction is convertible if it is, 4373 // 1. summing the operands. 4374 // 2. one of the operands is special zero register. 4375 // 3. the operand we are trying to replace is allowed by the MI. 4376 return true; 4377 } 4378 4379 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4380 // accordingly. 4381 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4382 const ImmInstrInfo &III, 4383 MachineOperand *&ImmMO, 4384 MachineOperand *&RegMO) const { 4385 unsigned Opc = DefMI.getOpcode(); 4386 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4387 return false; 4388 4389 assert(DefMI.getNumOperands() >= 3 && 4390 "Add inst must have at least three operands"); 4391 RegMO = &DefMI.getOperand(1); 4392 ImmMO = &DefMI.getOperand(2); 4393 4394 // Before RA, ADDI first operand could be a frame index. 4395 if (!RegMO->isReg()) 4396 return false; 4397 4398 // This DefMI is elgible for forwarding if it is: 4399 // 1. add inst 4400 // 2. one of the operands is Imm/CPI/Global. 4401 return isAnImmediateOperand(*ImmMO); 4402 } 4403 4404 bool PPCInstrInfo::isRegElgibleForForwarding( 4405 const MachineOperand &RegMO, const MachineInstr &DefMI, 4406 const MachineInstr &MI, bool KillDefMI, 4407 bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { 4408 // x = addi y, imm 4409 // ... 4410 // z = lfdx 0, x -> z = lfd imm(y) 4411 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4412 // of "y" between the DEF of "x" and "z". 4413 // The query is only valid post RA. 4414 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4415 if (MRI.isSSA()) 4416 return false; 4417 4418 Register Reg = RegMO.getReg(); 4419 4420 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4421 MachineBasicBlock::const_reverse_iterator It = MI; 4422 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4423 It++; 4424 for (; It != E; ++It) { 4425 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4426 return false; 4427 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4428 IsFwdFeederRegKilled = true; 4429 if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4430 SeenIntermediateUse = true; 4431 // Made it to DefMI without encountering a clobber. 4432 if ((&*It) == &DefMI) 4433 break; 4434 } 4435 assert((&*It) == &DefMI && "DefMI is missing"); 4436 4437 // If DefMI also defines the register to be forwarded, we can only forward it 4438 // if DefMI is being erased. 4439 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4440 return KillDefMI; 4441 4442 return true; 4443 } 4444 4445 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4446 const MachineInstr &DefMI, 4447 const ImmInstrInfo &III, 4448 int64_t &Imm, 4449 int64_t BaseImm) const { 4450 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4451 if (DefMI.getOpcode() == PPC::ADDItocL) { 4452 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4453 // However, we know that, it is 16-bit width, and has the alignment of 4. 4454 // Check if the instruction met the requirement. 4455 if (III.ImmMustBeMultipleOf > 4 || 4456 III.TruncateImmTo || III.ImmWidth != 16) 4457 return false; 4458 4459 // Going from XForm to DForm loads means that the displacement needs to be 4460 // not just an immediate but also a multiple of 4, or 16 depending on the 4461 // load. A DForm load cannot be represented if it is a multiple of say 2. 4462 // XForm loads do not have this restriction. 4463 if (ImmMO.isGlobal()) { 4464 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4465 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4466 return false; 4467 } 4468 4469 return true; 4470 } 4471 4472 if (ImmMO.isImm()) { 4473 // It is Imm, we need to check if the Imm fit the range. 4474 // Sign-extend to 64-bits. 4475 // DefMI may be folded with another imm form instruction, the result Imm is 4476 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4477 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4478 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4479 return false; 4480 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4481 return false; 4482 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4483 4484 if (Imm % III.ImmMustBeMultipleOf) 4485 return false; 4486 if (III.TruncateImmTo) 4487 Imm &= ((1 << III.TruncateImmTo) - 1); 4488 } 4489 else 4490 return false; 4491 4492 // This ImmMO is forwarded if it meets the requriement describle 4493 // in ImmInstrInfo 4494 return true; 4495 } 4496 4497 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4498 unsigned OpNoForForwarding, 4499 MachineInstr **KilledDef) const { 4500 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4501 !DefMI.getOperand(1).isImm()) 4502 return false; 4503 4504 MachineFunction *MF = MI.getParent()->getParent(); 4505 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4506 bool PostRA = !MRI->isSSA(); 4507 4508 int64_t Immediate = DefMI.getOperand(1).getImm(); 4509 // Sign-extend to 64-bits. 4510 int64_t SExtImm = SignExtend64<16>(Immediate); 4511 4512 bool ReplaceWithLI = false; 4513 bool Is64BitLI = false; 4514 int64_t NewImm = 0; 4515 bool SetCR = false; 4516 unsigned Opc = MI.getOpcode(); 4517 switch (Opc) { 4518 default: 4519 return false; 4520 4521 // FIXME: Any branches conditional on such a comparison can be made 4522 // unconditional. At this time, this happens too infrequently to be worth 4523 // the implementation effort, but if that ever changes, we could convert 4524 // such a pattern here. 4525 case PPC::CMPWI: 4526 case PPC::CMPLWI: 4527 case PPC::CMPDI: 4528 case PPC::CMPLDI: { 4529 // Doing this post-RA would require dataflow analysis to reliably find uses 4530 // of the CR register set by the compare. 