1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/APSInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/ISDOpcodes.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGISel.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/IntrinsicsPowerPC.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CodeGen.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <new> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "ppc-isel" 73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection" 74 75 STATISTIC(NumSextSetcc, 76 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 77 STATISTIC(NumZextSetcc, 78 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 79 STATISTIC(SignExtensionsAdded, 80 "Number of sign extensions for compare inputs added."); 81 STATISTIC(ZeroExtensionsAdded, 82 "Number of zero extensions for compare inputs added."); 83 STATISTIC(NumLogicOpsOnComparison, 84 "Number of logical ops on i1 values calculated in GPR."); 85 STATISTIC(OmittedForNonExtendUses, 86 "Number of compares not eliminated as they have non-extending uses."); 87 STATISTIC(NumP9Setb, 88 "Number of compares lowered to setb."); 89 90 // FIXME: Remove this once the bug has been fixed! 91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 93 94 static cl::opt<bool> 95 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 96 cl::desc("use aggressive ppc isel for bit permutations"), 97 cl::Hidden); 98 static cl::opt<bool> BPermRewriterNoMasking( 99 "ppc-bit-perm-rewriter-stress-rotates", 100 cl::desc("stress rotate selection in aggressive ppc isel for " 101 "bit permutations"), 102 cl::Hidden); 103 104 static cl::opt<bool> EnableBranchHint( 105 "ppc-use-branch-hint", cl::init(true), 106 cl::desc("Enable static hinting of branches on ppc"), 107 cl::Hidden); 108 109 static cl::opt<bool> EnableTLSOpt( 110 "ppc-tls-opt", cl::init(true), 111 cl::desc("Enable tls optimization peephole"), 112 cl::Hidden); 113 114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 115 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 116 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 117 118 static cl::opt<ICmpInGPRType> CmpInGPR( 119 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 120 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 121 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 122 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 123 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 124 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 125 clEnumValN(ICGPR_NonExtIn, "nonextin", 126 "Only comparisons where inputs don't need [sz]ext."), 127 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 128 clEnumValN(ICGPR_ZextI32, "zexti32", 129 "Only i32 comparisons with zext result."), 130 clEnumValN(ICGPR_ZextI64, "zexti64", 131 "Only i64 comparisons with zext result."), 132 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 133 clEnumValN(ICGPR_SextI32, "sexti32", 134 "Only i32 comparisons with sext result."), 135 clEnumValN(ICGPR_SextI64, "sexti64", 136 "Only i64 comparisons with sext result."))); 137 namespace { 138 139 //===--------------------------------------------------------------------===// 140 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 141 /// instructions for SelectionDAG operations. 142 /// 143 class PPCDAGToDAGISel : public SelectionDAGISel { 144 const PPCTargetMachine &TM; 145 const PPCSubtarget *Subtarget = nullptr; 146 const PPCTargetLowering *PPCLowering = nullptr; 147 unsigned GlobalBaseReg = 0; 148 149 public: 150 static char ID; 151 152 PPCDAGToDAGISel() = delete; 153 154 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOptLevel OptLevel) 155 : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {} 156 157 bool runOnMachineFunction(MachineFunction &MF) override { 158 // Make sure we re-emit a set of the global base reg if necessary 159 GlobalBaseReg = 0; 160 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 161 PPCLowering = Subtarget->getTargetLowering(); 162 if (Subtarget->hasROPProtect()) { 163 // Create a place on the stack for the ROP Protection Hash. 164 // The ROP Protection Hash will always be 8 bytes and aligned to 8 165 // bytes. 166 MachineFrameInfo &MFI = MF.getFrameInfo(); 167 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 168 const int Result = MFI.CreateStackObject(8, Align(8), false); 169 FI->setROPProtectionHashSaveIndex(Result); 170 } 171 SelectionDAGISel::runOnMachineFunction(MF); 172 173 return true; 174 } 175 176 void PreprocessISelDAG() override; 177 void PostprocessISelDAG() override; 178 179 /// getI16Imm - Return a target constant with the specified value, of type 180 /// i16. 181 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 182 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 183 } 184 185 /// getI32Imm - Return a target constant with the specified value, of type 186 /// i32. 187 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 188 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 189 } 190 191 /// getI64Imm - Return a target constant with the specified value, of type 192 /// i64. 193 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 194 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 195 } 196 197 /// getSmallIPtrImm - Return a target constant of pointer type. 198 inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) { 199 return CurDAG->getTargetConstant( 200 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 201 } 202 203 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 204 /// rotate and mask opcode and mask operation. 205 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 206 unsigned &SH, unsigned &MB, unsigned &ME); 207 208 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 209 /// base register. Return the virtual register that holds this value. 210 SDNode *getGlobalBaseReg(); 211 212 void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0); 213 214 // Select - Convert the specified operand from a target-independent to a 215 // target-specific node if it hasn't already been changed. 216 void Select(SDNode *N) override; 217 218 bool tryBitfieldInsert(SDNode *N); 219 bool tryBitPermutation(SDNode *N); 220 bool tryIntCompareInGPR(SDNode *N); 221 222 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 223 // an X-Form load instruction with the offset being a relocation coming from 224 // the PPCISD::ADD_TLS. 225 bool tryTLSXFormLoad(LoadSDNode *N); 226 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 227 // an X-Form store instruction with the offset being a relocation coming from 228 // the PPCISD::ADD_TLS. 229 bool tryTLSXFormStore(StoreSDNode *N); 230 /// SelectCC - Select a comparison of the specified values with the 231 /// specified condition code, returning the CR# of the expression. 232 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 233 const SDLoc &dl, SDValue Chain = SDValue()); 234 235 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 236 /// immediate field. Note that the operand at this point is already the 237 /// result of a prior SelectAddressRegImm call. 238 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 239 if (N.getOpcode() == ISD::TargetConstant || 240 N.getOpcode() == ISD::TargetGlobalAddress) { 241 Out = N; 242 return true; 243 } 244 245 return false; 246 } 247 248 /// SelectDSForm - Returns true if address N can be represented by the 249 /// addressing mode of DSForm instructions (a base register, plus a signed 250 /// 16-bit displacement that is a multiple of 4. 251 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 252 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 253 Align(4)) == PPC::AM_DSForm; 254 } 255 256 /// SelectDQForm - Returns true if address N can be represented by the 257 /// addressing mode of DQForm instructions (a base register, plus a signed 258 /// 16-bit displacement that is a multiple of 16. 259 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 260 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 261 Align(16)) == PPC::AM_DQForm; 262 } 263 264 /// SelectDForm - Returns true if address N can be represented by 265 /// the addressing mode of DForm instructions (a base register, plus a 266 /// signed 16-bit immediate. 267 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 268 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 269 std::nullopt) == PPC::AM_DForm; 270 } 271 272 /// SelectPCRelForm - Returns true if address N can be represented by 273 /// PC-Relative addressing mode. 274 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp, 275 SDValue &Base) { 276 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 277 std::nullopt) == PPC::AM_PCRel; 278 } 279 280 /// SelectPDForm - Returns true if address N can be represented by Prefixed 281 /// DForm addressing mode (a base register, plus a signed 34-bit immediate. 282 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 283 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 284 std::nullopt) == 285 PPC::AM_PrefixDForm; 286 } 287 288 /// SelectXForm - Returns true if address N can be represented by the 289 /// addressing mode of XForm instructions (an indexed [r+r] operation). 290 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 291 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 292 std::nullopt) == PPC::AM_XForm; 293 } 294 295 /// SelectForceXForm - Given the specified address, force it to be 296 /// represented as an indexed [r+r] operation (an XForm instruction). 297 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, 298 SDValue &Base) { 299 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == 300 PPC::AM_XForm; 301 } 302 303 /// SelectAddrIdx - Given the specified address, check to see if it can be 304 /// represented as an indexed [r+r] operation. 305 /// This is for xform instructions whose associated displacement form is D. 306 /// The last parameter \p 0 means associated D form has no requirment for 16 307 /// bit signed displacement. 308 /// Returns false if it can be represented by [r+imm], which are preferred. 309 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 310 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 311 std::nullopt); 312 } 313 314 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 315 /// represented as an indexed [r+r] operation. 316 /// This is for xform instructions whose associated displacement form is DS. 317 /// The last parameter \p 4 means associated DS form 16 bit signed 318 /// displacement must be a multiple of 4. 319 /// Returns false if it can be represented by [r+imm], which are preferred. 320 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 321 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 322 Align(4)); 323 } 324 325 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 326 /// represented as an indexed [r+r] operation. 327 /// This is for xform instructions whose associated displacement form is DQ. 328 /// The last parameter \p 16 means associated DQ form 16 bit signed 329 /// displacement must be a multiple of 16. 330 /// Returns false if it can be represented by [r+imm], which are preferred. 331 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 332 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 333 Align(16)); 334 } 335 336 /// SelectAddrIdxOnly - Given the specified address, force it to be 337 /// represented as an indexed [r+r] operation. 338 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 339 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 340 } 341 342 /// SelectAddrImm - Returns true if the address N can be represented by 343 /// a base register plus a signed 16-bit displacement [r+imm]. 344 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 345 /// displacement. 346 bool SelectAddrImm(SDValue N, SDValue &Disp, 347 SDValue &Base) { 348 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 349 std::nullopt); 350 } 351 352 /// SelectAddrImmX4 - Returns true if the address N can be represented by 353 /// a base register plus a signed 16-bit displacement that is a multiple of 354 /// 4 (last parameter). Suitable for use by STD and friends. 355 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 356 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); 357 } 358 359 /// SelectAddrImmX16 - Returns true if the address N can be represented by 360 /// a base register plus a signed 16-bit displacement that is a multiple of 361 /// 16(last parameter). Suitable for use by STXV and friends. 362 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 363 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 364 Align(16)); 365 } 366 367 /// SelectAddrImmX34 - Returns true if the address N can be represented by 368 /// a base register plus a signed 34-bit displacement. Suitable for use by 369 /// PSTXVP and friends. 370 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { 371 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); 372 } 373 374 // Select an address into a single register. 375 bool SelectAddr(SDValue N, SDValue &Base) { 376 Base = N; 377 return true; 378 } 379 380 bool SelectAddrPCRel(SDValue N, SDValue &Base) { 381 return PPCLowering->SelectAddressPCRel(N, Base); 382 } 383 384 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 385 /// inline asm expressions. It is always correct to compute the value into 386 /// a register. The case of adding a (possibly relocatable) constant to a 387 /// register can be improved, but it is wrong to substitute Reg+Reg for 388 /// Reg in an asm, because the load or store opcode would have to change. 389 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 390 InlineAsm::ConstraintCode ConstraintID, 391 std::vector<SDValue> &OutOps) override { 392 switch(ConstraintID) { 393 default: 394 errs() << "ConstraintID: " 395 << InlineAsm::getMemConstraintName(ConstraintID) << "\n"; 396 llvm_unreachable("Unexpected asm memory constraint"); 397 case InlineAsm::ConstraintCode::es: 398 case InlineAsm::ConstraintCode::m: 399 case InlineAsm::ConstraintCode::o: 400 case InlineAsm::ConstraintCode::Q: 401 case InlineAsm::ConstraintCode::Z: 402 case InlineAsm::ConstraintCode::Zy: 403 // We need to make sure that this one operand does not end up in r0 404 // (because we might end up lowering this as 0(%op)). 405 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 406 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 407 SDLoc dl(Op); 408 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 409 SDValue NewOp = 410 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 411 dl, Op.getValueType(), 412 Op, RC), 0); 413 414 OutOps.push_back(NewOp); 415 return false; 416 } 417 return true; 418 } 419 420 // Include the pieces autogenerated from the target description. 421 #include "PPCGenDAGISel.inc" 422 423 private: 424 bool trySETCC(SDNode *N); 425 bool tryFoldSWTestBRCC(SDNode *N); 426 bool trySelectLoopCountIntrinsic(SDNode *N); 427 bool tryAsSingleRLDICL(SDNode *N); 428 bool tryAsSingleRLDCL(SDNode *N); 429 bool tryAsSingleRLDICR(SDNode *N); 430 bool tryAsSingleRLWINM(SDNode *N); 431 bool tryAsSingleRLWINM8(SDNode *N); 432 bool tryAsSingleRLWIMI(SDNode *N); 433 bool tryAsPairOfRLDICL(SDNode *N); 434 bool tryAsSingleRLDIMI(SDNode *N); 435 436 void PeepholePPC64(); 437 void PeepholePPC64ZExt(); 438 void PeepholeCROps(); 439 440 SDValue combineToCMPB(SDNode *N); 441 void foldBoolExts(SDValue &Res, SDNode *&N); 442 443 bool AllUsersSelectZero(SDNode *N); 444 void SwapAllSelectUsers(SDNode *N); 445 446 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 447 void transferMemOperands(SDNode *N, SDNode *Result); 448 }; 449 450 } // end anonymous namespace 451 452 char PPCDAGToDAGISel::ID = 0; 453 454 INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false) 455 456 /// getGlobalBaseReg - Output the instructions required to put the 457 /// base address to use for accessing globals into a register. 458 /// 459 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 460 if (!GlobalBaseReg) { 461 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 462 // Insert the set of GlobalBaseReg into the first MBB of the function 463 MachineBasicBlock &FirstMBB = MF->front(); 464 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 465 const Module *M = MF->getFunction().getParent(); 466 DebugLoc dl; 467 468 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 469 if (Subtarget->isTargetELF()) { 470 GlobalBaseReg = PPC::R30; 471 if (!Subtarget->isSecurePlt() && 472 M->getPICLevel() == PICLevel::SmallPIC) { 473 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 474 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 475 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 476 } else { 477 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 478 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 479 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 480 BuildMI(FirstMBB, MBBI, dl, 481 TII.get(PPC::UpdateGBR), GlobalBaseReg) 482 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 483 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 484 } 485 } else { 486 GlobalBaseReg = 487 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 488 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 489 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 490 } 491 } else { 492 // We must ensure that this sequence is dominated by the prologue. 493 // FIXME: This is a bit of a big hammer since we don't get the benefits 494 // of shrink-wrapping whenever we emit this instruction. Considering 495 // this is used in any function where we emit a jump table, this may be 496 // a significant limitation. We should consider inserting this in the 497 // block where it is used and then commoning this sequence up if it 498 // appears in multiple places. 499 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 500 // MovePCtoLR8. 501 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 502 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 503 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 504 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 505 } 506 } 507 return CurDAG->getRegister(GlobalBaseReg, 508 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 509 .getNode(); 510 } 511 512 // Check if a SDValue has the toc-data attribute. 513 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) { 514 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); 515 if (!GA) 516 return false; 517 518 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); 519 if (!GV) 520 return false; 521 522 if (!GV->hasAttribute("toc-data")) 523 return false; 524 525 // TODO: These asserts should be updated as more support for the toc data 526 // transformation is added (struct support, etc.). 527 528 assert( 529 PointerSize >= GV->getAlign().valueOrOne().value() && 530 "GlobalVariables with an alignment requirement stricter than TOC entry " 531 "size not supported by the toc data transformation."); 532 533 Type *GVType = GV->getValueType(); 534 535 assert(GVType->isSized() && "A GlobalVariable's size must be known to be " 536 "supported by the toc data transformation."); 537 538 if (GVType->isVectorTy()) 539 report_fatal_error("A GlobalVariable of Vector type is not currently " 540 "supported by the toc data transformation."); 541 542 if (GVType->isArrayTy()) 543 report_fatal_error("A GlobalVariable of Array type is not currently " 544 "supported by the toc data transformation."); 545 546 if (GVType->isStructTy()) 547 report_fatal_error("A GlobalVariable of Struct type is not currently " 548 "supported by the toc data transformation."); 549 550 assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && 551 "A GlobalVariable with size larger than a TOC entry is not currently " 552 "supported by the toc data transformation."); 553 554 if (GV->hasLocalLinkage() || GV->hasPrivateLinkage()) 555 report_fatal_error("A GlobalVariable with private or local linkage is not " 556 "currently supported by the toc data transformation."); 557 558 assert(!GV->hasCommonLinkage() && 559 "Tentative definitions cannot have the mapping class XMC_TD."); 560 561 return true; 562 } 563 564 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 565 /// operand. If so Imm will receive the 32-bit value. 566 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 567 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 568 Imm = N->getAsZExtVal(); 569 return true; 570 } 571 return false; 572 } 573 574 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 575 /// operand. If so Imm will receive the 64-bit value. 576 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 577 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 578 Imm = N->getAsZExtVal(); 579 return true; 580 } 581 return false; 582 } 583 584 // isInt32Immediate - This method tests to see if a constant operand. 585 // If so Imm will receive the 32 bit value. 586 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 587 return isInt32Immediate(N.getNode(), Imm); 588 } 589 590 /// isInt64Immediate - This method tests to see if the value is a 64-bit 591 /// constant operand. If so Imm will receive the 64-bit value. 592 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 593 return isInt64Immediate(N.getNode(), Imm); 594 } 595 596 static unsigned getBranchHint(unsigned PCC, 597 const FunctionLoweringInfo &FuncInfo, 598 const SDValue &DestMBB) { 599 assert(isa<BasicBlockSDNode>(DestMBB)); 600 601 if (!FuncInfo.BPI) return PPC::BR_NO_HINT; 602 603 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 604 const Instruction *BBTerm = BB->getTerminator(); 605 606 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 607 608 const BasicBlock *TBB = BBTerm->getSuccessor(0); 609 const BasicBlock *FBB = BBTerm->getSuccessor(1); 610 611 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); 612 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); 613 614 // We only want to handle cases which are easy to predict at static time, e.g. 615 // C++ throw statement, that is very likely not taken, or calling never 616 // returned function, e.g. stdlib exit(). So we set Threshold to filter 617 // unwanted cases. 618 // 619 // Below is LLVM branch weight table, we only want to handle case 1, 2 620 // 621 // Case Taken:Nontaken Example 622 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 623 // 2. Invoke-terminating 1:1048575 624 // 3. Coldblock 4:64 __builtin_expect 625 // 4. Loop Branch 124:4 For loop 626 // 5. PH/ZH/FPH 20:12 627 const uint32_t Threshold = 10000; 628 629 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 630 return PPC::BR_NO_HINT; 631 632 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() 633 << "::" << BB->getName() << "'\n" 634 << " -> " << TBB->getName() << ": " << TProb << "\n" 635 << " -> " << FBB->getName() << ": " << FProb << "\n"); 636 637 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 638 639 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 640 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 641 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 642 std::swap(TProb, FProb); 643 644 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 645 } 646 647 // isOpcWithIntImmediate - This method tests to see if the node is a specific 648 // opcode and that it has a immediate integer right operand. 649 // If so Imm will receive the 32 bit value. 650 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 651 return N->getOpcode() == Opc 652 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 653 } 654 655 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) { 656 SDLoc dl(SN); 657 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 658 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 659 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 660 if (SN->hasOneUse()) 661 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 662 getSmallIPtrImm(Offset, dl)); 663 else 664 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 665 getSmallIPtrImm(Offset, dl))); 666 } 667 668 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 669 bool isShiftMask, unsigned &SH, 670 unsigned &MB, unsigned &ME) { 671 // Don't even go down this path for i64, since different logic will be 672 // necessary for rldicl/rldicr/rldimi. 673 if (N->getValueType(0) != MVT::i32) 674 return false; 675 676 unsigned Shift = 32; 677 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 678 unsigned Opcode = N->getOpcode(); 679 if (N->getNumOperands() != 2 || 680 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 681 return false; 682 683 if (Opcode == ISD::SHL) { 684 // apply shift left to mask if it comes first 685 if (isShiftMask) Mask = Mask << Shift; 686 // determine which bits are made indeterminant by shift 687 Indeterminant = ~(0xFFFFFFFFu << Shift); 688 } else if (Opcode == ISD::SRL) { 689 // apply shift right to mask if it comes first 690 if (isShiftMask) Mask = Mask >> Shift; 691 // determine which bits are made indeterminant by shift 692 Indeterminant = ~(0xFFFFFFFFu >> Shift); 693 // adjust for the left rotate 694 Shift = 32 - Shift; 695 } else if (Opcode == ISD::ROTL) { 696 Indeterminant = 0; 697 } else { 698 return false; 699 } 700 701 // if the mask doesn't intersect any Indeterminant bits 702 if (Mask && !(Mask & Indeterminant)) { 703 SH = Shift & 31; 704 // make sure the mask is still a mask (wrap arounds may not be) 705 return isRunOfOnes(Mask, MB, ME); 706 } 707 return false; 708 } 709 710 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS 711 // instruction use the thread pointer. 712 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) { 713 assert( 714 Base.getOpcode() == PPCISD::ADD_TLS && 715 "Only expecting the ADD_TLS instruction to acquire the thread pointer!"); 716 const PPCSubtarget &Subtarget = 717 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 718 SDValue ADDTLSOp1 = Base.getOperand(0); 719 unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode(); 720 721 // Account for when ADD_TLS is used for the initial-exec TLS model on Linux. 722 // 723 // Although ADD_TLS does not explicitly use the thread pointer 724 // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L 725 // instruction will have a relocation specifier, @got@tprel, that is used to 726 // generate a GOT entry. The linker replaces this entry with an offset for a 727 // for a thread local variable, which will be relative to the thread pointer. 728 if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L) 729 return true; 730 // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR 731 // node is produced instead to represent the aforementioned situation. 732 LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1); 733 if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR) 734 return true; 735 736 // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand 737 // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer, 738 // later returning it into R3. 739 if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER) 740 return true; 741 742 // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13). 743 RegisterSDNode *AddFirstOpReg = 744 dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode()); 745 if (AddFirstOpReg && 746 AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister()) 747 return true; 748 749 return false; 750 } 751 752 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS 753 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory 754 // operation, can be optimized to use an X-Form load or store, allowing the 755 // ADD_TLS node to be removed completely. 756 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) { 757 758 // Do not do this transformation at -O0. 759 if (CurDAG->getTarget().getOptLevel() == CodeGenOptLevel::None) 760 return false; 761 762 // In order to perform this optimization inside tryTLSXForm[Load|Store], 763 // Base is expected to be an ADD_TLS node. 764 if (Base.getOpcode() != PPCISD::ADD_TLS) 765 return false; 766 for (auto *ADDTLSUse : Base.getNode()->uses()) { 767 // The optimization to convert the D-Form load/store into its X-Form 768 // counterpart should only occur if the source value offset of the load/ 769 // store is 0. This also means that The offset should always be undefined. 770 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) { 771 if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef()) 772 return false; 773 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) { 774 if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef()) 775 return false; 776 } else // Don't optimize if there are ADD_TLS users that aren't load/stores. 777 return false; 778 } 779 780 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 781 return false; 782 783 // Does the ADD_TLS node of the load/store use the thread pointer? 784 // If the thread pointer is not used as one of the operands of ADD_TLS, 785 // then this optimization is not valid. 786 return isThreadPointerAcquisitionNode(Base, CurDAG); 787 } 788 789 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 790 SDValue Base = ST->getBasePtr(); 791 if (!canOptimizeTLSDFormToXForm(CurDAG, Base)) 792 return false; 793 794 SDLoc dl(ST); 795 EVT MemVT = ST->getMemoryVT(); 796 EVT RegVT = ST->getValue().getValueType(); 797 798 unsigned Opcode; 799 switch (MemVT.getSimpleVT().SimpleTy) { 800 default: 801 return false; 802 case MVT::i8: { 803 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 804 break; 805 } 806 case MVT::i16: { 807 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 808 break; 809 } 810 case MVT::i32: { 811 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 812 break; 813 } 814 case MVT::i64: { 815 Opcode = PPC::STDXTLS; 816 break; 817 } 818 case MVT::f32: { 819 Opcode = PPC::STFSXTLS; 820 break; 821 } 822 case MVT::f64: { 823 Opcode = PPC::STFDXTLS; 824 break; 825 } 826 } 827 SDValue Chain = ST->getChain(); 828 SDVTList VTs = ST->getVTList(); 829 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 830 Chain}; 831 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 832 transferMemOperands(ST, MN); 833 ReplaceNode(ST, MN); 834 return true; 835 } 836 837 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 838 SDValue Base = LD->getBasePtr(); 839 if (!canOptimizeTLSDFormToXForm(CurDAG, Base)) 840 return false; 841 842 SDLoc dl(LD); 843 EVT MemVT = LD->getMemoryVT(); 844 EVT RegVT = LD->getValueType(0); 845 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 846 unsigned Opcode; 847 switch (MemVT.getSimpleVT().SimpleTy) { 848 default: 849 return false; 850 case MVT::i8: { 851 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 852 break; 853 } 854 case MVT::i16: { 855 if (RegVT == MVT::i32) 856 Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32; 857 else 858 Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS; 859 break; 860 } 861 case MVT::i32: { 862 if (RegVT == MVT::i32) 863 Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32; 864 else 865 Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS; 866 break; 867 } 868 case MVT::i64: { 869 Opcode = PPC::LDXTLS; 870 break; 871 } 872 case MVT::f32: { 873 Opcode = PPC::LFSXTLS; 874 break; 875 } 876 case MVT::f64: { 877 Opcode = PPC::LFDXTLS; 878 break; 879 } 880 } 881 SDValue Chain = LD->getChain(); 882 SDVTList VTs = LD->getVTList(); 883 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 884 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 885 transferMemOperands(LD, MN); 886 ReplaceNode(LD, MN); 887 return true; 888 } 889 890 /// Turn an or of two masked values into the rotate left word immediate then 891 /// mask insert (rlwimi) instruction. 892 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 893 SDValue Op0 = N->getOperand(0); 894 SDValue Op1 = N->getOperand(1); 895 SDLoc dl(N); 896 897 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 898 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 899 900 unsigned TargetMask = LKnown.Zero.getZExtValue(); 901 unsigned InsertMask = RKnown.Zero.getZExtValue(); 902 903 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 904 unsigned Op0Opc = Op0.getOpcode(); 905 unsigned Op1Opc = Op1.getOpcode(); 906 unsigned Value, SH = 0; 907 TargetMask = ~TargetMask; 908 InsertMask = ~InsertMask; 909 910 // If the LHS has a foldable shift and the RHS does not, then swap it to the 911 // RHS so that we can fold the shift into the insert. 912 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 913 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 914 Op0.getOperand(0).getOpcode() == ISD::SRL) { 915 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 916 Op1.getOperand(0).getOpcode() != ISD::SRL) { 917 std::swap(Op0, Op1); 918 std::swap(Op0Opc, Op1Opc); 919 std::swap(TargetMask, InsertMask); 920 } 921 } 922 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 923 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 924 Op1.getOperand(0).getOpcode() != ISD::SRL) { 925 std::swap(Op0, Op1); 926 std::swap(Op0Opc, Op1Opc); 927 std::swap(TargetMask, InsertMask); 928 } 929 } 930 931 unsigned MB, ME; 932 if (isRunOfOnes(InsertMask, MB, ME)) { 933 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 934 isInt32Immediate(Op1.getOperand(1), Value)) { 935 Op1 = Op1.getOperand(0); 936 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 937 } 938 if (Op1Opc == ISD::AND) { 939 // The AND mask might not be a constant, and we need to make sure that 940 // if we're going to fold the masking with the insert, all bits not 941 // know to be zero in the mask are known to be one. 942 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 943 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 944 945 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 946 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 947 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 948 // Note that Value must be in range here (less than 32) because 949 // otherwise there would not be any bits set in InsertMask. 950 Op1 = Op1.getOperand(0).getOperand(0); 951 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 952 } 953 } 954 955 SH &= 31; 956 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 957 getI32Imm(ME, dl) }; 958 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 959 return true; 960 } 961 } 962 return false; 963 } 964 965 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 966 unsigned MaxTruncation = 0; 967 // Cannot use range-based for loop here as we need the actual use (i.e. we 968 // need the operand number corresponding to the use). A range-based for 969 // will unbox the use and provide an SDNode*. 