1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Mips implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MipsInstrInfo.h" 14 #include "MCTargetDesc/MipsBaseInfo.h" 15 #include "MCTargetDesc/MipsMCTargetDesc.h" 16 #include "MipsSubtarget.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/TargetOpcodes.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <cassert> 31 32 using namespace llvm; 33 34 #define GET_INSTRINFO_CTOR_DTOR 35 #include "MipsGenInstrInfo.inc" 36 37 // Pin the vtable to this file. 38 void MipsInstrInfo::anchor() {} 39 40 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 41 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 42 Subtarget(STI), UncondBrOpc(UncondBr) {} 43 44 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 45 if (STI.inMips16Mode()) 46 return createMips16InstrInfo(STI); 47 48 return createMipsSEInstrInfo(STI); 49 } 50 51 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 52 return op.isImm() && op.getImm() == 0; 53 } 54 55 /// insertNoop - If data hazard condition is found insert the target nop 56 /// instruction. 57 void MipsInstrInfo:: 58 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 59 { 60 DebugLoc DL; 61 BuildMI(MBB, MI, DL, get(Mips::NOP)); 62 } 63 64 MachineInstrBuilder MipsInstrInfo::insertNop(MachineBasicBlock &MBB, 65 MachineBasicBlock::iterator MI, 66 DebugLoc DL) const { 67 assert(!Subtarget.inMips16Mode() && 68 "insertNop does not support MIPS16e mode at this time"); 69 const unsigned MMOpc = 70 Subtarget.hasMips32r6() ? Mips::SLL_MMR6 : Mips::SLL_MM; 71 const unsigned Opc = Subtarget.inMicroMipsMode() ? MMOpc : Mips::SLL; 72 return BuildMI(MBB, MI, DL, get(Opc), Mips::ZERO) 73 .addReg(Mips::ZERO) 74 .addImm(0); 75 } 76 77 MachineMemOperand * 78 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 79 MachineMemOperand::Flags Flags) const { 80 MachineFunction &MF = *MBB.getParent(); 81 MachineFrameInfo &MFI = MF.getFrameInfo(); 82 83 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 84 Flags, MFI.getObjectSize(FI), 85 MFI.getObjectAlign(FI)); 86 } 87 88 //===----------------------------------------------------------------------===// 89 // Branch Analysis 90 //===----------------------------------------------------------------------===// 91 92 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 93 MachineBasicBlock *&BB, 94 SmallVectorImpl<MachineOperand> &Cond) const { 95 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 96 int NumOp = Inst->getNumExplicitOperands(); 97 98 // for both int and fp branches, the last explicit operand is the 99 // MBB. 100 BB = Inst->getOperand(NumOp-1).getMBB(); 101 Cond.push_back(MachineOperand::CreateImm(Opc)); 102 103 for (int i = 0; i < NumOp-1; i++) 104 Cond.push_back(Inst->getOperand(i)); 105 } 106 107 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 108 MachineBasicBlock *&TBB, 109 MachineBasicBlock *&FBB, 110 SmallVectorImpl<MachineOperand> &Cond, 111 bool AllowModify) const { 112 SmallVector<MachineInstr*, 2> BranchInstrs; 113 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 114 115 return (BT == BT_None) || (BT == BT_Indirect); 116 } 117 118 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 119 const DebugLoc &DL, 120 ArrayRef<MachineOperand> Cond) const { 121 unsigned Opc = Cond[0].getImm(); 122 const MCInstrDesc &MCID = get(Opc); 123 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 124 125 for (unsigned i = 1; i < Cond.size(); ++i) { 126 assert((Cond[i].isImm() || Cond[i].isReg()) && 127 "Cannot copy operand for conditional branch!"); 128 MIB.add(Cond[i]); 129 } 130 MIB.addMBB(TBB); 131 } 132 133 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB, 134 MachineBasicBlock *TBB, 135 MachineBasicBlock *FBB, 136 ArrayRef<MachineOperand> Cond, 137 const DebugLoc &DL, 138 int *BytesAdded) const { 139 // Shouldn't be a fall through. 