1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Hexagon implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonInstrInfo.h" 14 #include "Hexagon.h" 15 #include "HexagonFrameLowering.h" 16 #include "HexagonHazardRecognizer.h" 17 #include "HexagonRegisterInfo.h" 18 #include "HexagonSubtarget.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/CodeGen/DFAPacketizer.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/ScheduleDAG.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCInstBuilder.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCInstrItineraries.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <cassert> 56 #include <cctype> 57 #include <cstdint> 58 #include <cstring> 59 #include <iterator> 60 #include <optional> 61 #include <string> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "hexagon-instrinfo" 67 68 #define GET_INSTRINFO_CTOR_DTOR 69 #define GET_INSTRMAP_INFO 70 #include "HexagonDepTimingClasses.h" 71 #include "HexagonGenDFAPacketizer.inc" 72 #include "HexagonGenInstrInfo.inc" 73 74 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, 75 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" 76 "packetization boundary.")); 77 78 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction", 79 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction")); 80 81 static cl::opt<bool> DisableNVSchedule( 82 "disable-hexagon-nv-schedule", cl::Hidden, 83 cl::desc("Disable schedule adjustment for new value stores.")); 84 85 static cl::opt<bool> EnableTimingClassLatency( 86 "enable-timing-class-latency", cl::Hidden, cl::init(false), 87 cl::desc("Enable timing class latency")); 88 89 static cl::opt<bool> EnableALUForwarding( 90 "enable-alu-forwarding", cl::Hidden, cl::init(true), 91 cl::desc("Enable vec alu forwarding")); 92 93 static cl::opt<bool> EnableACCForwarding( 94 "enable-acc-forwarding", cl::Hidden, cl::init(true), 95 cl::desc("Enable vec acc forwarding")); 96 97 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large", 98 cl::init(true), cl::Hidden, 99 cl::desc("branch relax asm")); 100 101 static cl::opt<bool> 102 UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden, 103 cl::desc("Use the DFA based hazard recognizer.")); 104 105 /// Constants for Hexagon instructions. 106 const int Hexagon_MEMW_OFFSET_MAX = 4095; 107 const int Hexagon_MEMW_OFFSET_MIN = -4096; 108 const int Hexagon_MEMD_OFFSET_MAX = 8191; 109 const int Hexagon_MEMD_OFFSET_MIN = -8192; 110 const int Hexagon_MEMH_OFFSET_MAX = 2047; 111 const int Hexagon_MEMH_OFFSET_MIN = -2048; 112 const int Hexagon_MEMB_OFFSET_MAX = 1023; 113 const int Hexagon_MEMB_OFFSET_MIN = -1024; 114 const int Hexagon_ADDI_OFFSET_MAX = 32767; 115 const int Hexagon_ADDI_OFFSET_MIN = -32768; 116 117 // Pin the vtable to this file. 118 void HexagonInstrInfo::anchor() {} 119 120 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) 121 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), 122 Subtarget(ST) {} 123 124 namespace llvm { 125 namespace HexagonFUnits { 126 bool isSlot0Only(unsigned units); 127 } 128 } 129 130 static bool isIntRegForSubInst(Register Reg) { 131 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || 132 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23); 133 } 134 135 static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI) { 136 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) && 137 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi)); 138 } 139 140 /// Calculate number of instructions excluding the debug instructions. 141 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, 142 MachineBasicBlock::const_instr_iterator MIE) { 143 unsigned Count = 0; 144 for (; MIB != MIE; ++MIB) { 145 if (!MIB->isDebugInstr()) 146 ++Count; 147 } 148 return Count; 149 } 150 151 // Check if the A2_tfrsi instruction is cheap or not. If the operand has 152 // to be constant-extendend it is not cheap since it occupies two slots 153 // in a packet. 154 bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { 155 // Enable the following steps only at Os/Oz 156 if (!(MI.getMF()->getFunction().hasOptSize())) 157 return MI.isAsCheapAsAMove(); 158 159 if (MI.getOpcode() == Hexagon::A2_tfrsi) { 160 auto Op = MI.getOperand(1); 161 // If the instruction has a global address as operand, it is not cheap 162 // since the operand will be constant extended. 163 if (Op.isGlobal()) 164 return false; 165 // If the instruction has an operand of size > 16bits, its will be 166 // const-extended and hence, it is not cheap. 167 if (Op.isImm()) { 168 int64_t Imm = Op.getImm(); 169 if (!isInt<16>(Imm)) 170 return false; 171 } 172 } 173 return MI.isAsCheapAsAMove(); 174 } 175 176 // Do not sink floating point instructions that updates USR register. 177 // Example: 178 // feclearexcept 179 // F2_conv_w2sf 180 // fetestexcept 181 // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions. 182 // TODO: On some of these floating point instructions, USR is marked as Use. 183 // In reality, these instructions also Def the USR. If USR is marked as Def, 184 // some of the assumptions in assembler packetization are broken. 185 bool HexagonInstrInfo::shouldSink(const MachineInstr &MI) const { 186 // Assumption: A floating point instruction that reads the USR will write 187 // the USR as well. 188 if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR)) 189 return false; 190 return true; 191 } 192 193 /// Find the hardware loop instruction used to set-up the specified loop. 194 /// On Hexagon, we have two instructions used to set-up the hardware loop 195 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions 196 /// to indicate the end of a loop. 197 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB, 198 unsigned EndLoopOp, MachineBasicBlock *TargetBB, 199 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 200 unsigned LOOPi; 201 unsigned LOOPr; 202 if (EndLoopOp == Hexagon::ENDLOOP0) { 203 LOOPi = Hexagon::J2_loop0i; 204 LOOPr = Hexagon::J2_loop0r; 205 } else { // EndLoopOp == Hexagon::EndLOOP1 206 LOOPi = Hexagon::J2_loop1i; 207 LOOPr = Hexagon::J2_loop1r; 208 } 209 210 // The loop set-up instruction will be in a predecessor block 211 for (MachineBasicBlock *PB : BB->predecessors()) { 212 // If this has been visited, already skip it. 213 if (!Visited.insert(PB).second) 214 continue; 215 if (PB == BB) 216 continue; 217 for (MachineInstr &I : llvm::reverse(PB->instrs())) { 218 unsigned Opc = I.getOpcode(); 219 if (Opc == LOOPi || Opc == LOOPr) 220 return &I; 221 // We've reached a different loop, which means the loop01 has been 222 // removed. 223 if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB) 224 return nullptr; 225 } 226 // Check the predecessors for the LOOP instruction. 227 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited)) 228 return Loop; 229 } 230 return nullptr; 231 } 232 233 /// Gather register def/uses from MI. 234 /// This treats possible (predicated) defs as actually happening ones 235 /// (conservatively). 236 static inline void parseOperands(const MachineInstr &MI, 237 SmallVectorImpl<Register> &Defs, SmallVectorImpl<Register> &Uses) { 238 Defs.clear(); 239 Uses.clear(); 240 241 for (const MachineOperand &MO : MI.operands()) { 242 if (!MO.isReg()) 243 continue; 244 245 Register Reg = MO.getReg(); 246 if (!Reg) 247 continue; 248 249 if (MO.isUse()) 250 Uses.push_back(MO.getReg()); 251 252 if (MO.isDef()) 253 Defs.push_back(MO.getReg()); 254 } 255 } 256 257 // Position dependent, so check twice for swap. 258 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) { 259 switch (Ga) { 260 case HexagonII::HSIG_None: 261 default: 262 return false; 263 case HexagonII::HSIG_L1: 264 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); 265 case HexagonII::HSIG_L2: 266 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || 267 Gb == HexagonII::HSIG_A); 268 case HexagonII::HSIG_S1: 269 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || 270 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); 271 case HexagonII::HSIG_S2: 272 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || 273 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || 274 Gb == HexagonII::HSIG_A); 275 case HexagonII::HSIG_A: 276 return (Gb == HexagonII::HSIG_A); 277 case HexagonII::HSIG_Compound: 278 return (Gb == HexagonII::HSIG_Compound); 279 } 280 return false; 281 } 282 283 /// isLoadFromStackSlot - If the specified machine instruction is a direct 284 /// load from a stack slot, return the virtual or physical register number of 285 /// the destination along with the FrameIndex of the loaded stack slot. If 286 /// not, return 0. This predicate must return 0 if the instruction has 287 /// any side effects other than loading from the stack slot. 288 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 289 int &FrameIndex) const { 290 switch (MI.getOpcode()) { 291 default: 292 break; 293 case Hexagon::L2_loadri_io: 294 case Hexagon::L2_loadrd_io: 295 case Hexagon::V6_vL32b_ai: 296 case Hexagon::V6_vL32b_nt_ai: 297 case Hexagon::V6_vL32Ub_ai: 298 case Hexagon::LDriw_pred: 299 case Hexagon::LDriw_ctr: 300 case Hexagon::PS_vloadrq_ai: 301 case Hexagon::PS_vloadrw_ai: 302 case Hexagon::PS_vloadrw_nt_ai: { 303 const MachineOperand OpFI = MI.getOperand(1); 304 if (!OpFI.isFI()) 305 return 0; 306 const MachineOperand OpOff = MI.getOperand(2); 307 if (!OpOff.isImm() || OpOff.getImm() != 0) 308 return 0; 309 FrameIndex = OpFI.getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 313 case Hexagon::L2_ploadrit_io: 314 case Hexagon::L2_ploadrif_io: 315 case Hexagon::L2_ploadrdt_io: 316 case Hexagon::L2_ploadrdf_io: { 317 const MachineOperand OpFI = MI.getOperand(2); 318 if (!OpFI.isFI()) 319 return 0; 320 const MachineOperand OpOff = MI.getOperand(3); 321 if (!OpOff.isImm() || OpOff.getImm() != 0) 322 return 0; 323 FrameIndex = OpFI.getIndex(); 324 return MI.getOperand(0).getReg(); 325 } 326 } 327 328 return 0; 329 } 330 331 /// isStoreToStackSlot - If the specified machine instruction is a direct 332 /// store to a stack slot, return the virtual or physical register number of 333 /// the source reg along with the FrameIndex of the loaded stack slot. If 334 /// not, return 0. This predicate must return 0 if the instruction has 335 /// any side effects other than storing to the stack slot. 336 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 337 int &FrameIndex) const { 338 switch (MI.getOpcode()) { 339 default: 340 break; 341 case Hexagon::S2_storerb_io: 342 case Hexagon::S2_storerh_io: 343 case Hexagon::S2_storeri_io: 344 case Hexagon::S2_storerd_io: 345 case Hexagon::V6_vS32b_ai: 346 case Hexagon::V6_vS32Ub_ai: 347 case Hexagon::STriw_pred: 348 case Hexagon::STriw_ctr: 349 case