970 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 971 Use != UseEnd; ++Use) { 972 unsigned Opc = 973 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 974 switch (Opc) { 975 default: return 0; 976 case ISD::TRUNCATE: 977 if (Use->isMachineOpcode()) 978 return 0; 979 MaxTruncation = 980 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); 981 continue; 982 case ISD::STORE: { 983 if (Use->isMachineOpcode()) 984 return 0; 985 StoreSDNode *STN = cast<StoreSDNode>(*Use); 986 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 987 if (MemVTSize == 64 || Use.getOperandNo() != 0) 988 return 0; 989 MaxTruncation = std::max(MaxTruncation, MemVTSize); 990 continue; 991 } 992 case PPC::STW8: 993 case PPC::STWX8: 994 case PPC::STWU8: 995 case PPC::STWUX8: 996 if (Use.getOperandNo() != 0) 997 return 0; 998 MaxTruncation = std::max(MaxTruncation, 32u); 999 continue; 1000 case PPC::STH8: 1001 case PPC::STHX8: 1002 case PPC::STHU8: 1003 case PPC::STHUX8: 1004 if (Use.getOperandNo() != 0) 1005 return 0; 1006 MaxTruncation = std::max(MaxTruncation, 16u); 1007 continue; 1008 case PPC::STB8: 1009 case PPC::STBX8: 1010 case PPC::STBU8: 1011 case PPC::STBUX8: 1012 if (Use.getOperandNo() != 0) 1013 return 0; 1014 MaxTruncation = std::max(MaxTruncation, 8u); 1015 continue; 1016 } 1017 } 1018 return MaxTruncation; 1019 } 1020 1021 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive 1022 // zeros and return the number of bits by the left of these consecutive zeros. 1023 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { 1024 unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm)); 1025 unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm)); 1026 if ((HiTZ + LoLZ) >= Num) 1027 return (32 + HiTZ); 1028 return 0; 1029 } 1030 1031 // Direct materialization of 64-bit constants by enumerated patterns. 1032 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 1033 uint64_t Imm, unsigned &InstCnt) { 1034 unsigned TZ = llvm::countr_zero<uint64_t>(Imm); 1035 unsigned LZ = llvm::countl_zero<uint64_t>(Imm); 1036 unsigned TO = llvm::countr_one<uint64_t>(Imm); 1037 unsigned LO = llvm::countl_one<uint64_t>(Imm); 1038 unsigned Hi32 = Hi_32(Imm); 1039 unsigned Lo32 = Lo_32(Imm); 1040 SDNode *Result = nullptr; 1041 unsigned Shift = 0; 1042 1043 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1044 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1045 }; 1046 1047 // Following patterns use 1 instructions to materialize the Imm. 1048 InstCnt = 1; 1049 // 1-1) Patterns : {zeros}{15-bit valve} 1050 // {ones}{15-bit valve} 1051 if (isInt<16>(Imm)) { 1052 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1053 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1054 } 1055 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} 1056 // {ones}{15-bit valve}{16 zeros} 1057 if (TZ > 15 && (LZ > 32 || LO > 32)) 1058 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1059 getI32Imm((Imm >> 16) & 0xffff)); 1060 1061 // Following patterns use 2 instructions to materialize the Imm. 1062 InstCnt = 2; 1063 assert(LZ < 64 && "Unexpected leading zeros here."); 1064 // Count of ones follwing the leading zeros. 1065 unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ); 1066 // 2-1) Patterns : {zeros}{31-bit value} 1067 // {ones}{31-bit value} 1068 if (isInt<32>(Imm)) { 1069 uint64_t ImmHi16 = (Imm >> 16) & 0xffff; 1070 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1071 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1072 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1073 getI32Imm(Imm & 0xffff)); 1074 } 1075 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} 1076 // {zeros}{15-bit value}{zeros} 1077 // {zeros}{ones}{15-bit value} 1078 // {ones}{15-bit value}{zeros} 1079 // We can take advantage of LI's sign-extension semantics to generate leading 1080 // ones, and then use RLDIC to mask off the ones in both sides after rotation. 1081 if ((LZ + FO + TZ) > 48) { 1082 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1083 getI32Imm((Imm >> TZ) & 0xffff)); 1084 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1085 getI32Imm(TZ), getI32Imm(LZ)); 1086 } 1087 // 2-3) Pattern : {zeros}{15-bit value}{ones} 1088 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, 1089 // therefore we can take advantage of LI's sign-extension semantics, and then 1090 // mask them off after rotation. 1091 // 1092 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ 1093 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1094 // +------------------------+ +------------------------+ 1095 // 63 0 63 0 1096 // Imm (Imm >> (48 - LZ) & 0xffff) 1097 // +----sext-----|--16-bit--+ +clear-|-----------------+ 1098 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1099 // +------------------------+ +------------------------+ 1100 // 63 0 63 0 1101 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ 1102 if ((LZ + TO) > 48) { 1103 // Since the immediates with (LZ > 32) have been handled by previous 1104 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1105 // the Imm by a negative value. 1106 assert(LZ <= 32 && "Unexpected shift value."); 1107 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1108 getI32Imm((Imm >> (48 - LZ) & 0xffff))); 1109 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1110 getI32Imm(48 - LZ), getI32Imm(LZ)); 1111 } 1112 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} 1113 // {ones}{15-bit value}{ones} 1114 // We can take advantage of LI's sign-extension semantics to generate leading 1115 // ones, and then use RLDICL to mask off the ones in left sides (if required) 1116 // after rotation. 1117 // 1118 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ 1119 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| 1120 // +------------------------+ +------------------------+ 1121 // 63 0 63 0 1122 // Imm (Imm >> TO) & 0xffff 1123 // +----sext-----|--16-bit--+ +LZ|---------------------+ 1124 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| 1125 // +------------------------+ +------------------------+ 1126 // 63 0 63 0 1127 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ 1128 if ((LZ + FO + TO) > 48) { 1129 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1130 getI32Imm((Imm >> TO) & 0xffff)); 1131 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1132 getI32Imm(TO), getI32Imm(LZ)); 1133 } 1134 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} 1135 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit 1136 // value, we can use LI for Lo16 without generating leading ones then add the 1137 // Hi16(in Lo32). 1138 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { 1139 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1140 getI32Imm(Lo32 & 0xffff)); 1141 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), 1142 getI32Imm(Lo32 >> 16)); 1143 } 1144 // 2-6) Patterns : {******}{49 zeros}{******} 1145 // {******}{49 ones}{******} 1146 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 1147 // bits remain on both sides. Rotate right the Imm to construct an int<16> 1148 // value, use LI for int<16> value and then use RLDICL without mask to rotate 1149 // it back. 1150 // 1151 // 1) findContiguousZerosAtLeast(Imm, 49) 1152 // +------|--zeros-|------+ +---ones--||---15 bit--+ 1153 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| 1154 // +----------------------+ +----------------------+ 1155 // 63 0 63 0 1156 // 1157 // 2) findContiguousZerosAtLeast(~Imm, 49) 1158 // +------|--ones--|------+ +---ones--||---15 bit--+ 1159 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1160 // +----------------------+ +----------------------+ 1161 // 63 0 63 0 1162 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || 1163 (Shift = findContiguousZerosAtLeast(~Imm, 49))) { 1164 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1165 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1166 getI32Imm(RotImm & 0xffff)); 1167 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1168 getI32Imm(Shift), getI32Imm(0)); 1169 } 1170 // 2-7) Patterns : High word == Low word 1171 // This may require 2 to 3 instructions, depending on whether Lo32 can be 1172 // materialized in 1 instruction. 1173 if (Hi32 == Lo32) { 1174 // Handle the first 32 bits. 1175 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; 1176 uint64_t ImmLo16 = Lo32 & 0xffff; 1177 if (isInt<16>(Lo32)) 1178 Result = 1179 CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(ImmLo16)); 1180 else if (!ImmLo16) 1181 Result = 1182 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16)); 1183 else { 1184 InstCnt = 3; 1185 Result = 1186 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16)); 1187 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 1188 SDValue(Result, 0), getI32Imm(ImmLo16)); 1189 } 1190 // Use rldimi to insert the Low word into High word. 1191 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1192 getI32Imm(0)}; 1193 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1194 } 1195 1196 // Following patterns use 3 instructions to materialize the Imm. 1197 InstCnt = 3; 1198 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} 1199 // {zeros}{31-bit value}{zeros} 1200 // {zeros}{ones}{31-bit value} 1201 // {ones}{31-bit value}{zeros} 1202 // We can take advantage of LIS's sign-extension semantics to generate leading 1203 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the 1204 // ones in both sides after rotation. 1205 if ((LZ + FO + TZ) > 32) { 1206 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; 1207 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1208 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1209 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1210 getI32Imm((Imm >> TZ) & 0xffff)); 1211 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1212 getI32Imm(TZ), getI32Imm(LZ)); 1213 } 1214 // 3-2) Pattern : {zeros}{31-bit value}{ones} 1215 // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits 1216 // value, therefore we can take advantage of LIS's sign-extension semantics, 1217 // add the remaining bits with ORI, and then mask them off after rotation. 1218 // This is similar to Pattern 2-3, please refer to the diagram there. 1219 if ((LZ + TO) > 32) { 1220 // Since the immediates with (LZ > 32) have been handled by previous 1221 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1222 // the Imm by a negative value. 1223 assert(LZ <= 32 && "Unexpected shift value."); 1224 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1225 getI32Imm((Imm >> (48 - LZ)) & 0xffff)); 1226 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1227 getI32Imm((Imm >> (32 - LZ)) & 0xffff)); 1228 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1229 getI32Imm(32 - LZ), getI32Imm(LZ)); 1230 } 1231 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} 1232 // {ones}{31-bit value}{ones} 1233 // We can take advantage of LIS's sign-extension semantics to generate leading 1234 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the 1235 // ones in left sides (if required) after rotation. 1236 // This is similar to Pattern 2-4, please refer to the diagram there. 1237 if ((LZ + FO + TO) > 32) { 1238 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1239 getI32Imm((Imm >> (TO + 16)) & 0xffff)); 1240 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1241 getI32Imm((Imm >> TO) & 0xffff)); 1242 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1243 getI32Imm(TO), getI32Imm(LZ)); 1244 } 1245 // 3-4) Patterns : {******}{33 zeros}{******} 1246 // {******}{33 ones}{******} 1247 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 1248 // bits remain on both sides. Rotate right the Imm to construct an int<32> 1249 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to 1250 // rotate it back. 1251 // This is similar to Pattern 2-6, please refer to the diagram there. 1252 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || 1253 (Shift = findContiguousZerosAtLeast(~Imm, 33))) { 1254 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1255 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; 1256 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1257 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1258 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1259 getI32Imm(RotImm & 0xffff)); 1260 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1261 getI32Imm(Shift), getI32Imm(0)); 1262 } 1263 1264 InstCnt = 0; 1265 return nullptr; 1266 } 1267 1268 // Try to select instructions to generate a 64 bit immediate using prefix as 1269 // well as non prefix instructions. The function will return the SDNode 1270 // to materialize that constant or it will return nullptr if it does not 1271 // find one. The variable InstCnt is set to the number of instructions that 1272 // were selected. 1273 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, 1274 uint64_t Imm, unsigned &InstCnt) { 1275 unsigned TZ = llvm::countr_zero<uint64_t>(Imm); 1276 unsigned LZ = llvm::countl_zero<uint64_t>(Imm); 1277 unsigned TO = llvm::countr_one<uint64_t>(Imm); 1278 unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); 1279 unsigned Hi32 = Hi_32(Imm); 1280 unsigned Lo32 = Lo_32(Imm); 1281 1282 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1283 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1284 }; 1285 1286 auto getI64Imm = [CurDAG, dl](uint64_t Imm) { 1287 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1288 }; 1289 1290 // Following patterns use 1 instruction to materialize Imm. 1291 InstCnt = 1; 1292 1293 // The pli instruction can materialize up to 34 bits directly. 1294 // If a constant fits within 34-bits, emit the pli instruction here directly. 1295 if (isInt<34>(Imm)) 1296 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1297 CurDAG->getTargetConstant(Imm, dl, MVT::i64)); 1298 1299 // Require at least two instructions. 1300 InstCnt = 2; 1301 SDNode *Result = nullptr; 1302 // Patterns : {zeros}{ones}{33-bit value}{zeros} 1303 // {zeros}{33-bit value}{zeros} 1304 // {zeros}{ones}{33-bit value} 1305 // {ones}{33-bit value}{zeros} 1306 // We can take advantage of PLI's sign-extension semantics to generate leading 1307 // ones, and then use RLDIC to mask off the ones on both sides after rotation. 1308 if ((LZ + FO + TZ) > 30) { 1309 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); 1310 APInt Extended = SignedInt34.sext(64); 1311 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1312 getI64Imm(*Extended.getRawData())); 1313 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1314 getI32Imm(TZ), getI32Imm(LZ)); 1315 } 1316 // Pattern : {zeros}{33-bit value}{ones} 1317 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, 1318 // therefore we can take advantage of PLI's sign-extension semantics, and then 1319 // mask them off after rotation. 1320 // 1321 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ 1322 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1323 // +------------------------+ +------------------------+ 1324 // 63 0 63 0 1325 // 1326 // +----sext-----|--34-bit--+ +clear-|-----------------+ 1327 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1328 // +------------------------+ +------------------------+ 1329 // 63 0 63 0 1330 if ((LZ + TO) > 30) { 1331 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); 1332 APInt Extended = SignedInt34.sext(64); 1333 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1334 getI64Imm(*Extended.getRawData())); 1335 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1336 getI32Imm(30 - LZ), getI32Imm(LZ)); 1337 } 1338 // Patterns : {zeros}{ones}{33-bit value}{ones} 1339 // {ones}{33-bit value}{ones} 1340 // Similar to LI we can take advantage of PLI's sign-extension semantics to 1341 // generate leading ones, and then use RLDICL to mask off the ones in left 1342 // sides (if required) after rotation. 1343 if ((LZ + FO + TO) > 30) { 1344 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); 1345 APInt Extended = SignedInt34.sext(64); 1346 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1347 getI64Imm(*Extended.getRawData())); 1348 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1349 getI32Imm(TO), getI32Imm(LZ)); 1350 } 1351 // Patterns : {******}{31 zeros}{******} 1352 // : {******}{31 ones}{******} 1353 // If Imm contains 31 consecutive zeros/ones then the remaining bit count 1354 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI 1355 // for the int<33> value and then use RLDICL without a mask to rotate it back. 1356 // 1357 // +------|--ones--|------+ +---ones--||---33 bit--+ 1358 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1359 // +----------------------+ +----------------------+ 1360 // 63 0 63 0 1361 for (unsigned Shift = 0; Shift < 63; ++Shift) { 1362 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1363 if (isInt<34>(RotImm)) { 1364 Result = 1365 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); 1366 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 1367 SDValue(Result, 0), getI32Imm(Shift), 1368 getI32Imm(0)); 1369 } 1370 } 1371 1372 // Patterns : High word == Low word 1373 // This is basically a splat of a 32 bit immediate. 1374 if (Hi32 == Lo32) { 1375 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1376 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1377 getI32Imm(0)}; 1378 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1379 } 1380 1381 InstCnt = 3; 1382 // Catch-all 1383 // This pattern can form any 64 bit immediate in 3 instructions. 1384 SDNode *ResultHi = 1385 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1386 SDNode *ResultLo = 1387 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); 1388 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), 1389 getI32Imm(0)}; 1390 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1391 } 1392 1393 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, 1394 unsigned *InstCnt = nullptr) { 1395 unsigned InstCntDirect = 0; 1396 // No more than 3 instructions are used if we can select the i64 immediate 1397 // directly. 1398 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); 1399 1400 const PPCSubtarget &Subtarget = 1401 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 1402 1403 // If we have prefixed instructions and there is a chance we can 1404 // materialize the constant with fewer prefixed instructions than 1405 // non-prefixed, try that. 1406 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { 1407 unsigned InstCntDirectP = 0; 1408 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); 1409 // Use the prefix case in either of two cases: 1410 // 1) We have no result from the non-prefix case to use. 1411 // 2) The non-prefix case uses more instructions than the prefix case. 1412 // If the prefix and non-prefix cases use the same number of instructions 1413 // we will prefer the non-prefix case. 1414 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { 1415 if (InstCnt) 1416 *InstCnt = InstCntDirectP; 1417 return ResultP; 1418 } 1419 } 1420 1421 if (Result) { 1422 if (InstCnt) 1423 *InstCnt = InstCntDirect; 1424 return Result; 1425 } 1426 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1427 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1428 }; 1429 1430 uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff; 1431 uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff; 1432 1433 // Try to use 4 instructions to materialize the immediate which is "almost" a 1434 // splat of a 32 bit immediate. 1435 if (Hi16OfLo32 && Lo16OfLo32) { 1436 uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff; 1437 uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff; 1438 bool IsSelected = false; 1439 1440 auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) { 1441 SDNode *Result = 1442 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16)); 1443 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 1444 SDValue(Result, 0), getI32Imm(Lo16)); 1445 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1446 getI32Imm(0)}; 1447 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1448 }; 1449 1450 if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) { 1451 IsSelected = true; 1452 Result = getSplat(Hi16OfLo32, Lo16OfLo32); 1453 // Modify Hi16OfHi32. 1454 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48), 1455 getI32Imm(0)}; 1456 Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1457 } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { 1458 IsSelected = true; 1459 Result = getSplat(Hi16OfHi32, Lo16OfHi32); 1460 // Modify Lo16OfLo32. 1461 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), 1462 getI32Imm(16), getI32Imm(31)}; 1463 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); 1464 } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { 1465 IsSelected = true; 1466 Result = getSplat(Hi16OfHi32, Lo16OfHi32); 1467 // Modify Hi16OfLo32. 1468 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), 1469 getI32Imm(0), getI32Imm(15)}; 1470 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); 1471 } 1472 if (IsSelected == true) { 1473 if (InstCnt) 1474 *InstCnt = 4; 1475 return Result; 1476 } 1477 } 1478 1479 // Handle the upper 32 bit value. 1480 Result = 1481 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); 1482 // Add in the last bits as required. 1483 if (Hi16OfLo32) { 1484 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 1485 SDValue(Result, 0), getI32Imm(Hi16OfLo32)); 1486 ++InstCntDirect; 1487 } 1488 if (Lo16OfLo32) { 1489 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1490 getI32Imm(Lo16OfLo32)); 1491 ++InstCntDirect; 1492 } 1493 if (InstCnt) 1494 *InstCnt = InstCntDirect; 1495 return Result; 1496 } 1497 1498 // Select a 64-bit constant. 1499 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1500 SDLoc dl(N); 1501 1502 // Get 64 bit value. 1503 int64_t Imm = N->getAsZExtVal(); 1504 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1505 uint64_t SextImm = SignExtend64(Imm, MinSize); 1506 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1507 if (isInt<16>(SextImm)) 1508 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1509 } 1510 return selectI64Imm(CurDAG, dl, Imm); 1511 } 1512 1513 namespace { 1514 1515 class BitPermutationSelector { 1516 struct ValueBit { 1517 SDValue V; 1518 1519 // The bit number in the value, using a convention where bit 0 is the 1520 // lowest-order bit. 1521 unsigned Idx; 1522 1523 // ConstZero means a bit we need to mask off. 1524 // Variable is a bit comes from an input variable. 1525 // VariableKnownToBeZero is also a bit comes from an input variable, 1526 // but it is known to be already zero. So we do not need to mask them. 1527 enum Kind { 1528 ConstZero, 1529 Variable, 1530 VariableKnownToBeZero 1531 } K; 1532 1533 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1534 : V(V), Idx(I), K(K) {} 1535 ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {} 1536 1537 bool isZero() const { 1538 return K == ConstZero || K == VariableKnownToBeZero; 1539 } 1540 1541 bool hasValue() const { 1542 return K == Variable || K == VariableKnownToBeZero; 1543 } 1544 1545 SDValue getValue() const { 1546 assert(hasValue() && "Cannot get the value of a constant bit"); 1547 return V; 1548 } 1549 1550 unsigned getValueBitIndex() const { 1551 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1552 return Idx; 1553 } 1554 }; 1555 1556 // A bit group has the same underlying value and the same rotate factor. 1557 struct BitGroup { 1558 SDValue V; 1559 unsigned RLAmt; 1560 unsigned StartIdx, EndIdx; 1561 1562 // This rotation amount assumes that the lower 32 bits of the quantity are 1563 // replicated in the high 32 bits by the rotation operator (which is done 1564 // by rlwinm and friends in 64-bit mode). 1565 bool Repl32; 1566 // Did converting to Repl32 == true change the rotation factor? If it did, 1567 // it decreased it by 32. 1568 bool Repl32CR; 1569 // Was this group coalesced after setting Repl32 to true? 1570 bool Repl32Coalesced; 1571 1572 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1573 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1574 Repl32Coalesced(false) { 1575 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1576 << " [" << S << ", " << E << "]\n"); 1577 } 1578 }; 1579 1580 // Information on each (Value, RLAmt) pair (like the number of groups 1581 // associated with each) used to choose the lowering method. 1582 struct ValueRotInfo { 1583 SDValue V; 1584 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1585 unsigned NumGroups = 0; 1586 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1587 bool Repl32 = false; 1588 1589 ValueRotInfo() = default; 1590 1591 // For sorting (in reverse order) by NumGroups, and then by 1592 // FirstGroupStartIdx. 1593 bool operator < (const ValueRotInfo &Other) const { 1594 // We need to sort so that the non-Repl32 come first because, when we're 1595 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1596 // masking operation. 1597 if (Repl32 < Other.Repl32) 1598 return true; 1599 else if (Repl32 > Other.Repl32) 1600 return false; 1601 else if (NumGroups > Other.NumGroups) 1602 return true; 1603 else if (NumGroups < Other.NumGroups) 1604 return false; 1605 else if (RLAmt == 0 && Other.RLAmt != 0) 1606 return true; 1607 else if (RLAmt != 0 && Other.RLAmt == 0) 1608 return false; 1609 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1610 return true; 1611 return false; 1612 } 1613 }; 1614 1615 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1616 using ValueBitsMemoizer = 1617 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1618 ValueBitsMemoizer Memoizer; 1619 1620 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1621 // The bool is true if something interesting was deduced, otherwise if we're 1622 // providing only a generic representation of V (or something else likewise 1623 // uninteresting for instruction selection) through the SmallVector. 1624 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1625 unsigned NumBits) { 1626 auto &ValueEntry = Memoizer[V]; 1627 if (ValueEntry) 1628 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1629 ValueEntry.reset(new ValueBitsMemoizedValue()); 1630 bool &Interesting = ValueEntry->first; 1631 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1632 Bits.resize(NumBits); 1633 1634 switch (V.getOpcode()) { 1635 default: break; 1636 case ISD::ROTL: 1637 if (isa<ConstantSDNode>(V.getOperand(1))) { 1638 unsigned RotAmt = V.getConstantOperandVal(1); 1639 1640 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1641 1642 for (unsigned i = 0; i < NumBits; ++i) 1643 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1644 1645 return std::make_pair(Interesting = true, &Bits); 1646 } 1647 break; 1648 case ISD::SHL: 1649 case PPCISD::SHL: 1650 if (isa<ConstantSDNode>(V.getOperand(1))) { 1651 unsigned ShiftAmt = V.getConstantOperandVal(1); 1652 1653 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1654 1655 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1656 Bits[i] = LHSBits[i - ShiftAmt]; 1657 1658 for (unsigned i = 0; i < ShiftAmt; ++i) 1659 Bits[i] = ValueBit(ValueBit::ConstZero); 1660 1661 return std::make_pair(Interesting = true, &Bits); 1662 } 1663 break; 1664 case ISD::SRL: 1665 case PPCISD::SRL: 1666 if (isa<ConstantSDNode>(V.getOperand(1))) { 1667 unsigned ShiftAmt = V.getConstantOperandVal(1); 1668 1669 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1670 1671 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1672 Bits[i] = LHSBits[i + ShiftAmt]; 1673 1674 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1675 Bits[i] = ValueBit(ValueBit::ConstZero); 1676 1677 return std::make_pair(Interesting = true, &Bits); 1678 } 1679 break; 1680 case ISD::AND: 1681 if (isa<ConstantSDNode>(V.getOperand(1))) { 1682 uint64_t Mask = V.getConstantOperandVal(1); 1683 1684 const SmallVector<ValueBit, 64> *LHSBits; 1685 // Mark this as interesting, only if the LHS was also interesting. This 1686 // prevents the overall procedure from matching a single immediate 'and' 1687 // (which is non-optimal because such an and might be folded with other 1688 // things if we don't select it here). 1689 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1690 1691 for (unsigned i = 0; i < NumBits; ++i) 1692 if (((Mask >> i) & 1) == 1) 1693 Bits[i] = (*LHSBits)[i]; 1694 else { 1695 // AND instruction masks this bit. If the input is already zero, 1696 // we have nothing to do here. Otherwise, make the bit ConstZero. 1697 if ((*LHSBits)[i].isZero()) 1698 Bits[i] = (*LHSBits)[i]; 1699 else 1700 Bits[i] = ValueBit(ValueBit::ConstZero); 1701 } 1702 1703 return std::make_pair(Interesting, &Bits); 1704 } 1705 break; 1706 case ISD::OR: { 1707 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1708 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1709 1710 bool AllDisjoint = true; 1711 SDValue LastVal = SDValue(); 1712 unsigned LastIdx = 0; 1713 for (unsigned i = 0; i < NumBits; ++i) { 1714 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1715 // If both inputs are known to be zero and one is ConstZero and 1716 // another is VariableKnownToBeZero, we can select whichever 1717 // we like. To minimize the number of bit groups, we select 1718 // VariableKnownToBeZero if this bit is the next bit of the same 1719 // input variable from the previous bit. Otherwise, we select 1720 // ConstZero. 1721 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1722 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1723 Bits[i] = LHSBits[i]; 1724 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1725 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1726 Bits[i] = RHSBits[i]; 1727 else 1728 Bits[i] = ValueBit(ValueBit::ConstZero); 1729 } 1730 else if (LHSBits[i].isZero()) 1731 Bits[i] = RHSBits[i]; 1732 else if (RHSBits[i].isZero()) 1733 Bits[i] = LHSBits[i]; 1734 else { 1735 AllDisjoint = false; 1736 break; 1737 } 1738 // We remember the value and bit index of this bit. 1739 if (Bits[i].hasValue()) { 1740 LastVal = Bits[i].getValue(); 1741 LastIdx = Bits[i].getValueBitIndex(); 1742 } 1743 else { 1744 if (LastVal) LastVal = SDValue(); 1745 LastIdx = 0; 1746 } 1747 } 1748 1749 if (!AllDisjoint) 1750 break; 1751 1752 return std::make_pair(Interesting = true, &Bits); 1753 } 1754 case ISD::ZERO_EXTEND: { 1755 // We support only the case with zero extension from i32 to i64 so far. 1756 if (V.getValueType() != MVT::i64 || 1757 V.getOperand(0).getValueType() != MVT::i32) 1758 break; 1759 1760 const SmallVector<ValueBit, 64> *LHSBits; 1761 const unsigned NumOperandBits = 32; 1762 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1763 NumOperandBits); 1764 1765 for (unsigned i = 0; i < NumOperandBits; ++i) 1766 Bits[i] = (*LHSBits)[i]; 1767 1768 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1769 Bits[i] = ValueBit(ValueBit::ConstZero); 1770 1771 return std::make_pair(Interesting, &Bits); 1772 } 1773 case ISD::TRUNCATE: { 1774 EVT FromType = V.getOperand(0).getValueType(); 1775 EVT ToType = V.getValueType(); 1776 // We support only the case with truncate from i64 to i32. 1777 if (FromType != MVT::i64 || ToType != MVT::i32) 1778 break; 1779 const unsigned NumAllBits = FromType.getSizeInBits(); 1780 SmallVector<ValueBit, 64> *InBits; 1781 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1782 NumAllBits); 1783 const unsigned NumValidBits = ToType.getSizeInBits(); 1784 1785 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1786 // So, we cannot include this truncate. 1787 bool UseUpper32bit = false; 1788 for (unsigned i = 0; i < NumValidBits; ++i) 1789 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1790 UseUpper32bit = true; 1791 break; 1792 } 1793 if (UseUpper32bit) 1794 break; 1795 1796 for (unsigned i = 0; i < NumValidBits; ++i) 1797 Bits[i] = (*InBits)[i]; 1798 1799 return std::make_pair(Interesting, &Bits); 1800 } 1801 case ISD::AssertZext: { 1802 // For AssertZext, we look through the operand and 1803 // mark the bits known to be zero. 1804 const SmallVector<ValueBit, 64> *LHSBits; 1805 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1806 NumBits); 1807 1808 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1809 const unsigned NumValidBits = FromType.getSizeInBits(); 1810 for (unsigned i = 0; i < NumValidBits; ++i) 1811 Bits[i] = (*LHSBits)[i]; 1812 1813 // These bits are known to be zero but the AssertZext may be from a value 1814 // that already has some constant zero bits (i.e. from a masking and). 1815 for (unsigned i = NumValidBits; i < NumBits; ++i) 1816 Bits[i] = (*LHSBits)[i].hasValue() 1817 ? ValueBit((*LHSBits)[i].getValue(), 1818 (*LHSBits)[i].getValueBitIndex(), 1819 ValueBit::VariableKnownToBeZero) 1820 : ValueBit(ValueBit::ConstZero); 1821 1822 return std::make_pair(Interesting, &Bits); 1823 } 1824 case ISD::LOAD: 1825 LoadSDNode *LD = cast<LoadSDNode>(V); 1826 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1827 EVT VT = LD->getMemoryVT(); 1828 const unsigned NumValidBits = VT.getSizeInBits(); 1829 1830 for (unsigned i = 0; i < NumValidBits; ++i) 1831 Bits[i] = ValueBit(V, i); 1832 1833 // These bits are known to be zero. 1834 for (unsigned i = NumValidBits; i < NumBits; ++i) 1835 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1836 1837 // Zero-extending load itself cannot be optimized. So, it is not 1838 // interesting by itself though it gives useful information. 1839 return std::make_pair(Interesting = false, &Bits); 1840 } 1841 break; 1842 } 1843 1844 for (unsigned i = 0; i < NumBits; ++i) 1845 Bits[i] = ValueBit(V, i); 1846 1847 return std::make_pair(Interesting = false, &Bits); 1848 } 1849 1850 // For each value (except the constant ones), compute the left-rotate amount 1851 // to get it from its original to final position. 1852 void computeRotationAmounts() { 1853 NeedMask = false; 1854 RLAmt.resize(Bits.size()); 1855 for (unsigned i = 0; i < Bits.size(); ++i) 1856 if (Bits[i].hasValue()) { 1857 unsigned VBI = Bits[i].getValueBitIndex(); 1858 if (i >= VBI) 1859 RLAmt[i] = i - VBI; 1860 else 1861 RLAmt[i] = Bits.size() - (VBI - i); 1862 } else if (Bits[i].isZero()) { 1863 NeedMask = true; 1864 RLAmt[i] = UINT32_MAX; 1865 } else { 1866 llvm_unreachable("Unknown value bit type"); 1867 } 1868 } 1869 1870 // Collect groups of consecutive bits with the same underlying value and 1871 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1872 // they break up groups. 1873 void collectBitGroups(bool LateMask) { 1874 BitGroups.clear(); 1875 1876 unsigned LastRLAmt = RLAmt[0]; 1877 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1878 unsigned LastGroupStartIdx = 0; 1879 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1880 for (unsigned i = 1; i < Bits.size(); ++i) { 1881 unsigned ThisRLAmt = RLAmt[i]; 1882 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1883 if (LateMask && !ThisValue) { 1884 ThisValue = LastValue; 1885 ThisRLAmt = LastRLAmt; 1886 // If we're doing late masking, then the first bit group always starts 1887 // at zero (even if the first bits were zero). 