140 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 141 assert(!BytesAdded && "code size not handled"); 142 143 // # of condition operands: 144 // Unconditional branches: 0 145 // Floating point branches: 1 (opc) 146 // Int BranchZero: 2 (opc, reg) 147 // Int Branch: 3 (opc, reg0, reg1) 148 assert((Cond.size() <= 3) && 149 "# of Mips branch conditions must be <= 3!"); 150 151 // Two-way Conditional branch. 152 if (FBB) { 153 BuildCondBr(MBB, TBB, DL, Cond); 154 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 155 return 2; 156 } 157 158 // One way branch. 159 // Unconditional branch. 160 if (Cond.empty()) 161 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 162 else // Conditional branch. 163 BuildCondBr(MBB, TBB, DL, Cond); 164 return 1; 165 } 166 167 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB, 168 int *BytesRemoved) const { 169 assert(!BytesRemoved && "code size not handled"); 170 171 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 172 unsigned removed = 0; 173 174 // Up to 2 branches are removed. 175 // Note that indirect branches are not removed. 176 while (I != REnd && removed < 2) { 177 // Skip past debug instructions. 178 if (I->isDebugInstr()) { 179 ++I; 180 continue; 181 } 182 if (!getAnalyzableBrOpc(I->getOpcode())) 183 break; 184 // Remove the branch. 185 I->eraseFromParent(); 186 I = MBB.rbegin(); 187 ++removed; 188 } 189 190 return removed; 191 } 192 193 /// reverseBranchCondition - Return the inverse opcode of the 194 /// specified Branch instruction. 195 bool MipsInstrInfo::reverseBranchCondition( 196 SmallVectorImpl<MachineOperand> &Cond) const { 197 assert( (Cond.size() && Cond.size() <= 3) && 198 "Invalid Mips branch condition!"); 199 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 200 return false; 201 } 202 203 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 204 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 205 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 206 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 207 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 208 209 // Skip all the debug instructions. 210 while (I != REnd && I->isDebugInstr()) 211 ++I; 212 213 if (I == REnd || !isUnpredicatedTerminator(*I)) { 214 // This block ends with no branches (it just falls through to its succ). 215 // Leave TBB/FBB null. 216 TBB = FBB = nullptr; 217 return BT_NoBranch; 218 } 219 220 MachineInstr *LastInst = &*I; 221 unsigned LastOpc = LastInst->getOpcode(); 222 BranchInstrs.push_back(LastInst); 223 224 // Not an analyzable branch (e.g., indirect jump). 225 if (!getAnalyzableBrOpc(LastOpc)) 226 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 227 228 // Get the second to last instruction in the block. 229 unsigned SecondLastOpc = 0; 230 MachineInstr *SecondLastInst = nullptr; 231 232 // Skip past any debug instruction to see if the second last actual 233 // is a branch. 234 ++I; 235 while (I != REnd && I->isDebugInstr()) 236 ++I; 237 238 if (I != REnd) { 239 SecondLastInst = &*I; 240 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 241 242 // Not an analyzable branch (must be an indirect jump). 243 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 244 return BT_None; 245 } 246 247 // If there is only one terminator instruction, process it. 248 if (!SecondLastOpc) { 249 // Unconditional branch. 