4531 // No need to fixup killed/dead flag since this transformation is only valid 4532 // before RA. 4533 if (PostRA) 4534 return false; 4535 // If a compare-immediate is fed by an immediate and is itself an input of 4536 // an ISEL (the most common case) into a COPY of the correct register. 4537 bool Changed = false; 4538 Register DefReg = MI.getOperand(0).getReg(); 4539 int64_t Comparand = MI.getOperand(2).getImm(); 4540 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4541 ? (Comparand | 0xFFFFFFFFFFFF0000) 4542 : Comparand; 4543 4544 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4545 unsigned UseOpc = CompareUseMI.getOpcode(); 4546 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4547 continue; 4548 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4549 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4550 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4551 unsigned RegToCopy = 4552 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4553 if (RegToCopy == PPC::NoRegister) 4554 continue; 4555 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4556 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4557 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4558 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4559 CompareUseMI.removeOperand(3); 4560 CompareUseMI.removeOperand(2); 4561 continue; 4562 } 4563 LLVM_DEBUG( 4564 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4565 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4566 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4567 // Convert to copy and remove unneeded operands. 4568 CompareUseMI.setDesc(get(PPC::COPY)); 4569 CompareUseMI.removeOperand(3); 4570 CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1); 4571 CmpIselsConverted++; 4572 Changed = true; 4573 LLVM_DEBUG(CompareUseMI.dump()); 4574 } 4575 if (Changed) 4576 return true; 4577 // This may end up incremented multiple times since this function is called 4578 // during a fixed-point transformation, but it is only meant to indicate the 4579 // presence of this opportunity. 4580 MissedConvertibleImmediateInstrs++; 4581 return false; 4582 } 4583 4584 // Immediate forms - may simply be convertable to an LI. 4585 case PPC::ADDI: 4586 case PPC::ADDI8: { 4587 // Does the sum fit in a 16-bit signed field? 4588 int64_t Addend = MI.getOperand(2).getImm(); 4589 if (isInt<16>(Addend + SExtImm)) { 4590 ReplaceWithLI = true; 4591 Is64BitLI = Opc == PPC::ADDI8; 4592 NewImm = Addend + SExtImm; 4593 break; 4594 } 4595 return false; 4596 } 4597 case PPC::SUBFIC: 4598 case PPC::SUBFIC8: { 4599 // Only transform this if the CARRY implicit operand is dead. 4600 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4601 return false; 4602 int64_t Minuend = MI.getOperand(2).getImm(); 4603 if (isInt<16>(Minuend - SExtImm)) { 4604 ReplaceWithLI = true; 4605 Is64BitLI = Opc == PPC::SUBFIC8; 4606 NewImm = Minuend - SExtImm; 4607 break; 4608 } 4609 return false; 4610 } 4611 case PPC::RLDICL: 4612 case PPC::RLDICL_rec: 4613 case PPC::RLDICL_32: 4614 case PPC::RLDICL_32_64: { 4615 // Use APInt's rotate function. 4616 int64_t SH = MI.getOperand(2).getImm(); 4617 int64_t MB = MI.getOperand(3).getImm(); 4618 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4619 SExtImm, true); 4620 InVal = InVal.rotl(SH); 4621 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4622 InVal &= Mask; 4623 // Can't replace negative values with an LI as that will sign-extend 4624 // and not clear the left bits. If we're setting the CR bit, we will use 4625 // ANDI_rec which won't sign extend, so that's safe. 4626 if (isUInt<15>(InVal.getSExtValue()) || 4627 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4628 ReplaceWithLI = true; 4629 Is64BitLI = Opc != PPC::RLDICL_32; 4630 NewImm = InVal.getSExtValue(); 4631 SetCR = Opc == PPC::RLDICL_rec; 4632 break; 4633 } 4634 return false; 4635 } 4636 case PPC::RLWINM: 4637 case PPC::RLWINM8: 4638 case PPC::RLWINM_rec: 4639 case PPC::RLWINM8_rec: { 4640 int64_t SH = MI.getOperand(2).getImm(); 4641 int64_t MB = MI.getOperand(3).getImm(); 4642 int64_t ME = MI.getOperand(4).getImm(); 4643 APInt InVal(32, SExtImm, true); 4644 InVal = InVal.rotl(SH); 4645 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4646 InVal &= Mask; 4647 // Can't replace negative values with an LI as that will sign-extend 4648 // and not clear the left bits. If we're setting the CR bit, we will use 4649 // ANDI_rec which won't sign extend, so that's safe. 4650 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4651 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4652 isUInt<16>(InVal.getSExtValue())); 4653 if (ValueFits) { 4654 ReplaceWithLI = true; 4655 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4656 NewImm = InVal.getSExtValue(); 4657 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4658 break; 4659 } 4660 return false; 4661 } 4662 case PPC::ORI: 4663 case PPC::ORI8: 4664 case PPC::XORI: 4665 case PPC::XORI8: { 4666 int64_t LogicalImm = MI.getOperand(2).getImm(); 4667 int64_t Result = 0; 4668 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4669 Result = LogicalImm | SExtImm; 4670 else 4671 Result = LogicalImm ^ SExtImm; 4672 if (isInt<16>(Result)) { 4673 ReplaceWithLI = true; 4674 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4675 NewImm = Result; 4676 break; 4677 } 4678 return false; 4679 } 4680 } 4681 4682 if (ReplaceWithLI) { 4683 // We need to be careful with CR-setting instructions we're replacing. 