1888 if (BitGroups.empty()) 1889 LastGroupStartIdx = 0; 1890 } 1891 1892 // If this bit is known to be zero and the current group is a bit group 1893 // of zeros, we do not need to terminate the current bit group even the 1894 // Value or RLAmt does not match here. Instead, we terminate this group 1895 // when the first non-zero bit appears later. 1896 if (IsGroupOfZeros && Bits[i].isZero()) 1897 continue; 1898 1899 // If this bit has the same underlying value and the same rotate factor as 1900 // the last one, then they're part of the same group. 1901 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1902 // We cannot continue the current group if this bits is not known to 1903 // be zero in a bit group of zeros. 1904 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1905 continue; 1906 1907 if (LastValue.getNode()) 1908 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1909 i-1)); 1910 LastRLAmt = ThisRLAmt; 1911 LastValue = ThisValue; 1912 LastGroupStartIdx = i; 1913 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1914 } 1915 if (LastValue.getNode()) 1916 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1917 Bits.size()-1)); 1918 1919 if (BitGroups.empty()) 1920 return; 1921 1922 // We might be able to combine the first and last groups. 1923 if (BitGroups.size() > 1) { 1924 // If the first and last groups are the same, then remove the first group 1925 // in favor of the last group, making the ending index of the last group 1926 // equal to the ending index of the to-be-removed first group. 1927 if (BitGroups[0].StartIdx == 0 && 1928 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1929 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1930 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1931 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1932 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1933 BitGroups.erase(BitGroups.begin()); 1934 } 1935 } 1936 } 1937 1938 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1939 // associated with each. If the number of groups are same, we prefer a group 1940 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1941 // instruction. If there is a degeneracy, pick the one that occurs 1942 // first (in the final value). 1943 void collectValueRotInfo() { 1944 ValueRots.clear(); 1945 1946 for (auto &BG : BitGroups) { 1947 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1948 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1949 VRI.V = BG.V; 1950 VRI.RLAmt = BG.RLAmt; 1951 VRI.Repl32 = BG.Repl32; 1952 VRI.NumGroups += 1; 1953 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1954 } 1955 1956 // Now that we've collected the various ValueRotInfo instances, we need to 1957 // sort them. 1958 ValueRotsVec.clear(); 1959 for (auto &I : ValueRots) { 1960 ValueRotsVec.push_back(I.second); 1961 } 1962 llvm::sort(ValueRotsVec); 1963 } 1964 1965 // In 64-bit mode, rlwinm and friends have a rotation operator that 1966 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1967 // indices of these instructions can only be in the lower 32 bits, so they 1968 // can only represent some 64-bit bit groups. However, when they can be used, 1969 // the 32-bit replication can be used to represent, as a single bit group, 1970 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1971 // groups when possible. Returns true if any of the bit groups were 1972 // converted. 1973 void assignRepl32BitGroups() { 1974 // If we have bits like this: 1975 // 1976 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1977 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1978 // Groups: | RLAmt = 8 | RLAmt = 40 | 1979 // 1980 // But, making use of a 32-bit operation that replicates the low-order 32 1981 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1982 // of 8. 1983 1984 auto IsAllLow32 = [this](BitGroup & BG) { 1985 if (BG.StartIdx <= BG.EndIdx) { 1986 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1987 if (!Bits[i].hasValue()) 1988 continue; 1989 if (Bits[i].getValueBitIndex() >= 32) 1990 return false; 1991 } 1992 } else { 1993 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1994 if (!Bits[i].hasValue()) 1995 continue; 1996 if (Bits[i].getValueBitIndex() >= 32) 1997 return false; 1998 } 1999 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 2000 if (!Bits[i].hasValue()) 2001 continue; 2002 if (Bits[i].getValueBitIndex() >= 32) 2003 return false; 2004 } 2005 } 2006 2007 return true; 2008 }; 2009 2010 for (auto &BG : BitGroups) { 2011 // If this bit group has RLAmt of 0 and will not be merged with 2012 // another bit group, we don't benefit from Repl32. We don't mark 2013 // such group to give more freedom for later instruction selection. 2014 if (BG.RLAmt == 0) { 2015 auto PotentiallyMerged = [this](BitGroup & BG) { 2016 for (auto &BG2 : BitGroups) 2017 if (&BG != &BG2 && BG.V == BG2.V && 2018 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 2019 return true; 2020 return false; 2021 }; 2022 if (!PotentiallyMerged(BG)) 2023 continue; 2024 } 2025 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 2026 if (IsAllLow32(BG)) { 2027 if (BG.RLAmt >= 32) { 2028 BG.RLAmt -= 32; 2029 BG.Repl32CR = true; 2030 } 2031 2032 BG.Repl32 = true; 2033 2034 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 2035 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 2036 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 2037 } 2038 } 2039 } 2040 2041 // Now walk through the bit groups, consolidating where possible. 2042 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 2043 // We might want to remove this bit group by merging it with the previous 2044 // group (which might be the ending group). 2045 auto IP = (I == BitGroups.begin()) ? 2046 std::prev(BitGroups.end()) : std::prev(I); 2047 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 2048 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 2049 2050 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 2051 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 2052 << I->StartIdx << ", " << I->EndIdx 2053 << "] with group with range [" << IP->StartIdx << ", " 2054 << IP->EndIdx << "]\n"); 2055 2056 IP->EndIdx = I->EndIdx; 2057 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 2058 IP->Repl32Coalesced = true; 2059 I = BitGroups.erase(I); 2060 continue; 2061 } else { 2062 // There is a special case worth handling: If there is a single group 2063 // covering the entire upper 32 bits, and it can be merged with both 2064 // the next and previous groups (which might be the same group), then 2065 // do so. If it is the same group (so there will be only one group in 2066 // total), then we need to reverse the order of the range so that it 2067 // covers the entire 64 bits. 2068 if (I->StartIdx == 32 && I->EndIdx == 63) { 2069 assert(std::next(I) == BitGroups.end() && 2070 "bit group ends at index 63 but there is another?"); 2071 auto IN = BitGroups.begin(); 2072 2073 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 2074 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 2075 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 2076 IsAllLow32(*I)) { 2077 2078 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 2079 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 2080 << ", " << I->EndIdx 2081 << "] with 32-bit replicated groups with ranges [" 2082 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 2083 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 2084 2085 if (IP == IN) { 2086 // There is only one other group; change it to cover the whole 2087 // range (backward, so that it can still be Repl32 but cover the 2088 // whole 64-bit range). 2089 IP->StartIdx = 31; 2090 IP->EndIdx = 30; 2091 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 2092 IP->Repl32Coalesced = true; 2093 I = BitGroups.erase(I); 2094 } else { 2095 // There are two separate groups, one before this group and one 2096 // after us (at the beginning). We're going to remove this group, 2097 // but also the group at the very beginning. 2098 IP->EndIdx = IN->EndIdx; 2099 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 2100 IP->Repl32Coalesced = true; 2101 I = BitGroups.erase(I); 2102 BitGroups.erase(BitGroups.begin()); 2103 } 2104 2105 // This must be the last group in the vector (and we might have 2106 // just invalidated the iterator above), so break here. 2107 break; 2108 } 2109 } 2110 } 2111 2112 ++I; 2113 } 2114 } 2115 2116 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 2117 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 2118 } 2119 2120 uint64_t getZerosMask() { 2121 uint64_t Mask = 0; 2122 for (unsigned i = 0; i < Bits.size(); ++i) { 2123 if (Bits[i].hasValue()) 2124 continue; 2125 Mask |= (UINT64_C(1) << i); 2126 } 2127 2128 return ~Mask; 2129 } 2130 2131 // This method extends an input value to 64 bit if input is 32-bit integer. 2132 // While selecting instructions in BitPermutationSelector in 64-bit mode, 2133 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 2134 // In such case, we extend it to 64 bit to be consistent with other values. 2135 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 2136 if (V.getValueSizeInBits() == 64) 2137 return V; 2138 2139 assert(V.getValueSizeInBits() == 32); 2140 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2141 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 2142 MVT::i64), 0); 2143 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 2144 MVT::i64, ImDef, V, 2145 SubRegIdx), 0); 2146 return ExtVal; 2147 } 2148 2149 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 2150 if (V.getValueSizeInBits() == 32) 2151 return V; 2152 2153 assert(V.getValueSizeInBits() == 64); 2154 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2155 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 2156 MVT::i32, V, SubRegIdx), 0); 2157 return SubVal; 2158 } 2159 2160 // Depending on the number of groups for a particular value, it might be 2161 // better to rotate, mask explicitly (using andi/andis), and then or the 2162 // result. Select this part of the result first. 2163 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2164 if (BPermRewriterNoMasking) 2165 return; 2166 2167 for (ValueRotInfo &VRI : ValueRotsVec) { 2168 unsigned Mask = 0; 2169 for (unsigned i = 0; i < Bits.size(); ++i) { 2170 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 2171 continue; 2172 if (RLAmt[i] != VRI.RLAmt) 2173 continue; 2174 Mask |= (1u << i); 2175 } 2176 2177 // Compute the masks for andi/andis that would be necessary. 2178 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2179 assert((ANDIMask != 0 || ANDISMask != 0) && 2180 "No set bits in mask for value bit groups"); 2181 bool NeedsRotate = VRI.RLAmt != 0; 2182 2183 // We're trying to minimize the number of instructions. If we have one 2184 // group, using one of andi/andis can break even. If we have three 2185 // groups, we can use both andi and andis and break even (to use both 2186 // andi and andis we also need to or the results together). We need four 2187 // groups if we also need to rotate. To use andi/andis we need to do more 2188 // than break even because rotate-and-mask instructions tend to be easier 2189 // to schedule. 2190 2191 // FIXME: We've biased here against using andi/andis, which is right for 2192 // POWER cores, but not optimal everywhere. For example, on the A2, 2193 // andi/andis have single-cycle latency whereas the rotate-and-mask 2194 // instructions take two cycles, and it would be better to bias toward 2195 // andi/andis in break-even cases. 2196 2197 unsigned NumAndInsts = (unsigned) NeedsRotate + 2198 (unsigned) (ANDIMask != 0) + 2199 (unsigned) (ANDISMask != 0) + 2200 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 2201 (unsigned) (bool) Res; 2202 2203 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2204 << " RL: " << VRI.RLAmt << ":" 2205 << "\n\t\t\tisel using masking: " << NumAndInsts 2206 << " using rotates: " << VRI.NumGroups << "\n"); 2207 2208 if (NumAndInsts >= VRI.NumGroups) 2209 continue; 2210 2211 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2212 2213 if (InstCnt) *InstCnt += NumAndInsts; 2214 2215 SDValue VRot; 2216 if (VRI.RLAmt) { 2217 SDValue Ops[] = 2218 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2219 getI32Imm(0, dl), getI32Imm(31, dl) }; 2220 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2221 Ops), 0); 2222 } else { 2223 VRot = TruncateToInt32(VRI.V, dl); 2224 } 2225 2226 SDValue ANDIVal, ANDISVal; 2227 if (ANDIMask != 0) 2228 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2229 VRot, getI32Imm(ANDIMask, dl)), 2230 0); 2231 if (ANDISMask != 0) 2232 ANDISVal = 2233 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, 2234 getI32Imm(ANDISMask, dl)), 2235 0); 2236 2237 SDValue TotalVal; 2238 if (!ANDIVal) 2239 TotalVal = ANDISVal; 2240 else if (!ANDISVal) 2241 TotalVal = ANDIVal; 2242 else 2243 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2244 ANDIVal, ANDISVal), 0); 2245 2246 if (!Res) 2247 Res = TotalVal; 2248 else 2249 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2250 Res, TotalVal), 0); 2251 2252 // Now, remove all groups with this underlying value and rotation 2253 // factor. 2254 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2255 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2256 }); 2257 } 2258 } 2259 2260 // Instruction selection for the 32-bit case. 2261 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 2262 SDLoc dl(N); 2263 SDValue Res; 2264 2265 if (InstCnt) *InstCnt = 0; 2266 2267 // Take care of cases that should use andi/andis first. 2268 SelectAndParts32(dl, Res, InstCnt); 2269 2270 // If we've not yet selected a 'starting' instruction, and we have no zeros 2271 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2272 // number of groups), and start with this rotated value. 2273 if ((!NeedMask || LateMask) && !Res) { 2274 ValueRotInfo &VRI = ValueRotsVec[0]; 2275 if (VRI.RLAmt) { 2276 if (InstCnt) *InstCnt += 1; 2277 SDValue Ops[] = 2278 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2279 getI32Imm(0, dl), getI32Imm(31, dl) }; 2280 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 2281 0); 2282 } else { 2283 Res = TruncateToInt32(VRI.V, dl); 2284 } 2285 2286 // Now, remove all groups with this underlying value and rotation factor. 2287 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2288 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2289 }); 2290 } 2291 2292 if (InstCnt) *InstCnt += BitGroups.size(); 2293 2294 // Insert the other groups (one at a time). 2295 for (auto &BG : BitGroups) { 2296 if (!Res) { 2297 SDValue Ops[] = 2298 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2299 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2300 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2301 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2302 } else { 2303 SDValue Ops[] = 2304 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2305 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2306 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2307 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 2308 } 2309 } 2310 2311 if (LateMask) { 2312 unsigned Mask = (unsigned) getZerosMask(); 2313 2314 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2315 assert((ANDIMask != 0 || ANDISMask != 0) && 2316 "No set bits in zeros mask?"); 2317 2318 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2319 (unsigned) (ANDISMask != 0) + 2320 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2321 2322 SDValue ANDIVal, ANDISVal; 2323 if (ANDIMask != 0) 2324 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2325 Res, getI32Imm(ANDIMask, dl)), 2326 0); 2327 if (ANDISMask != 0) 2328 ANDISVal = 2329 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, 2330 getI32Imm(ANDISMask, dl)), 2331 0); 2332 2333 if (!ANDIVal) 2334 Res = ANDISVal; 2335 else if (!ANDISVal) 2336 Res = ANDIVal; 2337 else 2338 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2339 ANDIVal, ANDISVal), 0); 2340 } 2341 2342 return Res.getNode(); 2343 } 2344 2345 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 2346 unsigned MaskStart, unsigned MaskEnd, 2347 bool IsIns) { 2348 // In the notation used by the instructions, 'start' and 'end' are reversed 2349 // because bits are counted from high to low order. 2350 unsigned InstMaskStart = 64 - MaskEnd - 1, 2351 InstMaskEnd = 64 - MaskStart - 1; 2352 2353 if (Repl32) 2354 return 1; 2355 2356 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 2357 InstMaskEnd == 63 - RLAmt) 2358 return 1; 2359 2360 return 2; 2361 } 2362 2363 // For 64-bit values, not all combinations of rotates and masks are 2364 // available. Produce one if it is available. 2365 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 2366 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 2367 unsigned *InstCnt = nullptr) { 2368 // In the notation used by the instructions, 'start' and 'end' are reversed 2369 // because bits are counted from high to low order. 2370 unsigned InstMaskStart = 64 - MaskEnd - 1, 2371 InstMaskEnd = 64 - MaskStart - 1; 2372 2373 if (InstCnt) *InstCnt += 1; 2374 2375 if (Repl32) { 2376 // This rotation amount assumes that the lower 32 bits of the quantity 2377 // are replicated in the high 32 bits by the rotation operator (which is 2378 // done by rlwinm and friends). 2379 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2380 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2381 SDValue Ops[] = 2382 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2383 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2384 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 2385 Ops), 0); 2386 } 2387 2388 if (InstMaskEnd == 63) { 2389 SDValue Ops[] = 2390 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2391 getI32Imm(InstMaskStart, dl) }; 2392 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 2393 } 2394 2395 if (InstMaskStart == 0) { 2396 SDValue Ops[] = 2397 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2398 getI32Imm(InstMaskEnd, dl) }; 2399 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 2400 } 2401 2402 if (InstMaskEnd == 63 - RLAmt) { 2403 SDValue Ops[] = 2404 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2405 getI32Imm(InstMaskStart, dl) }; 2406 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 2407 } 2408 2409 // We cannot do this with a single instruction, so we'll use two. The 2410 // problem is that we're not free to choose both a rotation amount and mask 2411 // start and end independently. We can choose an arbitrary mask start and 2412 // end, but then the rotation amount is fixed. Rotation, however, can be 2413 // inverted, and so by applying an "inverse" rotation first, we can get the 2414 // desired result. 2415 if (InstCnt) *InstCnt += 1; 2416 2417 // The rotation mask for the second instruction must be MaskStart. 2418 unsigned RLAmt2 = MaskStart; 2419 // The first instruction must rotate V so that the overall rotation amount 2420 // is RLAmt. 2421 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2422 if (RLAmt1) 2423 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2424 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2425 } 2426 2427 // For 64-bit values, not all combinations of rotates and masks are 2428 // available. Produce a rotate-mask-and-insert if one is available. 2429 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2430 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2431 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2432 // In the notation used by the instructions, 'start' and 'end' are reversed 2433 // because bits are counted from high to low order. 2434 unsigned InstMaskStart = 64 - MaskEnd - 1, 2435 InstMaskEnd = 64 - MaskStart - 1; 2436 2437 if (InstCnt) *InstCnt += 1; 2438 2439 if (Repl32) { 2440 // This rotation amount assumes that the lower 32 bits of the quantity 2441 // are replicated in the high 32 bits by the rotation operator (which is 2442 // done by rlwinm and friends). 2443 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2444 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2445 SDValue Ops[] = 2446 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2447 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2448 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2449 Ops), 0); 2450 } 2451 2452 if (InstMaskEnd == 63 - RLAmt) { 2453 SDValue Ops[] = 2454 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2455 getI32Imm(InstMaskStart, dl) }; 2456 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2457 } 2458 2459 // We cannot do this with a single instruction, so we'll use two. The 2460 // problem is that we're not free to choose both a rotation amount and mask 2461 // start and end independently. We can choose an arbitrary mask start and 2462 // end, but then the rotation amount is fixed. Rotation, however, can be 2463 // inverted, and so by applying an "inverse" rotation first, we can get the 2464 // desired result. 2465 if (InstCnt) *InstCnt += 1; 2466 2467 // The rotation mask for the second instruction must be MaskStart. 2468 unsigned RLAmt2 = MaskStart; 2469 // The first instruction must rotate V so that the overall rotation amount 2470 // is RLAmt. 2471 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2472 if (RLAmt1) 2473 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2474 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2475 } 2476 2477 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2478 if (BPermRewriterNoMasking) 2479 return; 2480 2481 // The idea here is the same as in the 32-bit version, but with additional 2482 // complications from the fact that Repl32 might be true. Because we 2483 // aggressively convert bit groups to Repl32 form (which, for small 2484 // rotation factors, involves no other change), and then coalesce, it might 2485 // be the case that a single 64-bit masking operation could handle both 2486 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2487 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2488 // completely capture the new combined bit group. 2489 2490 for (ValueRotInfo &VRI : ValueRotsVec) { 2491 uint64_t Mask = 0; 2492 2493 // We need to add to the mask all bits from the associated bit groups. 2494 // If Repl32 is false, we need to add bits from bit groups that have 2495 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2496 // group is trivially convertable if it overlaps only with the lower 32 2497 // bits, and the group has not been coalesced. 2498 auto MatchingBG = [VRI](const BitGroup &BG) { 2499 if (VRI.V != BG.V) 2500 return false; 2501 2502 unsigned EffRLAmt = BG.RLAmt; 2503 if (!VRI.Repl32 && BG.Repl32) { 2504 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2505 !BG.Repl32Coalesced) { 2506 if (BG.Repl32CR) 2507 EffRLAmt += 32; 2508 } else { 2509 return false; 2510 } 2511 } else if (VRI.Repl32 != BG.Repl32) { 2512 return false; 2513 } 2514 2515 return VRI.RLAmt == EffRLAmt; 2516 }; 2517 2518 for (auto &BG : BitGroups) { 2519 if (!MatchingBG(BG)) 2520 continue; 2521 2522 if (BG.StartIdx <= BG.EndIdx) { 2523 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2524 Mask |= (UINT64_C(1) << i); 2525 } else { 2526 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2527 Mask |= (UINT64_C(1) << i); 2528 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2529 Mask |= (UINT64_C(1) << i); 2530 } 2531 } 2532 2533 // We can use the 32-bit andi/andis technique if the mask does not 2534 // require any higher-order bits. This can save an instruction compared 2535 // to always using the general 64-bit technique. 2536 bool Use32BitInsts = isUInt<32>(Mask); 2537 // Compute the masks for andi/andis that would be necessary. 2538 unsigned ANDIMask = (Mask & UINT16_MAX), 2539 ANDISMask = (Mask >> 16) & UINT16_MAX; 2540 2541 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2542 2543 unsigned NumAndInsts = (unsigned) NeedsRotate + 2544 (unsigned) (bool) Res; 2545 unsigned NumOfSelectInsts = 0; 2546 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); 2547 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant."); 2548 if (Use32BitInsts) 2549 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2550 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2551 else 2552 NumAndInsts += NumOfSelectInsts + /* and */ 1; 2553 2554 unsigned NumRLInsts = 0; 2555 bool FirstBG = true; 2556 bool MoreBG = false; 2557 for (auto &BG : BitGroups) { 2558 if (!MatchingBG(BG)) { 2559 MoreBG = true; 2560 continue; 2561 } 2562 NumRLInsts += 2563 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2564 !FirstBG); 2565 FirstBG = false; 2566 } 2567 2568 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2569 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2570 << "\n\t\t\tisel using masking: " << NumAndInsts 2571 << " using rotates: " << NumRLInsts << "\n"); 2572 2573 // When we'd use andi/andis, we bias toward using the rotates (andi only 2574 // has a record form, and is cracked on POWER cores). However, when using 2575 // general 64-bit constant formation, bias toward the constant form, 2576 // because that exposes more opportunities for CSE. 2577 if (NumAndInsts > NumRLInsts) 2578 continue; 2579 // When merging multiple bit groups, instruction or is used. 2580 // But when rotate is used, rldimi can inert the rotated value into any 2581 // register, so instruction or can be avoided. 2582 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2583 continue; 2584 2585 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2586 2587 if (InstCnt) *InstCnt += NumAndInsts; 2588 2589 SDValue VRot; 2590 // We actually need to generate a rotation if we have a non-zero rotation 2591 // factor or, in the Repl32 case, if we care about any of the 2592 // higher-order replicated bits. In the latter case, we generate a mask 2593 // backward so that it actually includes the entire 64 bits. 2594 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2595 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2596 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2597 else 2598 VRot = VRI.V; 2599 2600 SDValue TotalVal; 2601 if (Use32BitInsts) { 2602 assert((ANDIMask != 0 || ANDISMask != 0) && 2603 "No set bits in mask when using 32-bit ands for 64-bit value"); 2604 2605 SDValue ANDIVal, ANDISVal; 2606 if (ANDIMask != 0) 2607 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2608 ExtendToInt64(VRot, dl), 2609 getI32Imm(ANDIMask, dl)), 2610 0); 2611 if (ANDISMask != 0) 2612 ANDISVal = 2613 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2614 ExtendToInt64(VRot, dl), 2615 getI32Imm(ANDISMask, dl)), 2616 0); 2617 2618 if (!ANDIVal) 2619 TotalVal = ANDISVal; 2620 else if (!ANDISVal) 2621 TotalVal = ANDIVal; 2622 else 2623 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2624 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2625 } else { 2626 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2627 TotalVal = 2628 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2629 ExtendToInt64(VRot, dl), TotalVal), 2630 0); 2631 } 2632 2633 if (!Res) 2634 Res = TotalVal; 2635 else 2636 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2637 ExtendToInt64(Res, dl), TotalVal), 2638 0); 2639 2640 // Now, remove all groups with this underlying value and rotation 2641 // factor. 2642 eraseMatchingBitGroups(MatchingBG); 2643 } 2644 } 2645 2646 // Instruction selection for the 64-bit case. 2647 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2648 SDLoc dl(N); 2649 SDValue Res; 2650 2651 if (InstCnt) *InstCnt = 0; 2652 2653 // Take care of cases that should use andi/andis first. 2654 SelectAndParts64(dl, Res, InstCnt); 2655 2656 // If we've not yet selected a 'starting' instruction, and we have no zeros 2657 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2658 // number of groups), and start with this rotated value. 2659 if ((!NeedMask || LateMask) && !Res) { 2660 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2661 // groups will come first, and so the VRI representing the largest number 2662 // of groups might not be first (it might be the first Repl32 groups). 2663 unsigned MaxGroupsIdx = 0; 2664 if (!ValueRotsVec[0].Repl32) { 2665 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2666 if (ValueRotsVec[i].Repl32) { 2667 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2668 MaxGroupsIdx = i; 2669 break; 2670 } 2671 } 2672 2673 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2674 bool NeedsRotate = false; 2675 if (VRI.RLAmt) { 2676 NeedsRotate = true; 2677 } else if (VRI.Repl32) { 2678 for (auto &BG : BitGroups) { 2679 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2680 BG.Repl32 != VRI.Repl32) 2681 continue; 2682 2683 // We don't need a rotate if the bit group is confined to the lower 2684 // 32 bits. 2685 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2686 continue; 2687 2688 NeedsRotate = true; 2689 break; 2690 } 2691 } 2692 2693 if (NeedsRotate) 2694 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2695 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2696 InstCnt); 2697 else 2698 Res = VRI.V; 2699 2700 // Now, remove all groups with this underlying value and rotation factor. 2701 if (Res) 2702 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2703 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2704 BG.Repl32 == VRI.Repl32; 2705 }); 2706 } 2707 2708 // Because 64-bit rotates are more flexible than inserts, we might have a 2709 // preference regarding which one we do first (to save one instruction). 2710 if (!Res) 2711 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2712 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2713 false) < 2714 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2715 true)) { 2716 if (I != BitGroups.begin()) { 2717 BitGroup BG = *I; 2718 BitGroups.erase(I); 2719 BitGroups.insert(BitGroups.begin(), BG); 2720 } 2721 2722 break; 2723 } 2724 } 2725 2726 // Insert the other groups (one at a time). 2727 for (auto &BG : BitGroups) { 2728 if (!Res) 2729 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2730 BG.EndIdx, InstCnt); 2731 else 2732 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2733 BG.StartIdx, BG.EndIdx, InstCnt); 2734 } 2735 2736 if (LateMask) { 2737 uint64_t Mask = getZerosMask(); 2738 2739 // We can use the 32-bit andi/andis technique if the mask does not 2740 // require any higher-order bits. This can save an instruction compared 2741 // to always using the general 64-bit technique. 2742 bool Use32BitInsts = isUInt<32>(Mask); 2743 // Compute the masks for andi/andis that would be necessary. 2744 unsigned ANDIMask = (Mask & UINT16_MAX), 2745 ANDISMask = (Mask >> 16) & UINT16_MAX; 2746 2747 if (Use32BitInsts) { 2748 assert((ANDIMask != 0 || ANDISMask != 0) && 2749 "No set bits in mask when using 32-bit ands for 64-bit value"); 2750 2751 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2752 (unsigned) (ANDISMask != 0) + 2753 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2754 2755 SDValue ANDIVal, ANDISVal; 2756 if (ANDIMask != 0) 2757 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2758 ExtendToInt64(Res, dl), 2759 getI32Imm(ANDIMask, dl)), 2760 0); 2761 if (ANDISMask != 0) 2762 ANDISVal = 2763 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2764 ExtendToInt64(Res, dl), 2765 getI32Imm(ANDISMask, dl)), 2766 0); 2767 2768 if (!ANDIVal) 2769 Res = ANDISVal; 2770 else if (!ANDISVal) 2771 Res = ANDIVal; 2772 else 2773 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2774 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2775 } else { 2776 unsigned NumOfSelectInsts = 0; 2777 SDValue MaskVal = 2778 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); 2779 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2780 ExtendToInt64(Res, dl), MaskVal), 2781 0); 2782 if (InstCnt) 2783 *InstCnt += NumOfSelectInsts + /* and */ 1; 2784 } 2785 } 2786 2787 return Res.getNode(); 2788 } 2789 2790 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2791 // Fill in BitGroups. 2792 collectBitGroups(LateMask); 2793 if (BitGroups.empty()) 2794 return nullptr; 2795 2796 // For 64-bit values, figure out when we can use 32-bit instructions. 2797 if (Bits.size() == 64) 2798 assignRepl32BitGroups(); 2799 2800 // Fill in ValueRotsVec. 2801 collectValueRotInfo(); 2802 2803 if (Bits.size() == 32) { 2804 return Select32(N, LateMask, InstCnt); 2805 } else { 2806 assert(Bits.size() == 64 && "Not 64 bits here?"); 2807 return Select64(N, LateMask, InstCnt); 2808 } 2809 2810 return nullptr; 2811 } 2812 2813 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2814 erase_if(BitGroups, F); 2815 } 2816 2817 SmallVector<ValueBit, 64> Bits; 2818 2819 bool NeedMask = false; 2820 SmallVector<unsigned, 64> RLAmt; 2821 2822 SmallVector<BitGroup, 16> BitGroups; 2823 2824 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2825 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2826 2827 SelectionDAG *CurDAG = nullptr; 2828 2829 public: 2830 BitPermutationSelector(SelectionDAG *DAG) 2831 : CurDAG(DAG) {} 2832 2833 // Here we try to match complex bit permutations into a set of 2834 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2835 // known to produce optimal code for common cases (like i32 byte swapping). 2836 SDNode *Select(SDNode *N) { 2837 Memoizer.clear(); 2838 auto Result = 2839 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2840 if (!Result.first) 2841 return nullptr; 2842 Bits = std::move(*Result.second); 2843 2844 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2845 " selection for: "); 2846 LLVM_DEBUG(N->dump(CurDAG)); 2847 2848 // Fill it RLAmt and set NeedMask. 2849 computeRotationAmounts(); 2850 2851 if (!NeedMask) 2852 return Select(N, false); 2853 2854 // We currently have two techniques for handling results with zeros: early 2855 // masking (the default) and late masking. Late masking is sometimes more 2856 // efficient, but because the structure of the bit groups is different, it 2857 // is hard to tell without generating both and comparing the results. With 2858 // late masking, we ignore zeros in the resulting value when inserting each 2859 // set of bit groups, and then mask in the zeros at the end. With early 2860 // masking, we only insert the non-zero parts of the result at every step. 2861 2862 unsigned InstCnt = 0, InstCntLateMask = 0; 2863 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2864 SDNode *RN = Select(N, false, &InstCnt); 2865 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2866 2867 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2868 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2869 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2870 << " instructions\n"); 2871 2872 if (InstCnt <= InstCntLateMask) { 2873 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2874 return RN; 2875 } 2876 2877 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2878 return RNLM; 2879 } 2880 }; 2881 2882 class IntegerCompareEliminator { 2883 SelectionDAG *CurDAG; 2884 PPCDAGToDAGISel *S; 2885 // Conversion type for interpreting results of a 32-bit instruction as 2886 // a 64-bit value or vice versa. 