Hexagon::PS_vstorerq_ai: 350 case Hexagon::PS_vstorerw_ai: { 351 const MachineOperand &OpFI = MI.getOperand(0); 352 if (!OpFI.isFI()) 353 return 0; 354 const MachineOperand &OpOff = MI.getOperand(1); 355 if (!OpOff.isImm() || OpOff.getImm() != 0) 356 return 0; 357 FrameIndex = OpFI.getIndex(); 358 return MI.getOperand(2).getReg(); 359 } 360 361 case Hexagon::S2_pstorerbt_io: 362 case Hexagon::S2_pstorerbf_io: 363 case Hexagon::S2_pstorerht_io: 364 case Hexagon::S2_pstorerhf_io: 365 case Hexagon::S2_pstorerit_io: 366 case Hexagon::S2_pstorerif_io: 367 case Hexagon::S2_pstorerdt_io: 368 case Hexagon::S2_pstorerdf_io: { 369 const MachineOperand &OpFI = MI.getOperand(1); 370 if (!OpFI.isFI()) 371 return 0; 372 const MachineOperand &OpOff = MI.getOperand(2); 373 if (!OpOff.isImm() || OpOff.getImm() != 0) 374 return 0; 375 FrameIndex = OpFI.getIndex(); 376 return MI.getOperand(3).getReg(); 377 } 378 } 379 380 return 0; 381 } 382 383 /// This function checks if the instruction or bundle of instructions 384 /// has load from stack slot and returns frameindex and machine memory 385 /// operand of that instruction if true. 386 bool HexagonInstrInfo::hasLoadFromStackSlot( 387 const MachineInstr &MI, 388 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 389 if (MI.isBundle()) { 390 const MachineBasicBlock *MBB = MI.getParent(); 391 MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); 392 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) 393 if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses)) 394 return true; 395 return false; 396 } 397 398 return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses); 399 } 400 401 /// This function checks if the instruction or bundle of instructions 402 /// has store to stack slot and returns frameindex and machine memory 403 /// operand of that instruction if true. 404 bool HexagonInstrInfo::hasStoreToStackSlot( 405 const MachineInstr &MI, 406 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 407 if (MI.isBundle()) { 408 const MachineBasicBlock *MBB = MI.getParent(); 409 MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); 410 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) 411 if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses)) 412 return true; 413 return false; 414 } 415 416 return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses); 417 } 418 419 /// This function can analyze one/two way branching only and should (mostly) be 420 /// called by target independent side. 421 /// First entry is always the opcode of the branching instruction, except when 422 /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a 423 /// BB with only unconditional jump. Subsequent entries depend upon the opcode, 424 /// e.g. Jump_c p will have 425 /// Cond[0] = Jump_c 426 /// Cond[1] = p 427 /// HW-loop ENDLOOP: 428 /// Cond[0] = ENDLOOP 429 /// Cond[1] = MBB 430 /// New value jump: 431 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode 432 /// Cond[1] = R 433 /// Cond[2] = Imm 434 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 435 MachineBasicBlock *&TBB, 436 MachineBasicBlock *&FBB, 437 SmallVectorImpl<MachineOperand> &Cond, 438 bool AllowModify) const { 439 TBB = nullptr; 440 FBB = nullptr; 441 Cond.clear(); 442 443 // If the block has no terminators, it just falls into the block after it. 444 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 445 if (I == MBB.instr_begin()) 446 return false; 447 448 // A basic block may looks like this: 449 // 450 // [ insn 451 // EH_LABEL 452 // insn 453 // insn 454 // insn 455 // EH_LABEL 456 // insn ] 457 // 458 // It has two succs but does not have a terminator 459 // Don't know how to handle it. 460 do { 461 --I; 462 if (I->isEHLabel()) 463 // Don't analyze EH branches. 464 return true; 465 } while (I != MBB.instr_begin()); 466 467 I = MBB.instr_end(); 468 --I; 469 470 while (I->isDebugInstr()) { 471 if (I == MBB.instr_begin()) 472 return false; 473 --I; 474 } 475 476 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && 477 I->getOperand(0).isMBB(); 478 // Delete the J2_jump if it's equivalent to a fall-through. 479 if (AllowModify && JumpToBlock && 480 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 481 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";); 482 I->eraseFromParent(); 483 I = MBB.instr_end(); 484 if (I == MBB.instr_begin()) 485 return false; 486 --I; 487 } 488 if (!isUnpredicatedTerminator(*I)) 489 return false; 490 491 // Get the last instruction in the block. 492 MachineInstr *LastInst = &*I; 493 MachineInstr *SecondLastInst = nullptr; 494 // Find one more terminator if present. 495 while (true) { 496 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { 497 if (!SecondLastInst) 498 SecondLastInst = &*I; 499 else 500 // This is a third branch. 501 return true; 502 } 503 if (I == MBB.instr_begin()) 504 break; 505 --I; 506 } 507 508 int LastOpcode = LastInst->getOpcode(); 509 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; 510 // If the branch target is not a basic block, it could be a tail call. 511 // (It is, if the target is a function.) 512 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB()) 513 return true; 514 if (SecLastOpcode == Hexagon::J2_jump && 515 !SecondLastInst->getOperand(0).isMBB()) 516 return true; 517 518 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); 519 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst); 520 521 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB()) 522 return true; 523 524 // If there is only one terminator instruction, process it. 525 if (LastInst && !SecondLastInst) { 526 if (LastOpcode == Hexagon::J2_jump) { 527 TBB = LastInst->getOperand(0).getMBB(); 528 return false; 529 } 530 if (isEndLoopN(LastOpcode)) { 531 TBB = LastInst->getOperand(0).getMBB(); 532 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 533 Cond.push_back(LastInst->getOperand(0)); 534 return false; 535 } 536 if (LastOpcodeHasJMP_c) { 537 TBB = LastInst->getOperand(1).getMBB(); 538 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 539 Cond.push_back(LastInst->getOperand(0)); 540 return false; 541 } 542 // Only supporting rr/ri versions of new-value jumps. 543 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { 544 TBB = LastInst->getOperand(2).getMBB(); 545 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 546 Cond.push_back(LastInst->getOperand(0)); 547 Cond.push_back(LastInst->getOperand(1)); 548 return false; 549 } 550 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) 551 << " with one jump\n";); 552 // Otherwise, don't know what this is. 553 return true; 554 } 555 556 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); 557 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst); 558 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { 559 if (!SecondLastInst->getOperand(1).isMBB()) 560 return true; 561 TBB = SecondLastInst->getOperand(1).getMBB(); 562 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); 563 Cond.push_back(SecondLastInst->getOperand(0)); 564 FBB = LastInst->getOperand(0).getMBB(); 565 return false; 566 } 567 568 // Only supporting rr/ri versions of new-value jumps. 569 if (SecLastOpcodeHasNVJump && 570 (SecondLastInst->getNumExplicitOperands() == 3) && 571 (LastOpcode == Hexagon::J2_jump)) { 572 TBB = SecondLastInst->getOperand(2).getMBB(); 573 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); 574 Cond.push_back(SecondLastInst->getOperand(0)); 575 Cond.push_back(SecondLastInst->getOperand(1)); 576 FBB = LastInst->getOperand(0).getMBB(); 577 return false; 578 } 579 580 // If the block ends with two Hexagon:JMPs, handle it. The second one is not 581 // executed, so remove it. 582 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { 583 TBB = SecondLastInst->getOperand(0).getMBB(); 584 I = LastInst->getIterator(); 585 if (AllowModify) 586 I->eraseFromParent(); 587 return false; 588 } 589 590 // If the block ends with an ENDLOOP, and J2_jump, handle it. 591 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { 592 TBB = SecondLastInst->getOperand(0).getMBB(); 593 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); 594 Cond.push_back(SecondLastInst->getOperand(0)); 595 FBB = LastInst->getOperand(0).getMBB(); 596 return false; 597 } 598 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) 599 << " with two jumps";); 600 // Otherwise, can't handle this. 601 return true; 602 } 603 604 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB, 605 int *BytesRemoved) const { 606 assert(!BytesRemoved && "code size not handled"); 607 608 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB)); 609 MachineBasicBlock::iterator I = MBB.end(); 610 unsigned Count = 0; 611 while (I != MBB.begin()) { 612 --I; 613 if (I->isDebugInstr()) 614 continue; 615 // Only removing branches from end of MBB. 616 if (!I->isBranch()) 617 return Count; 618 if (Count && (I->getOpcode() == Hexagon::J2_jump)) 619 llvm_unreachable("Malformed basic block: unconditional branch not last"); 620 MBB.erase(&MBB.back()); 621 I = MBB.end(); 622 ++Count; 623 } 624 return Count; 625 } 626 627 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB, 628 MachineBasicBlock *TBB, 629 MachineBasicBlock *FBB, 630 ArrayRef<MachineOperand> Cond, 631 const DebugLoc &DL, 632 int *BytesAdded) const { 633 unsigned BOpc = Hexagon::J2_jump; 634 unsigned BccOpc = Hexagon::J2_jumpt; 635 assert(validateBranchCond(Cond) && "Invalid branching condition"); 636 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 637 assert(!BytesAdded && "code size not handled"); 638 639 // Check if reverseBranchCondition has asked to reverse this branch 640 // If we want to reverse the branch an odd number of times, we want 641 // J2_jumpf. 642 if (!Cond.empty() && Cond[0].isImm()) 643 BccOpc = Cond[0].getImm(); 644 645 if (!FBB) { 646 if (Cond.empty()) { 647 // Due to a bug in TailMerging/CFG Optimization, we need to add a 648 // special case handling of a predicated jump followed by an 649 // unconditional jump. If not, Tail Merging and CFG Optimization go 650 // into an infinite loop. 651 MachineBasicBlock *NewTBB, *NewFBB; 652 SmallVector<MachineOperand, 4> Cond; 653 auto Term = MBB.getFirstTerminator(); 654 if (Term != MBB.end() && isPredicated(*Term) && 655 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) && 656 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) { 657 reverseBranchCondition(Cond); 658 removeBranch(MBB); 659 return insertBranch(MBB, TBB, nullptr, Cond, DL); 660 } 661 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 662 } else if (isEndLoopN(Cond[0].getImm())) { 663 int EndLoopOp = Cond[0].getImm(); 664 assert(Cond[1].isMBB()); 665 // Since we're adding an ENDLOOP, there better be a LOOP instruction. 