250 if (LastInst->isUnconditionalBranch()) { 251 TBB = LastInst->getOperand(0).getMBB(); 252 return BT_Uncond; 253 } 254 255 // Conditional branch 256 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 257 return BT_Cond; 258 } 259 260 // If we reached here, there are two branches. 261 // If there are three terminators, we don't know what sort of block this is. 262 if (++I != REnd && isUnpredicatedTerminator(*I)) 263 return BT_None; 264 265 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 266 267 // If second to last instruction is an unconditional branch, 268 // analyze it and remove the last instruction. 269 if (SecondLastInst->isUnconditionalBranch()) { 270 // Return if the last instruction cannot be removed. 271 if (!AllowModify) 272 return BT_None; 273 274 TBB = SecondLastInst->getOperand(0).getMBB(); 275 LastInst->eraseFromParent(); 276 BranchInstrs.pop_back(); 277 return BT_Uncond; 278 } 279 280 // Conditional branch followed by an unconditional branch. 281 // The last one must be unconditional. 282 if (!LastInst->isUnconditionalBranch()) 283 return BT_None; 284 285 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 286 FBB = LastInst->getOperand(0).getMBB(); 287 288 return BT_CondUncond; 289 } 290 291 bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc, 292 int64_t BrOffset) const { 293 switch (BranchOpc) { 294 case Mips::B: 295 case Mips::BAL: 296 case Mips::BAL_BR: 297 case Mips::BAL_BR_MM: 298 case Mips::BC1F: 299 case Mips::BC1FL: 300 case Mips::BC1T: 301 case Mips::BC1TL: 302 case Mips::BEQ: case Mips::BEQ64: 303 case Mips::BEQL: 304 case Mips::BGEZ: case Mips::BGEZ64: 305 case Mips::BGEZL: 306 case Mips::BGEZAL: 307 case Mips::BGEZALL: 308 case Mips::BGTZ: case Mips::BGTZ64: 309 case Mips::BGTZL: 310 case Mips::BLEZ: case Mips::BLEZ64: 311 case Mips::BLEZL: 312 case Mips::BLTZ: case Mips::BLTZ64: 313 case Mips::BLTZL: 314 case Mips::BLTZAL: 315 case Mips::BLTZALL: 316 case Mips::BNE: case Mips::BNE64: 317 case Mips::BNEL: 318 return isInt<18>(BrOffset); 319 320 // microMIPSr3 branches 321 case Mips::B_MM: 322 case Mips::BC1F_MM: 323 case Mips::BC1T_MM: 324 case Mips::BEQ_MM: 325 case Mips::BGEZ_MM: 326 case Mips::BGEZAL_MM: 327 case Mips::BGTZ_MM: 328 case Mips::BLEZ_MM: 329 case Mips::BLTZ_MM: 330 case Mips::BLTZAL_MM: 331 case Mips::BNE_MM: 332 case Mips::BEQZC_MM: 333 case Mips::BNEZC_MM: 334 return isInt<17>(BrOffset); 335 336 // microMIPSR3 short branches. 337 case Mips::B16_MM: 338 return isInt<11>(BrOffset); 339 340 case Mips::BEQZ16_MM: 341 case Mips::BNEZ16_MM: 342 return isInt<8>(BrOffset); 343 344 // MIPSR6 branches. 345 case Mips::BALC: 346 case Mips::BC: 347 return isInt<28>(BrOffset); 348 349 case Mips::BC1EQZ: 350 case Mips::BC1NEZ: 351 case Mips::BC2EQZ: 352 case Mips::BC2NEZ: 353 case Mips::BEQC: case Mips::BEQC64: 354 case Mips::BNEC: case Mips::BNEC64: 355 case Mips::BGEC: case Mips::BGEC64: 356 case Mips::BGEUC: case Mips::BGEUC64: 357 case Mips::BGEZC: case Mips::BGEZC64: 358 case Mips::BGTZC: case Mips::BGTZC64: 359 case Mips::BLEZC: case Mips::BLEZC64: 360 case Mips::BLTC: case Mips::BLTC64: 361 case Mips::BLTUC: case Mips::BLTUC64: 362 case Mips::BLTZC: case Mips::BLTZC64: 363 case Mips::BNVC: 364 case Mips::BOVC: 365 case Mips::BGEZALC: 366 case Mips::BEQZALC: 367 case Mips::BGTZALC: 368 case Mips::BLEZALC: 369 case Mips::BLTZALC: 370 case Mips::BNEZALC: 371 return isInt<18>(BrOffset); 372 373 case Mips::BEQZC: case Mips::BEQZC64: 374 case Mips::BNEZC: case Mips::BNEZC64: 375 return isInt<23>(BrOffset); 376 377 // microMIPSR6 branches 378 case Mips::BC16_MMR6: 379 return isInt<11>(BrOffset); 380 381 case Mips::BEQZC16_MMR6: 382 case Mips::BNEZC16_MMR6: 383 return isInt<8>(BrOffset); 384 385 case Mips::BALC_MMR6: 386 case Mips::BC_MMR6: 