2887 enum ExtOrTruncConversion { Ext, Trunc }; 2888 2889 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2890 // in a GPR. 2891 // ZExtOrig - use the original condition code, zero-extend value 2892 // ZExtInvert - invert the condition code, zero-extend value 2893 // SExtOrig - use the original condition code, sign-extend value 2894 // SExtInvert - invert the condition code, sign-extend value 2895 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2896 2897 // Comparisons against zero to emit GPR code sequences for. Each of these 2898 // sequences may need to be emitted for two or more equivalent patterns. 2899 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2900 // matters as well as the extension type: sext (-1/0), zext (1/0). 2901 // GEZExt - (zext (LHS >= 0)) 2902 // GESExt - (sext (LHS >= 0)) 2903 // LEZExt - (zext (LHS <= 0)) 2904 // LESExt - (sext (LHS <= 0)) 2905 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2906 2907 SDNode *tryEXTEND(SDNode *N); 2908 SDNode *tryLogicOpOfCompares(SDNode *N); 2909 SDValue computeLogicOpInGPR(SDValue LogicOp); 2910 SDValue signExtendInputIfNeeded(SDValue Input); 2911 SDValue zeroExtendInputIfNeeded(SDValue Input); 2912 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2913 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2914 ZeroCompare CmpTy); 2915 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2916 int64_t RHSValue, SDLoc dl); 2917 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2918 int64_t RHSValue, SDLoc dl); 2919 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2920 int64_t RHSValue, SDLoc dl); 2921 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2922 int64_t RHSValue, SDLoc dl); 2923 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2924 2925 public: 2926 IntegerCompareEliminator(SelectionDAG *DAG, 2927 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2928 assert(CurDAG->getTargetLoweringInfo() 2929 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2930 "Only expecting to use this on 64 bit targets."); 2931 } 2932 SDNode *Select(SDNode *N) { 2933 if (CmpInGPR == ICGPR_None) 2934 return nullptr; 2935 switch (N->getOpcode()) { 2936 default: break; 2937 case ISD::ZERO_EXTEND: 2938 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2939 CmpInGPR == ICGPR_SextI64) 2940 return nullptr; 2941 [[fallthrough]]; 2942 case ISD::SIGN_EXTEND: 2943 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2944 CmpInGPR == ICGPR_ZextI64) 2945 return nullptr; 2946 return tryEXTEND(N); 2947 case ISD::AND: 2948 case ISD::OR: 2949 case ISD::XOR: 2950 return tryLogicOpOfCompares(N); 2951 } 2952 return nullptr; 2953 } 2954 }; 2955 2956 // The obvious case for wanting to keep the value in a GPR. Namely, the 2957 // result of the comparison is actually needed in a GPR. 2958 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2959 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2960 N->getOpcode() == ISD::SIGN_EXTEND) && 2961 "Expecting a zero/sign extend node!"); 2962 SDValue WideRes; 2963 // If we are zero-extending the result of a logical operation on i1 2964 // values, we can keep the values in GPRs. 2965 if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) && 2966 N->getOperand(0).getValueType() == MVT::i1 && 2967 N->getOpcode() == ISD::ZERO_EXTEND) 2968 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2969 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2970 return nullptr; 2971 else 2972 WideRes = 2973 getSETCCInGPR(N->getOperand(0), 2974 N->getOpcode() == ISD::SIGN_EXTEND ? 2975 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2976 2977 if (!WideRes) 2978 return nullptr; 2979 2980 SDLoc dl(N); 2981 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2982 bool Output32Bit = N->getValueType(0) == MVT::i32; 2983 2984 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2985 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2986 2987 SDValue ConvOp = WideRes; 2988 if (Input32Bit != Output32Bit) 2989 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2990 ExtOrTruncConversion::Trunc); 2991 return ConvOp.getNode(); 2992 } 2993 2994 // Attempt to perform logical operations on the results of comparisons while 2995 // keeping the values in GPRs. Without doing so, these would end up being 2996 // lowered to CR-logical operations which suffer from significant latency and 2997 // low ILP. 2998 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2999 if (N->getValueType(0) != MVT::i1) 3000 return nullptr; 3001 assert(ISD::isBitwiseLogicOp(N->getOpcode()) && 3002 "Expected a logic operation on setcc results."); 3003 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 3004 if (!LoweredLogical) 3005 return nullptr; 3006 3007 SDLoc dl(N); 3008 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 3009 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 3010 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 3011 SDValue LHS = LoweredLogical.getOperand(0); 3012 SDValue RHS = LoweredLogical.getOperand(1); 3013 SDValue WideOp; 3014 SDValue OpToConvToRecForm; 3015 3016 // Look through any 32-bit to 64-bit implicit extend nodes to find the 3017 // opcode that is input to the XORI. 3018 if (IsBitwiseNegate && 3019 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 3020 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 3021 else if (IsBitwiseNegate) 3022 // If the input to the XORI isn't an extension, that's what we're after. 3023 OpToConvToRecForm = LoweredLogical.getOperand(0); 3024 else 3025 // If this is not an XORI, it is a reg-reg logical op and we can convert 3026 // it to record-form. 3027 OpToConvToRecForm = LoweredLogical; 3028 3029 // Get the record-form version of the node we're looking to use to get the 3030 // CR result from. 3031 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 3032 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 3033 3034 // Convert the right node to record-form. This is either the logical we're 3035 // looking at or it is the input node to the negation (if we're looking at 3036 // a bitwise negation). 3037 if (NewOpc != -1 && IsBitwiseNegate) { 3038 // The input to the XORI has a record-form. Use it. 3039 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 3040 "Expected a PPC::XORI8 only for bitwise negation."); 3041 // Emit the record-form instruction. 3042 std::vector<SDValue> Ops; 3043 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 3044 Ops.push_back(OpToConvToRecForm.getOperand(i)); 3045 3046 WideOp = 3047 SDValue(CurDAG->getMachineNode(NewOpc, dl, 3048 OpToConvToRecForm.getValueType(), 3049 MVT::Glue, Ops), 0); 3050 } else { 3051 assert((NewOpc != -1 || !IsBitwiseNegate) && 3052 "No record form available for AND8/OR8/XOR8?"); 3053 WideOp = 3054 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, 3055 dl, MVT::i64, MVT::Glue, LHS, RHS), 3056 0); 3057 } 3058 3059 // Select this node to a single bit from CR0 set by the record-form node 3060 // just created. For bitwise negation, use the EQ bit which is the equivalent 3061 // of negating the result (i.e. it is a bit set when the result of the 3062 // operation is zero). 3063 SDValue SRIdxVal = 3064 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 3065 SDValue CRBit = 3066 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 3067 MVT::i1, CR0Reg, SRIdxVal, 3068 WideOp.getValue(1)), 0); 3069 return CRBit.getNode(); 3070 } 3071 3072 // Lower a logical operation on i1 values into a GPR sequence if possible. 3073 // The result can be kept in a GPR if requested. 3074 // Three types of inputs can be handled: 3075 // - SETCC 3076 // - TRUNCATE 3077 // - Logical operation (AND/OR/XOR) 3078 // There is also a special case that is handled (namely a complement operation 3079 // achieved with xor %a, -1). 3080 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 3081 assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && 3082 "Can only handle logic operations here."); 3083 assert(LogicOp.getValueType() == MVT::i1 && 3084 "Can only handle logic operations on i1 values here."); 3085 SDLoc dl(LogicOp); 3086 SDValue LHS, RHS; 3087 3088 // Special case: xor %a, -1 3089 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 3090 3091 // Produces a GPR sequence for each operand of the binary logic operation. 3092 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 3093 // the value in a GPR and for logic operations, it will recursively produce 3094 // a GPR sequence for the operation. 3095 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 3096 unsigned OperandOpcode = Operand.getOpcode(); 3097 if (OperandOpcode == ISD::SETCC) 3098 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 3099 else if (OperandOpcode == ISD::TRUNCATE) { 3100 SDValue InputOp = Operand.getOperand(0); 3101 EVT InVT = InputOp.getValueType(); 3102 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 3103 PPC::RLDICL, dl, InVT, InputOp, 3104 S->getI64Imm(0, dl), 3105 S->getI64Imm(63, dl)), 0); 3106 } else if (ISD::isBitwiseLogicOp(OperandOpcode)) 3107 return computeLogicOpInGPR(Operand); 3108 return SDValue(); 3109 }; 3110 LHS = getLogicOperand(LogicOp.getOperand(0)); 3111 RHS = getLogicOperand(LogicOp.getOperand(1)); 3112 3113 // If a GPR sequence can't be produced for the LHS we can't proceed. 3114 // Not producing a GPR sequence for the RHS is only a problem if this isn't 3115 // a bitwise negation operation. 3116 if (!LHS || (!RHS && !IsBitwiseNegation)) 3117 return SDValue(); 3118 3119 NumLogicOpsOnComparison++; 3120 3121 // We will use the inputs as 64-bit values. 3122 if (LHS.getValueType() == MVT::i32) 3123 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 3124 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 3125 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 3126 3127 unsigned NewOpc; 3128 switch (LogicOp.getOpcode()) { 3129 default: llvm_unreachable("Unknown logic operation."); 3130 case ISD::AND: NewOpc = PPC::AND8; break; 3131 case ISD::OR: NewOpc = PPC::OR8; break; 3132 case ISD::XOR: NewOpc = PPC::XOR8; break; 3133 } 3134 3135 if (IsBitwiseNegation) { 3136 RHS = S->getI64Imm(1, dl); 3137 NewOpc = PPC::XORI8; 3138 } 3139 3140 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 3141 3142 } 3143 3144 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 3145 /// Otherwise just reinterpret it as a 64-bit value. 3146 /// Useful when emitting comparison code for 32-bit values without using 3147 /// the compare instruction (which only considers the lower 32-bits). 3148 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 3149 assert(Input.getValueType() == MVT::i32 && 3150 "Can only sign-extend 32-bit values here."); 3151 unsigned Opc = Input.getOpcode(); 3152 3153 // The value was sign extended and then truncated to 32-bits. No need to 3154 // sign extend it again. 3155 if (Opc == ISD::TRUNCATE && 3156 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 3157 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 3158 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3159 3160 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3161 // The input is a sign-extending load. All ppc sign-extending loads 3162 // sign-extend to the full 64-bits. 3163 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 3164 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3165 3166 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3167 // We don't sign-extend constants. 3168 if (InputConst) 3169 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3170 3171 SDLoc dl(Input); 3172 SignExtensionsAdded++; 3173 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 3174 MVT::i64, Input), 0); 3175 } 3176 3177 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 3178 /// Otherwise just reinterpret it as a 64-bit value. 3179 /// Useful when emitting comparison code for 32-bit values without using 3180 /// the compare instruction (which only considers the lower 32-bits). 3181 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 3182 assert(Input.getValueType() == MVT::i32 && 3183 "Can only zero-extend 32-bit values here."); 3184 unsigned Opc = Input.getOpcode(); 3185 3186 // The only condition under which we can omit the actual extend instruction: 3187 // - The value is a positive constant 3188 // - The value comes from a load that isn't a sign-extending load 3189 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 3190 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 3191 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 3192 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 3193 if (IsTruncateOfZExt) 3194 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3195 3196 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3197 if (InputConst && InputConst->getSExtValue() >= 0) 3198 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3199 3200 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3201 // The input is a load that doesn't sign-extend (it will be zero-extended). 3202 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 3203 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3204 3205 // None of the above, need to zero-extend. 3206 SDLoc dl(Input); 3207 ZeroExtensionsAdded++; 3208 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 3209 S->getI64Imm(0, dl), 3210 S->getI64Imm(32, dl)), 0); 3211 } 3212 3213 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 3214 // course not actual zero/sign extensions that will generate machine code, 3215 // they're just a way to reinterpret a 32 bit value in a register as a 3216 // 64 bit value and vice-versa. 3217 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 3218 ExtOrTruncConversion Conv) { 3219 SDLoc dl(NatWidthRes); 3220 3221 // For reinterpreting 32-bit values as 64 bit values, we generate 3222 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 3223 if (Conv == ExtOrTruncConversion::Ext) { 3224 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 3225 SDValue SubRegIdx = 3226 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3227 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 3228 ImDef, NatWidthRes, SubRegIdx), 0); 3229 } 3230 3231 assert(Conv == ExtOrTruncConversion::Trunc && 3232 "Unknown convertion between 32 and 64 bit values."); 3233 // For reinterpreting 64-bit values as 32-bit values, we just need to 3234 // EXTRACT_SUBREG (i.e. extract the low word). 3235 SDValue SubRegIdx = 3236 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3237 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 3238 NatWidthRes, SubRegIdx), 0); 3239 } 3240 3241 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 3242 // Handle both zero-extensions and sign-extensions. 3243 SDValue 3244 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 3245 ZeroCompare CmpTy) { 3246 EVT InVT = LHS.getValueType(); 3247 bool Is32Bit = InVT == MVT::i32; 3248 SDValue ToExtend; 3249 3250 // Produce the value that needs to be either zero or sign extended. 3251 switch (CmpTy) { 3252 case ZeroCompare::GEZExt: 3253 case ZeroCompare::GESExt: 3254 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 3255 dl, InVT, LHS, LHS), 0); 3256 break; 3257 case ZeroCompare::LEZExt: 3258 case ZeroCompare::LESExt: { 3259 if (Is32Bit) { 3260 // Upper 32 bits cannot be undefined for this sequence. 3261 LHS = signExtendInputIfNeeded(LHS); 3262 SDValue Neg = 3263 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3264 ToExtend = 3265 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3266 Neg, S->getI64Imm(1, dl), 3267 S->getI64Imm(63, dl)), 0); 3268 } else { 3269 SDValue Addi = 3270 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3271 S->getI64Imm(~0ULL, dl)), 0); 3272 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 3273 Addi, LHS), 0); 3274 } 3275 break; 3276 } 3277 } 3278 3279 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 3280 if (!Is32Bit && 3281 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 3282 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3283 ToExtend, S->getI64Imm(1, dl), 3284 S->getI64Imm(63, dl)), 0); 3285 if (!Is32Bit && 3286 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 3287 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 3288 S->getI64Imm(63, dl)), 0); 3289 3290 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 3291 // For 32-bit sequences, the extensions differ between GE/LE cases. 3292 switch (CmpTy) { 3293 case ZeroCompare::GEZExt: { 3294 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3295 S->getI32Imm(31, dl) }; 3296 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3297 ShiftOps), 0); 3298 } 3299 case ZeroCompare::GESExt: 3300 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 3301 S->getI32Imm(31, dl)), 0); 3302 case ZeroCompare::LEZExt: 3303 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 3304 S->getI32Imm(1, dl)), 0); 3305 case ZeroCompare::LESExt: 3306 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 3307 S->getI32Imm(-1, dl)), 0); 3308 } 3309 3310 // The above case covers all the enumerators so it can't have a default clause 3311 // to avoid compiler warnings. 3312 llvm_unreachable("Unknown zero-comparison type."); 3313 } 3314 3315 /// Produces a zero-extended result of comparing two 32-bit values according to 3316 /// the passed condition code. 3317 SDValue 3318 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 3319 ISD::CondCode CC, 3320 int64_t RHSValue, SDLoc dl) { 3321 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3322 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 3323 return SDValue(); 3324 bool IsRHSZero = RHSValue == 0; 3325 bool IsRHSOne = RHSValue == 1; 3326 bool IsRHSNegOne = RHSValue == -1LL; 3327 switch (CC) { 3328 default: return SDValue(); 3329 case ISD::SETEQ: { 3330 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 3331 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 3332 SDValue Xor = IsRHSZero ? LHS : 3333 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3334 SDValue Clz = 3335 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3336 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3337 S->getI32Imm(31, dl) }; 3338 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3339 ShiftOps), 0); 3340 } 3341 case ISD::SETNE: { 3342 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 3343 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 3344 SDValue Xor = IsRHSZero ? LHS : 3345 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3346 SDValue Clz = 3347 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3348 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3349 S->getI32Imm(31, dl) }; 3350 SDValue Shift = 3351 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3352 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3353 S->getI32Imm(1, dl)), 0); 3354 } 3355 case ISD::SETGE: { 3356 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 3357 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 3358 if(IsRHSZero) 3359 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3360 3361 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3362 // by swapping inputs and falling through. 3363 std::swap(LHS, RHS); 3364 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3365 IsRHSZero = RHSConst && RHSConst->isZero(); 3366 [[fallthrough]]; 3367 } 3368 case ISD::SETLE: { 3369 if (CmpInGPR == ICGPR_NonExtIn) 3370 return SDValue(); 3371 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 3372 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 3373 if(IsRHSZero) { 3374 if (CmpInGPR == ICGPR_NonExtIn) 3375 return SDValue(); 3376 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3377 } 3378 3379 // The upper 32-bits of the register can't be undefined for this sequence. 3380 LHS = signExtendInputIfNeeded(LHS); 3381 RHS = signExtendInputIfNeeded(RHS); 3382 SDValue Sub = 3383 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3384 SDValue Shift = 3385 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 3386 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 3387 0); 3388 return 3389 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 3390 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 3391 } 3392 case ISD::SETGT: { 3393 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 3394 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 3395 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 3396 // Handle SETLT -1 (which is equivalent to SETGE 0). 3397 if (IsRHSNegOne) 3398 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3399 3400 if (IsRHSZero) { 3401 if (CmpInGPR == ICGPR_NonExtIn) 3402 return SDValue(); 3403 // The upper 32-bits of the register can't be undefined for this sequence. 3404 LHS = signExtendInputIfNeeded(LHS); 3405 RHS = signExtendInputIfNeeded(RHS); 3406 SDValue Neg = 3407 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3408 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3409 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 3410 } 3411 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3412 // (%b < %a) by swapping inputs and falling through. 3413 std::swap(LHS, RHS); 3414 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3415 IsRHSZero = RHSConst && RHSConst->isZero(); 3416 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3417 [[fallthrough]]; 3418 } 3419 case ISD::SETLT: { 3420 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 3421 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 3422 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 3423 // Handle SETLT 1 (which is equivalent to SETLE 0). 3424 if (IsRHSOne) { 3425 if (CmpInGPR == ICGPR_NonExtIn) 3426 return SDValue(); 3427 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3428 } 3429 3430 if (IsRHSZero) { 3431 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3432 S->getI32Imm(31, dl) }; 3433 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3434 ShiftOps), 0); 3435 } 3436 3437 if (CmpInGPR == ICGPR_NonExtIn) 3438 return SDValue(); 3439 // The upper 32-bits of the register can't be undefined for this sequence. 3440 LHS = signExtendInputIfNeeded(LHS); 3441 RHS = signExtendInputIfNeeded(RHS); 3442 SDValue SUBFNode = 3443 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3444 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3445 SUBFNode, S->getI64Imm(1, dl), 3446 S->getI64Imm(63, dl)), 0); 3447 } 3448 case ISD::SETUGE: 3449 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3450 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3451 std::swap(LHS, RHS); 3452 [[fallthrough]]; 3453 case ISD::SETULE: { 3454 if (CmpInGPR == ICGPR_NonExtIn) 3455 return SDValue(); 3456 // The upper 32-bits of the register can't be undefined for this sequence. 3457 LHS = zeroExtendInputIfNeeded(LHS); 3458 RHS = zeroExtendInputIfNeeded(RHS); 3459 SDValue Subtract = 3460 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3461 SDValue SrdiNode = 3462 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3463 Subtract, S->getI64Imm(1, dl), 3464 S->getI64Imm(63, dl)), 0); 3465 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3466 S->getI32Imm(1, dl)), 0); 3467 } 3468 case ISD::SETUGT: 3469 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3470 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3471 std::swap(LHS, RHS); 3472 [[fallthrough]]; 3473 case ISD::SETULT: { 3474 if (CmpInGPR == ICGPR_NonExtIn) 3475 return SDValue(); 3476 // The upper 32-bits of the register can't be undefined for this sequence. 3477 LHS = zeroExtendInputIfNeeded(LHS); 3478 RHS = zeroExtendInputIfNeeded(RHS); 3479 SDValue Subtract = 3480 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3481 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3482 Subtract, S->getI64Imm(1, dl), 3483 S->getI64Imm(63, dl)), 0); 3484 } 3485 } 3486 } 3487 3488 /// Produces a sign-extended result of comparing two 32-bit values according to 3489 /// the passed condition code. 3490 SDValue 3491 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3492 ISD::CondCode CC, 3493 int64_t RHSValue, SDLoc dl) { 3494 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3495 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3496 return SDValue(); 3497 bool IsRHSZero = RHSValue == 0; 3498 bool IsRHSOne = RHSValue == 1; 3499 bool IsRHSNegOne = RHSValue == -1LL; 3500 3501 switch (CC) { 3502 default: return SDValue(); 3503 case ISD::SETEQ: { 3504 // (sext (setcc %a, %b, seteq)) -> 3505 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3506 // (sext (setcc %a, 0, seteq)) -> 3507 // (ashr (shl (ctlz %a), 58), 63) 3508 SDValue CountInput = IsRHSZero ? LHS : 3509 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3510 SDValue Cntlzw = 3511 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3512 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3513 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3514 SDValue Slwi = 3515 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3516 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3517 } 3518 case ISD::SETNE: { 3519 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3520 // flip the bit, finally take 2's complement. 3521 // (sext (setcc %a, %b, setne)) -> 3522 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3523 // Same as above, but the first xor is not needed. 3524 // (sext (setcc %a, 0, setne)) -> 3525 // (neg (xor (lshr (ctlz %a), 5), 1)) 3526 SDValue Xor = IsRHSZero ? LHS : 3527 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3528 SDValue Clz = 3529 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3530 SDValue ShiftOps[] = 3531 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3532 SDValue Shift = 3533 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3534 SDValue Xori = 3535 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3536 S->getI32Imm(1, dl)), 0); 3537 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3538 } 3539 case ISD::SETGE: { 3540 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3541 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3542 if (IsRHSZero) 3543 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3544 3545 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3546 // by swapping inputs and falling through. 3547 std::swap(LHS, RHS); 3548 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3549 IsRHSZero = RHSConst && RHSConst->isZero(); 3550 [[fallthrough]]; 3551 } 3552 case ISD::SETLE: { 3553 if (CmpInGPR == ICGPR_NonExtIn) 3554 return SDValue(); 3555 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3556 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3557 if (IsRHSZero) 3558 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3559 3560 // The upper 32-bits of the register can't be undefined for this sequence. 3561 LHS = signExtendInputIfNeeded(LHS); 3562 RHS = signExtendInputIfNeeded(RHS); 3563 SDValue SUBFNode = 3564 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3565 LHS, RHS), 0); 3566 SDValue Srdi = 3567 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3568 SUBFNode, S->getI64Imm(1, dl), 3569 S->getI64Imm(63, dl)), 0); 3570 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3571 S->getI32Imm(-1, dl)), 0); 3572 } 3573 case ISD::SETGT: { 3574 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3575 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3576 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3577 if (IsRHSNegOne) 3578 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3579 if (IsRHSZero) { 3580 if (CmpInGPR == ICGPR_NonExtIn) 3581 return SDValue(); 3582 // The upper 32-bits of the register can't be undefined for this sequence. 3583 LHS = signExtendInputIfNeeded(LHS); 3584 RHS = signExtendInputIfNeeded(RHS); 3585 SDValue Neg = 3586 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3587 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3588 S->getI64Imm(63, dl)), 0); 3589 } 3590 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3591 // (%b < %a) by swapping inputs and falling through. 3592 std::swap(LHS, RHS); 3593 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3594 IsRHSZero = RHSConst && RHSConst->isZero(); 3595 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3596 [[fallthrough]]; 3597 } 3598 case ISD::SETLT: { 3599 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3600 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3601 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3602 if (IsRHSOne) { 3603 if (CmpInGPR == ICGPR_NonExtIn) 3604 return SDValue(); 3605 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3606 } 3607 if (IsRHSZero) 3608 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3609 S->getI32Imm(31, dl)), 0); 3610 3611 if (CmpInGPR == ICGPR_NonExtIn) 3612 return SDValue(); 3613 // The upper 32-bits of the register can't be undefined for this sequence. 3614 LHS = signExtendInputIfNeeded(LHS); 3615 RHS = signExtendInputIfNeeded(RHS); 3616 SDValue SUBFNode = 3617 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3618 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3619 SUBFNode, S->getI64Imm(63, dl)), 0); 3620 } 3621 case ISD::SETUGE: 3622 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3623 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3624 std::swap(LHS, RHS); 3625 [[fallthrough]]; 3626 case ISD::SETULE: { 3627 if (CmpInGPR == ICGPR_NonExtIn) 3628 return SDValue(); 3629 // The upper 32-bits of the register can't be undefined for this sequence. 3630 LHS = zeroExtendInputIfNeeded(LHS); 3631 RHS = zeroExtendInputIfNeeded(RHS); 3632 SDValue Subtract = 3633 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3634 SDValue Shift = 3635 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3636 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3637 0); 3638 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3639 S->getI32Imm(-1, dl)), 0); 3640 } 3641 case ISD::SETUGT: 3642 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3643 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3644 std::swap(LHS, RHS); 3645 [[fallthrough]]; 3646 case ISD::SETULT: { 3647 if (CmpInGPR == ICGPR_NonExtIn) 3648 return SDValue(); 3649 // The upper 32-bits of the register can't be undefined for this sequence. 