4684 if (SetCR) { 4685 // We don't know anything about uses when we're out of SSA, so only 4686 // replace if the new immediate will be reproduced. 4687 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4688 if (PostRA && ImmChanged) 4689 return false; 4690 4691 if (!PostRA) { 4692 // If the defining load-immediate has no other uses, we can just replace 4693 // the immediate with the new immediate. 4694 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4695 DefMI.getOperand(1).setImm(NewImm); 4696 4697 // If we're not using the GPR result of the CR-setting instruction, we 4698 // just need to and with zero/non-zero depending on the new immediate. 4699 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4700 if (NewImm) { 4701 assert(Immediate && "Transformation converted zero to non-zero?"); 4702 NewImm = Immediate; 4703 } 4704 } else if (ImmChanged) 4705 return false; 4706 } 4707 } 4708 4709 LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n"); 4710 LLVM_DEBUG(MI.dump()); 4711 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4712 LLVM_DEBUG(DefMI.dump()); 4713 LoadImmediateInfo LII; 4714 LII.Imm = NewImm; 4715 LII.Is64Bit = Is64BitLI; 4716 LII.SetCR = SetCR; 4717 // If we're setting the CR, the original load-immediate must be kept (as an 4718 // operand to ANDI_rec/ANDI8_rec). 4719 if (KilledDef && SetCR) 4720 *KilledDef = nullptr; 4721 replaceInstrWithLI(MI, LII); 4722 4723 if (PostRA) 4724 recomputeLivenessFlags(*MI.getParent()); 4725 4726 LLVM_DEBUG(dbgs() << "With:\n"); 4727 LLVM_DEBUG(MI.dump()); 4728 return true; 4729 } 4730 return false; 4731 } 4732 4733 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4734 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4735 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4736 bool PostRA = !MRI->isSSA(); 4737 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4738 // for post-ra. 4739 if (PostRA) 4740 return false; 4741 4742 // Only handle load/store. 4743 if (!MI.mayLoadOrStore()) 4744 return false; 4745 4746 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4747 4748 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4749 "MI must have x-form opcode"); 4750 4751 // get Imm Form info. 4752 ImmInstrInfo III; 4753 bool IsVFReg = MI.getOperand(0).isReg() 4754 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 4755 : false; 4756 4757 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4758 return false; 4759 4760 if (!III.IsSummingOperands) 4761 return false; 4762 4763 if (OpNoForForwarding != III.OpNoForForwarding) 4764 return false; 4765 4766 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4767 if (!ImmOperandMI.isImm()) 4768 return false; 4769 4770 // Check DefMI. 4771 MachineOperand *ImmMO = nullptr; 4772 MachineOperand *RegMO = nullptr; 4773 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4774 return false; 4775 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4776 4777 // Check Imm. 4778 // Set ImmBase from imm instruction as base and get new Imm inside 4779 // isImmElgibleForForwarding. 4780 int64_t ImmBase = ImmOperandMI.getImm(); 4781 int64_t Imm = 0; 4782 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4783 return false; 4784 4785 // Do the transform 4786 LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n"); 4787 LLVM_DEBUG(MI.dump()); 4788 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4789 LLVM_DEBUG(DefMI.dump()); 4790 4791 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4792 MI.getOperand(III.ImmOpNo).setImm(Imm); 4793 4794 LLVM_DEBUG(dbgs() << "With:\n"); 4795 LLVM_DEBUG(MI.dump()); 4796 return true; 4797 } 4798 4799 // If an X-Form instruction is fed by an add-immediate and one of its operands 4800 // is the literal zero, attempt to forward the source of the add-immediate to 4801 // the corresponding D-Form instruction with the displacement coming from 4802 // the immediate being added. 4803 bool PPCInstrInfo::transformToImmFormFedByAdd( 4804 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4805 MachineInstr &DefMI, bool KillDefMI) const { 4806 // RegMO ImmMO 4807 // | | 4808 // x = addi reg, imm <----- DefMI 4809 // y = op 0 , x <----- MI 4810 // | 4811 // OpNoForForwarding 4812 // Check if the MI meet the requirement described in the III. 4813 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4814 return false; 4815 4816 // Check if the DefMI meet the requirement 4817 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4818 MachineOperand *ImmMO = nullptr; 4819 MachineOperand *RegMO = nullptr; 4820 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4821 return false; 4822 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4823 4824 // As we get the Imm operand now, we