666 // Check for it, and change the BB target if needed. 667 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; 668 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), 669 VisitedBBs); 670 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP"); 671 Loop->getOperand(0).setMBB(TBB); 672 // Add the ENDLOOP after the finding the LOOP0. 673 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); 674 } else if (isNewValueJump(Cond[0].getImm())) { 675 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump"); 676 // New value jump 677 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) 678 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) 679 unsigned Flags1 = getUndefRegState(Cond[1].isUndef()); 680 LLVM_DEBUG(dbgs() << "\nInserting NVJump for " 681 << printMBBReference(MBB);); 682 if (Cond[2].isReg()) { 683 unsigned Flags2 = getUndefRegState(Cond[2].isUndef()); 684 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). 685 addReg(Cond[2].getReg(), Flags2).addMBB(TBB); 686 } else if(Cond[2].isImm()) { 687 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). 688 addImm(Cond[2].getImm()).addMBB(TBB); 689 } else 690 llvm_unreachable("Invalid condition for branching"); 691 } else { 692 assert((Cond.size() == 2) && "Malformed cond vector"); 693 const MachineOperand &RO = Cond[1]; 694 unsigned Flags = getUndefRegState(RO.isUndef()); 695 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); 696 } 697 return 1; 698 } 699 assert((!Cond.empty()) && 700 "Cond. cannot be empty when multiple branchings are required"); 701 assert((!isNewValueJump(Cond[0].getImm())) && 702 "NV-jump cannot be inserted with another branch"); 703 // Special case for hardware loops. The condition is a basic block. 704 if (isEndLoopN(Cond[0].getImm())) { 705 int EndLoopOp = Cond[0].getImm(); 706 assert(Cond[1].isMBB()); 707 // Since we're adding an ENDLOOP, there better be a LOOP instruction. 708 // Check for it, and change the BB target if needed. 709 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; 710 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), 711 VisitedBBs); 712 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP"); 713 Loop->getOperand(0).setMBB(TBB); 714 // Add the ENDLOOP after the finding the LOOP0. 715 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); 716 } else { 717 const MachineOperand &RO = Cond[1]; 718 unsigned Flags = getUndefRegState(RO.isUndef()); 719 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); 720 } 721 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 722 723 return 2; 724 } 725 726 namespace { 727 class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 728 MachineInstr *Loop, *EndLoop; 729 MachineFunction *MF; 730 const HexagonInstrInfo *TII; 731 int64_t TripCount; 732 Register LoopCount; 733 DebugLoc DL; 734 735 public: 736 HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop) 737 : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()), 738 TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()), 739 DL(Loop->getDebugLoc()) { 740 // Inspect the Loop instruction up-front, as it may be deleted when we call 741 // createTripCountGreaterCondition. 742 TripCount = Loop->getOpcode() == Hexagon::J2_loop0r 743 ? -1 744 : Loop->getOperand(1).getImm(); 745 if (TripCount == -1) 746 LoopCount = Loop->getOperand(1).getReg(); 747 } 748 749 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 750 // Only ignore the terminator. 751 return MI == EndLoop; 752 } 753 754 std::optional<bool> createTripCountGreaterCondition( 755 int TC, MachineBasicBlock &MBB, 756 SmallVectorImpl<MachineOperand> &Cond) override { 757 if (TripCount == -1) { 758 // Check if we're done with the loop. 759 Register Done = TII->createVR(MF, MVT::i1); 760 MachineInstr *NewCmp = BuildMI(&MBB, DL, 761 TII->get(Hexagon::C2_cmpgtui), Done) 762 .addReg(LoopCount) 763 .addImm(TC); 764 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf)); 765 Cond.push_back(NewCmp->getOperand(0)); 766 return {}; 767 } 768 769 return TripCount > TC; 770 } 771 772 void setPreheader(MachineBasicBlock *NewPreheader) override { 773 NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(), 774 Loop); 775 } 776 777 void adjustTripCount(int TripCountAdjust) override { 778 // If the loop trip count is a compile-time value, then just change the 779 // value. 780 if (Loop->getOpcode() == Hexagon::J2_loop0i || 781 Loop->getOpcode() == Hexagon::J2_loop1i) { 782 int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust; 783 assert(TripCount > 0 && "Can't create an empty or negative loop!"); 784 Loop->getOperand(1).setImm(TripCount); 785 return; 786 } 787 788 // The loop trip count is a run-time value. We generate code to subtract 789 // one from the trip count, and update the loop instruction. 790 Register LoopCount = Loop->getOperand(1).getReg(); 791 Register NewLoopCount = TII->createVR(MF, MVT::i32); 792 BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(), 793 TII->get(Hexagon::A2_addi), NewLoopCount) 794 .addReg(LoopCount) 795 .addImm(TripCountAdjust); 796 Loop->getOperand(1).setReg(NewLoopCount); 797 } 798 799 void disposed() override { Loop->eraseFromParent(); } 800 }; 801 } // namespace 802 803 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 804 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 805 // We really "analyze" only hardware loops right now. 806 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 807 808 if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) { 809 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; 810 MachineInstr *LoopInst = findLoopInstr( 811 LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs); 812 if (LoopInst) 813 return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I); 814 } 815 return nullptr; 816 } 817 818 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, 819 unsigned NumCycles, unsigned ExtraPredCycles, 820 BranchProbability Probability) const { 821 return nonDbgBBSize(&MBB) <= 3; 822 } 823 824 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 825 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, 826 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) 827 const { 828 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3; 829 } 830 831 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, 832 unsigned NumInstrs, BranchProbability Probability) const { 833 return NumInstrs <= 4; 834 } 835 836 static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { 837 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; 838 const MachineBasicBlock &B = *MI.getParent(); 839 Regs.addLiveIns(B); 840 auto E = MachineBasicBlock::const_iterator(MI.getIterator()); 841 for (auto I = B.begin(); I != E; ++I) { 842 Clobbers.clear(); 843 Regs.stepForward(*I, Clobbers); 844 } 845 } 846 847 static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { 848 const MachineBasicBlock &B = *MI.getParent(); 849 Regs.addLiveOuts(B); 850 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse(); 851 for (auto I = B.rbegin(); I != E; ++I) 852 Regs.stepBackward(*I); 853 } 854 855 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 856 MachineBasicBlock::iterator I, 857 const DebugLoc &DL, MCRegister DestReg, 858 MCRegister SrcReg, bool KillSrc) const { 859 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 860 unsigned KillFlag = getKillRegState(KillSrc); 861 862 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { 863 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg) 864 .addReg(SrcReg, KillFlag); 865 return; 866 } 867 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { 868 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg) 869 .addReg(SrcReg, KillFlag); 870 return; 871 } 872 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { 873 // Map Pd = Ps to Pd = or(Ps, Ps). 874 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg) 875 .addReg(SrcReg).addReg(SrcReg, KillFlag); 876 return; 877 } 878 if (Hexagon::CtrRegsRegClass.contains(DestReg) && 879 Hexagon::IntRegsRegClass.contains(SrcReg)) { 880 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) 881 .addReg(SrcReg, KillFlag); 882 return; 883 } 884 if (Hexagon::IntRegsRegClass.contains(DestReg) && 885 Hexagon::CtrRegsRegClass.contains(SrcReg)) { 886 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg) 887 .addReg(SrcReg, KillFlag); 888 return; 889 } 890 if (Hexagon::ModRegsRegClass.contains(DestReg) && 891 Hexagon::IntRegsRegClass.contains(SrcReg)) { 892 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) 893 .addReg(SrcReg, KillFlag); 894 return; 895 } 896 if (Hexagon::PredRegsRegClass.contains(SrcReg) && 897 Hexagon::IntRegsRegClass.contains(DestReg)) { 898 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) 899 .addReg(SrcReg, KillFlag); 900 return; 901 } 902 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 903 Hexagon::PredRegsRegClass.contains(DestReg)) { 904 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg) 905 .addReg(SrcReg, KillFlag); 906 return; 907 } 908 if (Hexagon::PredRegsRegClass.contains(SrcReg) && 909 Hexagon::IntRegsRegClass.contains(DestReg)) { 910 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) 911 .addReg(SrcReg, KillFlag); 912 return; 913 } 914 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) { 915 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg). 916 addReg(SrcReg, KillFlag); 917 return; 918 } 919 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) { 920 LivePhysRegs LiveAtMI(HRI); 921 getLiveInRegsAt(LiveAtMI, *I); 922 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); 923 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); 924 unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo)); 925 unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi)); 926 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg) 927 .addReg(SrcHi, KillFlag | UndefHi) 928 .addReg(SrcLo, KillFlag | UndefLo); 929 return; 930 } 931 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) { 932 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg) 933 .addReg(SrcReg) 934 .addReg(SrcReg, KillFlag); 935 return; 936 } 937 if (Hexagon::HvxQRRegClass.contains(SrcReg) && 938 Hexagon::HvxVRRegClass.contains(DestReg)) { 939 llvm_unreachable("Unimplemented pred to vec"); 940 return; 941 } 942 if (Hexagon::HvxQRRegClass.contains(DestReg) && 943 Hexagon::HvxVRRegClass.contains(SrcReg)) { 944 llvm_unreachable("Unimplemented vec to pred"); 945 return; 946 } 947 948 #ifndef NDEBUG 949 // Show the invalid registers to ease debugging. 