3650 LHS = zeroExtendInputIfNeeded(LHS); 3651 RHS = zeroExtendInputIfNeeded(RHS); 3652 SDValue Subtract = 3653 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3654 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3655 Subtract, S->getI64Imm(63, dl)), 0); 3656 } 3657 } 3658 } 3659 3660 /// Produces a zero-extended result of comparing two 64-bit values according to 3661 /// the passed condition code. 3662 SDValue 3663 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3664 ISD::CondCode CC, 3665 int64_t RHSValue, SDLoc dl) { 3666 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3667 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3668 return SDValue(); 3669 bool IsRHSZero = RHSValue == 0; 3670 bool IsRHSOne = RHSValue == 1; 3671 bool IsRHSNegOne = RHSValue == -1LL; 3672 switch (CC) { 3673 default: return SDValue(); 3674 case ISD::SETEQ: { 3675 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3676 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3677 SDValue Xor = IsRHSZero ? LHS : 3678 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3679 SDValue Clz = 3680 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3681 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3682 S->getI64Imm(58, dl), 3683 S->getI64Imm(63, dl)), 0); 3684 } 3685 case ISD::SETNE: { 3686 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3687 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3688 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3689 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3690 SDValue Xor = IsRHSZero ? LHS : 3691 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3692 SDValue AC = 3693 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3694 Xor, S->getI32Imm(~0U, dl)), 0); 3695 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3696 Xor, AC.getValue(1)), 0); 3697 } 3698 case ISD::SETGE: { 3699 // {subc.reg, subc.CA} = (subcarry %a, %b) 3700 // (zext (setcc %a, %b, setge)) -> 3701 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3702 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3703 if (IsRHSZero) 3704 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3705 std::swap(LHS, RHS); 3706 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3707 IsRHSZero = RHSConst && RHSConst->isZero(); 3708 [[fallthrough]]; 3709 } 3710 case ISD::SETLE: { 3711 // {subc.reg, subc.CA} = (subcarry %b, %a) 3712 // (zext (setcc %a, %b, setge)) -> 3713 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3714 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3715 if (IsRHSZero) 3716 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3717 SDValue ShiftL = 3718 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3719 S->getI64Imm(1, dl), 3720 S->getI64Imm(63, dl)), 0); 3721 SDValue ShiftR = 3722 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3723 S->getI64Imm(63, dl)), 0); 3724 SDValue SubtractCarry = 3725 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3726 LHS, RHS), 1); 3727 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3728 ShiftR, ShiftL, SubtractCarry), 0); 3729 } 3730 case ISD::SETGT: { 3731 // {subc.reg, subc.CA} = (subcarry %b, %a) 3732 // (zext (setcc %a, %b, setgt)) -> 3733 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3734 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3735 if (IsRHSNegOne) 3736 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3737 if (IsRHSZero) { 3738 SDValue Addi = 3739 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3740 S->getI64Imm(~0ULL, dl)), 0); 3741 SDValue Nor = 3742 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3743 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3744 S->getI64Imm(1, dl), 3745 S->getI64Imm(63, dl)), 0); 3746 } 3747 std::swap(LHS, RHS); 3748 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3749 IsRHSZero = RHSConst && RHSConst->isZero(); 3750 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3751 [[fallthrough]]; 3752 } 3753 case ISD::SETLT: { 3754 // {subc.reg, subc.CA} = (subcarry %a, %b) 3755 // (zext (setcc %a, %b, setlt)) -> 3756 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3757 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3758 if (IsRHSOne) 3759 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3760 if (IsRHSZero) 3761 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3762 S->getI64Imm(1, dl), 3763 S->getI64Imm(63, dl)), 0); 3764 SDValue SRADINode = 3765 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3766 LHS, S->getI64Imm(63, dl)), 0); 3767 SDValue SRDINode = 3768 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3769 RHS, S->getI64Imm(1, dl), 3770 S->getI64Imm(63, dl)), 0); 3771 SDValue SUBFC8Carry = 3772 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3773 RHS, LHS), 1); 3774 SDValue ADDE8Node = 3775 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3776 SRDINode, SRADINode, SUBFC8Carry), 0); 3777 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3778 ADDE8Node, S->getI64Imm(1, dl)), 0); 3779 } 3780 case ISD::SETUGE: 3781 // {subc.reg, subc.CA} = (subcarry %a, %b) 3782 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3783 std::swap(LHS, RHS); 3784 [[fallthrough]]; 3785 case ISD::SETULE: { 3786 // {subc.reg, subc.CA} = (subcarry %b, %a) 3787 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3788 SDValue SUBFC8Carry = 3789 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3790 LHS, RHS), 1); 3791 SDValue SUBFE8Node = 3792 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3793 LHS, LHS, SUBFC8Carry), 0); 3794 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3795 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3796 } 3797 case ISD::SETUGT: 3798 // {subc.reg, subc.CA} = (subcarry %b, %a) 3799 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3800 std::swap(LHS, RHS); 3801 [[fallthrough]]; 3802 case ISD::SETULT: { 3803 // {subc.reg, subc.CA} = (subcarry %a, %b) 3804 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3805 SDValue SubtractCarry = 3806 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3807 RHS, LHS), 1); 3808 SDValue ExtSub = 3809 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3810 LHS, LHS, SubtractCarry), 0); 3811 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3812 ExtSub), 0); 3813 } 3814 } 3815 } 3816 3817 /// Produces a sign-extended result of comparing two 64-bit values according to 3818 /// the passed condition code. 3819 SDValue 3820 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3821 ISD::CondCode CC, 3822 int64_t RHSValue, SDLoc dl) { 3823 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3824 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3825 return SDValue(); 3826 bool IsRHSZero = RHSValue == 0; 3827 bool IsRHSOne = RHSValue == 1; 3828 bool IsRHSNegOne = RHSValue == -1LL; 3829 switch (CC) { 3830 default: return SDValue(); 3831 case ISD::SETEQ: { 3832 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3833 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3834 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3835 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3836 SDValue AddInput = IsRHSZero ? LHS : 3837 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3838 SDValue Addic = 3839 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3840 AddInput, S->getI32Imm(~0U, dl)), 0); 3841 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3842 Addic, Addic.getValue(1)), 0); 3843 } 3844 case ISD::SETNE: { 3845 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3846 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3847 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3848 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3849 SDValue Xor = IsRHSZero ? LHS : 3850 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3851 SDValue SC = 3852 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3853 Xor, S->getI32Imm(0, dl)), 0); 3854 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3855 SC, SC.getValue(1)), 0); 3856 } 3857 case ISD::SETGE: { 3858 // {subc.reg, subc.CA} = (subcarry %a, %b) 3859 // (zext (setcc %a, %b, setge)) -> 3860 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3861 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3862 if (IsRHSZero) 3863 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3864 std::swap(LHS, RHS); 3865 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3866 IsRHSZero = RHSConst && RHSConst->isZero(); 3867 [[fallthrough]]; 3868 } 3869 case ISD::SETLE: { 3870 // {subc.reg, subc.CA} = (subcarry %b, %a) 3871 // (zext (setcc %a, %b, setge)) -> 3872 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3873 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3874 if (IsRHSZero) 3875 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3876 SDValue ShiftR = 3877 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3878 S->getI64Imm(63, dl)), 0); 3879 SDValue ShiftL = 3880 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3881 S->getI64Imm(1, dl), 3882 S->getI64Imm(63, dl)), 0); 3883 SDValue SubtractCarry = 3884 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3885 LHS, RHS), 1); 3886 SDValue Adde = 3887 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3888 ShiftR, ShiftL, SubtractCarry), 0); 3889 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3890 } 3891 case ISD::SETGT: { 3892 // {subc.reg, subc.CA} = (subcarry %b, %a) 3893 // (zext (setcc %a, %b, setgt)) -> 3894 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3895 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3896 if (IsRHSNegOne) 3897 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3898 if (IsRHSZero) { 3899 SDValue Add = 3900 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3901 S->getI64Imm(-1, dl)), 0); 3902 SDValue Nor = 3903 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3904 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3905 S->getI64Imm(63, dl)), 0); 3906 } 3907 std::swap(LHS, RHS); 3908 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3909 IsRHSZero = RHSConst && RHSConst->isZero(); 3910 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3911 [[fallthrough]]; 3912 } 3913 case ISD::SETLT: { 3914 // {subc.reg, subc.CA} = (subcarry %a, %b) 3915 // (zext (setcc %a, %b, setlt)) -> 3916 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3917 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3918 if (IsRHSOne) 3919 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3920 if (IsRHSZero) { 3921 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3922 S->getI64Imm(63, dl)), 0); 3923 } 3924 SDValue SRADINode = 3925 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3926 LHS, S->getI64Imm(63, dl)), 0); 3927 SDValue SRDINode = 3928 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3929 RHS, S->getI64Imm(1, dl), 3930 S->getI64Imm(63, dl)), 0); 3931 SDValue SUBFC8Carry = 3932 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3933 RHS, LHS), 1); 3934 SDValue ADDE8Node = 3935 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3936 SRDINode, SRADINode, SUBFC8Carry), 0); 3937 SDValue XORI8Node = 3938 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3939 ADDE8Node, S->getI64Imm(1, dl)), 0); 3940 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3941 XORI8Node), 0); 3942 } 3943 case ISD::SETUGE: 3944 // {subc.reg, subc.CA} = (subcarry %a, %b) 3945 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3946 std::swap(LHS, RHS); 3947 [[fallthrough]]; 3948 case ISD::SETULE: { 3949 // {subc.reg, subc.CA} = (subcarry %b, %a) 3950 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3951 SDValue SubtractCarry = 3952 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3953 LHS, RHS), 1); 3954 SDValue ExtSub = 3955 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3956 LHS, SubtractCarry), 0); 3957 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3958 ExtSub, ExtSub), 0); 3959 } 3960 case ISD::SETUGT: 3961 // {subc.reg, subc.CA} = (subcarry %b, %a) 3962 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3963 std::swap(LHS, RHS); 3964 [[fallthrough]]; 3965 case ISD::SETULT: { 3966 // {subc.reg, subc.CA} = (subcarry %a, %b) 3967 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3968 SDValue SubCarry = 3969 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3970 RHS, LHS), 1); 3971 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3972 LHS, LHS, SubCarry), 0); 3973 } 3974 } 3975 } 3976 3977 /// Do all uses of this SDValue need the result in a GPR? 3978 /// This is meant to be used on values that have type i1 since 3979 /// it is somewhat meaningless to ask if values of other types 3980 /// should be kept in GPR's. 3981 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3982 assert(Compare.getOpcode() == ISD::SETCC && 3983 "An ISD::SETCC node required here."); 3984 3985 // For values that have a single use, the caller should obviously already have 3986 // checked if that use is an extending use. We check the other uses here. 3987 if (Compare.hasOneUse()) 3988 return true; 3989 // We want the value in a GPR if it is being extended, used for a select, or 3990 // used in logical operations. 3991 for (auto *CompareUse : Compare.getNode()->uses()) 3992 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3993 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3994 CompareUse->getOpcode() != ISD::SELECT && 3995 !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) { 3996 OmittedForNonExtendUses++; 3997 return false; 3998 } 3999 return true; 4000 } 4001 4002 /// Returns an equivalent of a SETCC node but with the result the same width as 4003 /// the inputs. This can also be used for SELECT_CC if either the true or false 4004 /// values is a power of two while the other is zero. 4005 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 4006 SetccInGPROpts ConvOpts) { 4007 assert((Compare.getOpcode() == ISD::SETCC || 4008 Compare.getOpcode() == ISD::SELECT_CC) && 4009 "An ISD::SETCC node required here."); 4010 4011 // Don't convert this comparison to a GPR sequence because there are uses 4012 // of the i1 result (i.e. uses that require the result in the CR). 4013 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 4014 return SDValue(); 4015 4016 SDValue LHS = Compare.getOperand(0); 4017 SDValue RHS = Compare.getOperand(1); 4018 4019 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 4020 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 4021 ISD::CondCode CC = 4022 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 4023 EVT InputVT = LHS.getValueType(); 4024 if (InputVT != MVT::i32 && InputVT != MVT::i64) 4025 return SDValue(); 4026 4027 if (ConvOpts == SetccInGPROpts::ZExtInvert || 4028 ConvOpts == SetccInGPROpts::SExtInvert) 4029 CC = ISD::getSetCCInverse(CC, InputVT); 4030 4031 bool Inputs32Bit = InputVT == MVT::i32; 4032 4033 SDLoc dl(Compare); 4034 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 4035 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 4036 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 4037 ConvOpts == SetccInGPROpts::SExtInvert; 4038 4039 if (IsSext && Inputs32Bit) 4040 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 4041 else if (Inputs32Bit) 4042 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 4043 else if (IsSext) 4044 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 4045 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 4046 } 4047 4048 } // end anonymous namespace 4049 4050 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 4051 if (N->getValueType(0) != MVT::i32 && 4052 N->getValueType(0) != MVT::i64) 4053 return false; 4054 4055 // This optimization will emit code that assumes 64-bit registers 4056 // so we don't want to run it in 32-bit mode. Also don't run it 4057 // on functions that are not to be optimized. 4058 if (TM.getOptLevel() == CodeGenOptLevel::None || !TM.isPPC64()) 4059 return false; 4060 4061 // For POWER10, it is more profitable to use the set boolean extension 4062 // instructions rather than the integer compare elimination codegen. 4063 // Users can override this via the command line option, `--ppc-gpr-icmps`. 4064 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) 4065 return false; 4066 4067 switch (N->getOpcode()) { 4068 default: break; 4069 case ISD::ZERO_EXTEND: 4070 case ISD::SIGN_EXTEND: 4071 case ISD::AND: 4072 case ISD::OR: 4073 case ISD::XOR: { 4074 IntegerCompareEliminator ICmpElim(CurDAG, this); 4075 if (SDNode *New = ICmpElim.Select(N)) { 4076 ReplaceNode(N, New); 4077 return true; 4078 } 4079 } 4080 } 4081 return false; 4082 } 4083 4084 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 4085 if (N->getValueType(0) != MVT::i32 && 4086 N->getValueType(0) != MVT::i64) 4087 return false; 4088 4089 if (!UseBitPermRewriter) 4090 return false; 4091 4092 switch (N->getOpcode()) { 4093 default: break; 4094 case ISD::SRL: 4095 // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that 4096 // uses the BRH instruction. 4097 if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 && 4098 N->getOperand(0).getOpcode() == ISD::BSWAP) { 4099 auto &OpRight = N->getOperand(1); 4100 ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight); 4101 if (SRLConst && SRLConst->getSExtValue() == 16) 4102 return false; 4103 } 4104 [[fallthrough]]; 4105 case ISD::ROTL: 4106 case ISD::SHL: 4107 case ISD::AND: 4108 case ISD::OR: { 4109 BitPermutationSelector BPS(CurDAG); 4110 if (SDNode *New = BPS.Select(N)) { 4111 ReplaceNode(N, New); 4112 return true; 4113 } 4114 return false; 4115 } 4116 } 4117 4118 return false; 4119 } 4120 4121 /// SelectCC - Select a comparison of the specified values with the specified 4122 /// condition code, returning the CR# of the expression. 4123 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 4124 const SDLoc &dl, SDValue Chain) { 4125 // Always select the LHS. 4126 unsigned Opc; 4127 4128 if (LHS.getValueType() == MVT::i32) { 4129 unsigned Imm; 4130 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4131 if (isInt32Immediate(RHS, Imm)) { 4132 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4133 if (isUInt<16>(Imm)) 4134 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 4135 getI32Imm(Imm & 0xFFFF, dl)), 4136 0); 4137 // If this is a 16-bit signed immediate, fold it. 4138 if (isInt<16>((int)Imm)) 4139 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 4140 getI32Imm(Imm & 0xFFFF, dl)), 4141 0); 4142 4143 // For non-equality comparisons, the default code would materialize the 4144 // constant, then compare against it, like this: 4145 // lis r2, 4660 4146 // ori r2, r2, 22136 4147 // cmpw cr0, r3, r2 4148 // Since we are just comparing for equality, we can emit this instead: 4149 // xoris r0,r3,0x1234 4150 // cmplwi cr0,r0,0x5678 4151 // beq cr0,L6 4152 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 4153 getI32Imm(Imm >> 16, dl)), 0); 4154 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 4155 getI32Imm(Imm & 0xFFFF, dl)), 0); 4156 } 4157 Opc = PPC::CMPLW; 4158 } else if (ISD::isUnsignedIntSetCC(CC)) { 4159 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 4160 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 4161 getI32Imm(Imm & 0xFFFF, dl)), 0); 4162 Opc = PPC::CMPLW; 4163 } else { 4164 int16_t SImm; 4165 if (isIntS16Immediate(RHS, SImm)) 4166 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 4167 getI32Imm((int)SImm & 0xFFFF, 4168 dl)), 4169 0); 4170 Opc = PPC::CMPW; 4171 } 4172 } else if (LHS.getValueType() == MVT::i64) { 4173 uint64_t Imm; 4174 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4175 if (isInt64Immediate(RHS.getNode(), Imm)) { 4176 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4177 if (isUInt<16>(Imm)) 4178 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4179 getI32Imm(Imm & 0xFFFF, dl)), 4180 0); 4181 // If this is a 16-bit signed immediate, fold it. 4182 if (isInt<16>(Imm)) 4183 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4184 getI32Imm(Imm & 0xFFFF, dl)), 4185 0); 4186 4187 // For non-equality comparisons, the default code would materialize the 4188 // constant, then compare against it, like this: 4189 // lis r2, 4660 4190 // ori r2, r2, 22136 4191 // cmpd cr0, r3, r2 4192 // Since we are just comparing for equality, we can emit this instead: 4193 // xoris r0,r3,0x1234 4194 // cmpldi cr0,r0,0x5678 4195 // beq cr0,L6 4196 if (isUInt<32>(Imm)) { 4197 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 4198 getI64Imm(Imm >> 16, dl)), 0); 4199 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 4200 getI64Imm(Imm & 0xFFFF, dl)), 4201 0); 4202 } 4203 } 4204 Opc = PPC::CMPLD; 4205 } else if (ISD::isUnsignedIntSetCC(CC)) { 4206 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 4207 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4208 getI64Imm(Imm & 0xFFFF, dl)), 0); 4209 Opc = PPC::CMPLD; 4210 } else { 4211 int16_t SImm; 4212 if (isIntS16Immediate(RHS, SImm)) 4213 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4214 getI64Imm(SImm & 0xFFFF, dl)), 4215 0); 4216 Opc = PPC::CMPD; 4217 } 4218 } else if (LHS.getValueType() == MVT::f32) { 4219 if (Subtarget->hasSPE()) { 4220 switch (CC) { 4221 default: 4222 case ISD::SETEQ: 4223 case ISD::SETNE: 4224 Opc = PPC::EFSCMPEQ; 4225 break; 4226 case ISD::SETLT: 4227 case ISD::SETGE: 4228 case ISD::SETOLT: 4229 case ISD::SETOGE: 4230 case ISD::SETULT: 4231 case ISD::SETUGE: 4232 Opc = PPC::EFSCMPLT; 4233 break; 4234 case ISD::SETGT: 4235 case ISD::SETLE: 4236 case ISD::SETOGT: 4237 case ISD::SETOLE: 4238 case ISD::SETUGT: 4239 case ISD::SETULE: 4240 Opc = PPC::EFSCMPGT; 4241 break; 4242 } 4243 } else 4244 Opc = PPC::FCMPUS; 4245 } else if (LHS.getValueType() == MVT::f64) { 4246 if (Subtarget->hasSPE()) { 4247 switch (CC) { 4248 default: 4249 case ISD::SETEQ: 4250 case ISD::SETNE: 4251 Opc = PPC::EFDCMPEQ; 4252 break; 4253 case ISD::SETLT: 4254 case ISD::SETGE: 4255 case ISD::SETOLT: 4256 case ISD::SETOGE: 4257 case ISD::SETULT: 4258 case ISD::SETUGE: 4259 Opc = PPC::EFDCMPLT; 4260 break; 4261 case ISD::SETGT: 4262 case ISD::SETLE: 4263 case ISD::SETOGT: 4264 case ISD::SETOLE: 4265 case ISD::SETUGT: 4266 case ISD::SETULE: 4267 Opc = PPC::EFDCMPGT; 4268 break; 4269 } 4270 } else 4271 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 4272 } else { 4273 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 4274 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector"); 4275 Opc = PPC::XSCMPUQP; 4276 } 4277 if (Chain) 4278 return SDValue( 4279 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), 4280 0); 4281 else 4282 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 4283 } 4284 4285 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, 4286 const PPCSubtarget *Subtarget) { 4287 // For SPE instructions, the result is in GT bit of the CR 4288 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); 4289 4290 switch (CC) { 4291 case ISD::SETUEQ: 4292 case ISD::SETONE: 4293 case ISD::SETOLE: 4294 case ISD::SETOGE: 4295 llvm_unreachable("Should be lowered by legalize!"); 4296 default: llvm_unreachable("Unknown condition!"); 4297 case ISD::SETOEQ: 4298 case ISD::SETEQ: 4299 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; 4300 case ISD::SETUNE: 4301 case ISD::SETNE: 4302 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; 4303 case ISD::SETOLT: 4304 case ISD::SETLT: 4305 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; 4306 case ISD::SETULE: 4307 case ISD::SETLE: 4308 return PPC::PRED_LE; 4309 case ISD::SETOGT: 4310 case ISD::SETGT: 4311 return PPC::PRED_GT; 4312 case ISD::SETUGE: 4313 case ISD::SETGE: 4314 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; 4315 case ISD::SETO: return PPC::PRED_NU; 4316 case ISD::SETUO: return PPC::PRED_UN; 4317 // These two are invalid for floating point. Assume we have int. 4318 case ISD::SETULT: return PPC::PRED_LT; 4319 case ISD::SETUGT: return PPC::PRED_GT; 4320 } 4321 } 4322 4323 /// getCRIdxForSetCC - Return the index of the condition register field 4324 /// associated with the SetCC condition, and whether or not the field is 4325 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 4326 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 4327 Invert = false; 4328 switch (CC) { 4329 default: llvm_unreachable("Unknown condition!"); 4330 case ISD::SETOLT: 4331 case ISD::SETLT: return 0; // Bit #0 = SETOLT 4332 case ISD::SETOGT: 4333 case ISD::SETGT: return 1; // Bit #1 = SETOGT 4334 case ISD::SETOEQ: 4335 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 4336 case ISD::SETUO: return 3; // Bit #3 = SETUO 4337 case ISD::SETUGE: 4338 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 4339 case ISD::SETULE: 4340 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 4341 case ISD::SETUNE: 4342 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 4343 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 4344 case ISD::SETUEQ: 4345 case ISD::SETOGE: 4346 case ISD::SETOLE: 4347 case ISD::SETONE: 4348 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 4349 // These are invalid for floating point. Assume integer. 4350 case ISD::SETULT: return 0; 4351 case ISD::SETUGT: return 1; 4352 } 4353 } 4354 4355 // getVCmpInst: return the vector compare instruction for the specified 4356 // vector type and condition code. Since this is for altivec specific code, 4357 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, 4358 // and v4f32). 4359 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 4360 bool HasVSX, bool &Swap, bool &Negate) { 4361 Swap = false; 4362 Negate = false; 4363 4364 if (VecVT.isFloatingPoint()) { 4365 /* Handle some cases by swapping input operands. */ 4366 switch (CC) { 4367 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 4368 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4369 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 4370 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 4371 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4372 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 4373 default: break; 4374 } 4375 /* Handle some cases by negating the result. */ 4376 switch (CC) { 4377 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4378 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 4379 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 4380 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 4381 default: break; 4382 } 4383 /* We have instructions implementing the remaining cases. */ 4384 switch (CC) { 4385 case ISD::SETEQ: 4386 case ISD::SETOEQ: 4387 if (VecVT == MVT::v4f32) 4388 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 4389 else if (VecVT == MVT::v2f64) 4390 return PPC::XVCMPEQDP; 4391 break; 4392 case ISD::SETGT: 4393 case ISD::SETOGT: 4394 if (VecVT == MVT::v4f32) 4395 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 4396 else if (VecVT == MVT::v2f64) 4397 return PPC::XVCMPGTDP; 4398 break; 4399 case ISD::SETGE: 4400 case ISD::SETOGE: 4401 if (VecVT == MVT::v4f32) 4402 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 4403 else if (VecVT == MVT::v2f64) 4404 return PPC::XVCMPGEDP; 4405 break; 4406 default: 4407 break; 4408 } 4409 llvm_unreachable("Invalid floating-point vector compare condition"); 4410 } else { 4411 /* Handle some cases by swapping input operands. */ 4412 switch (CC) { 4413 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 4414 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4415 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4416 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 4417 default: break; 4418 } 4419 /* Handle some cases by negating the result. */ 4420 switch (CC) { 4421 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4422 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 4423 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 4424 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 4425 default: break; 4426 } 4427 /* We have instructions implementing the remaining cases. */ 4428 switch (CC) { 4429 case ISD::SETEQ: 4430 case ISD::SETUEQ: 4431 if (VecVT == MVT::v16i8) 4432 return PPC::VCMPEQUB; 4433 else if (VecVT == MVT::v8i16) 4434 return PPC::VCMPEQUH; 4435 else if (VecVT == MVT::v4i32) 4436 return PPC::VCMPEQUW; 4437 else if (VecVT == MVT::v2i64) 4438 return PPC::VCMPEQUD; 4439 else if (VecVT == MVT::v1i128) 4440 return PPC::VCMPEQUQ; 4441 break; 4442 case ISD::SETGT: 4443 if (VecVT == MVT::v16i8) 4444 return PPC::VCMPGTSB; 4445 else if (VecVT == MVT::v8i16) 4446 return PPC::VCMPGTSH; 4447 else if (VecVT == MVT::v4i32) 4448 return PPC::VCMPGTSW; 4449 else if (VecVT == MVT::v2i64) 4450 return PPC::VCMPGTSD; 4451 else if (VecVT == MVT::v1i128) 4452 return PPC::VCMPGTSQ; 4453 break; 4454 case ISD::SETUGT: 4455 if (VecVT == MVT::v16i8) 4456 return PPC::VCMPGTUB; 4457 else if (VecVT == MVT::v8i16) 4458 return PPC::VCMPGTUH; 4459 else if (VecVT == MVT::v4i32) 4460 return PPC::VCMPGTUW; 4461 else if (VecVT == MVT::v2i64) 4462 return PPC::VCMPGTUD; 4463 else if (VecVT == MVT::v1i128) 4464 return PPC::VCMPGTUQ; 4465 break; 4466 default: 4467 break; 4468 } 4469 llvm_unreachable("Invalid integer vector compare condition"); 4470 } 4471 } 4472 4473 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4474 SDLoc dl(N); 4475 unsigned Imm; 4476 bool IsStrict = N->isStrictFPOpcode(); 4477 ISD::CondCode CC = 4478 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); 4479 EVT PtrVT = 4480 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4481 bool isPPC64 = (PtrVT == MVT::i64); 4482 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4483 4484 SDValue LHS = N->getOperand(IsStrict ? 1 : 0); 4485 SDValue RHS = N->getOperand(IsStrict ? 2 : 1); 4486 4487 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { 4488 // We can codegen setcc op, imm very efficiently compared to a brcond. 4489 // Check for those cases here. 4490 // setcc op, 0 4491 if (Imm == 0) { 4492 SDValue Op = LHS; 4493 switch (CC) { 4494 default: break; 4495 case ISD::SETEQ: { 4496 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4497 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4498 getI32Imm(31, dl) }; 4499 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4500 return true; 4501 } 4502 case ISD::SETNE: { 4503 if (isPPC64) break; 4504 SDValue AD = 4505 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4506 Op, getI32Imm(~0U, dl)), 0); 4507 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4508 return true; 4509 } 4510 case ISD::SETLT: { 4511 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4512 getI32Imm(31, dl) }; 4513 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4514 return true; 4515 } 4516 case ISD::SETGT: { 4517 SDValue T = 4518 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4519 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4520 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4521 getI32Imm(31, dl) }; 4522 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4523 return true; 4524 } 4525 } 4526 } else if (Imm == ~0U) { // setcc op, -1 4527 SDValue Op = LHS; 4528 switch (CC) { 4529 default: break; 4530 case ISD::SETEQ: 4531 if (isPPC64) break; 4532 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4533 Op, getI32Imm(1, dl)), 0); 4534 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4535 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4536 MVT::i32, 4537 getI32Imm(0, dl)), 4538 0), Op.getValue(1)); 4539 return true; 4540 case ISD::SETNE: { 4541 if (isPPC64) break; 4542 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4543 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4544 Op, getI32Imm(~0U, dl)); 4545 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4546 SDValue(AD, 1)); 4547 return true; 4548 } 4549 case ISD::SETLT: { 4550 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4551 getI32Imm(1, dl)), 0); 4552 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4553 Op), 0); 4554 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4555 getI32Imm(31, dl) }; 4556 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4557 return true; 4558 } 4559 case ISD::SETGT: { 4560 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4561 getI32Imm(31, dl) }; 4562 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4563 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4564 return true; 4565 } 4566 } 4567 } 4568 } 4569 4570 // Altivec Vector compare instructions do not set any CR register by default and 4571 // vector compare operations return the same type as the operands. 4572 if (!IsStrict && LHS.getValueType().isVector()) { 4573 if (Subtarget->hasSPE()) 4574 return false; 4575 4576 EVT VecVT = LHS.getValueType(); 4577 bool Swap, Negate; 4578 unsigned int VCmpInst = 4579 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); 4580 if (Swap) 4581 std::swap(LHS, RHS); 4582 4583 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4584 if (Negate) { 4585 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4586 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4587 ResVT, VCmp, VCmp); 4588 return true; 4589 } 4590 4591 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4592 return true; 4593 } 4594 4595 if (Subtarget->useCRBits()) 4596 return false; 4597 4598 bool Inv; 4599 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4600 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); 4601 if (IsStrict) 4602 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); 4603 SDValue IntCR; 4604 4605 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4606 // The correct compare instruction is already set by SelectCC() 4607 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4608 Idx = 1; 4609 } 4610 4611 // Force the ccreg into CR7. 4612 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4613 4614 SDValue InGlue; // Null incoming flag value. 4615 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4616 InGlue).getValue(1); 4617 4618 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4619 CCReg), 0); 4620 4621 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4622 getI32Imm(31, dl), getI32Imm(31, dl) }; 4623 if (!Inv) { 4624 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4625 return true; 4626 } 4627 4628 // Get the specified bit. 4629 SDValue Tmp = 4630 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4631 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4632 return true; 4633 } 4634 4635 /// Does this node represent a load/store node whose address can be represented 4636 /// with a register plus an immediate that's a multiple of \p Val: 4637 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4638 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4639 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4640 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N); 4641 SDValue AddrOp; 4642 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT)) 4643 AddrOp = N->getOperand(1); 4644 else if (STN) 4645 AddrOp = STN->getOperand(2); 4646 4647 // If the address points a frame object or a frame object with an offset, 4648 // we need to check the object alignment. 4649 short Imm = 0; 4650 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4651 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4652 AddrOp)) { 4653 // If op0 is a frame index that is under aligned, we can't do it either, 4654 // because it is translated to r31 or r1 + slot + offset. We won't know the 4655 // slot number until the stack frame is finalized. 4656 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4657 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); 4658 if ((SlotAlign % Val) != 0) 4659 return false; 4660 4661 // If we have an offset, we need further check on the offset. 4662 if (AddrOp.getOpcode() != ISD::ADD) 4663 return true; 4664 } 4665 4666 if (AddrOp.getOpcode() == ISD::ADD) 4667 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4668 4669 // If the address comes from the outside, the offset will be zero. 4670 return AddrOp.getOpcode() == ISD::CopyFromReg; 4671 } 4672 4673 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4674 // Transfer memoperands. 4675 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4676 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4677 } 4678 4679 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4680 bool &NeedSwapOps, bool &IsUnCmp) { 4681 4682 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4683 4684 SDValue LHS = N->getOperand(0); 4685 SDValue RHS = N->getOperand(1); 4686 SDValue TrueRes = N->getOperand(2); 4687 SDValue FalseRes = N->getOperand(3); 4688 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4689 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && 4690 N->getSimpleValueType(0) != MVT::i32)) 4691 return false; 4692 4693 // We are looking for any of: 4694 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4695 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4696 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4697 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4698 int64_t TrueResVal = TrueConst->getSExtValue(); 4699 if ((TrueResVal < -1 || TrueResVal > 1) || 4700 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4701 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4702 (TrueResVal == 0 && 4703 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4704 return false; 4705 4706 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC 4707 ? FalseRes 4708 : FalseRes.getOperand(0); 4709 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; 4710 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4711 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4712 return false; 4713 4714 // Without this setb optimization, the outer SELECT_CC will be manually 4715 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4716 // transforms pseudo instruction to isel instruction. When there are more than 4717 // one use for result like zext/sext, with current optimization we only see 4718 // isel is replaced by setb but can't see any significant gain. Since 4719 // setb has longer latency than original isel, we should avoid this. Another 4720 // point is that setb requires comparison always kept, it can break the 4721 // opportunity to get the comparison away if we have in future. 4722 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4723 return false; 4724 4725 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4726 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4727 ISD::CondCode InnerCC = 4728 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4729 // If the inner comparison is a select_cc, make sure the true/false values are 4730 // 1/-1 and canonicalize it if needed. 