387 return isInt<27>(BrOffset); 388 389 case Mips::BC1EQZC_MMR6: 390 case Mips::BC1NEZC_MMR6: 391 case Mips::BC2EQZC_MMR6: 392 case Mips::BC2NEZC_MMR6: 393 case Mips::BGEZALC_MMR6: 394 case Mips::BEQZALC_MMR6: 395 case Mips::BGTZALC_MMR6: 396 case Mips::BLEZALC_MMR6: 397 case Mips::BLTZALC_MMR6: 398 case Mips::BNEZALC_MMR6: 399 case Mips::BNVC_MMR6: 400 case Mips::BOVC_MMR6: 401 return isInt<17>(BrOffset); 402 403 case Mips::BEQC_MMR6: 404 case Mips::BNEC_MMR6: 405 case Mips::BGEC_MMR6: 406 case Mips::BGEUC_MMR6: 407 case Mips::BGEZC_MMR6: 408 case Mips::BGTZC_MMR6: 409 case Mips::BLEZC_MMR6: 410 case Mips::BLTC_MMR6: 411 case Mips::BLTUC_MMR6: 412 case Mips::BLTZC_MMR6: 413 return isInt<18>(BrOffset); 414 415 case Mips::BEQZC_MMR6: 416 case Mips::BNEZC_MMR6: 417 return isInt<23>(BrOffset); 418 419 // DSP branches. 420 case Mips::BPOSGE32: 421 return isInt<18>(BrOffset); 422 case Mips::BPOSGE32_MM: 423 case Mips::BPOSGE32C_MMR3: 424 return isInt<17>(BrOffset); 425 426 // cnMIPS branches. 427 case Mips::BBIT0: 428 case Mips::BBIT032: 429 case Mips::BBIT1: 430 case Mips::BBIT132: 431 return isInt<18>(BrOffset); 432 433 // MSA branches. 434 case Mips::BZ_B: 435 case Mips::BZ_H: 436 case Mips::BZ_W: 437 case Mips::BZ_D: 438 case Mips::BZ_V: 439 case Mips::BNZ_B: 440 case Mips::BNZ_H: 441 case Mips::BNZ_W: 442 case Mips::BNZ_D: 443 case Mips::BNZ_V: 444 return isInt<18>(BrOffset); 445 } 446 447 llvm_unreachable("Unknown branch instruction!"); 448 } 449 450 /// Return the corresponding compact (no delay slot) form of a branch. 451 unsigned MipsInstrInfo::getEquivalentCompactForm( 452 const MachineBasicBlock::iterator I) const { 453 unsigned Opcode = I->getOpcode(); 454 bool canUseShortMicroMipsCTI = false; 455 456 if (Subtarget.inMicroMipsMode()) { 457 switch (Opcode) { 458 case Mips::BNE: 459 case Mips::BNE_MM: 460 case Mips::BEQ: 461 case Mips::BEQ_MM: 462 // microMIPS has NE,EQ branches that do not have delay slots provided one 463 // of the operands is zero. 464 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 465 canUseShortMicroMipsCTI = true; 466 break; 467 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 468 // expanded to JR_MM, so they can be replaced with JRC16_MM. 469 case Mips::JR: 470 case Mips::PseudoReturn: 471 case Mips::PseudoIndirectBranch: 472 canUseShortMicroMipsCTI = true; 473 break; 474 } 475 } 476 477 // MIPSR6 forbids both operands being the zero register. 478 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 479 (I->getOperand(0).isReg() && 480 (I->getOperand(0).getReg() == Mips::ZERO || 481 I->getOperand(0).getReg() == Mips::ZERO_64)) && 482 (I->getOperand(1).isReg() && 483 (I->getOperand(1).getReg() == Mips::ZERO || 484 I->getOperand(1).getReg() == Mips::ZERO_64))) 485 return 0; 486 487 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 488 switch (Opcode) { 489 case Mips::B: 490 return Mips::BC; 491 case Mips::BAL: 492 return Mips::BALC; 493 case Mips::BEQ: 494 case Mips::BEQ_MM: 495 if (canUseShortMicroMipsCTI) 496 return Mips::BEQZC_MM; 497 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 498 return 0; 499 return Mips::BEQC; 500 case Mips::BNE: 501 case Mips::BNE_MM: 502 if (canUseShortMicroMipsCTI) 503 return Mips::BNEZC_MM; 504 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 505 return 0; 506 return Mips::BNEC; 507 case Mips::BGE: 508 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 509 return 0; 510 return Mips::BGEC; 511 case Mips::BGEU: 512 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 513 return 0; 514 return Mips::BGEUC; 515 case Mips::BGEZ: 516 return Mips::BGEZC; 517 case Mips::BGTZ: 518 return Mips::BGTZC; 