need to check if the ImmMO meet 4825 // the requirement described in the III. If yes set the Imm. 4826 int64_t Imm = 0; 4827 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4828 return false; 4829 4830 bool IsFwdFeederRegKilled = false; 4831 bool SeenIntermediateUse = false; 4832 // Check if the RegMO can be forwarded to MI. 4833 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4834 IsFwdFeederRegKilled, SeenIntermediateUse)) 4835 return false; 4836 4837 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4838 bool PostRA = !MRI.isSSA(); 4839 4840 // We know that, the MI and DefMI both meet the pattern, and 4841 // the Imm also meet the requirement with the new Imm-form. 4842 // It is safe to do the transformation now. 4843 LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n"); 4844 LLVM_DEBUG(MI.dump()); 4845 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4846 LLVM_DEBUG(DefMI.dump()); 4847 4848 // Update the base reg first. 4849 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4850 false, false, 4851 RegMO->isKill()); 4852 4853 // Then, update the imm. 4854 if (ImmMO->isImm()) { 4855 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4856 // directly. 4857 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4858 } 4859 else { 4860 // Otherwise, it is Constant Pool Index(CPI) or Global, 4861 // which is relocation in fact. We need to replace the special zero 4862 // register with ImmMO. 4863 // Before that, we need to fixup the target flags for imm. 4864 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4865 if (DefMI.getOpcode() == PPC::ADDItocL) 4866 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4867 4868 // MI didn't have the interface such as MI.setOperand(i) though 4869 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4870 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4871 // and, add the ImmMO, then, move back all the operands behind ZERO. 4872 SmallVector<MachineOperand, 2> MOps; 4873 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4874 MOps.push_back(MI.getOperand(i)); 4875 MI.removeOperand(i); 4876 } 4877 4878 // Remove the last MO in the list, which is ZERO operand in fact. 4879 MOps.pop_back(); 4880 // Add the imm operand. 4881 MI.addOperand(*ImmMO); 4882 // Now add the rest back. 4883 for (auto &MO : MOps) 4884 MI.addOperand(MO); 4885 } 4886 4887 // Update the opcode. 4888 MI.setDesc(get(III.ImmOpcode)); 4889 4890 if (PostRA) 4891 recomputeLivenessFlags(*MI.getParent()); 4892 LLVM_DEBUG(dbgs() << "With:\n"); 4893 LLVM_DEBUG(MI.dump()); 4894 4895 return true; 4896 } 4897 4898 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4899 const ImmInstrInfo &III, 4900 unsigned ConstantOpNo, 4901 MachineInstr &DefMI) const { 4902 // DefMI must be LI or LI8. 4903 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4904 !DefMI.getOperand(1).isImm()) 4905 return false; 4906 4907 // Get Imm operand and Sign-extend to 64-bits. 4908 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4909 4910 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4911 bool PostRA = !MRI.isSSA(); 4912 // Exit early if we can't convert this. 4913 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4914 return false; 4915 if (Imm % III.ImmMustBeMultipleOf) 4916 return false; 4917 if (III.TruncateImmTo) 4918 Imm &= ((1 << III.TruncateImmTo) - 1); 4919 if (III.SignedImm) { 4920 APInt ActualValue(64, Imm, true); 4921 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4922 return false; 4923 } else { 4924 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4925 if ((uint64_t)Imm > UnsignedMax) 4926 return false; 4927 } 4928 4929 // If we're post-RA, the instructions don't agree on whether register zero is 4930 // special, we can transform this as long as the register operand that will 4931 // end up in the location where zero is special isn't R0. 4932 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4933 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4934 III.ZeroIsSpecialNew + 1; 4935 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4936 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4937 // If R0 is in the operand where zero is special for the new instruction, 4938 // it is unsafe to transform if the constant operand isn't that operand. 4939 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4940 ConstantOpNo != III.ZeroIsSpecialNew) 4941 return false; 4942 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4943 ConstantOpNo != PosForOrigZero) 4944 return false; 4945 } 4946 4947 unsigned Opc = MI.getOpcode(); 4948 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4949 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4950 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4951 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4952 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4953 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4954 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4955 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4956 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4957 Opc == PPC::SRD_rec; 4958 4959 LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: "); 4960 LLVM_DEBUG(MI.dump()); 4961 LLVM_DEBUG(dbgs() << "Fed by load-immediate: "); 4962 