4731 if (InnerIsSel) { 4732 ConstantSDNode *SelCCTrueConst = 4733 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4734 ConstantSDNode *SelCCFalseConst = 4735 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4736 if (!SelCCTrueConst || !SelCCFalseConst) 4737 return false; 4738 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4739 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4740 // The values must be -1/1 (requiring a swap) or 1/-1. 4741 if (SelCCTVal == -1 && SelCCFVal == 1) { 4742 std::swap(InnerLHS, InnerRHS); 4743 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4744 return false; 4745 } 4746 4747 // Canonicalize unsigned case 4748 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4749 IsUnCmp = true; 4750 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4751 } 4752 4753 bool InnerSwapped = false; 4754 if (LHS == InnerRHS && RHS == InnerLHS) 4755 InnerSwapped = true; 4756 else if (LHS != InnerLHS || RHS != InnerRHS) 4757 return false; 4758 4759 switch (CC) { 4760 // (select_cc lhs, rhs, 0, \ 4761 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4762 case ISD::SETEQ: 4763 if (!InnerIsSel) 4764 return false; 4765 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4766 return false; 4767 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4768 break; 4769 4770 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4771 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4772 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4773 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4774 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4775 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4776 case ISD::SETULT: 4777 if (!IsUnCmp && InnerCC != ISD::SETNE) 4778 return false; 4779 IsUnCmp = true; 4780 [[fallthrough]]; 4781 case ISD::SETLT: 4782 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4783 (InnerCC == ISD::SETLT && InnerSwapped)) 4784 NeedSwapOps = (TrueResVal == 1); 4785 else 4786 return false; 4787 break; 4788 4789 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4790 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4791 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4792 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4793 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4794 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4795 case ISD::SETUGT: 4796 if (!IsUnCmp && InnerCC != ISD::SETNE) 4797 return false; 4798 IsUnCmp = true; 4799 [[fallthrough]]; 4800 case ISD::SETGT: 4801 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4802 (InnerCC == ISD::SETGT && InnerSwapped)) 4803 NeedSwapOps = (TrueResVal == -1); 4804 else 4805 return false; 4806 break; 4807 4808 default: 4809 return false; 4810 } 4811 4812 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4813 LLVM_DEBUG(N->dump()); 4814 4815 return true; 4816 } 4817 4818 // Return true if it's a software square-root/divide operand. 4819 static bool isSWTestOp(SDValue N) { 4820 if (N.getOpcode() == PPCISD::FTSQRT) 4821 return true; 4822 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) || 4823 N.getOpcode() != ISD::INTRINSIC_WO_CHAIN) 4824 return false; 4825 switch (N.getConstantOperandVal(0)) { 4826 case Intrinsic::ppc_vsx_xvtdivdp: 4827 case Intrinsic::ppc_vsx_xvtdivsp: 4828 case Intrinsic::ppc_vsx_xvtsqrtdp: 4829 case Intrinsic::ppc_vsx_xvtsqrtsp: 4830 return true; 4831 } 4832 return false; 4833 } 4834 4835 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { 4836 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected."); 4837 // We are looking for following patterns, where `truncate to i1` actually has 4838 // the same semantic with `and 1`. 4839 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) 4840 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) 4841 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) 4842 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) 4843 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) 4844 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) 4845 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) 4846 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) 4847 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4848 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4849 return false; 4850 4851 SDValue CmpRHS = N->getOperand(3); 4852 if (!isNullConstant(CmpRHS)) 4853 return false; 4854 4855 SDValue CmpLHS = N->getOperand(2); 4856 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) 4857 return false; 4858 4859 unsigned PCC = 0; 4860 bool IsCCNE = CC == ISD::SETNE; 4861 if (CmpLHS.getOpcode() == ISD::AND && 4862 isa<ConstantSDNode>(CmpLHS.getOperand(1))) 4863 switch (CmpLHS.getConstantOperandVal(1)) { 4864 case 1: 4865 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4866 break; 4867 case 2: 4868 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; 4869 break; 4870 case 4: 4871 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; 4872 break; 4873 case 8: 4874 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; 4875 break; 4876 default: 4877 return false; 4878 } 4879 else if (CmpLHS.getOpcode() == ISD::TRUNCATE && 4880 CmpLHS.getValueType() == MVT::i1) 4881 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4882 4883 if (PCC) { 4884 SDLoc dl(N); 4885 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), 4886 N->getOperand(0)}; 4887 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 4888 return true; 4889 } 4890 return false; 4891 } 4892 4893 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) { 4894 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 4895 // value, for example when crbits is disabled. If so, select the 4896 // loop_decrement intrinsics now. 4897 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4898 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 4899 4900 if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) || 4901 isNullConstant(LHS.getOperand(1))) 4902 return false; 4903 4904 if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN || 4905 LHS.getOperand(0).getConstantOperandVal(1) != Intrinsic::loop_decrement) 4906 return false; 4907 4908 if (!isa<ConstantSDNode>(RHS)) 4909 return false; 4910 4911 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 4912 "Counter decrement comparison is not EQ or NE"); 4913 4914 SDValue OldDecrement = LHS.getOperand(0); 4915 assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!"); 4916 4917 SDLoc DecrementLoc(OldDecrement); 4918 SDValue ChainInput = OldDecrement.getOperand(0); 4919 SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc) 4920 : getI32Imm(1, DecrementLoc)}; 4921 unsigned DecrementOpcode = 4922 Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop; 4923 SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc, 4924 MVT::i1, DecrementOps); 4925 4926 unsigned Val = RHS->getAsZExtVal(); 4927 bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val); 4928 unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn; 4929 4930 ReplaceUses(LHS.getValue(0), LHS.getOperand(1)); 4931 CurDAG->RemoveDeadNode(LHS.getNode()); 4932 4933 // Mark the old loop_decrement intrinsic as dead. 4934 ReplaceUses(OldDecrement.getValue(1), ChainInput); 4935 CurDAG->RemoveDeadNode(OldDecrement.getNode()); 4936 4937 SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, 4938 ChainInput, N->getOperand(0)); 4939 4940 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0), 4941 N->getOperand(4), Chain); 4942 return true; 4943 } 4944 4945 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { 4946 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4947 unsigned Imm; 4948 if (!isInt32Immediate(N->getOperand(1), Imm)) 4949 return false; 4950 4951 SDLoc dl(N); 4952 SDValue Val = N->getOperand(0); 4953 unsigned SH, MB, ME; 4954 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4955 // with a mask, emit rlwinm 4956 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { 4957 Val = Val.getOperand(0); 4958 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4959 getI32Imm(ME, dl)}; 4960 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4961 return true; 4962 } 4963 4964 // If this is just a masked value where the input is not handled, and 4965 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4966 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { 4967 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4968 getI32Imm(ME, dl)}; 4969 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4970 return true; 4971 } 4972 4973 // AND X, 0 -> 0, not "rlwinm 32". 4974 if (Imm == 0) { 4975 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4976 return true; 4977 } 4978 4979 return false; 4980 } 4981 4982 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { 4983 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4984 uint64_t Imm64; 4985 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4986 return false; 4987 4988 unsigned MB, ME; 4989 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { 4990 // MB ME 4991 // +----------------------+ 4992 // |xxxxxxxxxxx00011111000| 4993 // +----------------------+ 4994 // 0 32 64 4995 // We can only do it if the MB is larger than 32 and MB <= ME 4996 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even 4997 // we didn't rotate it. 4998 SDLoc dl(N); 4999 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), 5000 getI64Imm(ME - 32, dl)}; 5001 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); 5002 return true; 5003 } 5004 5005 return false; 5006 } 5007 5008 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { 5009 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5010 uint64_t Imm64; 5011 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 5012 return false; 5013 5014 // Do nothing if it is 16-bit imm as the pattern in the .td file handle 5015 // it well with "andi.". 5016 if (isUInt<16>(Imm64)) 5017 return false; 5018 5019 SDLoc Loc(N); 5020 SDValue Val = N->getOperand(0); 5021 5022 // Optimized with two rldicl's as follows: 5023 // Add missing bits on left to the mask and check that the mask is a 5024 // wrapped run of ones, i.e. 5025 // Change pattern |0001111100000011111111| 5026 // to |1111111100000011111111|. 5027 unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64); 5028 if (NumOfLeadingZeros != 0) 5029 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); 5030 5031 unsigned MB, ME; 5032 if (!isRunOfOnes64(Imm64, MB, ME)) 5033 return false; 5034 5035 // ME MB MB-ME+63 5036 // +----------------------+ +----------------------+ 5037 // |1111111100000011111111| -> |0000001111111111111111| 5038 // +----------------------+ +----------------------+ 5039 // 0 63 0 63 5040 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. 5041 unsigned OnesOnLeft = ME + 1; 5042 unsigned ZerosInBetween = (MB - ME + 63) & 63; 5043 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear 5044 // on the left the bits that are already zeros in the mask. 5045 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, 5046 getI64Imm(OnesOnLeft, Loc), 5047 getI64Imm(ZerosInBetween, Loc)), 5048 0); 5049 // MB-ME+63 ME MB 5050 // +----------------------+ +----------------------+ 5051 // |0000001111111111111111| -> |0001111100000011111111| 5052 // +----------------------+ +----------------------+ 5053 // 0 63 0 63 5054 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the 5055 // left the number of ones we previously added. 5056 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), 5057 getI64Imm(NumOfLeadingZeros, Loc)}; 5058 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 5059 return true; 5060 } 5061 5062 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { 5063 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5064 unsigned Imm; 5065 if (!isInt32Immediate(N->getOperand(1), Imm)) 5066 return false; 5067 5068 SDValue Val = N->getOperand(0); 5069 unsigned Imm2; 5070 // ISD::OR doesn't get all the bitfield insertion fun. 5071 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 5072 // bitfield insert. 5073 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) 5074 return false; 5075 5076 // The idea here is to check whether this is equivalent to: 5077 // (c1 & m) | (x & ~m) 5078 // where m is a run-of-ones mask. The logic here is that, for each bit in 5079 // c1 and c2: 5080 // - if both are 1, then the output will be 1. 5081 // - if both are 0, then the output will be 0. 5082 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 5083 // come from x. 5084 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 5085 // be 0. 5086 // If that last condition is never the case, then we can form m from the 5087 // bits that are the same between c1 and c2. 5088 unsigned MB, ME; 5089 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { 5090 SDLoc dl(N); 5091 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), 5092 getI32Imm(MB, dl), getI32Imm(ME, dl)}; 5093 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 5094 return true; 5095 } 5096 5097 return false; 5098 } 5099 5100 bool PPCDAGToDAGISel::tryAsSingleRLDCL(SDNode *N) { 5101 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5102 5103 uint64_t Imm64; 5104 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 5105 return false; 5106 5107 SDValue Val = N->getOperand(0); 5108 5109 if (Val.getOpcode() != ISD::ROTL) 5110 return false; 5111 5112 // Looking to try to avoid a situation like this one: 5113 // %2 = tail call i64 @llvm.fshl.i64(i64 %word, i64 %word, i64 23) 5114 // %and1 = and i64 %2, 9223372036854775807 5115 // In this function we are looking to try to match RLDCL. However, the above 5116 // DAG would better match RLDICL instead which is not what we are looking 5117 // for here. 5118 SDValue RotateAmt = Val.getOperand(1); 5119 if (RotateAmt.getOpcode() == ISD::Constant) 5120 return false; 5121 5122 unsigned MB = 64 - llvm::countr_one(Imm64); 5123 SDLoc dl(N); 5124 SDValue Ops[] = {Val.getOperand(0), RotateAmt, getI32Imm(MB, dl)}; 5125 CurDAG->SelectNodeTo(N, PPC::RLDCL, MVT::i64, Ops); 5126 return true; 5127 } 5128 5129 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { 5130 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5131 uint64_t Imm64; 5132 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 5133 return false; 5134 5135 // If this is a 64-bit zero-extension mask, emit rldicl. 5136 unsigned MB = 64 - llvm::countr_one(Imm64); 5137 unsigned SH = 0; 5138 unsigned Imm; 5139 SDValue Val = N->getOperand(0); 5140 SDLoc dl(N); 5141 5142 if (Val.getOpcode() == ISD::ANY_EXTEND) { 5143 auto Op0 = Val.getOperand(0); 5144 if (Op0.getOpcode() == ISD::SRL && 5145 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 5146 5147 auto ResultType = Val.getNode()->getValueType(0); 5148 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); 5149 SDValue IDVal(ImDef, 0); 5150 5151 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, 5152 IDVal, Op0.getOperand(0), 5153 getI32Imm(1, dl)), 5154 0); 5155 SH = 64 - Imm; 5156 } 5157 } 5158 5159 // If the operand is a logical right shift, we can fold it into this 5160 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 5161 // for n <= mb. The right shift is really a left rotate followed by a 5162 // mask, and this mask is a more-restrictive sub-mask of the mask implied 5163 // by the shift. 5164 if (Val.getOpcode() == ISD::SRL && 5165 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 5166 assert(Imm < 64 && "Illegal shift amount"); 5167 Val = Val.getOperand(0); 5168 SH = 64 - Imm; 5169 } 5170 5171 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; 5172 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 5173 return true; 5174 } 5175 5176 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { 5177 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5178 uint64_t Imm64; 5179 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 5180 !isMask_64(~Imm64)) 5181 return false; 5182 5183 // If this is a negated 64-bit zero-extension mask, 5184 // i.e. the immediate is a sequence of ones from most significant side 5185 // and all zero for reminder, we should use rldicr. 5186 unsigned MB = 63 - llvm::countr_one(~Imm64); 5187 unsigned SH = 0; 5188 SDLoc dl(N); 5189 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; 5190 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 5191 return true; 5192 } 5193 5194 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { 5195 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected"); 5196 uint64_t Imm64; 5197 unsigned MB, ME; 5198 SDValue N0 = N->getOperand(0); 5199 5200 // We won't get fewer instructions if the imm is 32-bit integer. 5201 // rldimi requires the imm to have consecutive ones with both sides zero. 5202 // Also, make sure the first Op has only one use, otherwise this may increase 5203 // register pressure since rldimi is destructive. 5204 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 5205 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) 5206 return false; 5207 5208 unsigned SH = 63 - ME; 5209 SDLoc Dl(N); 5210 // Use select64Imm for making LI instr instead of directly putting Imm64 5211 SDValue Ops[] = { 5212 N->getOperand(0), 5213 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), 5214 getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; 5215 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); 5216 return true; 5217 } 5218 5219 // Select - Convert the specified operand from a target-independent to a 5220 // target-specific node if it hasn't already been changed. 5221 void PPCDAGToDAGISel::Select(SDNode *N) { 5222 SDLoc dl(N); 5223 if (N->isMachineOpcode()) { 5224 N->setNodeId(-1); 5225 return; // Already selected. 5226 } 5227 5228 // In case any misguided DAG-level optimizations form an ADD with a 5229 // TargetConstant operand, crash here instead of miscompiling (by selecting 5230 // an r+r add instead of some kind of r+i add). 5231 if (N->getOpcode() == ISD::ADD && 5232 N->getOperand(1).getOpcode() == ISD::TargetConstant) 5233 llvm_unreachable("Invalid ADD with TargetConstant operand"); 5234 5235 // Try matching complex bit permutations before doing anything else. 5236 if (tryBitPermutation(N)) 5237 return; 5238 5239 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 5240 if (tryIntCompareInGPR(N)) 5241 return; 5242 5243 switch (N->getOpcode()) { 5244 default: break; 5245 5246 case ISD::Constant: 5247 if (N->getValueType(0) == MVT::i64) { 5248 ReplaceNode(N, selectI64Imm(CurDAG, N)); 5249 return; 5250 } 5251 break; 5252 5253 case ISD::INTRINSIC_VOID: { 5254 auto IntrinsicID = N->getConstantOperandVal(1); 5255 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && 5256 IntrinsicID != Intrinsic::ppc_trapd && 5257 IntrinsicID != Intrinsic::ppc_trap) 5258 break; 5259 unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw || 5260 IntrinsicID == Intrinsic::ppc_trapd) 5261 ? PPC::TDI 5262 : PPC::TWI; 5263 SmallVector<SDValue, 4> OpsWithMD; 5264 unsigned MDIndex; 5265 if (IntrinsicID == Intrinsic::ppc_tdw || 5266 IntrinsicID == Intrinsic::ppc_tw) { 5267 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)}; 5268 int16_t SImmOperand2; 5269 int16_t SImmOperand3; 5270 int16_t SImmOperand4; 5271 bool isOperand2IntS16Immediate = 5272 isIntS16Immediate(N->getOperand(2), SImmOperand2); 5273 bool isOperand3IntS16Immediate = 5274 isIntS16Immediate(N->getOperand(3), SImmOperand3); 5275 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg + 5276 // reg or imm + imm. The imm + imm form will be optimized to either an 5277 // unconditional trap or a nop in a later pass. 5278 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate) 5279 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW; 5280 else if (isOperand3IntS16Immediate) 5281 // The 2nd and 3rd operands are reg + imm. 5282 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl); 5283 else { 5284 // The 2nd and 3rd operands are imm + reg. 5285 bool isOperand4IntS16Immediate = 5286 isIntS16Immediate(N->getOperand(4), SImmOperand4); 5287 (void)isOperand4IntS16Immediate; 5288 assert(isOperand4IntS16Immediate && 5289 "The 4th operand is not an Immediate"); 5290 // We need to flip the condition immediate TO. 5291 int16_t TO = int(SImmOperand4) & 0x1F; 5292 // We swap the first and second bit of TO if they are not same. 5293 if ((TO & 0x1) != ((TO & 0x2) >> 1)) 5294 TO = (TO & 0x1) ? TO + 1 : TO - 1; 5295 // We swap the fourth and fifth bit of TO if they are not same. 5296 if ((TO & 0x8) != ((TO & 0x10) >> 1)) 5297 TO = (TO & 0x8) ? TO + 8 : TO - 8; 5298 Ops[0] = getI32Imm(TO, dl); 5299 Ops[1] = N->getOperand(3); 5300 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl); 5301 } 5302 OpsWithMD = {Ops[0], Ops[1], Ops[2]}; 5303 MDIndex = 5; 5304 } else { 5305 OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)}; 5306 MDIndex = 3; 5307 } 5308 5309 if (N->getNumOperands() > MDIndex) { 5310 SDValue MDV = N->getOperand(MDIndex); 5311 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 5312 assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!"); 5313 assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>( 5314 MD->getOperand(0))->getString().equals("ppc-trap-reason")) 5315 && "Unsupported annotation data type!"); 5316 for (unsigned i = 1; i < MD->getNumOperands(); i++) { 5317 assert(isa<MDString>(MD->getOperand(i)) && 5318 "Invalid data type for annotation ppc-trap-reason!"); 5319 OpsWithMD.push_back( 5320 getI32Imm(std::stoi(cast<MDString>( 5321 MD->getOperand(i))->getString().str()), dl)); 5322 } 5323 } 5324 OpsWithMD.push_back(N->getOperand(0)); // chain 5325 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD); 5326 return; 5327 } 5328 5329 case ISD::INTRINSIC_WO_CHAIN: { 5330 // We emit the PPC::FSELS instruction here because of type conflicts with 5331 // the comparison operand. The FSELS instruction is defined to use an 8-byte 5332 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte 5333 // value for the comparison. When selecting through a .td file, a type 5334 // error is raised. Must check this first so we never break on the 5335 // !Subtarget->isISA3_1() check. 5336 auto IntID = N->getConstantOperandVal(0); 5337 if (IntID == Intrinsic::ppc_fsels) { 5338 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; 5339 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); 5340 return; 5341 } 5342 5343 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) { 5344 auto Pred = N->getConstantOperandVal(1); 5345 unsigned Opcode = 5346 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec; 5347 unsigned SubReg = 0; 5348 unsigned ShiftVal = 0; 5349 bool Reverse = false; 5350 switch (Pred) { 5351 case 0: 5352 SubReg = PPC::sub_eq; 5353 ShiftVal = 1; 5354 break; 5355 case 1: 5356 SubReg = PPC::sub_eq; 5357 ShiftVal = 1; 5358 Reverse = true; 5359 break; 5360 case 2: 5361 SubReg = PPC::sub_lt; 5362 ShiftVal = 3; 5363 break; 5364 case 3: 5365 SubReg = PPC::sub_lt; 5366 ShiftVal = 3; 5367 Reverse = true; 5368 break; 5369 case 4: 5370 SubReg = PPC::sub_gt; 5371 ShiftVal = 2; 5372 break; 5373 case 5: 5374 SubReg = PPC::sub_gt; 5375 ShiftVal = 2; 5376 Reverse = true; 5377 break; 5378 case 6: 5379 SubReg = PPC::sub_un; 5380 break; 5381 case 7: 5382 SubReg = PPC::sub_un; 5383 Reverse = true; 5384 break; 5385 } 5386 5387 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5388 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), 5389 CurDAG->getTargetConstant(0, dl, MVT::i32)}; 5390 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0); 5391 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5392 // On Power10, we can use SETBC[R]. On prior architectures, we have to use 5393 // MFOCRF and shift/negate the value. 5394 if (Subtarget->isISA3_1()) { 5395 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32); 5396 SDValue CRBit = SDValue( 5397 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5398 CR6Reg, SubRegIdx, BCDOp.getValue(1)), 5399 0); 5400 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32, 5401 CRBit); 5402 } else { 5403 SDValue Move = 5404 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg, 5405 BCDOp.getValue(1)), 5406 0); 5407 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl), 5408 getI32Imm(31, dl), getI32Imm(31, dl)}; 5409 if (!Reverse) 5410 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5411 else { 5412 SDValue Shift = SDValue( 5413 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 5414 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl)); 5415 } 5416 } 5417 return; 5418 } 5419 5420 if (!Subtarget->isISA3_1()) 5421 break; 5422 unsigned Opcode = 0; 5423 switch (IntID) { 5424 default: 5425 break; 5426 case Intrinsic::ppc_altivec_vstribr_p: 5427 Opcode = PPC::VSTRIBR_rec; 5428 break; 5429 case Intrinsic::ppc_altivec_vstribl_p: 5430 Opcode = PPC::VSTRIBL_rec; 5431 break; 5432 case Intrinsic::ppc_altivec_vstrihr_p: 5433 Opcode = PPC::VSTRIHR_rec; 5434 break; 5435 case Intrinsic::ppc_altivec_vstrihl_p: 5436 Opcode = PPC::VSTRIHL_rec; 5437 break; 5438 } 5439 if (!Opcode) 5440 break; 5441 5442 // Generate the appropriate vector string isolate intrinsic to match. 5443 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5444 SDValue VecStrOp = 5445 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); 5446 // Vector string isolate instructions update the EQ bit of CR6. 5447 // Generate a SETBC instruction to extract the bit and place it in a GPR. 5448 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); 5449 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5450 SDValue CRBit = SDValue( 5451 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5452 CR6Reg, SubRegIdx, VecStrOp.getValue(1)), 5453 0); 5454 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); 5455 return; 5456 } 5457 5458 case ISD::SETCC: 5459 case ISD::STRICT_FSETCC: 5460 case ISD::STRICT_FSETCCS: 5461 if (trySETCC(N)) 5462 return; 5463 break; 5464 // These nodes will be transformed into GETtlsADDR32 node, which 5465 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 5466 case PPCISD::ADDI_TLSLD_L_ADDR: 5467 case PPCISD::ADDI_TLSGD_L_ADDR: { 5468 const Module *Mod = MF->getFunction().getParent(); 5469 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5470 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || 5471 Mod->getPICLevel() == PICLevel::SmallPIC) 5472 break; 5473 // Attach global base pointer on GETtlsADDR32 node in order to 5474 // generate secure plt code for TLS symbols. 5475 getGlobalBaseReg(); 5476 } break; 5477 case PPCISD::CALL: { 5478 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5479 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || 5480 !Subtarget->isTargetELF()) 5481 break; 5482 5483 SDValue Op = N->getOperand(1); 5484 5485 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5486 if (GA->getTargetFlags() == PPCII::MO_PLT) 5487 getGlobalBaseReg(); 5488 } 5489 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 5490 if (ES->getTargetFlags() == PPCII::MO_PLT) 5491 getGlobalBaseReg(); 5492 } 5493 } 5494 break; 5495 5496 case PPCISD::GlobalBaseReg: 5497 ReplaceNode(N, getGlobalBaseReg()); 5498 return; 5499 5500 case ISD::FrameIndex: 5501 selectFrameIndex(N, N); 5502 return; 5503 5504 case PPCISD::MFOCRF: { 5505 SDValue InGlue = N->getOperand(1); 5506 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 5507 N->getOperand(0), InGlue)); 5508 return; 5509 } 5510 5511 case PPCISD::READ_TIME_BASE: 5512 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 5513 MVT::Other, N->getOperand(0))); 5514 return; 5515 5516 case PPCISD::SRA_ADDZE: { 5517 SDValue N0 = N->getOperand(0); 5518 SDValue ShiftAmt = 5519 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 5520 getConstantIntValue(), dl, 5521 N->getValueType(0)); 5522 if (N->getValueType(0) == MVT::i64) { 5523 SDNode *Op = 5524 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 5525 N0, ShiftAmt); 5526 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 5527 SDValue(Op, 1)); 5528 return; 5529 } else { 5530 assert(N->getValueType(0) == MVT::i32 && 5531 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 5532 SDNode *Op = 5533 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 5534 N0, ShiftAmt); 5535 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 5536 SDValue(Op, 1)); 5537 return; 5538 } 5539 } 5540 5541 case ISD::STORE: { 5542 // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to 5543 // X-form stores. 5544 StoreSDNode *ST = cast<StoreSDNode>(N); 5545 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) && 5546 ST->getAddressingMode() != ISD::PRE_INC) 5547 if (tryTLSXFormStore(ST)) 5548 return; 5549 break; 5550 } 5551 case ISD::LOAD: { 5552 // Handle preincrement loads. 5553 LoadSDNode *LD = cast<LoadSDNode>(N); 5554 EVT LoadedVT = LD->getMemoryVT(); 5555 5556 // Normal loads are handled by code generated from the .td file. 5557 if (LD->getAddressingMode() != ISD::PRE_INC) { 5558 // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to 5559 // X-form loads. 5560 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI())) 5561 if (tryTLSXFormLoad(LD)) 5562 return; 5563 break; 5564 } 5565 5566 SDValue Offset = LD->getOffset(); 5567 if (Offset.getOpcode() == ISD::TargetConstant || 5568 Offset.getOpcode() == ISD::TargetGlobalAddress) { 5569 5570 unsigned Opcode; 5571 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5572 if (LD->getValueType(0) != MVT::i64) { 5573 // Handle PPC32 integer and normal FP loads. 5574 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5575 switch (LoadedVT.getSimpleVT().SimpleTy) { 5576 default: llvm_unreachable("Invalid PPC load type!"); 5577 case MVT::f64: Opcode = PPC::LFDU; break; 5578 case MVT::f32: Opcode = PPC::LFSU; break; 5579 case MVT::i32: Opcode = PPC::LWZU; break; 5580 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 5581 case MVT::i1: 5582 case MVT::i8: Opcode = PPC::LBZU; break; 5583 } 5584 } else { 5585 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5586 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5587 switch (LoadedVT.getSimpleVT().SimpleTy) { 5588 default: llvm_unreachable("Invalid PPC load type!"); 5589 case MVT::i64: Opcode = PPC::LDU; break; 5590 case MVT::i32: Opcode = PPC::LWZU8; break; 5591 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 5592 case MVT::i1: 5593 case MVT::i8: Opcode = PPC::LBZU8; break; 5594 } 5595 } 5596 5597 SDValue Chain = LD->getChain(); 5598 SDValue Base = LD->getBasePtr(); 5599 SDValue Ops[] = { Offset, Base, Chain }; 5600 SDNode *MN = CurDAG->getMachineNode( 5601 Opcode, dl, LD->getValueType(0), 5602 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5603 transferMemOperands(N, MN); 5604 ReplaceNode(N, MN); 5605 return; 5606 } else { 5607 unsigned Opcode; 5608 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5609 if (LD->getValueType(0) != MVT::i64) { 5610 // Handle PPC32 integer and normal FP loads. 5611 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5612 switch (LoadedVT.getSimpleVT().SimpleTy) { 5613 default: llvm_unreachable("Invalid PPC load type!"); 5614 case MVT::f64: Opcode = PPC::LFDUX; break; 5615 case MVT::f32: Opcode = PPC::LFSUX; break; 5616 case MVT::i32: Opcode = PPC::LWZUX; break; 5617 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 5618 case MVT::i1: 5619 case MVT::i8: Opcode = PPC::LBZUX; break; 5620 } 5621 } else { 5622 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5623 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 5624 "Invalid sext update load"); 5625 switch (LoadedVT.getSimpleVT().SimpleTy) { 5626 default: llvm_unreachable("Invalid PPC load type!"); 5627 case MVT::i64: Opcode = PPC::LDUX; break; 5628 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 5629 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 5630 case MVT::i1: 5631 case MVT::i8: Opcode = PPC::LBZUX8; break; 5632 } 5633 } 5634 5635 SDValue Chain = LD->getChain(); 5636 SDValue Base = LD->getBasePtr(); 5637 SDValue Ops[] = { Base, Offset, Chain }; 5638 SDNode *MN = CurDAG->getMachineNode( 5639 Opcode, dl, LD->getValueType(0), 5640 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5641 transferMemOperands(N, MN); 5642 ReplaceNode(N, MN); 5643 return; 5644 } 5645 } 5646 5647 case ISD::AND: 5648 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr 5649 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDCL(N) || 5650 tryAsSingleRLDICL(N) || tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || 5651 tryAsPairOfRLDICL(N)) 5652 return; 5653 5654 // Other cases are autogenerated. 5655 break; 5656 case ISD::OR: { 5657 if (N->getValueType(0) == MVT::i32) 5658 if (tryBitfieldInsert(N)) 5659 return; 5660 5661 int16_t Imm; 5662 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5663 isIntS16Immediate(N->getOperand(1), Imm)) { 5664 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 5665 5666 // If this is equivalent to an add, then we can fold it with the 5667 // FrameIndex calculation. 5668 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 5669 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); 5670 return; 5671 } 5672 } 5673 5674 // If this is 'or' against an imm with consecutive ones and both sides zero, 5675 // try to emit rldimi 5676 if (tryAsSingleRLDIMI(N)) 5677 return; 5678 5679 // OR with a 32-bit immediate can be handled by ori + oris 5680 // without creating an immediate in a GPR. 5681 uint64_t Imm64 = 0; 5682 bool IsPPC64 = Subtarget->isPPC64(); 5683 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5684 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5685 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 5686 uint64_t ImmHi = Imm64 >> 16; 5687 uint64_t ImmLo = Imm64 & 0xFFFF; 5688 if (ImmHi != 0 && ImmLo != 0) { 5689 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 5690 N->getOperand(0), 5691 getI16Imm(ImmLo, dl)); 5692 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5693 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 5694 return; 5695 } 5696 } 5697 5698 // Other cases are autogenerated. 5699 break; 5700 } 5701 case ISD::XOR: { 5702 // XOR with a 32-bit immediate can be handled by xori + xoris 5703 // without creating an immediate in a GPR. 5704 uint64_t Imm64 = 0; 5705 bool IsPPC64 = Subtarget->isPPC64(); 5706 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5707 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5708 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 5709 uint64_t ImmHi = Imm64 >> 16; 5710 uint64_t ImmLo = Imm64 & 0xFFFF; 5711 if (ImmHi != 0 && ImmLo != 0) { 5712 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 5713 N->getOperand(0), 5714 getI16Imm(ImmLo, dl)); 5715 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5716 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 5717 return; 5718 } 5719 } 5720 5721 break; 5722 } 5723 case ISD::ADD: { 5724 int16_t Imm; 5725 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5726 isIntS16Immediate(N->getOperand(1), Imm)) { 5727 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); 5728 return; 5729 } 5730 5731 break; 5732 } 5733 case ISD::SHL: { 5734 unsigned Imm, SH, MB, ME; 5735 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5736 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5737 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5738 getI32Imm(SH, dl), getI32Imm(MB, dl), 5739 getI32Imm(ME, dl) }; 5740 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5741 return; 5742 } 5743 5744 // Other cases are autogenerated. 