519 case Mips::BLEZ: 520 return Mips::BLEZC; 521 case Mips::BLT: 522 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 523 return 0; 524 return Mips::BLTC; 525 case Mips::BLTU: 526 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 527 return 0; 528 return Mips::BLTUC; 529 case Mips::BLTZ: 530 return Mips::BLTZC; 531 case Mips::BEQ64: 532 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 533 return 0; 534 return Mips::BEQC64; 535 case Mips::BNE64: 536 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 537 return 0; 538 return Mips::BNEC64; 539 case Mips::BGTZ64: 540 return Mips::BGTZC64; 541 case Mips::BGEZ64: 542 return Mips::BGEZC64; 543 case Mips::BLTZ64: 544 return Mips::BLTZC64; 545 case Mips::BLEZ64: 546 return Mips::BLEZC64; 547 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 548 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 549 case Mips::JR: 550 case Mips::PseudoIndirectBranchR6: 551 case Mips::PseudoReturn: 552 case Mips::TAILCALLR6REG: 553 if (canUseShortMicroMipsCTI) 554 return Mips::JRC16_MM; 555 return Mips::JIC; 556 case Mips::JALRPseudo: 557 return Mips::JIALC; 558 case Mips::JR64: 559 case Mips::PseudoIndirectBranch64R6: 560 case Mips::PseudoReturn64: 561 case Mips::TAILCALL64R6REG: 562 return Mips::JIC64; 563 case Mips::JALR64Pseudo: 564 return Mips::JIALC64; 565 default: 566 return 0; 567 } 568 } 569 570 return 0; 571 } 572 573 /// Predicate for distingushing between control transfer instructions and all 574 /// other instructions for handling forbidden slots. Consider inline assembly 575 /// as unsafe as well. 576 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 577 if (MI.isInlineAsm()) 578 return false; 579 580 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 581 } 582 583 bool MipsInstrInfo::SafeInFPUDelaySlot(const MachineInstr &MIInSlot, 584 const MachineInstr &FPUMI) const { 585 if (MIInSlot.isInlineAsm()) 586 return false; 587 588 if (HasFPUDelaySlot(MIInSlot)) 589 return false; 590 591 switch (MIInSlot.getOpcode()) { 592 case Mips::BC1F: 593 case Mips::BC1FL: 594 case Mips::BC1T: 595 case Mips::BC1TL: 596 return false; 597 } 598 599 for (const MachineOperand &Op : FPUMI.defs()) { 600 if (!Op.isReg()) 601 continue; 602 603 bool Reads, Writes; 604 std::tie(Reads, Writes) = MIInSlot.readsWritesVirtualRegister(Op.getReg()); 605 606 if (Reads || Writes) 607 return false; 608 } 609 610 return true; 611 } 612 613 /// Predicate for distinguishing instructions that are hazardous in a load delay 614 /// slot. Consider inline assembly as unsafe as well. 615 bool MipsInstrInfo::SafeInLoadDelaySlot(const MachineInstr &MIInSlot, 616 const MachineInstr &LoadMI) const { 617 if (MIInSlot.isInlineAsm()) 618 return false; 619 620 return !llvm::any_of(LoadMI.defs(), [&](const MachineOperand &Op) { 621 return Op.isReg() && MIInSlot.readsRegister(Op.getReg()); 622 }); 623 } 624 625 /// Predicate for distingushing instructions that have forbidden slots. 626 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 627 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 628 } 629 630 /// Predicate for distingushing instructions that have FPU delay slots. 631 bool MipsInstrInfo::HasFPUDelaySlot(const MachineInstr &MI) const { 632 switch (MI.getOpcode()) { 633 case Mips::MTC1: 634 case Mips::MFC1: 635 case Mips::MTC1_D64: 636 case Mips::MFC1_D64: 637 case Mips::DMTC1: 638 case Mips::DMFC1: 639 case Mips::FCMP_S32: 640 case Mips::FCMP_D32: 641 case Mips::FCMP_D64: 642 return true; 643 644 default: 645 return false; 646 } 647 } 648 649 /// Predicate for distingushing instructions that have load delay slots. 