LLVM_DEBUG(DefMI.dump()); 4963 MI.setDesc(get(III.ImmOpcode)); 4964 if (ConstantOpNo == III.OpNoForForwarding) { 4965 // Converting shifts to immediate form is a bit tricky since they may do 4966 // one of three things: 4967 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4968 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4969 // setting CR0) 4970 // 3. If the shift amount is in [1, OpSize), it's just a shift 4971 if (SpecialShift32 || SpecialShift64) { 4972 LoadImmediateInfo LII; 4973 LII.Imm = 0; 4974 LII.SetCR = SetCR; 4975 LII.Is64Bit = SpecialShift64; 4976 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4977 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4978 replaceInstrWithLI(MI, LII); 4979 // Shifts by zero don't change the value. If we don't need to set CR0, 4980 // just convert this to a COPY. Can't do this post-RA since we've already 4981 // cleaned up the copies. 4982 else if (!SetCR && ShAmt == 0 && !PostRA) { 4983 MI.removeOperand(2); 4984 MI.setDesc(get(PPC::COPY)); 4985 } else { 4986 // The 32 bit and 64 bit instructions are quite different. 4987 if (SpecialShift32) { 4988 // Left shifts use (N, 0, 31-N). 4989 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4990 // use (0, 0, 31) if N == 0. 4991 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4992 uint64_t MB = RightShift ? ShAmt : 0; 4993 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4994 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4995 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4996 .addImm(ME); 4997 } else { 4998 // Left shifts use (N, 63-N). 4999 // Right shifts use (64-N, N) if 0 < N < 64. 5000 // use (0, 0) if N == 0. 5001 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 5002 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 5003 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5004 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5005 } 5006 } 5007 } else 5008 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5009 } 5010 // Convert commutative instructions (switch the operands and convert the 5011 // desired one to an immediate. 5012 else if (III.IsCommutative) { 5013 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5014 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5015 } else 5016 llvm_unreachable("Should have exited early!"); 5017 5018 // For instructions for which the constant register replaces a different 5019 // operand than where the immediate goes, we need to swap them. 5020 if (III.OpNoForForwarding != III.ImmOpNo) 5021 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5022 5023 // If the special R0/X0 register index are different for original instruction 5024 // and new instruction, we need to fix up the register class in new 5025 // instruction. 5026 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5027 if (III.ZeroIsSpecialNew) { 5028 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5029 // need to fix up register class. 5030 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5031 if (RegToModify.isVirtual()) { 5032 const TargetRegisterClass *NewRC = 5033 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5034 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5035 MRI.setRegClass(RegToModify, NewRC); 5036 } 5037 } 5038 } 5039 5040 if (PostRA) 5041 recomputeLivenessFlags(*MI.getParent()); 5042 5043 LLVM_DEBUG(dbgs() << "With: "); 5044 LLVM_DEBUG(MI.dump()); 5045 LLVM_DEBUG(dbgs() << "\n"); 5046 return true; 5047 } 5048 5049 const TargetRegisterClass * 5050 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5051 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5052 return &PPC::VSRCRegClass; 5053 return RC; 5054 } 5055 5056 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5057 return PPC::getRecordFormOpcode(Opcode); 5058 } 5059 5060 static bool isOpZeroOfSubwordPreincLoad(int Opcode) { 5061 return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || 5062 Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || 5063 Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || 5064 Opcode == PPC::LHZUX8); 5065 } 5066 5067 // This function checks for sign extension from 32 bits to 64 bits. 5068 static bool definedBySignExtendingOp(const unsigned Reg, 5069 const MachineRegisterInfo *MRI) { 5070 if (!Register::isVirtualRegister(Reg)) 5071 return false; 5072 5073 MachineInstr *MI = MRI->getVRegDef(Reg); 5074 if (!MI) 5075 return false; 5076 5077 int Opcode = MI->getOpcode(); 5078 const PPCInstrInfo *TII = 5079 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5080 if (TII->isSExt32To64(Opcode)) 5081 return true; 5082 5083 // The first def of LBZU/LHZU is sign extended. 5084 if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg) 5085 return true; 5086 5087 // RLDICL generates sign-extended output if it clears at least 5088 // 33 bits from the left (MSB). 5089 if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33) 5090 return true; 5091 5092 // If at least one bit from left in a lower word is masked out, 5093 // all of 0 to 32-th bits of the output are cleared. 5094 // Hence the output is already sign extended. 