5745 break; 5746 } 5747 case ISD::SRL: { 5748 unsigned Imm, SH, MB, ME; 5749 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5750 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5751 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5752 getI32Imm(SH, dl), getI32Imm(MB, dl), 5753 getI32Imm(ME, dl) }; 5754 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5755 return; 5756 } 5757 5758 // Other cases are autogenerated. 5759 break; 5760 } 5761 case ISD::MUL: { 5762 SDValue Op1 = N->getOperand(1); 5763 if (Op1.getOpcode() != ISD::Constant || 5764 (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32)) 5765 break; 5766 5767 // If the multiplier fits int16, we can handle it with mulli. 5768 int64_t Imm = Op1->getAsZExtVal(); 5769 unsigned Shift = llvm::countr_zero<uint64_t>(Imm); 5770 if (isInt<16>(Imm) || !Shift) 5771 break; 5772 5773 // If the shifted value fits int16, we can do this transformation: 5774 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to 5775 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). 5776 uint64_t ImmSh = Imm >> Shift; 5777 if (!isInt<16>(ImmSh)) 5778 break; 5779 5780 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); 5781 if (Op1.getValueType() == MVT::i64) { 5782 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 5783 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, 5784 N->getOperand(0), SDImm); 5785 5786 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), 5787 getI32Imm(63 - Shift, dl)}; 5788 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 5789 return; 5790 } else { 5791 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32); 5792 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32, 5793 N->getOperand(0), SDImm); 5794 5795 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), 5796 getI32Imm(0, dl), getI32Imm(31 - Shift, dl)}; 5797 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5798 return; 5799 } 5800 break; 5801 } 5802 // FIXME: Remove this once the ANDI glue bug is fixed: 5803 case PPCISD::ANDI_rec_1_EQ_BIT: 5804 case PPCISD::ANDI_rec_1_GT_BIT: { 5805 if (!ANDIGlueBug) 5806 break; 5807 5808 EVT InVT = N->getOperand(0).getValueType(); 5809 assert((InVT == MVT::i64 || InVT == MVT::i32) && 5810 "Invalid input type for ANDI_rec_1_EQ_BIT"); 5811 5812 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; 5813 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 5814 N->getOperand(0), 5815 CurDAG->getTargetConstant(1, dl, InVT)), 5816 0); 5817 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 5818 SDValue SRIdxVal = CurDAG->getTargetConstant( 5819 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, 5820 dl, MVT::i32); 5821 5822 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 5823 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 5824 return; 5825 } 5826 case ISD::SELECT_CC: { 5827 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 5828 EVT PtrVT = 5829 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 5830 bool isPPC64 = (PtrVT == MVT::i64); 5831 5832 // If this is a select of i1 operands, we'll pattern match it. 5833 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) 5834 break; 5835 5836 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { 5837 bool NeedSwapOps = false; 5838 bool IsUnCmp = false; 5839 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 5840 SDValue LHS = N->getOperand(0); 5841 SDValue RHS = N->getOperand(1); 5842 if (NeedSwapOps) 5843 std::swap(LHS, RHS); 5844 5845 // Make use of SelectCC to generate the comparison to set CR bits, for 5846 // equality comparisons having one literal operand, SelectCC probably 5847 // doesn't need to materialize the whole literal and just use xoris to 5848 // check it first, it leads the following comparison result can't 5849 // exactly represent GT/LT relationship. So to avoid this we specify 5850 // SETGT/SETUGT here instead of SETEQ. 5851 SDValue GenCC = 5852 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 5853 CurDAG->SelectNodeTo( 5854 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 5855 N->getValueType(0), GenCC); 5856 NumP9Setb++; 5857 return; 5858 } 5859 } 5860 5861 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 5862 if (!isPPC64 && isNullConstant(N->getOperand(1)) && 5863 isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) && 5864 CC == ISD::SETNE && 5865 // FIXME: Implement this optzn for PPC64. 5866 N->getValueType(0) == MVT::i32) { 5867 SDNode *Tmp = 5868 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 5869 N->getOperand(0), getI32Imm(~0U, dl)); 5870 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 5871 N->getOperand(0), SDValue(Tmp, 1)); 5872 return; 5873 } 5874 5875 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 5876 5877 if (N->getValueType(0) == MVT::i1) { 5878 // An i1 select is: (c & t) | (!c & f). 5879 bool Inv; 5880 unsigned Idx = getCRIdxForSetCC(CC, Inv); 5881 5882 unsigned SRI; 5883 switch (Idx) { 5884 default: llvm_unreachable("Invalid CC index"); 5885 case 0: SRI = PPC::sub_lt; break; 5886 case 1: SRI = PPC::sub_gt; break; 5887 case 2: SRI = PPC::sub_eq; break; 5888 case 3: SRI = PPC::sub_un; break; 5889 } 5890 5891 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 5892 5893 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 5894 CCBit, CCBit), 0); 5895 SDValue C = Inv ? NotCCBit : CCBit, 5896 NotC = Inv ? CCBit : NotCCBit; 5897 5898 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5899 C, N->getOperand(2)), 0); 5900 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5901 NotC, N->getOperand(3)), 0); 5902 5903 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 5904 return; 5905 } 5906 5907 unsigned BROpc = 5908 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); 5909 5910 unsigned SelectCCOp; 5911 if (N->getValueType(0) == MVT::i32) 5912 SelectCCOp = PPC::SELECT_CC_I4; 5913 else if (N->getValueType(0) == MVT::i64) 5914 SelectCCOp = PPC::SELECT_CC_I8; 5915 else if (N->getValueType(0) == MVT::f32) { 5916 if (Subtarget->hasP8Vector()) 5917 SelectCCOp = PPC::SELECT_CC_VSSRC; 5918 else if (Subtarget->hasSPE()) 5919 SelectCCOp = PPC::SELECT_CC_SPE4; 5920 else 5921 SelectCCOp = PPC::SELECT_CC_F4; 5922 } else if (N->getValueType(0) == MVT::f64) { 5923 if (Subtarget->hasVSX()) 5924 SelectCCOp = PPC::SELECT_CC_VSFRC; 5925 else if (Subtarget->hasSPE()) 5926 SelectCCOp = PPC::SELECT_CC_SPE; 5927 else 5928 SelectCCOp = PPC::SELECT_CC_F8; 5929 } else if (N->getValueType(0) == MVT::f128) 5930 SelectCCOp = PPC::SELECT_CC_F16; 5931 else if (Subtarget->hasSPE()) 5932 SelectCCOp = PPC::SELECT_CC_SPE; 5933 else if (N->getValueType(0) == MVT::v2f64 || 5934 N->getValueType(0) == MVT::v2i64) 5935 SelectCCOp = PPC::SELECT_CC_VSRC; 5936 else 5937 SelectCCOp = PPC::SELECT_CC_VRRC; 5938 5939 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 5940 getI32Imm(BROpc, dl) }; 5941 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 5942 return; 5943 } 5944 case ISD::VECTOR_SHUFFLE: 5945 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 5946 N->getValueType(0) == MVT::v2i64)) { 5947 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5948 5949 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 5950 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 5951 unsigned DM[2]; 5952 5953 for (int i = 0; i < 2; ++i) 5954 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 5955 DM[i] = 0; 5956 else 5957 DM[i] = 1; 5958 5959 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 5960 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 5961 isa<LoadSDNode>(Op1.getOperand(0))) { 5962 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 5963 SDValue Base, Offset; 5964 5965 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 5966 (LD->getMemoryVT() == MVT::f64 || 5967 LD->getMemoryVT() == MVT::i64) && 5968 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 5969 SDValue Chain = LD->getChain(); 5970 SDValue Ops[] = { Base, Offset, Chain }; 5971 MachineMemOperand *MemOp = LD->getMemOperand(); 5972 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 5973 N->getValueType(0), Ops); 5974 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 5975 return; 5976 } 5977 } 5978 5979 // For little endian, we must swap the input operands and adjust 5980 // the mask elements (reverse and invert them). 5981 if (Subtarget->isLittleEndian()) { 5982 std::swap(Op1, Op2); 5983 unsigned tmp = DM[0]; 5984 DM[0] = 1 - DM[1]; 5985 DM[1] = 1 - tmp; 5986 } 5987 5988 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 5989 MVT::i32); 5990 SDValue Ops[] = { Op1, Op2, DMV }; 5991 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 5992 return; 5993 } 5994 5995 break; 5996 case PPCISD::BDNZ: 5997 case PPCISD::BDZ: { 5998 bool IsPPC64 = Subtarget->isPPC64(); 5999 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 6000 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 6001 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 6002 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 6003 MVT::Other, Ops); 6004 return; 6005 } 6006 case PPCISD::COND_BRANCH: { 6007 // Op #0 is the Chain. 6008 // Op #1 is the PPC::PRED_* number. 6009 // Op #2 is the CR# 6010 // Op #3 is the Dest MBB 6011 // Op #4 is the Flag. 6012 // Prevent PPC::PRED_* from being selected into LI. 6013 unsigned PCC = N->getConstantOperandVal(1); 6014 if (EnableBranchHint) 6015 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); 6016 6017 SDValue Pred = getI32Imm(PCC, dl); 6018 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 6019 N->getOperand(0), N->getOperand(4) }; 6020 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 6021 return; 6022 } 6023 case ISD::BR_CC: { 6024 if (tryFoldSWTestBRCC(N)) 6025 return; 6026 if (trySelectLoopCountIntrinsic(N)) 6027 return; 6028 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 6029 unsigned PCC = 6030 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); 6031 6032 if (N->getOperand(2).getValueType() == MVT::i1) { 6033 unsigned Opc; 6034 bool Swap; 6035 switch (PCC) { 6036 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 6037 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 6038 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 6039 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 6040 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 6041 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 6042 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 6043 } 6044 6045 // A signed comparison of i1 values produces the opposite result to an 6046 // unsigned one if the condition code includes less-than or greater-than. 6047 // This is because 1 is the most negative signed i1 number and the most 6048 // positive unsigned i1 number. The CR-logical operations used for such 6049 // comparisons are non-commutative so for signed comparisons vs. unsigned 6050 // ones, the input operands just need to be swapped. 6051 if (ISD::isSignedIntSetCC(CC)) 6052 Swap = !Swap; 6053 6054 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 6055 N->getOperand(Swap ? 3 : 2), 6056 N->getOperand(Swap ? 2 : 3)), 0); 6057 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 6058 N->getOperand(0)); 6059 return; 6060 } 6061 6062 if (EnableBranchHint) 6063 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); 6064 6065 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 6066 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 6067 N->getOperand(4), N->getOperand(0) }; 6068 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 6069 return; 6070 } 6071 case ISD::BRIND: { 6072 // FIXME: Should custom lower this. 6073 SDValue Chain = N->getOperand(0); 6074 SDValue Target = N->getOperand(1); 6075 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 6076 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 6077 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 6078 Chain), 0); 6079 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 6080 return; 6081 } 6082 case PPCISD::TOC_ENTRY: { 6083 const bool isPPC64 = Subtarget->isPPC64(); 6084 const bool isELFABI = Subtarget->isSVR4ABI(); 6085 const bool isAIXABI = Subtarget->isAIXABI(); 6086 6087 // PowerPC only support small, medium and large code model. 6088 const CodeModel::Model CModel = TM.getCodeModel(); 6089 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && 6090 "PowerPC doesn't support tiny or kernel code models."); 6091 6092 if (isAIXABI && CModel == CodeModel::Medium) 6093 report_fatal_error("Medium code model is not supported on AIX."); 6094 6095 // For 64-bit ELF small code model, we allow SelectCodeCommon to handle 6096 // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX 6097 // small code model, we need to check for a toc-data attribute. 6098 if (isPPC64 && !isAIXABI && CModel == CodeModel::Small) 6099 break; 6100 6101 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry, 6102 EVT OperandTy) { 6103 SDValue GA = TocEntry->getOperand(0); 6104 SDValue TocBase = TocEntry->getOperand(1); 6105 SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase); 6106 transferMemOperands(TocEntry, MN); 6107 ReplaceNode(TocEntry, MN); 6108 }; 6109 6110 // Handle 32-bit small code model. 6111 if (!isPPC64 && CModel == CodeModel::Small) { 6112 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either 6113 // PPC::ADDItoc, or PPC::LWZtoc 6114 if (isELFABI) { 6115 assert(TM.isPositionIndependent() && 6116 "32-bit ELF can only have TOC entries in position independent" 6117 " code."); 6118 // 32-bit ELF always uses a small code model toc access. 6119 replaceWith(PPC::LWZtoc, N, MVT::i32); 6120 return; 6121 } 6122 6123 assert(isAIXABI && "ELF ABI already handled"); 6124 6125 if (hasTocDataAttr(N->getOperand(0), 6126 CurDAG->getDataLayout().getPointerSize())) { 6127 replaceWith(PPC::ADDItoc, N, MVT::i32); 6128 return; 6129 } 6130 6131 replaceWith(PPC::LWZtoc, N, MVT::i32); 6132 return; 6133 } 6134 6135 if (isPPC64 && CModel == CodeModel::Small) { 6136 assert(isAIXABI && "ELF ABI handled in common SelectCode"); 6137 6138 if (hasTocDataAttr(N->getOperand(0), 6139 CurDAG->getDataLayout().getPointerSize())) { 6140 replaceWith(PPC::ADDItoc8, N, MVT::i64); 6141 return; 6142 } 6143 // Break if it doesn't have toc data attribute. Proceed with common 6144 // SelectCode. 6145 break; 6146 } 6147 6148 assert(CModel != CodeModel::Small && "All small code models handled."); 6149 6150 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" 6151 " ELF/AIX or 32-bit AIX in the following."); 6152 6153 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode 6154 // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We 6155 // generate two instructions as described below. The first source operand 6156 // is a symbol reference. If it must be toc-referenced according to 6157 // Subtarget, we generate: 6158 // [32-bit AIX] 6159 // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) 6160 // [64-bit ELF/AIX] 6161 // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) 6162 // Otherwise we generate: 6163 // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) 6164 SDValue GA = N->getOperand(0); 6165 SDValue TOCbase = N->getOperand(1); 6166 6167 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 6168 SDNode *Tmp = CurDAG->getMachineNode( 6169 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); 6170 6171 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 6172 // If it is accessed as got-indirect, we need an extra LWZ/LD to load 6173 // the address. 6174 SDNode *MN = CurDAG->getMachineNode( 6175 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); 6176 6177 transferMemOperands(N, MN); 6178 ReplaceNode(N, MN); 6179 return; 6180 } 6181 6182 // Build the address relative to the TOC-pointer. 6183 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 6184 SDValue(Tmp, 0), GA)); 6185 return; 6186 } 6187 case PPCISD::PPC32_PICGOT: 6188 // Generate a PIC-safe GOT reference. 6189 assert(Subtarget->is32BitELFABI() && 6190 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 6191 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 6192 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 6193 MVT::i32); 6194 return; 6195 6196 case PPCISD::VADD_SPLAT: { 6197 // This expands into one of three sequences, depending on whether 6198 // the first operand is odd or even, positive or negative. 6199 assert(isa<ConstantSDNode>(N->getOperand(0)) && 6200 isa<ConstantSDNode>(N->getOperand(1)) && 6201 "Invalid operand on VADD_SPLAT!"); 6202 6203 int Elt = N->getConstantOperandVal(0); 6204 int EltSize = N->getConstantOperandVal(1); 6205 unsigned Opc1, Opc2, Opc3; 6206 EVT VT; 6207 6208 if (EltSize == 1) { 6209 Opc1 = PPC::VSPLTISB; 6210 Opc2 = PPC::VADDUBM; 6211 Opc3 = PPC::VSUBUBM; 6212 VT = MVT::v16i8; 6213 } else if (EltSize == 2) { 6214 Opc1 = PPC::VSPLTISH; 6215 Opc2 = PPC::VADDUHM; 6216 Opc3 = PPC::VSUBUHM; 6217 VT = MVT::v8i16; 6218 } else { 6219 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 6220 Opc1 = PPC::VSPLTISW; 6221 Opc2 = PPC::VADDUWM; 6222 Opc3 = PPC::VSUBUWM; 6223 VT = MVT::v4i32; 6224 } 6225 6226 if ((Elt & 1) == 0) { 6227 // Elt is even, in the range [-32,-18] + [16,30]. 6228 // 6229 // Convert: VADD_SPLAT elt, size 6230 // Into: tmp = VSPLTIS[BHW] elt 6231 // VADDU[BHW]M tmp, tmp 6232 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 6233 SDValue EltVal = getI32Imm(Elt >> 1, dl); 6234 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6235 SDValue TmpVal = SDValue(Tmp, 0); 6236 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 6237 return; 6238 } else if (Elt > 0) { 6239 // Elt is odd and positive, in the range [17,31]. 6240 // 6241 // Convert: VADD_SPLAT elt, size 6242 // Into: tmp1 = VSPLTIS[BHW] elt-16 6243 // tmp2 = VSPLTIS[BHW] -16 6244 // VSUBU[BHW]M tmp1, tmp2 6245 SDValue EltVal = getI32Imm(Elt - 16, dl); 6246 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6247 EltVal = getI32Imm(-16, dl); 6248 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6249 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 6250 SDValue(Tmp2, 0))); 6251 return; 6252 } else { 6253 // Elt is odd and negative, in the range [-31,-17]. 6254 // 6255 // Convert: VADD_SPLAT elt, size 6256 // Into: tmp1 = VSPLTIS[BHW] elt+16 6257 // tmp2 = VSPLTIS[BHW] -16 6258 // VADDU[BHW]M tmp1, tmp2 6259 SDValue EltVal = getI32Imm(Elt + 16, dl); 6260 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6261 EltVal = getI32Imm(-16, dl); 6262 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6263 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 6264 SDValue(Tmp2, 0))); 6265 return; 6266 } 6267 } 6268 case PPCISD::LD_SPLAT: { 6269 // Here we want to handle splat load for type v16i8 and v8i16 when there is 6270 // no direct move, we don't need to use stack for this case. If target has 6271 // direct move, we should be able to get the best selection in the .td file. 6272 if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove()) 6273 break; 6274 6275 EVT Type = N->getValueType(0); 6276 if (Type != MVT::v16i8 && Type != MVT::v8i16) 6277 break; 6278 6279 // If the alignment for the load is 16 or bigger, we don't need the 6280 // permutated mask to get the required value. The value must be the 0 6281 // element in big endian target or 7/15 in little endian target in the 6282 // result vsx register of lvx instruction. 6283 // Select the instruction in the .td file. 6284 if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) && 6285 isOffsetMultipleOf(N, 16)) 6286 break; 6287 6288 SDValue ZeroReg = 6289 CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO, 6290 Subtarget->isPPC64() ? MVT::i64 : MVT::i32); 6291 unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI; 6292 // v16i8 LD_SPLAT addr 6293 // ======> 6294 // Mask = LVSR/LVSL 0, addr 6295 // LoadLow = LVX 0, addr 6296 // Perm = VPERM LoadLow, LoadLow, Mask 6297 // Splat = VSPLTB 15/0, Perm 6298 // 6299 // v8i16 LD_SPLAT addr 6300 // ======> 6301 // Mask = LVSR/LVSL 0, addr 6302 // LoadLow = LVX 0, addr 6303 // LoadHigh = LVX (LI, 1), addr 6304 // Perm = VPERM LoadLow, LoadHigh, Mask 6305 // Splat = VSPLTH 7/0, Perm 6306 unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH; 6307 unsigned SplatElemIndex = 6308 Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0; 6309 6310 SDNode *Mask = CurDAG->getMachineNode( 6311 Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg, 6312 N->getOperand(1)); 6313 6314 SDNode *LoadLow = 6315 CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other, 6316 {ZeroReg, N->getOperand(1), N->getOperand(0)}); 6317 6318 SDNode *LoadHigh = LoadLow; 6319 if (Type == MVT::v8i16) { 6320 LoadHigh = CurDAG->getMachineNode( 6321 PPC::LVX, dl, MVT::v16i8, MVT::Other, 6322 {SDValue(CurDAG->getMachineNode( 6323 LIOpcode, dl, MVT::i32, 6324 CurDAG->getTargetConstant(1, dl, MVT::i8)), 6325 0), 6326 N->getOperand(1), SDValue(LoadLow, 1)}); 6327 } 6328 6329 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1)); 6330 transferMemOperands(N, LoadHigh); 6331 6332 SDNode *Perm = 6333 CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0), 6334 SDValue(LoadHigh, 0), SDValue(Mask, 0)); 6335 CurDAG->SelectNodeTo(N, SplatOp, Type, 6336 CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8), 6337 SDValue(Perm, 0)); 6338 return; 6339 } 6340 } 6341 6342 SelectCode(N); 6343 } 6344 6345 // If the target supports the cmpb instruction, do the idiom recognition here. 6346 // We don't do this as a DAG combine because we don't want to do it as nodes 6347 // are being combined (because we might miss part of the eventual idiom). We 6348 // don't want to do it during instruction selection because we want to reuse 6349 // the logic for lowering the masking operations already part of the 6350 // instruction selector. 6351 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 6352 SDLoc dl(N); 6353 6354 assert(N->getOpcode() == ISD::OR && 6355 "Only OR nodes are supported for CMPB"); 6356 6357 SDValue Res; 6358 if (!Subtarget->hasCMPB()) 6359 return Res; 6360 6361 if (N->getValueType(0) != MVT::i32 && 6362 N->getValueType(0) != MVT::i64) 6363 return Res; 6364 6365 EVT VT = N->getValueType(0); 6366 6367 SDValue RHS, LHS; 6368 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 6369 uint64_t Mask = 0, Alt = 0; 6370 6371 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 6372 uint64_t &Mask, uint64_t &Alt, 6373 SDValue &LHS, SDValue &RHS) { 6374 if (O.getOpcode() != ISD::SELECT_CC) 6375 return false; 6376 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 6377 6378 if (!isa<ConstantSDNode>(O.getOperand(2)) || 6379 !isa<ConstantSDNode>(O.getOperand(3))) 6380 return false; 6381 6382 uint64_t PM = O.getConstantOperandVal(2); 6383 uint64_t PAlt = O.getConstantOperandVal(3); 6384 for (b = 0; b < 8; ++b) { 6385 uint64_t Mask = UINT64_C(0xFF) << (8*b); 6386 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 6387 break; 6388 } 6389 6390 if (b == 8) 6391 return false; 6392 Mask |= PM; 6393 Alt |= PAlt; 6394 6395 if (!isa<ConstantSDNode>(O.getOperand(1)) || 6396 O.getConstantOperandVal(1) != 0) { 6397 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 6398 if (Op0.getOpcode() == ISD::TRUNCATE) 6399 Op0 = Op0.getOperand(0); 6400 if (Op1.getOpcode() == ISD::TRUNCATE) 6401 Op1 = Op1.getOperand(0); 6402 6403 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 6404 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 6405 isa<ConstantSDNode>(Op0.getOperand(1))) { 6406 6407 unsigned Bits = Op0.getValueSizeInBits(); 6408 if (b != Bits/8-1) 6409 return false; 6410 if (Op0.getConstantOperandVal(1) != Bits-8) 6411 return false; 6412 6413 LHS = Op0.getOperand(0); 6414 RHS = Op1.getOperand(0); 6415 return true; 6416 } 6417 6418 // When we have small integers (i16 to be specific), the form present 6419 // post-legalization uses SETULT in the SELECT_CC for the 6420 // higher-order byte, depending on the fact that the 6421 // even-higher-order bytes are known to all be zero, for example: 6422 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 6423 // (so when the second byte is the same, because all higher-order 6424 // bits from bytes 3 and 4 are known to be zero, the result of the 6425 // xor can be at most 255) 6426 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 6427 isa<ConstantSDNode>(O.getOperand(1))) { 6428 6429 uint64_t ULim = O.getConstantOperandVal(1); 6430 if (ULim != (UINT64_C(1) << b*8)) 6431 return false; 6432 6433 // Now we need to make sure that the upper bytes are known to be 6434 // zero. 6435 unsigned Bits = Op0.getValueSizeInBits(); 6436 if (!CurDAG->MaskedValueIsZero( 6437 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 6438 return false; 6439 6440 LHS = Op0.getOperand(0); 6441 RHS = Op0.getOperand(1); 6442 return true; 6443 } 6444 6445 return false; 6446 } 6447 6448 if (CC != ISD::SETEQ) 6449 return false; 6450 6451 SDValue Op = O.getOperand(0); 6452 if (Op.getOpcode() == ISD::AND) { 6453 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6454 return false; 6455 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 6456 return false; 6457 6458 SDValue XOR = Op.getOperand(0); 6459 if (XOR.getOpcode() == ISD::TRUNCATE) 6460 XOR = XOR.getOperand(0); 6461 if (XOR.getOpcode() != ISD::XOR) 6462 return false; 6463 6464 LHS = XOR.getOperand(0); 6465 RHS = XOR.getOperand(1); 6466 return true; 6467 } else if (Op.getOpcode() == ISD::SRL) { 6468 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6469 return false; 6470 unsigned Bits = Op.getValueSizeInBits(); 6471 if (b != Bits/8-1) 6472 return false; 6473 if (Op.getConstantOperandVal(1) != Bits-8) 6474 return false; 6475 6476 SDValue XOR = Op.getOperand(0); 6477 if (XOR.getOpcode() == ISD::TRUNCATE) 6478 XOR = XOR.getOperand(0); 6479 if (XOR.getOpcode() != ISD::XOR) 6480 return false; 6481 6482 LHS = XOR.getOperand(0); 6483 RHS = XOR.getOperand(1); 6484 return true; 6485 } 6486 6487 return false; 6488 }; 6489 6490 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 6491 while (!Queue.empty()) { 6492 SDValue V = Queue.pop_back_val(); 6493 6494 for (const SDValue &O : V.getNode()->ops()) { 6495 unsigned b = 0; 6496 uint64_t M = 0, A = 0; 6497 SDValue OLHS, ORHS; 6498 if (O.getOpcode() == ISD::OR) { 6499 Queue.push_back(O); 6500 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 6501 if (!LHS) { 6502 LHS = OLHS; 6503 RHS = ORHS; 6504 BytesFound[b] = true; 6505 Mask |= M; 6506 Alt |= A; 6507 } else if ((LHS == ORHS && RHS == OLHS) || 6508 (RHS == ORHS && LHS == OLHS)) { 6509 BytesFound[b] = true; 6510 Mask |= M; 6511 Alt |= A; 6512 } else { 6513 return Res; 6514 } 6515 } else { 6516 return Res; 6517 } 6518 } 6519 } 6520 6521 unsigned LastB = 0, BCnt = 0; 6522 for (unsigned i = 0; i < 8; ++i) 6523 if (BytesFound[LastB]) { 6524 ++BCnt; 6525 LastB = i; 6526 } 6527 6528 if (!LastB || BCnt < 2) 6529 return Res; 6530 6531 // Because we'll be zero-extending the output anyway if don't have a specific 6532 // value for each input byte (via the Mask), we can 'anyext' the inputs. 6533 if (LHS.getValueType() != VT) { 6534 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 6535 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 6536 } 6537 6538 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 6539 6540 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 6541 if (NonTrivialMask && !Alt) { 6542 // Res = Mask & CMPB 6543 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6544 CurDAG->getConstant(Mask, dl, VT)); 6545 } else if (Alt) { 6546 // Res = (CMPB & Mask) | (~CMPB & Alt) 6547 // Which, as suggested here: 6548 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 6549 // can be written as: 6550 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 6551 // useful because the (Alt ^ Mask) can be pre-computed. 6552 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6553 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 6554 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 6555 CurDAG->getConstant(Alt, dl, VT)); 6556 } 6557 6558 return Res; 6559 } 6560 6561 // When CR bit registers are enabled, an extension of an i1 variable to a i32 6562 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 6563 // involves constant materialization of a 0 or a 1 or both. If the result of 6564 // the extension is then operated upon by some operator that can be constant 6565 // folded with a constant 0 or 1, and that constant can be materialized using 6566 // only one instruction (like a zero or one), then we should fold in those 6567 // operations with the select. 6568 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 6569 if (!Subtarget->useCRBits()) 6570 return; 6571 6572 if (N->getOpcode() != ISD::ZERO_EXTEND && 6573 N->getOpcode() != ISD::SIGN_EXTEND && 6574 N->getOpcode() != ISD::ANY_EXTEND) 6575 return; 6576 6577 if (N->getOperand(0).getValueType() != MVT::i1) 6578 return; 6579 6580 if (!N->hasOneUse()) 6581 return; 6582 6583 SDLoc dl(N); 6584 EVT VT = N->getValueType(0); 6585 SDValue Cond = N->getOperand(0); 6586 SDValue ConstTrue = 6587 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 6588 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 6589 6590 do { 6591 SDNode *User = *N->use_begin(); 6592 if (User->getNumOperands() != 2) 6593 break; 6594 6595 auto TryFold = [this, N, User, dl](SDValue Val) { 6596 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 6597 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 6598 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 6599 6600 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 6601 User->getValueType(0), {O0, O1}); 6602 }; 6603 6604 // FIXME: When the semantics of the interaction between select and undef 6605 // are clearly defined, it may turn out to be unnecessary to break here. 6606 SDValue TrueRes = TryFold(ConstTrue); 6607 if (!TrueRes || TrueRes.isUndef()) 6608 break; 6609 SDValue FalseRes = TryFold(ConstFalse); 6610 if (!FalseRes || FalseRes.isUndef()) 6611 break; 6612 6613 // For us to materialize these using one instruction, we must be able to 6614 // represent them as signed 16-bit integers. 6615 uint64_t True = TrueRes->getAsZExtVal(), False = FalseRes->getAsZExtVal(); 6616 if (!isInt<16>(True) || !isInt<16>(False)) 6617 break; 6618 6619 // We can replace User with a new SELECT node, and try again to see if we 6620 // can fold the select with its user. 6621 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 6622 N = User; 6623 ConstTrue = TrueRes; 6624 ConstFalse = FalseRes; 6625 } while (N->hasOneUse()); 6626 } 6627 6628 void PPCDAGToDAGISel::PreprocessISelDAG() { 6629 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6630 6631 bool MadeChange = false; 6632 while (Position != CurDAG->allnodes_begin()) { 6633 SDNode *N = &*--Position; 6634 if (N->use_empty()) 6635 continue; 6636 6637 SDValue Res; 6638 switch (N->getOpcode()) { 6639 default: break; 6640 case ISD::OR: 6641 Res = combineToCMPB(N); 6642 break; 6643 } 6644 6645 if (!Res) 6646 foldBoolExts(Res, N); 6647 6648 if (Res) { 6649 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 6650 LLVM_DEBUG(N->dump(CurDAG)); 6651 LLVM_DEBUG(dbgs() << "\nNew: "); 6652 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 6653 LLVM_DEBUG(dbgs() << "\n"); 6654 6655 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 6656 MadeChange = true; 6657 } 6658 } 6659 6660 if (MadeChange) 6661 CurDAG->RemoveDeadNodes(); 6662 } 6663 6664 /// PostprocessISelDAG - Perform some late peephole optimizations 6665 /// on the DAG representation. 6666 void PPCDAGToDAGISel::PostprocessISelDAG() { 6667 // Skip peepholes at -O0. 6668 if (TM.getOptLevel() == CodeGenOptLevel::None) 6669 return; 6670 6671 PeepholePPC64(); 6672 PeepholeCROps(); 6673 PeepholePPC64ZExt(); 6674 } 6675 6676 // Check if all users of this node will become isel where the second operand 6677 // is the constant zero. If this is so, and if we can negate the condition, 6678 // then we can flip the true and false operands. This will allow the zero to 6679 // be folded with the isel so that we don't need to materialize a register 6680 // containing zero. 6681 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 6682 for (const SDNode *User : N->uses()) { 6683 if (!User->isMachineOpcode()) 6684 return false; 6685 if (User->getMachineOpcode() != PPC::SELECT_I4 && 6686 User->getMachineOpcode() != PPC::SELECT_I8) 6687 return false; 6688 6689 SDNode *Op1 = User->getOperand(1).getNode(); 6690 SDNode *Op2 = User->getOperand(2).getNode(); 6691 // If we have a degenerate select with two equal operands, swapping will 6692 // not do anything, and we may run into an infinite loop. 6693 if (Op1 == Op2) 6694 return false; 6695 6696 if (!Op2->isMachineOpcode()) 6697 return false; 6698 6699 if (Op2->getMachineOpcode() != PPC::LI && 6700 Op2->getMachineOpcode() != PPC::LI8) 6701 return false; 6702 6703 if (!isNullConstant(Op2->getOperand(0))) 6704 return false; 6705 } 6706 6707 return true; 6708 } 6709 6710 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 6711 SmallVector<SDNode *, 4> ToReplace; 6712 for (SDNode *User : N->uses()) { 6713 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 6714 User->getMachineOpcode() == PPC::SELECT_I8) && 6715 "Must have all select users"); 6716 ToReplace.push_back(User); 6717 } 6718 6719 for (SDNode *User : ToReplace) { 6720 SDNode *ResNode = 6721 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 6722 User->getValueType(0), User->getOperand(0), 6723 User->getOperand(2), 6724 User->getOperand(1)); 6725 6726 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6727 LLVM_DEBUG(User->dump(CurDAG)); 6728 LLVM_DEBUG(dbgs() << "\nNew: "); 6729 LLVM_DEBUG(ResNode->dump(CurDAG)); 6730 LLVM_DEBUG(dbgs() << "\n"); 6731 6732 ReplaceUses(User, ResNode); 6733 } 6734 } 6735 6736 void PPCDAGToDAGISel::PeepholeCROps() { 6737 bool IsModified; 6738 do { 6739 IsModified = false; 6740 for (SDNode &Node : CurDAG->allnodes()) { 6741 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 6742 if (!MachineNode || MachineNode->use_empty()) 6743 continue; 6744 SDNode *ResNode = MachineNode; 6745 6746 bool Op1Set = false, Op1Unset = false, 6747 Op1Not = false, 6748 Op2Set = false, Op2Unset = false, 6749 Op2Not = false; 6750 6751 unsigned Opcode = MachineNode->getMachineOpcode(); 6752 switch (Opcode) { 6753 default: break; 6754 case PPC::CRAND: 6755 case PPC::CRNAND: 6756 case PPC::CROR: 6757 case PPC::CRXOR: 6758 case PPC::CRNOR: 6759 case PPC::CREQV: 6760 case PPC::CRANDC: 6761 case PPC::CRORC: { 6762 SDValue Op = MachineNode->getOperand(1); 6763 if (Op.isMachineOpcode()) { 6764 if (Op.getMachineOpcode() == PPC::CRSET) 6765 Op2Set = true; 6766 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6767 Op2Unset = true; 6768 else if ((Op.getMachineOpcode() == PPC::CRNOR && 6769 Op.getOperand(0) == Op.getOperand(1)) || 6770 Op.getMachineOpcode() == PPC::CRNOT) 6771 Op2Not = true; 6772 } 6773 [[fallthrough]]; 6774 } 6775 case PPC::BC: 6776 case PPC::BCn: 6777 case PPC::SELECT_I4: 6778 case PPC::SELECT_I8: 6779 case PPC::SELECT_F4: 6780 case PPC::SELECT_F8: 6781 case PPC::SELECT_SPE: 6782 case PPC::SELECT_SPE4: 6783 case PPC::SELECT_VRRC: 6784 case PPC::SELECT_VSFRC: 6785 case PPC::SELECT_VSSRC: 6786 case PPC::SELECT_VSRC: { 6787 SDValue Op = MachineNode->getOperand(0); 6788 if (Op.isMachineOpcode()) { 6789 if (Op.getMachineOpcode() == PPC::CRSET) 6790 Op1Set = true; 6791 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6792 Op1Unset = true; 6793 else if ((Op.getMachineOpcode() == PPC::CRNOR && 6794 Op.getOperand(0) == Op.getOperand(1)) || 6795 Op.getMachineOpcode() == PPC::CRNOT) 6796 Op1Not = true; 6797 } 6798 } 6799 break; 6800 } 6801 6802 bool SelectSwap = false; 6803 switch (Opcode) { 6804 default: break; 6805 case PPC::CRAND: 6806 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6807 // x & x = x 6808 ResNode = MachineNode->getOperand(0).getNode(); 6809 else if (Op1Set) 6810 // 1 & y = y 6811 ResNode = MachineNode->getOperand(1).getNode(); 6812 else if (Op2Set) 6813 // x & 1 = x 6814 ResNode = MachineNode->getOperand(0).getNode(); 6815 else if (Op1Unset || Op2Unset) 6816 // x & 0 = 0 & y = 0 6817 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6818 MVT::i1); 6819 else if (Op1Not) 6820 // ~x & y = andc(y, x) 6821 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6822 MVT::i1, MachineNode->getOperand(1), 6823 MachineNode->getOperand(0). 