650 bool MipsInstrInfo::HasLoadDelaySlot(const MachineInstr &MI) const { 651 switch (MI.getOpcode()) { 652 case Mips::LB: 653 case Mips::LBu: 654 case Mips::LH: 655 case Mips::LHu: 656 case Mips::LW: 657 case Mips::LWR: 658 case Mips::LWL: 659 return true; 660 default: 661 return false; 662 } 663 } 664 665 /// Return the number of bytes of code the specified instruction may be. 666 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 667 switch (MI.getOpcode()) { 668 default: 669 return MI.getDesc().getSize(); 670 case TargetOpcode::INLINEASM: 671 case TargetOpcode::INLINEASM_BR: { // Inline Asm: Variable size. 672 const MachineFunction *MF = MI.getParent()->getParent(); 673 const char *AsmStr = MI.getOperand(0).getSymbolName(); 674 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 675 } 676 case Mips::CONSTPOOL_ENTRY: 677 // If this machine instr is a constant pool entry, its size is recorded as 678 // operand #2. 679 return MI.getOperand(2).getImm(); 680 } 681 } 682 683 MachineInstrBuilder 684 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 685 MachineBasicBlock::iterator I) const { 686 MachineInstrBuilder MIB; 687 688 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest 689 // Pick the zero form of the branch for readable assembly and for greater 690 // branch distance in non-microMIPS mode. 691 // Additional MIPSR6 does not permit the use of register $zero for compact 692 // branches. 693 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 694 // Mips::ZERO, which is incorrect. This test should be updated to use 695 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 696 // are fixed. 697 int ZeroOperandPosition = -1; 698 bool BranchWithZeroOperand = false; 699 if (I->isBranch() && !I->isPseudo()) { 700 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo(); 701 ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI); 702 BranchWithZeroOperand = ZeroOperandPosition != -1; 703 } 704 705 if (BranchWithZeroOperand) { 706 switch (NewOpc) { 707 case Mips::BEQC: 708 NewOpc = Mips::BEQZC; 709 break; 710 case Mips::BNEC: 711 NewOpc = Mips::BNEZC; 712 break; 713 case Mips::BGEC: 714 NewOpc = Mips::BGEZC; 715 break; 716 case Mips::BLTC: 717 NewOpc = Mips::BLTZC; 718 break; 719 case Mips::BEQC64: 720 NewOpc = Mips::BEQZC64; 721 break; 722 case Mips::BNEC64: 723 NewOpc = Mips::BNEZC64; 724 break; 725 } 726 } 727 728 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 729 730 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 731 // immediate 0 as an operand and requires the removal of it's implicit-def %ra 732 // implicit operand as copying the implicit operations of the instructio we're 733 // looking at will give us the correct flags. 734 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 735 NewOpc == Mips::JIALC64) { 736 737 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 738 MIB->removeOperand(0); 739 740 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 741 MIB.add(I->getOperand(J)); 742 } 743 744 MIB.addImm(0); 745 746 // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR), 747 // add it to the new instruction. 748 for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands(); 749 J < E; ++J) { 750 const MachineOperand &MO = I->getOperand(J); 751 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) 752 MIB.addSym(MO.getMCSymbol(), MipsII::MO_JALR); 753 } 754 755 756 } else { 757 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 758 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J) 759 continue; 760 761 MIB.add(I->getOperand(J)); 762 } 763 } 764 765 MIB.copyImplicitOps(*I); 766 MIB.cloneMemRefs(*I); 767 return MIB; 768 } 769 770 bool MipsInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 