5095 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5096 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5097 MI->getOperand(3).getImm() > 0 && 5098 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5099 return true; 5100 5101 // If the most significant bit of immediate in ANDIS is zero, 5102 // all of 0 to 32-th bits are cleared. 5103 if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { 5104 uint16_t Imm = MI->getOperand(2).getImm(); 5105 if ((Imm & 0x8000) == 0) 5106 return true; 5107 } 5108 5109 return false; 5110 } 5111 5112 // This function checks the machine instruction that defines the input register 5113 // Reg. If that machine instruction always outputs a value that has only zeros 5114 // in the higher 32 bits then this function will return true. 5115 static bool definedByZeroExtendingOp(const unsigned Reg, 5116 const MachineRegisterInfo *MRI) { 5117 if (!Register::isVirtualRegister(Reg)) 5118 return false; 5119 5120 MachineInstr *MI = MRI->getVRegDef(Reg); 5121 if (!MI) 5122 return false; 5123 5124 int Opcode = MI->getOpcode(); 5125 const PPCInstrInfo *TII = 5126 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5127 if (TII->isZExt32To64(Opcode)) 5128 return true; 5129 5130 // The first def of LBZU/LHZU/LWZU are zero extended. 5131 if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || 5132 Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && 5133 MI->getOperand(0).getReg() == Reg) 5134 return true; 5135 5136 // The 16-bit immediate is sign-extended in li/lis. 5137 // If the most significant bit is zero, all higher bits are zero. 5138 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5139 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5140 int64_t Imm = MI->getOperand(1).getImm(); 5141 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5142 return true; 5143 } 5144 5145 // We have some variations of rotate-and-mask instructions 5146 // that clear higher 32-bits. 5147 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5148 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5149 Opcode == PPC::RLDICL_32_64) && 5150 MI->getOperand(3).getImm() >= 32) 5151 return true; 5152 5153 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5154 MI->getOperand(3).getImm() >= 32 && 5155 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) 5156 return true; 5157 5158 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5159 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5160 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5161 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5162 return true; 5163 5164 return false; 5165 } 5166 5167 // This function returns true if the input MachineInstr is a TOC save 5168 // instruction. 5169 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5170 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5171 return false; 5172 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5173 unsigned StackOffset = MI.getOperand(1).getImm(); 5174 Register StackReg = MI.getOperand(2).getReg(); 5175 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5176 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5177 return true; 5178 5179 return false; 5180 } 5181 5182 // We limit the max depth to track incoming values of PHIs or binary ops 5183 // (e.g. AND) to avoid excessive cost. 5184 const unsigned MAX_BINOP_DEPTH = 1; 5185 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth 5186 // does not count all of the recursions. The parameter BinOpDepth is incremented 5187 // only when isSignOrZeroExtended calls itself more than once. This is done to 5188 // prevent expontential recursion. There is no parameter to track linear 5189 // recursion. 5190 std::pair<bool, bool> 5191 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, 5192 const unsigned BinOpDepth, 5193 const MachineRegisterInfo *MRI) const { 5194 if (!Register::isVirtualRegister(Reg)) 5195 return std::pair<bool, bool>(false, false); 5196 5197 MachineInstr *MI = MRI->getVRegDef(Reg); 5198 if (!MI) 5199 return std::pair<bool, bool>(false, false); 5200 5201 bool IsSExt = definedBySignExtendingOp(Reg, MRI); 5202 bool IsZExt = definedByZeroExtendingOp(Reg, MRI); 5203 5204 // If we know the instruction always returns sign- and zero-extended result, 5205 // return here. 5206 if (IsSExt && IsZExt) 5207 return std::pair<bool, bool>(IsSExt, IsZExt); 5208 5209 switch (MI->getOpcode()) { 5210 case PPC::COPY: { 5211 Register SrcReg = MI->getOperand(1).getReg(); 5212 5213 // In both ELFv1 and v2 ABI, method parameters and the return value 5214 // are sign- or zero-extended. 5215 const MachineFunction *MF = MI->getMF(); 5216 5217 if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5218 // If this is a copy from another register, we recursively check source. 5219 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5220 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5221 SrcExt.second || IsZExt); 5222 } 5223 5224 // From here on everything is SVR4ABI 5225 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5226 // We check the ZExt/SExt flags for a method parameter. 5227 if (MI->getParent()->getBasicBlock() == 5228 &MF->getFunction().getEntryBlock()) { 5229 Register VReg = MI->getOperand(0).getReg(); 5230 if (MF->getRegInfo().isLiveIn(VReg)) { 5231 IsSExt |= FuncInfo->isLiveInSExt(VReg); 5232 IsZExt |= FuncInfo->isLiveInZExt(VReg); 5233 return std::pair<bool, bool>(IsSExt, IsZExt); 5234 } 5235 } 5236 5237 if (SrcReg != PPC::X3) { 5238 // If this is a copy from another register, we recursively check source. 