6824 getOperand(0)); 6825 else if (Op2Not) 6826 // x & ~y = andc(x, y) 6827 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6828 MVT::i1, MachineNode->getOperand(0), 6829 MachineNode->getOperand(1). 6830 getOperand(0)); 6831 else if (AllUsersSelectZero(MachineNode)) { 6832 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6833 MVT::i1, MachineNode->getOperand(0), 6834 MachineNode->getOperand(1)); 6835 SelectSwap = true; 6836 } 6837 break; 6838 case PPC::CRNAND: 6839 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6840 // nand(x, x) -> nor(x, x) 6841 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6842 MVT::i1, MachineNode->getOperand(0), 6843 MachineNode->getOperand(0)); 6844 else if (Op1Set) 6845 // nand(1, y) -> nor(y, y) 6846 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6847 MVT::i1, MachineNode->getOperand(1), 6848 MachineNode->getOperand(1)); 6849 else if (Op2Set) 6850 // nand(x, 1) -> nor(x, x) 6851 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6852 MVT::i1, MachineNode->getOperand(0), 6853 MachineNode->getOperand(0)); 6854 else if (Op1Unset || Op2Unset) 6855 // nand(x, 0) = nand(0, y) = 1 6856 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6857 MVT::i1); 6858 else if (Op1Not) 6859 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 6860 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6861 MVT::i1, MachineNode->getOperand(0). 6862 getOperand(0), 6863 MachineNode->getOperand(1)); 6864 else if (Op2Not) 6865 // nand(x, ~y) = ~x | y = orc(y, x) 6866 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6867 MVT::i1, MachineNode->getOperand(1). 6868 getOperand(0), 6869 MachineNode->getOperand(0)); 6870 else if (AllUsersSelectZero(MachineNode)) { 6871 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6872 MVT::i1, MachineNode->getOperand(0), 6873 MachineNode->getOperand(1)); 6874 SelectSwap = true; 6875 } 6876 break; 6877 case PPC::CROR: 6878 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6879 // x | x = x 6880 ResNode = MachineNode->getOperand(0).getNode(); 6881 else if (Op1Set || Op2Set) 6882 // x | 1 = 1 | y = 1 6883 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6884 MVT::i1); 6885 else if (Op1Unset) 6886 // 0 | y = y 6887 ResNode = MachineNode->getOperand(1).getNode(); 6888 else if (Op2Unset) 6889 // x | 0 = x 6890 ResNode = MachineNode->getOperand(0).getNode(); 6891 else if (Op1Not) 6892 // ~x | y = orc(y, x) 6893 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6894 MVT::i1, MachineNode->getOperand(1), 6895 MachineNode->getOperand(0). 6896 getOperand(0)); 6897 else if (Op2Not) 6898 // x | ~y = orc(x, y) 6899 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6900 MVT::i1, MachineNode->getOperand(0), 6901 MachineNode->getOperand(1). 6902 getOperand(0)); 6903 else if (AllUsersSelectZero(MachineNode)) { 6904 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6905 MVT::i1, MachineNode->getOperand(0), 6906 MachineNode->getOperand(1)); 6907 SelectSwap = true; 6908 } 6909 break; 6910 case PPC::CRXOR: 6911 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6912 // xor(x, x) = 0 6913 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6914 MVT::i1); 6915 else if (Op1Set) 6916 // xor(1, y) -> nor(y, y) 6917 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6918 MVT::i1, MachineNode->getOperand(1), 6919 MachineNode->getOperand(1)); 6920 else if (Op2Set) 6921 // xor(x, 1) -> nor(x, x) 6922 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6923 MVT::i1, MachineNode->getOperand(0), 6924 MachineNode->getOperand(0)); 6925 else if (Op1Unset) 6926 // xor(0, y) = y 6927 ResNode = MachineNode->getOperand(1).getNode(); 6928 else if (Op2Unset) 6929 // xor(x, 0) = x 6930 ResNode = MachineNode->getOperand(0).getNode(); 6931 else if (Op1Not) 6932 // xor(~x, y) = eqv(x, y) 6933 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6934 MVT::i1, MachineNode->getOperand(0). 6935 getOperand(0), 6936 MachineNode->getOperand(1)); 6937 else if (Op2Not) 6938 // xor(x, ~y) = eqv(x, y) 6939 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6940 MVT::i1, MachineNode->getOperand(0), 6941 MachineNode->getOperand(1). 6942 getOperand(0)); 6943 else if (AllUsersSelectZero(MachineNode)) { 6944 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6945 MVT::i1, MachineNode->getOperand(0), 6946 MachineNode->getOperand(1)); 6947 SelectSwap = true; 6948 } 6949 break; 6950 case PPC::CRNOR: 6951 if (Op1Set || Op2Set) 6952 // nor(1, y) -> 0 6953 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6954 MVT::i1); 6955 else if (Op1Unset) 6956 // nor(0, y) = ~y -> nor(y, y) 6957 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6958 MVT::i1, MachineNode->getOperand(1), 6959 MachineNode->getOperand(1)); 6960 else if (Op2Unset) 6961 // nor(x, 0) = ~x 6962 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6963 MVT::i1, MachineNode->getOperand(0), 6964 MachineNode->getOperand(0)); 6965 else if (Op1Not) 6966 // nor(~x, y) = andc(x, y) 6967 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6968 MVT::i1, MachineNode->getOperand(0). 6969 getOperand(0), 6970 MachineNode->getOperand(1)); 6971 else if (Op2Not) 6972 // nor(x, ~y) = andc(y, x) 6973 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6974 MVT::i1, MachineNode->getOperand(1). 6975 getOperand(0), 6976 MachineNode->getOperand(0)); 6977 else if (AllUsersSelectZero(MachineNode)) { 6978 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6979 MVT::i1, MachineNode->getOperand(0), 6980 MachineNode->getOperand(1)); 6981 SelectSwap = true; 6982 } 6983 break; 6984 case PPC::CREQV: 6985 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6986 // eqv(x, x) = 1 6987 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6988 MVT::i1); 6989 else if (Op1Set) 6990 // eqv(1, y) = y 6991 ResNode = MachineNode->getOperand(1).getNode(); 6992 else if (Op2Set) 6993 // eqv(x, 1) = x 6994 ResNode = MachineNode->getOperand(0).getNode(); 6995 else if (Op1Unset) 6996 // eqv(0, y) = ~y -> nor(y, y) 6997 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6998 MVT::i1, MachineNode->getOperand(1), 6999 MachineNode->getOperand(1)); 7000 else if (Op2Unset) 7001 // eqv(x, 0) = ~x 7002 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7003 MVT::i1, MachineNode->getOperand(0), 7004 MachineNode->getOperand(0)); 7005 else if (Op1Not) 7006 // eqv(~x, y) = xor(x, y) 7007 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 7008 MVT::i1, MachineNode->getOperand(0). 7009 getOperand(0), 7010 MachineNode->getOperand(1)); 7011 else if (Op2Not) 7012 // eqv(x, ~y) = xor(x, y) 7013 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 7014 MVT::i1, MachineNode->getOperand(0), 7015 MachineNode->getOperand(1). 7016 getOperand(0)); 7017 else if (AllUsersSelectZero(MachineNode)) { 7018 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 7019 MVT::i1, MachineNode->getOperand(0), 7020 MachineNode->getOperand(1)); 7021 SelectSwap = true; 7022 } 7023 break; 7024 case PPC::CRANDC: 7025 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 7026 // andc(x, x) = 0 7027 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 7028 MVT::i1); 7029 else if (Op1Set) 7030 // andc(1, y) = ~y 7031 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7032 MVT::i1, MachineNode->getOperand(1), 7033 MachineNode->getOperand(1)); 7034 else if (Op1Unset || Op2Set) 7035 // andc(0, y) = andc(x, 1) = 0 7036 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 7037 MVT::i1); 7038 else if (Op2Unset) 7039 // andc(x, 0) = x 7040 ResNode = MachineNode->getOperand(0).getNode(); 7041 else if (Op1Not) 7042 // andc(~x, y) = ~(x | y) = nor(x, y) 7043 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7044 MVT::i1, MachineNode->getOperand(0). 7045 getOperand(0), 7046 MachineNode->getOperand(1)); 7047 else if (Op2Not) 7048 // andc(x, ~y) = x & y 7049 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 7050 MVT::i1, MachineNode->getOperand(0), 7051 MachineNode->getOperand(1). 7052 getOperand(0)); 7053 else if (AllUsersSelectZero(MachineNode)) { 7054 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 7055 MVT::i1, MachineNode->getOperand(1), 7056 MachineNode->getOperand(0)); 7057 SelectSwap = true; 7058 } 7059 break; 7060 case PPC::CRORC: 7061 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 7062 // orc(x, x) = 1 7063 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7064 MVT::i1); 7065 else if (Op1Set || Op2Unset) 7066 // orc(1, y) = orc(x, 0) = 1 7067 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7068 MVT::i1); 7069 else if (Op2Set) 7070 // orc(x, 1) = x 7071 ResNode = MachineNode->getOperand(0).getNode(); 7072 else if (Op1Unset) 7073 // orc(0, y) = ~y 7074 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7075 MVT::i1, MachineNode->getOperand(1), 7076 MachineNode->getOperand(1)); 7077 else if (Op1Not) 7078 // orc(~x, y) = ~(x & y) = nand(x, y) 7079 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 7080 MVT::i1, MachineNode->getOperand(0). 7081 getOperand(0), 7082 MachineNode->getOperand(1)); 7083 else if (Op2Not) 7084 // orc(x, ~y) = x | y 7085 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 7086 MVT::i1, MachineNode->getOperand(0), 7087 MachineNode->getOperand(1). 7088 getOperand(0)); 7089 else if (AllUsersSelectZero(MachineNode)) { 7090 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 7091 MVT::i1, MachineNode->getOperand(1), 7092 MachineNode->getOperand(0)); 7093 SelectSwap = true; 7094 } 7095 break; 7096 case PPC::SELECT_I4: 7097 case PPC::SELECT_I8: 7098 case PPC::SELECT_F4: 7099 case PPC::SELECT_F8: 7100 case PPC::SELECT_SPE: 7101 case PPC::SELECT_SPE4: 7102 case PPC::SELECT_VRRC: 7103 case PPC::SELECT_VSFRC: 7104 case PPC::SELECT_VSSRC: 7105 case PPC::SELECT_VSRC: 7106 if (Op1Set) 7107 ResNode = MachineNode->getOperand(1).getNode(); 7108 else if (Op1Unset) 7109 ResNode = MachineNode->getOperand(2).getNode(); 7110 else if (Op1Not) 7111 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 7112 SDLoc(MachineNode), 7113 MachineNode->getValueType(0), 7114 MachineNode->getOperand(0). 7115 getOperand(0), 7116 MachineNode->getOperand(2), 7117 MachineNode->getOperand(1)); 7118 break; 7119 case PPC::BC: 7120 case PPC::BCn: 7121 if (Op1Not) 7122 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 7123 PPC::BC, 7124 SDLoc(MachineNode), 7125 MVT::Other, 7126 MachineNode->getOperand(0). 7127 getOperand(0), 7128 MachineNode->getOperand(1), 7129 MachineNode->getOperand(2)); 7130 // FIXME: Handle Op1Set, Op1Unset here too. 7131 break; 7132 } 7133 7134 // If we're inverting this node because it is used only by selects that 7135 // we'd like to swap, then swap the selects before the node replacement. 7136 if (SelectSwap) 7137 SwapAllSelectUsers(MachineNode); 7138 7139 if (ResNode != MachineNode) { 7140 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 7141 LLVM_DEBUG(MachineNode->dump(CurDAG)); 7142 LLVM_DEBUG(dbgs() << "\nNew: "); 7143 LLVM_DEBUG(ResNode->dump(CurDAG)); 7144 LLVM_DEBUG(dbgs() << "\n"); 7145 7146 ReplaceUses(MachineNode, ResNode); 7147 IsModified = true; 7148 } 7149 } 7150 if (IsModified) 7151 CurDAG->RemoveDeadNodes(); 7152 } while (IsModified); 7153 } 7154 7155 // Gather the set of 32-bit operations that are known to have their 7156 // higher-order 32 bits zero, where ToPromote contains all such operations. 7157 static bool PeepholePPC64ZExtGather(SDValue Op32, 7158 SmallPtrSetImpl<SDNode *> &ToPromote) { 7159 if (!Op32.isMachineOpcode()) 7160 return false; 7161 7162 // First, check for the "frontier" instructions (those that will clear the 7163 // higher-order 32 bits. 7164 7165 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 7166 // around. If it does not, then these instructions will clear the 7167 // higher-order bits. 7168 if ((Op32.getMachineOpcode() == PPC::RLWINM || 7169 Op32.getMachineOpcode() == PPC::RLWNM) && 7170 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 7171 ToPromote.insert(Op32.getNode()); 7172 return true; 7173 } 7174 7175 // SLW and SRW always clear the higher-order bits. 7176 if (Op32.getMachineOpcode() == PPC::SLW || 7177 Op32.getMachineOpcode() == PPC::SRW) { 7178 ToPromote.insert(Op32.getNode()); 7179 return true; 7180 } 7181 7182 // For LI and LIS, we need the immediate to be positive (so that it is not 7183 // sign extended). 7184 if (Op32.getMachineOpcode() == PPC::LI || 7185 Op32.getMachineOpcode() == PPC::LIS) { 7186 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 7187 return false; 7188 7189 ToPromote.insert(Op32.getNode()); 7190 return true; 7191 } 7192 7193 // LHBRX and LWBRX always clear the higher-order bits. 7194 if (Op32.getMachineOpcode() == PPC::LHBRX || 7195 Op32.getMachineOpcode() == PPC::LWBRX) { 7196 ToPromote.insert(Op32.getNode()); 7197 return true; 7198 } 7199 7200 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 7201 if (Op32.getMachineOpcode() == PPC::CNTLZW || 7202 Op32.getMachineOpcode() == PPC::CNTTZW) { 7203 ToPromote.insert(Op32.getNode()); 7204 return true; 7205 } 7206 7207 // Next, check for those instructions we can look through. 7208 7209 // Assuming the mask does not wrap around, then the higher-order bits are 7210 // taken directly from the first operand. 7211 if (Op32.getMachineOpcode() == PPC::RLWIMI && 7212 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 7213 SmallPtrSet<SDNode *, 16> ToPromote1; 7214 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 7215 return false; 7216 7217 ToPromote.insert(Op32.getNode()); 7218 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7219 return true; 7220 } 7221 7222 // For OR, the higher-order bits are zero if that is true for both operands. 7223 // For SELECT_I4, the same is true (but the relevant operand numbers are 7224 // shifted by 1). 7225 if (Op32.getMachineOpcode() == PPC::OR || 7226 Op32.getMachineOpcode() == PPC::SELECT_I4) { 7227 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 7228 SmallPtrSet<SDNode *, 16> ToPromote1; 7229 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 7230 return false; 7231 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 7232 return false; 7233 7234 ToPromote.insert(Op32.getNode()); 7235 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7236 return true; 7237 } 7238 7239 // For ORI and ORIS, we need the higher-order bits of the first operand to be 7240 // zero, and also for the constant to be positive (so that it is not sign 7241 // extended). 7242 if (Op32.getMachineOpcode() == PPC::ORI || 7243 Op32.getMachineOpcode() == PPC::ORIS) { 7244 SmallPtrSet<SDNode *, 16> ToPromote1; 7245 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 7246 return false; 7247 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 7248 return false; 7249 7250 ToPromote.insert(Op32.getNode()); 7251 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7252 return true; 7253 } 7254 7255 // The higher-order bits of AND are zero if that is true for at least one of 7256 // the operands. 7257 if (Op32.getMachineOpcode() == PPC::AND) { 7258 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 7259 bool Op0OK = 7260 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 7261 bool Op1OK = 7262 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 7263 if (!Op0OK && !Op1OK) 7264 return false; 7265 7266 ToPromote.insert(Op32.getNode()); 7267 7268 if (Op0OK) 7269 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7270 7271 if (Op1OK) 7272 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 7273 7274 return true; 7275 } 7276 7277 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 7278 // of the first operand, or if the second operand is positive (so that it is 7279 // not sign extended). 7280 if (Op32.getMachineOpcode() == PPC::ANDI_rec || 7281 Op32.getMachineOpcode() == PPC::ANDIS_rec) { 7282 SmallPtrSet<SDNode *, 16> ToPromote1; 7283 bool Op0OK = 7284 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 7285 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 7286 if (!Op0OK && !Op1OK) 7287 return false; 7288 7289 ToPromote.insert(Op32.getNode()); 7290 7291 if (Op0OK) 7292 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7293 7294 return true; 7295 } 7296 7297 return false; 7298 } 7299 7300 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 7301 if (!Subtarget->isPPC64()) 7302 return; 7303 7304 // When we zero-extend from i32 to i64, we use a pattern like this: 7305 // def : Pat<(i64 (zext i32:$in)), 7306 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 7307 // 0, 32)>; 7308 // There are several 32-bit shift/rotate instructions, however, that will 7309 // clear the higher-order bits of their output, rendering the RLDICL 7310 // unnecessary. When that happens, we remove it here, and redefine the 7311 // relevant 32-bit operation to be a 64-bit operation. 7312 7313 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7314 7315 bool MadeChange = false; 7316 while (Position != CurDAG->allnodes_begin()) { 7317 SDNode *N = &*--Position; 7318 // Skip dead nodes and any non-machine opcodes. 7319 if (N->use_empty() || !N->isMachineOpcode()) 7320 continue; 7321 7322 if (N->getMachineOpcode() != PPC::RLDICL) 7323 continue; 7324 7325 if (N->getConstantOperandVal(1) != 0 || 7326 N->getConstantOperandVal(2) != 32) 7327 continue; 7328 7329 SDValue ISR = N->getOperand(0); 7330 if (!ISR.isMachineOpcode() || 7331 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 7332 continue; 7333 7334 if (!ISR.hasOneUse()) 7335 continue; 7336 7337 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 7338 continue; 7339 7340 SDValue IDef = ISR.getOperand(0); 7341 if (!IDef.isMachineOpcode() || 7342 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 7343 continue; 7344 7345 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 7346 // can get rid of it. 7347 7348 SDValue Op32 = ISR->getOperand(1); 7349 if (!Op32.isMachineOpcode()) 7350 continue; 7351 7352 // There are some 32-bit instructions that always clear the high-order 32 7353 // bits, there are also some instructions (like AND) that we can look 7354 // through. 7355 SmallPtrSet<SDNode *, 16> ToPromote; 7356 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 7357 continue; 7358 7359 // If the ToPromote set contains nodes that have uses outside of the set 7360 // (except for the original INSERT_SUBREG), then abort the transformation. 7361 bool OutsideUse = false; 7362 for (SDNode *PN : ToPromote) { 7363 for (SDNode *UN : PN->uses()) { 7364 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 7365 OutsideUse = true; 7366 break; 7367 } 7368 } 7369 7370 if (OutsideUse) 7371 break; 7372 } 7373 if (OutsideUse) 7374 continue; 7375 7376 MadeChange = true; 7377 7378 // We now know that this zero extension can be removed by promoting to 7379 // nodes in ToPromote to 64-bit operations, where for operations in the 7380 // frontier of the set, we need to insert INSERT_SUBREGs for their 7381 // operands. 7382 for (SDNode *PN : ToPromote) { 7383 unsigned NewOpcode; 7384 switch (PN->getMachineOpcode()) { 7385 default: 7386 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 7387 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 7388 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 7389 case PPC::SLW: NewOpcode = PPC::SLW8; break; 7390 case PPC::SRW: NewOpcode = PPC::SRW8; break; 7391 case PPC::LI: NewOpcode = PPC::LI8; break; 7392 case PPC::LIS: NewOpcode = PPC::LIS8; break; 7393 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 7394 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 7395 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 7396 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 7397 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 7398 case PPC::OR: NewOpcode = PPC::OR8; break; 7399 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 7400 case PPC::ORI: NewOpcode = PPC::ORI8; break; 7401 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 7402 case PPC::AND: NewOpcode = PPC::AND8; break; 7403 case PPC::ANDI_rec: 7404 NewOpcode = PPC::ANDI8_rec; 7405 break; 7406 case PPC::ANDIS_rec: 7407 NewOpcode = PPC::ANDIS8_rec; 7408 break; 7409 } 7410 7411 // Note: During the replacement process, the nodes will be in an 7412 // inconsistent state (some instructions will have operands with values 7413 // of the wrong type). Once done, however, everything should be right 7414 // again. 7415 7416 SmallVector<SDValue, 4> Ops; 7417 for (const SDValue &V : PN->ops()) { 7418 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 7419 !isa<ConstantSDNode>(V)) { 7420 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 7421 SDNode *ReplOp = 7422 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 7423 ISR.getNode()->getVTList(), ReplOpOps); 7424 Ops.push_back(SDValue(ReplOp, 0)); 7425 } else { 7426 Ops.push_back(V); 7427 } 7428 } 7429 7430 // Because all to-be-promoted nodes only have users that are other 7431 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 7432 // the i32 result value type with i64. 7433 7434 SmallVector<EVT, 2> NewVTs; 7435 SDVTList VTs = PN->getVTList(); 7436 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 7437 if (VTs.VTs[i] == MVT::i32) 7438 NewVTs.push_back(MVT::i64); 7439 else 7440 NewVTs.push_back(VTs.VTs[i]); 7441 7442 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 7443 LLVM_DEBUG(PN->dump(CurDAG)); 7444 7445 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 7446 7447 LLVM_DEBUG(dbgs() << "\nNew: "); 7448 LLVM_DEBUG(PN->dump(CurDAG)); 7449 LLVM_DEBUG(dbgs() << "\n"); 7450 } 7451 7452 // Now we replace the original zero extend and its associated INSERT_SUBREG 7453 // with the value feeding the INSERT_SUBREG (which has now been promoted to 7454 // return an i64). 7455 7456 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 7457 LLVM_DEBUG(N->dump(CurDAG)); 7458 LLVM_DEBUG(dbgs() << "\nNew: "); 7459 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 7460 LLVM_DEBUG(dbgs() << "\n"); 7461 7462 ReplaceUses(N, Op32.getNode()); 7463 } 7464 7465 if (MadeChange) 7466 CurDAG->RemoveDeadNodes(); 7467 } 7468 7469 static bool isVSXSwap(SDValue N) { 7470 if (!N->isMachineOpcode()) 7471 return false; 7472 unsigned Opc = N->getMachineOpcode(); 7473 7474 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate 7475 // operand is 2. 7476 if (Opc == PPC::XXPERMDIs) { 7477 return isa<ConstantSDNode>(N->getOperand(1)) && 7478 N->getConstantOperandVal(1) == 2; 7479 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) { 7480 return N->getOperand(0) == N->getOperand(1) && 7481 isa<ConstantSDNode>(N->getOperand(2)) && 7482 N->getConstantOperandVal(2) == 2; 7483 } 7484 7485 return false; 7486 } 7487 7488 // TODO: Make this complete and replace with a table-gen bit. 7489 static bool isLaneInsensitive(SDValue N) { 7490 if (!N->isMachineOpcode()) 7491 return false; 7492 unsigned Opc = N->getMachineOpcode(); 7493 7494 switch (Opc) { 7495 default: 7496 return false; 7497 case PPC::VAVGSB: 7498 case PPC::VAVGUB: 7499 case PPC::VAVGSH: 7500 case PPC::VAVGUH: 7501 case PPC::VAVGSW: 7502 case PPC::VAVGUW: 7503 case PPC::VMAXFP: 7504 case PPC::VMAXSB: 7505 case PPC::VMAXUB: 7506 case PPC::VMAXSH: 7507 case PPC::VMAXUH: 7508 case PPC::VMAXSW: 7509 case PPC::VMAXUW: 7510 case PPC::VMINFP: 7511 case PPC::VMINSB: 7512 case PPC::VMINUB: 7513 case PPC::VMINSH: 7514 case PPC::VMINUH: 7515 case PPC::VMINSW: 7516 case PPC::VMINUW: 7517 case PPC::VADDFP: 7518 case PPC::VADDUBM: 7519 case PPC::VADDUHM: 7520 case PPC::VADDUWM: 7521 case PPC::VSUBFP: 7522 case PPC::VSUBUBM: 7523 case PPC::VSUBUHM: 7524 case PPC::VSUBUWM: 7525 case PPC::VAND: 7526 case PPC::VANDC: 7527 case PPC::VOR: 7528 case PPC::VORC: 7529 case PPC::VXOR: 7530 case PPC::VNOR: 7531 case PPC::VMULUWM: 7532 return true; 7533 } 7534 } 7535 7536 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is 7537 // lane-insensitive. 7538 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) { 7539 // Our desired xxswap might be source of COPY_TO_REGCLASS. 7540 // TODO: Can we put this a common method for DAG? 7541 auto SkipRCCopy = [](SDValue V) { 7542 while (V->isMachineOpcode() && 7543 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) { 7544 // All values in the chain should have single use. 7545 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode())) 7546 return SDValue(); 7547 V = V->getOperand(0); 7548 } 7549 return V.hasOneUse() ? V : SDValue(); 7550 }; 7551 7552 SDValue VecOp = SkipRCCopy(N->getOperand(0)); 7553 if (!VecOp || !isLaneInsensitive(VecOp)) 7554 return; 7555 7556 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)), 7557 RHS = SkipRCCopy(VecOp.getOperand(1)); 7558 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS)) 7559 return; 7560 7561 // These swaps may still have chain-uses here, count on dead code elimination 7562 // in following passes to remove them. 7563 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0)); 7564 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0)); 7565 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0)); 7566 } 7567 7568 void PPCDAGToDAGISel::PeepholePPC64() { 7569 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7570 7571 while (Position != CurDAG->allnodes_begin()) { 7572 SDNode *N = &*--Position; 7573 // Skip dead nodes and any non-machine opcodes. 7574 if (N->use_empty() || !N->isMachineOpcode()) 7575 continue; 7576 7577 if (isVSXSwap(SDValue(N, 0))) 7578 reduceVSXSwap(N, CurDAG); 7579 7580 unsigned FirstOp; 7581 unsigned StorageOpcode = N->getMachineOpcode(); 7582 bool RequiresMod4Offset = false; 7583 7584 switch (StorageOpcode) { 7585 default: continue; 7586 7587 case PPC::LWA: 7588 case PPC::LD: 7589 case PPC::DFLOADf64: 7590 case PPC::DFLOADf32: 7591 RequiresMod4Offset = true; 7592 [[fallthrough]]; 7593 case PPC::LBZ: 7594 case PPC::LBZ8: 7595 case PPC::LFD: 7596 case PPC::LFS: 7597 case PPC::LHA: 7598 case PPC::LHA8: 7599 case PPC::LHZ: 7600 case PPC::LHZ8: 7601 case PPC::LWZ: 7602 case PPC::LWZ8: 7603 FirstOp = 0; 7604 break; 7605 7606 case PPC::STD: 7607 case PPC::DFSTOREf64: 7608 case PPC::DFSTOREf32: 7609 RequiresMod4Offset = true; 7610 [[fallthrough]]; 7611 case PPC::STB: 7612 case PPC::STB8: 7613 case PPC::STFD: 7614 case PPC::STFS: 7615 case PPC::STH: 7616 case PPC::STH8: 7617 case PPC::STW: 7618 case PPC::STW8: 7619 FirstOp = 1; 7620 break; 7621 } 7622 7623 // If this is a load or store with a zero offset, or within the alignment, 7624 // we may be able to fold an add-immediate into the memory operation. 7625 // The check against alignment is below, as it can't occur until we check 7626 // the arguments to N 7627 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 7628 continue; 7629 7630 SDValue Base = N->getOperand(FirstOp + 1); 7631 if (!Base.isMachineOpcode()) 7632 continue; 7633 7634 unsigned Flags = 0; 7635 bool ReplaceFlags = true; 7636 7637 // When the feeding operation is an add-immediate of some sort, 7638 // determine whether we need to add relocation information to the 7639 // target flags on the immediate operand when we fold it into the 7640 // load instruction. 7641 // 7642 // For something like ADDItocL, the relocation information is 7643 // inferred from the opcode; when we process it in the AsmPrinter, 7644 // we add the necessary relocation there. A load, though, can receive 7645 // relocation from various flavors of ADDIxxx, so we need to carry 7646 // the relocation information in the target flags. 7647 switch (Base.getMachineOpcode()) { 7648 default: continue; 7649 7650 case PPC::ADDI8: 7651 case PPC::ADDI: 7652 // In some cases (such as TLS) the relocation information 7653 // is already in place on the operand, so copying the operand 7654 // is sufficient. 7655 ReplaceFlags = false; 7656 break; 7657 case PPC::ADDIdtprelL: 7658 Flags = PPCII::MO_DTPREL_LO; 7659 break; 7660 case PPC::ADDItlsldL: 7661 Flags = PPCII::MO_TLSLD_LO; 7662 break; 7663 case PPC::ADDItocL: 7664 Flags = PPCII::MO_TOC_LO; 7665 break; 7666 } 7667 7668 SDValue ImmOpnd = Base.getOperand(1); 7669 7670 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 7671 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 7672 // we might have needed different @ha relocation values for the offset 7673 // pointers). 7674 int MaxDisplacement = 7; 7675 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7676 const GlobalValue *GV = GA->getGlobal(); 7677 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7678 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); 7679 } 7680 7681 bool UpdateHBase = false; 7682 SDValue HBase = Base.getOperand(0); 7683 7684 int Offset = N->getConstantOperandVal(FirstOp); 7685 if (ReplaceFlags) { 7686 if (Offset < 0 || Offset > MaxDisplacement) { 7687 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 7688 // one use, then we can do this for any offset, we just need to also 7689 // update the offset (i.e. the symbol addend) on the addis also. 7690 if (Base.getMachineOpcode() != PPC::ADDItocL) 7691 continue; 7692 7693 if (!HBase.isMachineOpcode() || 7694 HBase.getMachineOpcode() != PPC::ADDIStocHA8) 7695 continue; 7696 7697 if (!Base.hasOneUse() || !HBase.hasOneUse()) 7698 continue; 7699 7700 SDValue HImmOpnd = HBase.getOperand(1); 7701 if (HImmOpnd != ImmOpnd) 7702 continue; 7703 7704 UpdateHBase = true; 7705 } 7706 } else { 7707 // Global addresses can be folded, but only if they are sufficiently 7708 // aligned. 7709 if (RequiresMod4Offset) { 7710 if (GlobalAddressSDNode *GA = 7711 dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7712 const GlobalValue *GV = GA->getGlobal(); 7713 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7714 if (Alignment < 4) 7715 continue; 7716 } 7717 } 7718 7719 // If we're directly folding the addend from an addi instruction, then: 7720 // 1. In general, the offset on the memory access must be zero. 7721 // 2. If the addend is a constant, then it can be combined with a 7722 // non-zero offset, but only if the result meets the encoding 7723 // requirements. 7724 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 7725 Offset += C->getSExtValue(); 7726 7727 if (RequiresMod4Offset && (Offset % 4) != 0) 7728 continue; 7729 7730 if (!isInt<16>(Offset)) 7731 continue; 7732 7733 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 7734 ImmOpnd.getValueType()); 7735 } else if (Offset != 0) { 7736 continue; 7737 } 7738 } 7739 7740 // We found an opportunity. Reverse the operands from the add 7741 // immediate and substitute them into the load or store. If 7742 // needed, update the target flags for the immediate operand to 7743 // reflect the necessary relocation information. 7744 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 7745 LLVM_DEBUG(Base->dump(CurDAG)); 7746 LLVM_DEBUG(dbgs() << "\nN: "); 7747 LLVM_DEBUG(N->dump(CurDAG)); 7748 LLVM_DEBUG(dbgs() << "\n"); 7749 7750 // If the relocation information isn't already present on the 7751 // immediate operand, add it now. 7752 if (ReplaceFlags) { 7753 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7754 SDLoc dl(GA); 7755 const GlobalValue *GV = GA->getGlobal(); 7756 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7757 // We can't perform this optimization for data whose alignment 7758 // is insufficient for the instruction encoding. 7759 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { 7760 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 7761 continue; 7762 } 7763 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 7764 } else if (ConstantPoolSDNode *CP = 7765 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 7766 const Constant *C = CP->getConstVal(); 7767 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), 7768 Offset, Flags); 7769 } 7770 } 7771 7772 if (FirstOp == 1) // Store 7773 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 7774 Base.getOperand(0), N->getOperand(3)); 7775 else // Load 7776 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 7777 N->getOperand(2)); 7778 7779 if (UpdateHBase) 7780 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 7781 ImmOpnd); 7782 7783 // The add-immediate may now be dead, in which case remove it. 7784 if (Base.getNode()->use_empty()) 7785 CurDAG->RemoveDeadNode(Base.getNode()); 7786 } 7787 } 7788 7789 /// createPPCISelDag - This pass converts a legalized DAG into a 7790 /// PowerPC-specific DAG, ready for instruction scheduling. 7791 /// 7792 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 7793 CodeGenOptLevel OptLevel) { 7794 return new PPCDAGToDAGISel(TM, OptLevel); 7795 } 7796