771 unsigned &SrcOpIdx1, 772 unsigned &SrcOpIdx2) const { 773 assert(!MI.isBundle() && 774 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 775 776 const MCInstrDesc &MCID = MI.getDesc(); 777 if (!MCID.isCommutable()) 778 return false; 779 780 switch (MI.getOpcode()) { 781 case Mips::DPADD_U_H: 782 case Mips::DPADD_U_W: 783 case Mips::DPADD_U_D: 784 case Mips::DPADD_S_H: 785 case Mips::DPADD_S_W: 786 case Mips::DPADD_S_D: 787 // The first operand is both input and output, so it should not commute 788 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3)) 789 return false; 790 791 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 792 return false; 793 return true; 794 } 795 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 796 } 797 798 // ins, ext, dext*, dins have the following constraints: 799 // X <= pos < Y 800 // X < size <= Y 801 // X < pos+size <= Y 802 // 803 // dinsm and dinsu have the following constraints: 804 // X <= pos < Y 805 // X <= size <= Y 806 // X < pos+size <= Y 807 // 808 // The callee of verifyInsExtInstruction however gives the bounds of 809 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this 810 // function doesn't have to vary it's behaviour based on the instruction 811 // being checked. 812 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo, 813 const int64_t PosLow, const int64_t PosHigh, 814 const int64_t SizeLow, 815 const int64_t SizeHigh, 816 const int64_t BothLow, 817 const int64_t BothHigh) { 818 MachineOperand MOPos = MI.getOperand(2); 819 if (!MOPos.isImm()) { 820 ErrInfo = "Position is not an immediate!"; 821 return false; 822 } 823 int64_t Pos = MOPos.getImm(); 824 if (!((PosLow <= Pos) && (Pos < PosHigh))) { 825 ErrInfo = "Position operand is out of range!"; 826 return false; 827 } 828 829 MachineOperand MOSize = MI.getOperand(3); 830 if (!MOSize.isImm()) { 831 ErrInfo = "Size operand is not an immediate!"; 832 return false; 833 } 834 int64_t Size = MOSize.getImm(); 835 if (!((SizeLow < Size) && (Size <= SizeHigh))) { 836 ErrInfo = "Size operand is out of range!"; 837 return false; 838 } 839 840 if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) { 841 ErrInfo = "Position + Size is out of range!"; 842 return false; 843 } 844 845 return true; 846 } 847 848 // Perform target specific instruction verification. 849 bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI, 850 StringRef &ErrInfo) const { 851 // Verify that ins and ext instructions are well formed. 852 switch (MI.getOpcode()) { 853 case Mips::EXT: 854 case Mips::EXT_MM: 855 case Mips::INS: 856 case Mips::INS_MM: 857 case Mips::DINS: 858 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32); 859 case Mips::DINSM: 860 // The ISA spec has a subtle difference between dinsm and dextm 861 // in that it says: 862 // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64. 863 // To make the bounds checks similar, the range 1 < size <= 64 is checked 864 // for 'dinsm'. 865 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64); 866 case Mips::DINSU: 867 // The ISA spec has a subtle difference between dinsu and dextu in that 868 // the size range of dinsu is specified as 1 <= size <= 32 whereas size 869 // for dextu is 0 < size <= 32. The range checked for dinsu here is 870 // 0 < size <= 32, which is equivalent and similar to dextu. 