5239 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5240 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5241 SrcExt.second || IsZExt); 5242 } 5243 5244 // For a method return value, we check the ZExt/SExt flags in attribute. 5245 // We assume the following code sequence for method call. 5246 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5247 // BL8_NOP @func,... 5248 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5249 // %5 = COPY %x3; G8RC:%5 5250 const MachineBasicBlock *MBB = MI->getParent(); 5251 std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); 5252 MachineBasicBlock::const_instr_iterator II = 5253 MachineBasicBlock::const_instr_iterator(MI); 5254 if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) 5255 return IsExtendPair; 5256 5257 const MachineInstr &CallMI = *(--II); 5258 if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal()) 5259 return IsExtendPair; 5260 5261 const Function *CalleeFn = 5262 dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal()); 5263 if (!CalleeFn) 5264 return IsExtendPair; 5265 const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5266 if (IntTy && IntTy->getBitWidth() <= 32) { 5267 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); 5268 IsSExt |= Attrs.hasAttribute(Attribute::SExt); 5269 IsZExt |= Attrs.hasAttribute(Attribute::ZExt); 5270 return std::pair<bool, bool>(IsSExt, IsZExt); 5271 } 5272 5273 return IsExtendPair; 5274 } 5275 5276 // OR, XOR with 16-bit immediate does not change the upper 48 bits. 5277 // So, we track the operand register as we do for register copy. 5278 case PPC::ORI: 5279 case PPC::XORI: 5280 case PPC::ORI8: 5281 case PPC::XORI8: { 5282 Register SrcReg = MI->getOperand(1).getReg(); 5283 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5284 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5285 SrcExt.second || IsZExt); 5286 } 5287 5288 // OR, XOR with shifted 16-bit immediate does not change the upper 5289 // 32 bits. So, we track the operand register for zero extension. 5290 // For sign extension when the MSB of the immediate is zero, we also 5291 // track the operand register since the upper 33 bits are unchanged. 5292 case PPC::ORIS: 5293 case PPC::XORIS: 5294 case PPC::ORIS8: 5295 case PPC::XORIS8: { 5296 Register SrcReg = MI->getOperand(1).getReg(); 5297 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5298 uint16_t Imm = MI->getOperand(2).getImm(); 5299 if (Imm & 0x8000) 5300 return std::pair<bool, bool>(false, SrcExt.second || IsZExt); 5301 else 5302 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5303 SrcExt.second || IsZExt); 5304 } 5305 5306 // If all incoming values are sign-/zero-extended, 5307 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5308 case PPC::OR: 5309 case PPC::OR8: 5310 case PPC::ISEL: 5311 case PPC::PHI: { 5312 if (BinOpDepth >= MAX_BINOP_DEPTH) 5313 return std::pair<bool, bool>(false, false); 5314 5315 // The input registers for PHI are operand 1, 3, ... 5316 // The input registers for others are operand 1 and 2. 5317 unsigned OperandEnd = 3, OperandStride = 1; 5318 if (MI->getOpcode() == PPC::PHI) { 5319 OperandEnd = MI->getNumOperands(); 5320 OperandStride = 2; 5321 } 5322 5323 IsSExt = true; 5324 IsZExt = true; 5325 for (unsigned I = 1; I != OperandEnd; I += OperandStride) { 5326 if (!MI->getOperand(I).isReg()) 5327 return std::pair<bool, bool>(false, false); 5328 5329 Register SrcReg = MI->getOperand(I).getReg(); 5330 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI); 5331 IsSExt &= SrcExt.first; 5332 IsZExt &= SrcExt.second; 5333 } 5334 return std::pair<bool, bool>(IsSExt, IsZExt); 5335 } 5336 5337 // If at least one of the incoming values of an AND is zero extended 5338 // then the output is also zero-extended. If both of the incoming values 5339 // are sign-extended then the output is also sign extended. 5340 case PPC::AND: 5341 case PPC::AND8: { 5342 if (BinOpDepth >= MAX_BINOP_DEPTH) 5343 return std::pair<bool, bool>(false, false); 5344 5345 Register SrcReg1 = MI->getOperand(1).getReg(); 5346 Register SrcReg2 = MI->getOperand(2).getReg(); 5347 auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI); 5348 auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI); 5349 return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, 5350 Src1Ext.second || Src2Ext.second); 5351 } 5352 5353 default: 5354 break; 5355 } 5356 return std::pair<bool, bool>(IsSExt, IsZExt); 5357 } 5358 5359 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5360 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5361 } 5362 5363 namespace { 5364 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5365 MachineInstr *Loop, *EndLoop, *LoopCount; 5366 MachineFunction *MF; 5367 const TargetInstrInfo *TII; 5368 int64_t TripCount; 5369 5370 public: 5371 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5372 MachineInstr *LoopCount) 5373 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5374 MF(Loop->getParent()->getParent()), 5375 TII(MF->getSubtarget().getInstrInfo()) { 5376 // Inspect the Loop instruction up-front, as it may be deleted when we call 5377 // createTripCountGreaterCondition. 