950 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": " 951 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n'; 952 #endif 953 llvm_unreachable("Unimplemented"); 954 } 955 956 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 957 MachineBasicBlock::iterator I, 958 Register SrcReg, bool isKill, int FI, 959 const TargetRegisterClass *RC, 960 const TargetRegisterInfo *TRI, 961 Register VReg) const { 962 DebugLoc DL = MBB.findDebugLoc(I); 963 MachineFunction &MF = *MBB.getParent(); 964 MachineFrameInfo &MFI = MF.getFrameInfo(); 965 unsigned KillFlag = getKillRegState(isKill); 966 967 MachineMemOperand *MMO = MF.getMachineMemOperand( 968 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 969 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 970 971 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { 972 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io)) 973 .addFrameIndex(FI).addImm(0) 974 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 975 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { 976 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io)) 977 .addFrameIndex(FI).addImm(0) 978 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 979 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { 980 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) 981 .addFrameIndex(FI).addImm(0) 982 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 983 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { 984 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr)) 985 .addFrameIndex(FI).addImm(0) 986 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 987 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { 988 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai)) 989 .addFrameIndex(FI).addImm(0) 990 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 991 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { 992 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai)) 993 .addFrameIndex(FI).addImm(0) 994 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 995 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { 996 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai)) 997 .addFrameIndex(FI).addImm(0) 998 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 999 } else { 1000 llvm_unreachable("Unimplemented"); 1001 } 1002 } 1003 1004 void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1005 MachineBasicBlock::iterator I, 1006 Register DestReg, int FI, 1007 const TargetRegisterClass *RC, 1008 const TargetRegisterInfo *TRI, 1009 Register VReg) const { 1010 DebugLoc DL = MBB.findDebugLoc(I); 1011 MachineFunction &MF = *MBB.getParent(); 1012 MachineFrameInfo &MFI = MF.getFrameInfo(); 1013 1014 MachineMemOperand *MMO = MF.getMachineMemOperand( 1015 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1016 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 1017 1018 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { 1019 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg) 1020 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1021 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { 1022 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg) 1023 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1024 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { 1025 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) 1026 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1027 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { 1028 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg) 1029 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1030 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { 1031 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg) 1032 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1033 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { 1034 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg) 1035 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1036 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { 1037 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg) 1038 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 1039 } else { 1040 llvm_unreachable("Can't store this register to stack slot"); 1041 } 1042 } 1043 1044 /// expandPostRAPseudo - This function is called for all pseudo instructions 1045 /// that remain after register allocation. Many pseudo instructions are 1046 /// created to help register allocation. This is the place to convert them 1047 /// into real instructions. The target can edit MI in place, or it can insert 1048 /// new instructions and erase MI. The function should return true if 1049 /// anything was changed. 1050 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1051 MachineBasicBlock &MBB = *MI.getParent(); 1052 MachineFunction &MF = *MBB.getParent(); 1053 MachineRegisterInfo &MRI = MF.getRegInfo(); 1054 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1055 LivePhysRegs LiveIn(HRI), LiveOut(HRI); 1056 DebugLoc DL = MI.getDebugLoc(); 1057 unsigned Opc = MI.getOpcode(); 1058 1059 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) { 1060 Register Mx = MI.getOperand(MxOp).getReg(); 1061 Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1); 1062 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx) 1063 .add(MI.getOperand((HasImm ? 5 : 4))); 1064 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0)) 1065 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3)); 1066 if (HasImm) 1067 MIB.add(MI.getOperand(4)); 1068 MIB.addReg(CSx, RegState::Implicit); 1069 MBB.erase(MI); 1070 return true; 1071 }; 1072 1073 auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) { 1074 if (MI.memoperands().empty()) 1075 return false; 1076 return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) { 1077 return MMO->getAlign() >= NeedAlign; 1078 }); 1079 }; 1080 1081 switch (Opc) { 1082 case Hexagon::PS_call_instrprof_custom: { 1083 auto Op0 = MI.getOperand(0); 1084 assert(Op0.isGlobal() && 1085 "First operand must be a global containing handler name."); 1086 const GlobalValue *NameVar = Op0.getGlobal(); 1087 const GlobalVariable *GV = dyn_cast<GlobalVariable>(NameVar); 1088 auto *Arr = cast<ConstantDataArray>(GV->getInitializer()); 1089 StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 1090 1091 MachineOperand &Op1 = MI.getOperand(1); 1092 // Set R0 with the imm value to be passed to the custom profiling handler. 1093 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrsi), Hexagon::R0) 1094 .addImm(Op1.getImm()); 1095 // The call to the custom handler is being treated as a special one as the 1096 // callee is responsible for saving and restoring all the registers 1097 // (including caller saved registers) it needs to modify. This is 1098 // done to reduce the impact of instrumentation on the code being 1099 // instrumented/profiled. 1100 // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers 1101 // are in the Def list of the Hexagon::PS_call_instrprof_custom and 1102 // therefore will be handled appropriately duing register allocation. 1103 1104 // TODO: It may be a good idea to add a separate pseudo instruction for 1105 // static relocation which doesn't need to reserve r14, r15 and r28. 1106 1107 auto MIB = BuildMI(MBB, MI, DL, get(Hexagon::J2_call)) 1108 .addUse(Hexagon::R0, RegState::Implicit|RegState::InternalRead) 1109 .addDef(Hexagon::R29, RegState::ImplicitDefine) 1110 .addDef(Hexagon::R30, RegState::ImplicitDefine) 1111 .addDef(Hexagon::R14, RegState::ImplicitDefine) 1112 .addDef(Hexagon::R15, RegState::ImplicitDefine) 1113 .addDef(Hexagon::R28, RegState::ImplicitDefine); 1114 const char *cstr = MF.createExternalSymbolName(NameStr); 1115 MIB.addExternalSymbol(cstr); 1116 MBB.erase(MI); 1117 return true; 1118 } 1119 case TargetOpcode::COPY: { 1120 MachineOperand &MD = MI.getOperand(0); 1121 MachineOperand &MS = MI.getOperand(1); 1122 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1123 if (MD.getReg() != MS.getReg() && !MS.isUndef()) { 1124 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill()); 1125 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI); 1126 } 1127 MBB.erase(MBBI); 1128 return true; 1129 } 1130 case Hexagon::PS_aligna: 1131 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg()) 1132 .addReg(HRI.getFrameRegister()) 1133 .addImm(-MI.getOperand(1).getImm()); 1134 MBB.erase(MI); 1135 return true; 1136 case Hexagon::V6_vassignp: { 1137 Register SrcReg = MI.getOperand(1).getReg(); 1138 Register DstReg = MI.getOperand(0).getReg(); 1139 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); 1140 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); 1141 getLiveInRegsAt(LiveIn, MI); 1142 unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo)); 1143 unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi)); 1144 unsigned Kill = getKillRegState(MI.getOperand(1).isKill()); 1145 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg) 1146 .addReg(SrcHi, UndefHi) 1147 .addReg(SrcLo, Kill | UndefLo); 1148 MBB.erase(MI); 1149 return true; 1150 } 1151 case Hexagon::V6_lo: { 1152 Register SrcReg = MI.getOperand(1).getReg(); 1153 Register DstReg = MI.getOperand(0).getReg(); 1154 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); 1155 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill()); 1156 MBB.erase(MI); 1157 MRI.clearKillFlags(SrcSubLo); 1158 return true; 1159 } 1160 case Hexagon::V6_hi: { 1161 Register SrcReg = MI.getOperand(1).getReg(); 1162 Register DstReg = MI.getOperand(0).getReg(); 1163 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); 1164 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill()); 1165 MBB.erase(MI); 1166 MRI.clearKillFlags(SrcSubHi); 1167 return true; 1168 } 1169 case Hexagon::PS_vloadrv_ai: { 1170 Register DstReg = MI.getOperand(0).getReg(); 1171 const MachineOperand &BaseOp = MI.getOperand(1); 1172 assert(BaseOp.getSubReg() == 0); 1173 int Offset = MI.getOperand(2).getImm(); 1174 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1175 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai 1176 : Hexagon::V6_vL32Ub_ai; 1177 BuildMI(MBB, MI, DL, get(NewOpc), DstReg) 1178 .addReg(BaseOp.getReg(), getRegState(BaseOp)) 1179 .addImm(Offset) 1180 .cloneMemRefs(MI); 1181 MBB.erase(MI); 1182 return true; 1183 } 1184 case Hexagon::PS_vloadrw_ai: { 1185 Register DstReg = MI.getOperand(0).getReg(); 1186 const MachineOperand &BaseOp = MI.getOperand(1); 1187 assert(BaseOp.getSubReg() == 0); 1188 int Offset = MI.getOperand(2).getImm(); 1189 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1190 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1191 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai 1192 : Hexagon::V6_vL32Ub_ai; 1193 BuildMI(MBB, MI, DL, get(NewOpc), 1194 HRI.getSubReg(DstReg, Hexagon::vsub_lo)) 1195 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill) 1196 .addImm(Offset) 1197 .cloneMemRefs(MI); 