871 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 872 case Mips::DEXT: 873 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63); 874 case Mips::DEXTM: 875 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64); 876 case Mips::DEXTU: 877 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 878 case Mips::TAILCALLREG: 879 case Mips::PseudoIndirectBranch: 880 case Mips::JR: 881 case Mips::JR64: 882 case Mips::JALR: 883 case Mips::JALR64: 884 case Mips::JALRPseudo: 885 if (!Subtarget.useIndirectJumpsHazard()) 886 return true; 887 888 ErrInfo = "invalid instruction when using jump guards!"; 889 return false; 890 default: 891 return true; 892 } 893 894 return true; 895 } 896 897 std::pair<unsigned, unsigned> 898 MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 899 return std::make_pair(TF, 0u); 900 } 901 902 ArrayRef<std::pair<unsigned, const char*>> 903 MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 904 using namespace MipsII; 905 906 static const std::pair<unsigned, const char*> Flags[] = { 907 {MO_GOT, "mips-got"}, 908 {MO_GOT_CALL, "mips-got-call"}, 909 {MO_GPREL, "mips-gprel"}, 910 {MO_ABS_HI, "mips-abs-hi"}, 911 {MO_ABS_LO, "mips-abs-lo"}, 912 {MO_TLSGD, "mips-tlsgd"}, 913 {MO_TLSLDM, "mips-tlsldm"}, 914 {MO_DTPREL_HI, "mips-dtprel-hi"}, 915 {MO_DTPREL_LO, "mips-dtprel-lo"}, 916 {MO_GOTTPREL, "mips-gottprel"}, 917 {MO_TPREL_HI, "mips-tprel-hi"}, 918 {MO_TPREL_LO, "mips-tprel-lo"}, 919 {MO_GPOFF_HI, "mips-gpoff-hi"}, 920 {MO_GPOFF_LO, "mips-gpoff-lo"}, 921 {MO_GOT_DISP, "mips-got-disp"}, 922 {MO_GOT_PAGE, "mips-got-page"}, 923 {MO_GOT_OFST, "mips-got-ofst"}, 924 {MO_HIGHER, "mips-higher"}, 925 {MO_HIGHEST, "mips-highest"}, 926 {MO_GOT_HI16, "mips-got-hi16"}, 927 {MO_GOT_LO16, "mips-got-lo16"}, 928 {MO_CALL_HI16, "mips-call-hi16"}, 929 {MO_CALL_LO16, "mips-call-lo16"}, 930 {MO_JALR, "mips-jalr"} 931 }; 932 return makeArrayRef(Flags); 933 } 934 935 Optional<ParamLoadedValue> 936 MipsInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 937 DIExpression *Expr = 938 DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 939 940 // TODO: Special MIPS instructions that need to be described separately. 941 if (auto RegImm = isAddImmediate(MI, Reg)) { 942 Register SrcReg = RegImm->Reg; 943 int64_t Offset = RegImm->Imm; 944 // When SrcReg is $zero, treat loaded value as immediate only. 945 // Ex. $a2 = ADDiu $zero, 10 946 if (SrcReg == Mips::ZERO || SrcReg == Mips::ZERO_64) { 947 return ParamLoadedValue(MI.getOperand(2), Expr); 948 } 949 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); 950 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 951 } else if (auto DestSrc = isCopyInstr(MI)) { 952 const MachineFunction *MF = MI.getMF(); 953 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 954 Register DestReg = DestSrc->Destination->getReg(); 955 // TODO: Handle cases where the Reg is sub- or super-register of the 956 // DestReg. 957 if (TRI->isSuperRegister(Reg, DestReg) || TRI->isSubRegister(Reg, DestReg)) 958 return None; 959 } 960 961 return TargetInstrInfo::describeLoadedValue(MI, Reg); 962 } 963 964 Optional<RegImmPair> MipsInstrInfo::isAddImmediate(const MachineInstr &MI, 965 Register Reg) const { 966 // TODO: Handle cases where Reg is a super- or sub-register of the 967 // destination register. 968 const MachineOperand &Op0 = MI.getOperand(0); 969 if (!Op0.isReg() || Reg != Op0.getReg()) 970 return None; 971 972 switch (MI.getOpcode()) { 973 case Mips::ADDiu: 974 case Mips::DADDiu: { 975 const MachineOperand &Dop = MI.getOperand(0); 976 const MachineOperand &Sop1 = MI.getOperand(1); 977 const MachineOperand &Sop2 = MI.getOperand(2); 978 // Value is sum of register and immediate. Immediate value could be 979 // global string address which is not supported. 980 if (Dop.isReg() && Sop1.isReg() && Sop2.isImm()) 981 return RegImmPair{Sop1.getReg(), Sop2.getImm()}; 982 // TODO: Handle case where Sop1 is a frame-index. 983 } 984 } 985 return None; 986 } 987