5378 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5379 TripCount = LoopCount->getOperand(1).getImm(); 5380 else 5381 TripCount = -1; 5382 } 5383 5384 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5385 // Only ignore the terminator. 5386 return MI == EndLoop; 5387 } 5388 5389 std::optional<bool> createTripCountGreaterCondition( 5390 int TC, MachineBasicBlock &MBB, 5391 SmallVectorImpl<MachineOperand> &Cond) override { 5392 if (TripCount == -1) { 5393 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5394 // so we don't need to generate any thing here. 5395 Cond.push_back(MachineOperand::CreateImm(0)); 5396 Cond.push_back(MachineOperand::CreateReg( 5397 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5398 true)); 5399 return {}; 5400 } 5401 5402 return TripCount > TC; 5403 } 5404 5405 void setPreheader(MachineBasicBlock *NewPreheader) override { 5406 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5407 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5408 } 5409 5410 void adjustTripCount(int TripCountAdjust) override { 5411 // If the loop trip count is a compile-time value, then just change the 5412 // value. 5413 if (LoopCount->getOpcode() == PPC::LI8 || 5414 LoopCount->getOpcode() == PPC::LI) { 5415 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5416 LoopCount->getOperand(1).setImm(TripCount); 5417 return; 5418 } 5419 5420 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5421 // so we don't need to generate any thing here. 5422 } 5423 5424 void disposed() override { 5425 Loop->eraseFromParent(); 5426 // Ensure the loop setup instruction is deleted too. 5427 LoopCount->eraseFromParent(); 5428 } 5429 }; 5430 } // namespace 5431 5432 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5433 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5434 // We really "analyze" only hardware loops right now. 5435 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5436 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5437 if (Preheader == LoopBB) 5438 Preheader = *std::next(LoopBB->pred_begin()); 5439 MachineFunction *MF = Preheader->getParent(); 5440 5441 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5442 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5443 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5444 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5445 MachineRegisterInfo &MRI = MF->getRegInfo(); 5446 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5447 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5448 } 5449 } 5450 return nullptr; 5451 } 5452 5453 MachineInstr *PPCInstrInfo::findLoopInstr( 5454 MachineBasicBlock &PreHeader, 5455 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5456 5457 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5458 5459 // The loop set-up instruction should be in preheader 5460 for (auto &I : PreHeader.instrs()) 5461 if (I.getOpcode() == LOOPi) 5462 return &I; 5463 return nullptr; 5464 } 5465 5466 // Return true if get the base operand, byte offset of an instruction and the 5467 // memory width. Width is the size of memory that is being loaded/stored. 5468 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5469 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5470 unsigned &Width, const TargetRegisterInfo *TRI) const { 5471 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5472 return false; 5473 5474 // Handle only loads/stores with base register followed by immediate offset. 5475 if (!LdSt.getOperand(1).isImm() || 5476 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5477 return false; 5478 if (!LdSt.getOperand(1).isImm() || 5479 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5480 return false; 5481 5482 if (!LdSt.hasOneMemOperand()) 5483 return false; 5484 5485 Width = (*LdSt.memoperands_begin())->getSize(); 5486 Offset = LdSt.getOperand(1).getImm(); 5487 BaseReg = &LdSt.getOperand(2); 5488 return true; 5489 } 5490 5491 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5492 const MachineInstr &MIa, const MachineInstr &MIb) const { 5493 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5494 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5495 5496 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5497 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5498 return false; 5499 5500 // Retrieve the base register, offset from the base register and width. Width 5501 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5502 // base registers are identical, and the offset of a lower memory access + 5503 // the width doesn't overlap the offset of a higher memory access, 5504 // then the memory accesses are different. 5505 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5506 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5507 int64_t OffsetA = 0, OffsetB = 0; 5508 unsigned int WidthA = 0, WidthB = 0; 5509 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5510 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5511 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5512 int LowOffset = std::min(OffsetA, OffsetB); 5513 int HighOffset = std::max(OffsetA, OffsetB); 5514 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5515 if (LowOffset + LowWidth <= HighOffset) 5516 return true; 5517 } 5518 } 5519 return false; 5520 } 5521