1198 BuildMI(MBB, MI, DL, get(NewOpc), 1199 HRI.getSubReg(DstReg, Hexagon::vsub_hi)) 1200 .addReg(BaseOp.getReg(), getRegState(BaseOp)) 1201 .addImm(Offset + VecOffset) 1202 .cloneMemRefs(MI); 1203 MBB.erase(MI); 1204 return true; 1205 } 1206 case Hexagon::PS_vstorerv_ai: { 1207 const MachineOperand &SrcOp = MI.getOperand(2); 1208 assert(SrcOp.getSubReg() == 0); 1209 const MachineOperand &BaseOp = MI.getOperand(0); 1210 assert(BaseOp.getSubReg() == 0); 1211 int Offset = MI.getOperand(1).getImm(); 1212 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1213 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai 1214 : Hexagon::V6_vS32Ub_ai; 1215 BuildMI(MBB, MI, DL, get(NewOpc)) 1216 .addReg(BaseOp.getReg(), getRegState(BaseOp)) 1217 .addImm(Offset) 1218 .addReg(SrcOp.getReg(), getRegState(SrcOp)) 1219 .cloneMemRefs(MI); 1220 MBB.erase(MI); 1221 return true; 1222 } 1223 case Hexagon::PS_vstorerw_ai: { 1224 Register SrcReg = MI.getOperand(2).getReg(); 1225 const MachineOperand &BaseOp = MI.getOperand(0); 1226 assert(BaseOp.getSubReg() == 0); 1227 int Offset = MI.getOperand(1).getImm(); 1228 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1229 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1230 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai 1231 : Hexagon::V6_vS32Ub_ai; 1232 BuildMI(MBB, MI, DL, get(NewOpc)) 1233 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill) 1234 .addImm(Offset) 1235 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo)) 1236 .cloneMemRefs(MI); 1237 BuildMI(MBB, MI, DL, get(NewOpc)) 1238 .addReg(BaseOp.getReg(), getRegState(BaseOp)) 1239 .addImm(Offset + VecOffset) 1240 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi)) 1241 .cloneMemRefs(MI); 1242 MBB.erase(MI); 1243 return true; 1244 } 1245 case Hexagon::PS_true: { 1246 Register Reg = MI.getOperand(0).getReg(); 1247 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg) 1248 .addReg(Reg, RegState::Undef) 1249 .addReg(Reg, RegState::Undef); 1250 MBB.erase(MI); 1251 return true; 1252 } 1253 case Hexagon::PS_false: { 1254 Register Reg = MI.getOperand(0).getReg(); 1255 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg) 1256 .addReg(Reg, RegState::Undef) 1257 .addReg(Reg, RegState::Undef); 1258 MBB.erase(MI); 1259 return true; 1260 } 1261 case Hexagon::PS_qtrue: { 1262 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg()) 1263 .addReg(Hexagon::V0, RegState::Undef) 1264 .addReg(Hexagon::V0, RegState::Undef); 1265 MBB.erase(MI); 1266 return true; 1267 } 1268 case Hexagon::PS_qfalse: { 1269 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg()) 1270 .addReg(Hexagon::V0, RegState::Undef) 1271 .addReg(Hexagon::V0, RegState::Undef); 1272 MBB.erase(MI); 1273 return true; 1274 } 1275 case Hexagon::PS_vdd0: { 1276 Register Vd = MI.getOperand(0).getReg(); 1277 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd) 1278 .addReg(Vd, RegState::Undef) 1279 .addReg(Vd, RegState::Undef); 1280 MBB.erase(MI); 1281 return true; 1282 } 1283 case Hexagon::PS_vmulw: { 1284 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. 1285 Register DstReg = MI.getOperand(0).getReg(); 1286 Register Src1Reg = MI.getOperand(1).getReg(); 1287 Register Src2Reg = MI.getOperand(2).getReg(); 1288 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); 1289 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); 1290 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); 1291 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); 1292 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), 1293 HRI.getSubReg(DstReg, Hexagon::isub_hi)) 1294 .addReg(Src1SubHi) 1295 .addReg(Src2SubHi); 1296 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), 1297 HRI.getSubReg(DstReg, Hexagon::isub_lo)) 1298 .addReg(Src1SubLo) 1299 .addReg(Src2SubLo); 1300 MBB.erase(MI); 1301 MRI.clearKillFlags(Src1SubHi); 1302 MRI.clearKillFlags(Src1SubLo); 1303 MRI.clearKillFlags(Src2SubHi); 1304 MRI.clearKillFlags(Src2SubLo); 1305 return true; 1306 } 1307 case Hexagon::PS_vmulw_acc: { 1308 // Expand 64-bit vector multiply with addition into 2 scalar multiplies. 1309 Register DstReg = MI.getOperand(0).getReg(); 1310 Register Src1Reg = MI.getOperand(1).getReg(); 1311 Register Src2Reg = MI.getOperand(2).getReg(); 1312 Register Src3Reg = MI.getOperand(3).getReg(); 1313 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); 1314 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); 1315 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); 1316 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); 1317 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi); 1318 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo); 1319 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), 1320 HRI.getSubReg(DstReg, Hexagon::isub_hi)) 1321 .addReg(Src1SubHi) 1322 .addReg(Src2SubHi) 1323 .addReg(Src3SubHi); 1324 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), 1325 HRI.getSubReg(DstReg, Hexagon::isub_lo)) 1326 .addReg(Src1SubLo) 1327 .addReg(Src2SubLo) 1328 .addReg(Src3SubLo); 1329 MBB.erase(MI); 1330 MRI.clearKillFlags(Src1SubHi); 1331 MRI.clearKillFlags(Src1SubLo); 1332 MRI.clearKillFlags(Src2SubHi); 1333 MRI.clearKillFlags(Src2SubLo); 1334 MRI.clearKillFlags(Src3SubHi); 1335 MRI.clearKillFlags(Src3SubLo); 1336 return true; 1337 } 1338 case Hexagon::PS_pselect: { 1339 const MachineOperand &Op0 = MI.getOperand(0); 1340 const MachineOperand &Op1 = MI.getOperand(1); 1341 const MachineOperand &Op2 = MI.getOperand(2); 1342 const MachineOperand &Op3 = MI.getOperand(3); 1343 Register Rd = Op0.getReg(); 1344 Register Pu = Op1.getReg(); 1345 Register Rs = Op2.getReg(); 1346 Register Rt = Op3.getReg(); 1347 DebugLoc DL = MI.getDebugLoc(); 1348 unsigned K1 = getKillRegState(Op1.isKill()); 1349 unsigned K2 = getKillRegState(Op2.isKill()); 1350 unsigned K3 = getKillRegState(Op3.isKill()); 1351 if (Rd != Rs) 1352 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd) 1353 .addReg(Pu, (Rd == Rt) ? K1 : 0) 1354 .addReg(Rs, K2); 1355 if (Rd != Rt) 1356 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd) 1357 .addReg(Pu, K1) 1358 .addReg(Rt, K3); 1359 MBB.erase(MI); 1360 return true; 1361 } 1362 case Hexagon::PS_vselect: { 1363 const MachineOperand &Op0 = MI.getOperand(0); 1364 const MachineOperand &Op1 = MI.getOperand(1); 1365 const MachineOperand &Op2 = MI.getOperand(2); 1366 const MachineOperand &Op3 = MI.getOperand(3); 1367 getLiveOutRegsAt(LiveOut, MI); 1368 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg()); 1369 Register PReg = Op1.getReg(); 1370 assert(Op1.getSubReg() == 0); 1371 unsigned PState = getRegState(Op1); 1372 1373 if (Op0.getReg() != Op2.getReg()) { 1374 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill 1375 : PState; 1376 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov)) 1377 .add(Op0) 1378 .addReg(PReg, S) 1379 .add(Op2); 1380 if (IsDestLive) 1381 T.addReg(Op0.getReg(), RegState::Implicit); 1382 IsDestLive = true; 1383 } 1384 if (Op0.getReg() != Op3.getReg()) { 1385 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov)) 1386 .add(Op0) 1387 .addReg(PReg, PState) 1388 .add(Op3); 1389 if (IsDestLive) 1390 T.addReg(Op0.getReg(), RegState::Implicit); 1391 } 1392 MBB.erase(MI); 1393 return true; 1394 } 1395 case Hexagon::PS_wselect: { 1396 MachineOperand &Op0 = MI.getOperand(0); 1397 MachineOperand &Op1 = MI.getOperand(1); 1398 MachineOperand &Op2 = MI.getOperand(2); 1399 MachineOperand &Op3 = MI.getOperand(3); 1400 getLiveOutRegsAt(LiveOut, MI); 1401 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg()); 1402 Register PReg = Op1.getReg(); 1403 assert(Op1.getSubReg() == 0); 1404 unsigned PState = getRegState(Op1); 1405 1406 if (Op0.getReg() != Op2.getReg()) { 1407 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill 1408 : PState; 1409 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo); 1410 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi); 1411 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine)) 1412 .add(Op0) 1413 .addReg(PReg, S) 1414 .addReg(SrcHi) 1415 .addReg(SrcLo); 1416 if (IsDestLive) 1417 T.addReg(Op0.getReg(), RegState::Implicit); 1418 IsDestLive = true; 1419 } 1420 if (Op0.getReg() != Op3.getReg()) { 1421 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo); 1422 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi); 1423 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine)) 1424 .add(Op0) 1425 .addReg(PReg, PState) 1426 .addReg(SrcHi) 1427 .addReg(SrcLo); 1428 if (IsDestLive) 1429 T.addReg(Op0.getReg(), RegState::Implicit); 1430 } 1431 MBB.erase(MI); 1432 return true; 1433 } 1434 1435 case Hexagon::PS_crash: { 1436 // Generate a misaligned load that is guaranteed to cause a crash. 1437 class CrashPseudoSourceValue : public PseudoSourceValue { 1438 public: 1439 CrashPseudoSourceValue(const TargetMachine &TM) 1440 : PseudoSourceValue(TargetCustom, TM) {} 1441 1442 bool isConstant(const MachineFrameInfo *) const override { 1443 return false; 1444 } 1445 bool isAliased(const MachineFrameInfo *) const override { 1446 return false; 1447 } 1448 bool mayAlias(const MachineFrameInfo *) const override { 1449 return false; 1450 } 1451 void printCustom(raw_ostream &OS) const override { 1452 OS << "MisalignedCrash"; 1453 } 1454 }; 1455 1456 static const CrashPseudoSourceValue CrashPSV(MF.getTarget()); 1457 MachineMemOperand *MMO = MF.getMachineMemOperand( 1458 MachinePointerInfo(&CrashPSV), 1459 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1460 Align(1)); 1461 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13) 1462 .addImm(0xBADC0FEE) // Misaligned load. 1463 .addMemOperand(MMO); 1464 MBB.erase(MI); 1465 return true; 1466 } 1467 1468 case Hexagon::PS_tailcall_i: 1469 MI.setDesc(get(Hexagon::J2_jump)); 1470 return true; 1471 case Hexagon::PS_tailcall_r: 1472 case Hexagon::PS_jmpret: 1473 MI.setDesc(get(Hexagon::J2_jumpr)); 1474 return true; 1475 case Hexagon::PS_jmprett: 1476 MI.setDesc(get(Hexagon::J2_jumprt)); 1477 return true; 1478 case Hexagon::PS_jmpretf: 1479 MI.setDesc(get(Hexagon::J2_jumprf)); 1480 return true; 1481 case Hexagon::PS_jmprettnewpt: 1482 MI.setDesc(get(Hexagon::J2_jumprtnewpt)); 1483 return true; 1484 case Hexagon::PS_jmpretfnewpt: 1485 MI.setDesc(get(Hexagon::J2_jumprfnewpt)); 1486 return true; 1487 case Hexagon::PS_jmprettnew: 1488 MI.setDesc(get(Hexagon::J2_jumprtnew)); 1489 return true; 1490 case Hexagon::PS_jmpretfnew: 1491 MI.setDesc(get(Hexagon::J2_jumprfnew)); 1492 return true; 1493 1494 case Hexagon::PS_loadrub_pci: 1495 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4); 1496 case Hexagon::PS_loadrb_pci: 1497 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4); 1498 case Hexagon::PS_loadruh_pci: 1499 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4); 1500 case Hexagon::PS_loadrh_pci: 1501 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4); 1502 case Hexagon::PS_loadri_pci: 1503 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4); 1504 case Hexagon::PS_loadrd_pci: 1505 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4); 1506 case Hexagon::PS_loadrub_pcr: 1507 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3); 1508 case Hexagon::PS_loadrb_pcr: 1509 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3); 1510 case Hexagon::PS_loadruh_pcr: 1511 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3); 1512 case Hexagon::PS_loadrh_pcr: 1513 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3); 1514 case Hexagon::PS_loadri_pcr: 1515 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3); 1516 case Hexagon::PS_loadrd_pcr: 1517 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3); 1518 case Hexagon::PS_storerb_pci: 1519 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3); 1520 case Hexagon::PS_storerh_pci: 1521 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3); 1522 case Hexagon::PS_storerf_pci: 1523 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3); 1524 case Hexagon::PS_storeri_pci: 1525 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3); 1526 case Hexagon::PS_storerd_pci: 1527 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3); 1528 case Hexagon::PS_storerb_pcr: 1529 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2); 1530 case Hexagon::PS_storerh_pcr: 1531 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2); 1532 case Hexagon::PS_storerf_pcr: 1533 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2); 1534 case Hexagon::PS_storeri_pcr: 1535 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2); 1536 case Hexagon::PS_storerd_pcr: 1537 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2); 1538 } 1539 1540 return false; 1541 } 1542 1543 MachineBasicBlock::instr_iterator 1544 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const { 1545 MachineBasicBlock &MBB = *MI.getParent(); 1546 const DebugLoc &DL = MI.getDebugLoc(); 1547 unsigned Opc = MI.getOpcode(); 1548 MachineBasicBlock::iterator First; 1549 1550 switch (Opc) { 1551 case Hexagon::V6_vgathermh_pseudo: 1552 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh)) 1553 .add(MI.getOperand(2)) 1554 .add(MI.getOperand(3)) 1555 .add(MI.getOperand(4)); 1556 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1557 .add(MI.getOperand(0)) 1558 .addImm(MI.getOperand(1).getImm()) 1559 .addReg(Hexagon::VTMP); 1560 MBB.erase(MI); 1561 return First.getInstrIterator(); 1562 1563 case Hexagon::V6_vgathermw_pseudo: 1564 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw)) 1565 .add(MI.getOperand(2)) 1566 .add(MI.getOperand(3)) 1567 .add(MI.getOperand(4)); 1568 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1569 .add(MI.getOperand(0)) 1570 .addImm(MI.getOperand(1).getImm()) 1571 .addReg(Hexagon::VTMP); 1572 MBB.erase(MI); 1573 return First.getInstrIterator(); 1574 1575 case Hexagon::V6_vgathermhw_pseudo: 1576 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw)) 1577 .add(MI.getOperand(2)) 1578 .add(MI.getOperand(3)) 1579 .add(MI.getOperand(4)); 1580 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1581 .add(MI.getOperand(0)) 1582 .addImm(MI.getOperand(1).getImm()) 1583 .addReg(Hexagon::VTMP); 1584 MBB.erase(MI); 1585 return First.getInstrIterator(); 1586 1587 case Hexagon::V6_vgathermhq_pseudo: 1588 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq)) 1589 .add(MI.getOperand(2)) 1590 .add(MI.getOperand(3)) 1591 .add(MI.getOperand(4)) 1592 .add(MI.getOperand(5)); 1593 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1594 .add(MI.getOperand(0)) 1595 .addImm(MI.getOperand(1).getImm()) 1596 .addReg(Hexagon::VTMP); 1597 MBB.erase(MI); 1598 return First.getInstrIterator(); 1599 1600 case Hexagon::V6_vgathermwq_pseudo: 1601 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq)) 1602 .add(MI.getOperand(2)) 1603 .add(MI.getOperand(3)) 1604 .add(MI.getOperand(4)) 1605 .add(MI.getOperand(5)); 1606 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1607 .add(MI.getOperand(0)) 1608 .addImm(MI.getOperand(1).getImm()) 1609 .addReg(Hexagon::VTMP); 1610 MBB.erase(MI); 1611 return First.getInstrIterator(); 1612 1613 case Hexagon::V6_vgathermhwq_pseudo: 1614 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq)) 1615 .add(MI.getOperand(2)) 1616 .add(MI.getOperand(3)) 1617 .add(MI.getOperand(4)) 1618 .add(MI.getOperand(5)); 1619 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1620 .add(MI.getOperand(0)) 1621 .addImm(MI.getOperand(1).getImm()) 1622 .addReg(Hexagon::VTMP); 1623 MBB.erase(MI); 1624 return First.getInstrIterator(); 1625 } 1626 1627 return MI.getIterator(); 1628 } 1629 1630 // We indicate that we want to reverse the branch by 1631 // inserting the reversed branching opcode. 1632 bool HexagonInstrInfo::reverseBranchCondition( 1633 SmallVectorImpl<MachineOperand> &Cond) const { 1634 if (Cond.empty()) 1635 return true; 1636 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val"); 1637 unsigned opcode = Cond[0].getImm(); 1638 //unsigned temp; 1639 assert(get(opcode).isBranch() && "Should be a branching condition."); 1640 if (isEndLoopN(opcode)) 1641 return true; 1642 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode); 1643 Cond[0].setImm(NewOpcode); 1644 return false; 1645 } 1646 1647 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB, 1648 MachineBasicBlock::iterator MI) const { 1649 DebugLoc DL; 1650 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop)); 1651 } 1652 1653 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const { 1654 return getAddrMode(MI) == HexagonII::PostInc; 1655 } 1656 1657 // Returns true if an instruction is predicated irrespective of the predicate 1658 // sense. For example, all of the following will return true. 1659 // if (p0) R1 = add(R2, R3) 1660 // if (!p0) R1 = add(R2, R3) 1661 // if (p0.new) R1 = add(R2, R3) 1662 // if (!p0.new) R1 = add(R2, R3) 1663 // Note: New-value stores are not included here as in the current 1664 // implementation, we don't need to check their predicate sense. 1665 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const { 1666 const uint64_t F = MI.getDesc().TSFlags; 1667 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; 1668 } 1669 1670 bool HexagonInstrInfo::PredicateInstruction( 1671 MachineInstr &MI, ArrayRef<MachineOperand> Cond) const { 1672 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) || 1673 isEndLoopN(Cond[0].getImm())) { 1674 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump();); 1675 return false; 1676 } 1677 int Opc = MI.getOpcode(); 1678 assert (isPredicable(MI) && "Expected predicable instruction"); 1679 bool invertJump = predOpcodeHasNot(Cond); 1680 1681 // We have to predicate MI "in place", i.e. after this function returns, 1682 // MI will need to be transformed into a predicated form. To avoid com- 1683 // plicated manipulations with the operands (handling tied operands, 1684 // etc.), build a new temporary instruction, then overwrite MI with it. 1685 1686 MachineBasicBlock &B = *MI.getParent(); 1687 DebugLoc DL = MI.getDebugLoc(); 1688 unsigned PredOpc = getCondOpcode(Opc, invertJump); 1689 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc)); 1690 unsigned NOp = 0, NumOps = MI.getNumOperands(); 1691 while (NOp < NumOps) { 1692 MachineOperand &Op = MI.getOperand(NOp); 1693 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1694 break; 1695 T.add(Op); 1696 NOp++; 1697 } 1698 1699 Register PredReg; 1700 unsigned PredRegPos, PredRegFlags; 1701 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); 1702 (void)GotPredReg; 1703 assert(GotPredReg); 1704 T.addReg(PredReg, PredRegFlags); 1705 while (NOp < NumOps) 1706 T.add(MI.getOperand(NOp++)); 1707 1708 MI.setDesc(get(PredOpc)); 1709 while (unsigned n = MI.getNumOperands()) 1710 MI.removeOperand(n-1); 1711 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) 1712 MI.addOperand(T->getOperand(i)); 1713 1714 MachineBasicBlock::instr_iterator TI = T->getIterator(); 1715 B.erase(TI); 1716 1717 MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); 1718 MRI.clearKillFlags(PredReg); 1719 return true; 1720 } 1721 1722 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1723 ArrayRef<MachineOperand> Pred2) const { 1724 // TODO: Fix this 1725 return false; 1726 } 1727 1728 bool HexagonInstrInfo::ClobbersPredicate(MachineInstr &MI, 1729 std::vector<MachineOperand> &Pred, 1730 bool SkipDead) const { 1731 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1732 1733 for (const MachineOperand &MO : MI.operands()) { 1734 if (MO.isReg()) { 1735 if (!MO.isDef()) 1736 continue; 1737 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg()); 1738 if (RC == &Hexagon::PredRegsRegClass) { 1739 Pred.push_back(MO); 1740 return true; 1741 } 1742 continue; 1743 } else if (MO.isRegMask()) { 1744 for (Register PR : Hexagon::PredRegsRegClass) { 1745 if (!MI.modifiesRegister(PR, &HRI)) 1746 continue; 1747 Pred.push_back(MO); 1748 return true; 1749 } 1750 } 1751 } 1752 return false; 1753 } 1754 1755 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const { 1756 if (!MI.getDesc().isPredicable()) 1757 return false; 1758 1759 if (MI.isCall() || isTailCall(MI)) { 1760 if (!Subtarget.usePredicatedCalls()) 1761 return false; 1762 } 1763 1764 // HVX loads are not predicable on v60, but are on v62. 1765 if (!Subtarget.hasV62Ops()) { 1766 switch (MI.getOpcode()) { 1767 case Hexagon::V6_vL32b_ai: 1768 case Hexagon::V6_vL32b_pi: 1769 case Hexagon::V6_vL32b_ppu: 1770 case Hexagon::V6_vL32b_cur_ai: 1771 case Hexagon::V6_vL32b_cur_pi: 1772 case Hexagon::V6_vL32b_cur_ppu: 1773 case Hexagon::V6_vL32b_nt_ai: 1774 case Hexagon::V6_vL32b_nt_pi: 1775 case Hexagon::V6_vL32b_nt_ppu: 1776 case Hexagon::V6_vL32b_tmp_ai: 1777 case Hexagon::V6_vL32b_tmp_pi: 1778 case Hexagon::V6_vL32b_tmp_ppu: 1779 case Hexagon::V6_vL32b_nt_cur_ai: 1780 case Hexagon::V6_vL32b_nt_cur_pi: 1781 case Hexagon::V6_vL32b_nt_cur_ppu: 1782 case Hexagon::V6_vL32b_nt_tmp_ai: 1783 case Hexagon::V6_vL32b_nt_tmp_pi: 1784 case Hexagon::V6_vL32b_nt_tmp_ppu: 1785 return false; 1786 } 1787 } 1788 return true; 1789 } 1790 1791 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1792 const MachineBasicBlock *MBB, 1793 const MachineFunction &MF) const { 1794 // Debug info is never a scheduling boundary. It's necessary to be explicit 1795 // due to the special treatment of IT instructions below, otherwise a 1796 // dbg_value followed by an IT will result in the IT instruction being 1797 // considered a scheduling hazard, which is wrong. It should be the actual 1798 // instruction preceding the dbg_value instruction(s), just like it is 1799 // when debug info is not present. 1800 if (MI.isDebugInstr()) 1801 return false; 1802 1803 // Throwing call is a boundary. 1804 if (MI.isCall()) { 1805 // Don't mess around with no return calls. 1806 if (doesNotReturn(MI)) 1807 return true; 1808 // If any of the block's successors is a landing pad, this could be a 1809 // throwing call. 1810 for (auto *I : MBB->successors()) 1811 if (I->isEHPad()) 1812 return true; 1813 } 1814 1815 // Terminators and labels can't be scheduled around. 1816 if (MI.getDesc().isTerminator() || MI.isPosition()) 1817 return true; 1818 1819 // INLINEASM_BR can jump to another block 1820 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 1821 return true; 1822 1823 if (MI.isInlineAsm() && !ScheduleInlineAsm) 1824 return true; 1825 1826 return false; 1827 } 1828 1829 /// Measure the specified inline asm to determine an approximation of its 1830 /// length. 1831 /// Comments (which run till the next SeparatorString or newline) do not 1832 /// count as an instruction. 1833 /// Any other non-whitespace text is considered an instruction, with 1834 /// multiple instructions separated by SeparatorString or newlines. 1835 /// Variable-length instructions are not handled here; this function 1836 /// may be overloaded in the target code to do that. 1837 /// Hexagon counts the number of ##'s and adjust for that many 1838 /// constant exenders. 1839 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str, 1840 const MCAsmInfo &MAI, 1841 const TargetSubtargetInfo *STI) const { 1842 StringRef AStr(Str); 1843 // Count the number of instructions in the asm. 1844 bool atInsnStart = true; 1845 unsigned Length = 0; 1846 const unsigned MaxInstLength = MAI.getMaxInstLength(STI); 1847 for (; *Str; ++Str) { 1848 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 1849 strlen(MAI.getSeparatorString())) == 0) 1850 atInsnStart = true; 1851 if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { 1852 Length += MaxInstLength; 1853 atInsnStart = false; 1854 } 1855 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(), 1856 MAI.getCommentString().size()) == 0) 1857 atInsnStart = false; 1858 } 1859 1860 // Add to size number of constant extenders seen * 4. 1861 StringRef Occ("##"); 1862 Length += AStr.count(Occ)*4; 1863 return Length; 1864 } 1865 1866 ScheduleHazardRecognizer* 1867 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer( 1868 const InstrItineraryData *II, const ScheduleDAG *DAG) const { 1869 if (UseDFAHazardRec) 1870 return new HexagonHazardRecognizer(II, this, Subtarget); 1871 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 1872 } 1873 1874 /// For a comparison instruction, return the source registers in 1875 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it 1876 /// compares against in CmpValue. Return true if the comparison instruction 1877 /// can be analyzed. 1878 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1879 Register &SrcReg2, int64_t &Mask, 1880 int64_t &Value) const { 1881 unsigned Opc = MI.getOpcode(); 1882 1883 // Set mask and the first source register. 1884 switch (Opc) { 1885 case Hexagon::C2_cmpeq: 1886 case Hexagon::C2_cmpeqp: 1887 case Hexagon::C2_cmpgt: 1888 case Hexagon::C2_cmpgtp: 1889 case Hexagon::C2_cmpgtu: 1890 case Hexagon::C2_cmpgtup: 1891 case Hexagon::C4_cmpneq: 1892 case Hexagon::C4_cmplte: 1893 case Hexagon::C4_cmplteu: 1894 case Hexagon::C2_cmpeqi: 1895 case Hexagon::C2_cmpgti: 1896 case Hexagon::C2_cmpgtui: 1897 case Hexagon::C4_cmpneqi: 1898 case Hexagon::C4_cmplteui: 1899 case Hexagon::C4_cmpltei: 1900 SrcReg = MI.getOperand(1).getReg(); 1901 Mask = ~0; 1902 break; 1903 case Hexagon::A4_cmpbeq: 1904 case Hexagon::A4_cmpbgt: 1905 case Hexagon::A4_cmpbgtu: 1906 case Hexagon::A4_cmpbeqi: 1907 case Hexagon::A4_cmpbgti: 1908 case Hexagon::A4_cmpbgtui: 1909 SrcReg = MI.getOperand(1).getReg(); 1910 Mask = 0xFF; 1911 break; 1912 case Hexagon::A4_cmpheq: 1913 case Hexagon::A4_cmphgt: 1914 case Hexagon::A4_cmphgtu: 1915 case Hexagon::A4_cmpheqi: 1916 case Hexagon::A4_cmphgti: 1917 case Hexagon::A4_cmphgtui: 1918 SrcReg = MI.getOperand(1).getReg(); 1919 Mask = 0xFFFF; 1920 break; 1921 } 1922 1923 // Set the value/second source register. 1924 switch (Opc) { 1925 case Hexagon::C2_cmpeq: 1926 case Hexagon::C2_cmpeqp: 1927 case Hexagon::C2_cmpgt: 1928 case Hexagon::C2_cmpgtp: 1929 case Hexagon::C2_cmpgtu: 1930 case Hexagon::C2_cmpgtup: 1931 case Hexagon::A4_cmpbeq: 1932 case Hexagon::A4_cmpbgt: 1933 case Hexagon::A4_cmpbgtu: 1934 case Hexagon::A4_cmpheq: 1935 case Hexagon::A4_cmphgt: 1936 case Hexagon::A4_cmphgtu: 1937 case Hexagon::C4_cmpneq: 1938 case Hexagon::C4_cmplte: 1939 case Hexagon::C4_cmplteu: 1940 SrcReg2 = MI.getOperand(2).getReg(); 1941 Value = 0; 1942 return true; 1943 1944 case Hexagon::C2_cmpeqi: 1945 case Hexagon::C2_cmpgtui: 1946 case Hexagon::C2_cmpgti: 1947 case Hexagon::C4_cmpneqi: 1948 case Hexagon::C4_cmplteui: 1949 case Hexagon::C4_cmpltei: 1950 case Hexagon::A4_cmpbeqi: 1951 case Hexagon::A4_cmpbgti: 1952 case Hexagon::A4_cmpbgtui: 1953 case Hexagon::A4_cmpheqi: 1954 case Hexagon::A4_cmphgti: 1955 case Hexagon::A4_cmphgtui: { 1956 SrcReg2 = 0; 1957 const MachineOperand &Op2 = MI.getOperand(2); 1958 if (!Op2.isImm()) 1959 return false; 1960 Value = MI.getOperand(2).getImm(); 1961 return true; 1962 } 1963 } 1964 1965 return false; 1966 } 1967 1968 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1969 const MachineInstr &MI, 1970 unsigned *PredCost) const { 1971 return getInstrTimingClassLatency(ItinData, MI); 1972 } 1973 1974 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( 1975 const TargetSubtargetInfo &STI) const { 1976 const InstrItineraryData *II = STI.getInstrItineraryData(); 1977 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II); 1978 } 1979 1980 // Inspired by this pair: 1981 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0] 1982 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1] 1983 // Currently AA considers the addresses in these instructions to be aliasing. 1984 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint( 1985 const MachineInstr &MIa, const MachineInstr &MIb) const { 1986 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 1987 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 1988 return false; 1989 1990 // Instructions that are pure loads, not loads and stores like memops are not 1991 // dependent. 1992 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb)) 1993 return true; 1994 1995 // Get the base register in MIa. 1996 unsigned BasePosA, OffsetPosA; 1997 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA)) 1998 return false; 1999 const MachineOperand &BaseA = MIa.getOperand(BasePosA); 2000 Register BaseRegA = BaseA.getReg(); 2001 unsigned BaseSubA = BaseA.getSubReg(); 2002 2003 // Get the base register in MIb. 2004 unsigned BasePosB, OffsetPosB; 2005 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB)) 2006 return false; 2007 const MachineOperand &BaseB = MIb.getOperand(BasePosB); 2008 Register BaseRegB = BaseB.getReg(); 2009 unsigned BaseSubB = BaseB.getSubReg(); 2010 2011 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB) 2012 return false; 2013 2014 // Get the access sizes. 2015 unsigned SizeA = getMemAccessSize(MIa); 2016 unsigned SizeB = getMemAccessSize(MIb); 2017 2018 // Get the offsets. Handle immediates only for now. 2019 const MachineOperand &OffA = MIa.getOperand(OffsetPosA); 2020 const MachineOperand &OffB = MIb.getOperand(OffsetPosB); 2021 if (!MIa.getOperand(OffsetPosA).isImm() || 2022 !MIb.getOperand(OffsetPosB).isImm()) 2023 return false; 2024 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm(); 2025 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm(); 2026 2027 // This is a mem access with the same base register and known offsets from it. 2028 // Reason about it. 2029 if (OffsetA > OffsetB) { 2030 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB); 2031 return SizeB <= OffDiff; 2032 } 2033 if (OffsetA < OffsetB) { 2034 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA); 2035 return SizeA <= OffDiff; 2036 } 2037 2038 return false; 2039 } 2040 2041 /// If the instruction is an increment of a constant value, return the amount. 2042 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI, 2043 int &Value) const { 2044 if (isPostIncrement(MI)) { 2045 unsigned BasePos = 0, OffsetPos = 0; 2046 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) 2047 return false; 2048 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); 2049 if (OffsetOp.isImm()) { 2050 Value = OffsetOp.getImm(); 2051 return true; 2052 } 2053 } else if (MI.getOpcode() == Hexagon::A2_addi) { 2054 const MachineOperand &AddOp = MI.getOperand(2); 2055 if (AddOp.isImm()) { 2056 Value = AddOp.getImm(); 2057 return true; 2058 } 2059 } 2060 2061 return false; 2062 } 2063 2064 std::pair<unsigned, unsigned> 2065 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2066 return std::make_pair(TF & ~HexagonII::MO_Bitmasks, 2067 TF & HexagonII::MO_Bitmasks); 2068 } 2069 2070 ArrayRef<std::pair<unsigned, const char*>> 2071 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2072 using namespace HexagonII; 2073 2074 static const std::pair<unsigned, const char*> Flags[] = { 2075 {MO_PCREL, "hexagon-pcrel"}, 2076 {MO_GOT, "hexagon-got"}, 2077 {MO_LO16, "hexagon-lo16"}, 2078 {MO_HI16, "hexagon-hi16"}, 2079 {MO_GPREL, "hexagon-gprel"}, 2080 {MO_GDGOT, "hexagon-gdgot"}, 2081 {MO_GDPLT, "hexagon-gdplt"}, 2082 {MO_IE, "hexagon-ie"}, 2083 {MO_IEGOT, "hexagon-iegot"}, 2084 {MO_TPREL, "hexagon-tprel"} 2085 }; 2086 return ArrayRef(Flags); 2087 } 2088 2089 ArrayRef<std::pair<unsigned, const char*>> 2090 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2091 using namespace HexagonII; 2092 2093 static const std::pair<unsigned, const char*> Flags[] = { 2094 {HMOTF_ConstExtended, "hexagon-ext"} 2095 }; 2096 return ArrayRef(Flags); 2097 } 2098 2099 Register HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const { 2100 MachineRegisterInfo &MRI = MF->getRegInfo(); 2101 const TargetRegisterClass *TRC; 2102 if (VT == MVT::i1) { 2103 TRC = &Hexagon::PredRegsRegClass; 2104 } else if (VT == MVT::i32 || VT == MVT::f32) { 2105 TRC = &Hexagon::IntRegsRegClass; 2106 } else if (VT == MVT::i64 || VT == MVT::f64) { 2107 TRC = &Hexagon::DoubleRegsRegClass; 2108 } else { 2109 llvm_unreachable("Cannot handle this register class"); 2110 } 2111 2112 Register NewReg = MRI.createVirtualRegister(TRC); 2113 return NewReg; 2114 } 2115 2116 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const { 2117 return (getAddrMode(MI) == HexagonII::AbsoluteSet); 2118 } 2119 2120 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const { 2121 const uint64_t F = MI.getDesc().TSFlags; 2122 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); 2123 } 2124 2125 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const { 2126 return getAddrMode(MI) == HexagonII::BaseImmOffset; 2127 } 2128 2129 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const { 2130 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() && 2131 !MI.getDesc().mayStore() && 2132 MI.getDesc().getOpcode() != Hexagon::S2_allocframe && 2133 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe && 2134 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall(); 2135 } 2136 2137 // Return true if the instruction is a compound branch instruction. 2138 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const { 2139 return getType(MI) == HexagonII::TypeCJ && MI.isBranch(); 2140 } 2141 2142 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle 2143 // isFPImm and later getFPImm as well. 2144 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const { 2145 const uint64_t F = MI.getDesc().TSFlags; 2146 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; 2147 if (isExtended) // Instruction must be extended. 2148 return true; 2149 2150 unsigned isExtendable = 2151 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; 2152 if (!isExtendable) 2153 return false; 2154 2155 if (MI.isCall()) 2156 return false; 2157 2158 short ExtOpNum = getCExtOpNum(MI); 2159 const MachineOperand &MO = MI.getOperand(ExtOpNum); 2160 // Use MO operand flags to determine if MO 2161 // has the HMOTF_ConstExtended flag set. 2162 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) 2163 return true; 2164 // If this is a Machine BB address we are talking about, and it is 2165 // not marked as extended, say so. 2166 if (MO.isMBB()) 2167 return false; 2168 2169 // We could be using an instruction with an extendable immediate and shoehorn 2170 // a global address into it. If it is a global address it will be constant 2171 // extended. We do this for COMBINE. 2172 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || 2173 MO.isJTI() || MO.isCPI() || MO.isFPImm()) 2174 return true; 2175 2176 // If the extendable operand is not 'Immediate' type, the instruction should 2177 // have 'isExtended' flag set. 2178 assert(MO.isImm() && "Extendable operand must be Immediate type"); 2179 2180 int MinValue = getMinValue(MI); 2181 int MaxValue = getMaxValue(MI); 2182 int ImmValue = MO.getImm(); 2183 2184 return (ImmValue < MinValue || ImmValue > MaxValue); 2185 } 2186 2187 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const { 2188 switch (MI.getOpcode()) { 2189 case Hexagon::L4_return: 2190 case Hexagon::L4_return_t: 2191 case Hexagon::L4_return_f: 2192 case Hexagon::L4_return_tnew_pnt: 2193 case Hexagon::L4_return_fnew_pnt: 2194 case Hexagon::L4_return_tnew_pt: 2195 case Hexagon::L4_return_fnew_pt: 2196 return true; 2197 } 2198 return false; 2199 } 2200 2201 // Return true when ConsMI uses a register defined by ProdMI. 2202 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI, 2203 const MachineInstr &ConsMI) const { 2204 if (!ProdMI.getDesc().getNumDefs()) 2205 return false; 2206 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 2207 2208 SmallVector<Register, 4> DefsA; 2209 SmallVector<Register, 4> DefsB; 2210 SmallVector<Register, 8> UsesA; 2211 SmallVector<Register, 8> UsesB; 2212 2213 parseOperands(ProdMI, DefsA, UsesA); 2214 parseOperands(ConsMI, DefsB, UsesB); 2215 2216 for (auto &RegA : DefsA) 2217 for (auto &RegB : UsesB) { 2218 // True data dependency. 2219 if (RegA == RegB) 2220 return true; 2221 2222 if (RegA.isPhysical()) 2223 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs) 2224 if (RegB == *SubRegs) 2225 return true; 2226 2227 if (RegB.isPhysical()) 2228 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs) 2229 if (RegA == *SubRegs) 2230 return true; 2231 } 2232 2233 return false; 2234 } 2235 2236 // Returns true if the instruction is alread a .cur. 2237 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const { 2238 switch (MI.getOpcode()) { 2239 case Hexagon::V6_vL32b_cur_pi: 2240 case Hexagon::V6_vL32b_cur_ai: 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 // Returns true, if any one of the operands is a dot new 2247 // insn, whether it is predicated dot new or register dot new. 2248 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const { 2249 if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))) 2250 return true; 2251 2252 return false; 2253 } 2254 2255 /// Symmetrical. See if these two instructions are fit for duplex pair. 2256 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa, 2257 const MachineInstr &MIb) const { 2258 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa); 2259 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb); 2260 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG)); 2261 } 2262 2263 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const { 2264 return (Opcode == Hexagon::ENDLOOP0 || 2265 Opcode == Hexagon::ENDLOOP1); 2266 } 2267 2268 bool HexagonInstrInfo::isExpr(unsigned OpType) const { 2269 switch(OpType) { 2270 case MachineOperand::MO_MachineBasicBlock: 2271 case MachineOperand::MO_GlobalAddress: 2272 case MachineOperand::MO_ExternalSymbol: 2273 case MachineOperand::MO_JumpTableIndex: 2274 case MachineOperand::MO_ConstantPoolIndex: 2275 case MachineOperand::MO_BlockAddress: 2276 return true; 2277 default: 2278 return false; 2279 } 2280 } 2281 2282 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const { 2283 const MCInstrDesc &MID = MI.getDesc(); 2284 const uint64_t F = MID.TSFlags; 2285 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) 2286 return true; 2287 2288 // TODO: This is largely obsolete now. Will need to be removed 2289 // in consecutive patches. 2290 switch (MI.getOpcode()) { 2291 // PS_fi and PS_fia remain special cases. 2292 case Hexagon::PS_fi: 2293 case Hexagon::PS_fia: 2294 return true; 2295 default: 2296 return false; 2297 } 2298 return false; 2299 } 2300 2301 // This returns true in two cases: 2302 // - The OP code itself indicates that this is an extended instruction. 2303 // - One of MOs has been marked with HMOTF_ConstExtended flag. 2304 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const { 2305 // First check if this is permanently extended op code. 2306 const uint64_t F = MI.getDesc().TSFlags; 2307 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) 2308 return true; 2309 // Use MO operand flags to determine if one of MI's operands 2310 // has HMOTF_ConstExtended flag set. 2311 for (const MachineOperand &MO : MI.operands()) 2312 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) 2313 return true; 2314 return false; 2315 } 2316 2317 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const { 2318 unsigned Opcode = MI.getOpcode(); 2319 const uint64_t F = get(Opcode).TSFlags; 2320 return (F >> HexagonII::FPPos) & HexagonII::FPMask; 2321 } 2322 2323 // No V60 HVX VMEM with A_INDIRECT. 2324 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I, 2325 const MachineInstr &J) const { 2326 if (!isHVXVec(I)) 2327 return false; 2328 if (!I.mayLoad() && !I.mayStore()) 2329 return false; 2330 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J); 2331 } 2332 2333 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const { 2334 switch (MI.getOpcode()) { 2335 case Hexagon::J2_callr: 2336 case Hexagon::J2_callrf: 2337 case Hexagon::J2_callrt: 2338 case Hexagon::PS_call_nr: 2339 return true; 2340 } 2341 return false; 2342 } 2343 2344 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const { 2345 switch (MI.getOpcode()) { 2346 case Hexagon::L4_return: 2347 case Hexagon::L4_return_t: 2348 case Hexagon::L4_return_f: 2349 case Hexagon::L4_return_fnew_pnt: 2350 case Hexagon::L4_return_fnew_pt: 2351 case Hexagon::L4_return_tnew_pnt: 2352 case Hexagon::L4_return_tnew_pt: 2353 return true; 2354 } 2355 return false; 2356 } 2357 2358 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const { 2359 switch (MI.getOpcode()) { 2360 case Hexagon::J2_jumpr: 2361 case Hexagon::J2_jumprt: 2362 case Hexagon::J2_jumprf: 2363 case Hexagon::J2_jumprtnewpt: 2364 case Hexagon::J2_jumprfnewpt: 2365 case Hexagon::J2_jumprtnew: 2366 case Hexagon::J2_jumprfnew: 2367 return true; 2368 } 2369 return false; 2370 } 2371 2372 // Return true if a given MI can accommodate given offset. 2373 // Use abs estimate as oppose to the exact number. 2374 // TODO: This will need to be changed to use MC level 2375 // definition of instruction extendable field size. 2376 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI, 2377 unsigned offset) const { 2378 // This selection of jump instructions matches to that what 2379 // analyzeBranch can parse, plus NVJ. 2380 if (isNewValueJump(MI)) // r9:2 2381 return isInt<11>(offset); 2382 2383 switch (MI.getOpcode()) { 2384 // Still missing Jump to address condition on register value. 2385 default: 2386 return false; 2387 case Hexagon::J2_jump: // bits<24> dst; // r22:2 2388 case Hexagon::J2_call: 2389 case Hexagon::PS_call_nr: 2390 return isInt<24>(offset); 2391 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2 2392 case Hexagon::J2_jumpf: 2393 case Hexagon::J2_jumptnew: 2394 case Hexagon::J2_jumptnewpt: 2395 case Hexagon::J2_jumpfnew: 2396 case Hexagon::J2_jumpfnewpt: 2397 case Hexagon::J2_callt: 2398 case Hexagon::J2_callf: 2399 return isInt<17>(offset); 2400 case Hexagon::J2_loop0i: 2401 case Hexagon::J2_loop0iext: 2402 case Hexagon::J2_loop0r: 2403 case Hexagon::J2_loop0rext: 2404 case Hexagon::J2_loop1i: 2405 case Hexagon::J2_loop1iext: 2406 case Hexagon::J2_loop1r: 2407 case Hexagon::J2_loop1rext: 2408 return isInt<9>(offset); 2409 // TODO: Add all the compound branches here. Can we do this in Relation model? 2410 case Hexagon::J4_cmpeqi_tp0_jump_nt: 2411 case Hexagon::J4_cmpeqi_tp1_jump_nt: 2412 case Hexagon::J4_cmpeqn1_tp0_jump_nt: 2413 case Hexagon::J4_cmpeqn1_tp1_jump_nt: 2414 return isInt<11>(offset); 2415 } 2416 } 2417 2418 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const { 2419 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply 2420 // resource, but all operands can be received late like an ALU instruction. 2421 return getType(MI) == HexagonII::TypeCVI_VX_LATE; 2422 } 2423 2424 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const { 2425 unsigned Opcode = MI.getOpcode(); 2426 return Opcode == Hexagon::J2_loop0i || 2427 Opcode == Hexagon::J2_loop0r || 2428 Opcode == Hexagon::J2_loop0iext || 2429 Opcode == Hexagon::J2_loop0rext || 2430 Opcode == Hexagon::J2_loop1i || 2431 Opcode == Hexagon::J2_loop1r || 2432 Opcode == Hexagon::J2_loop1iext || 2433 Opcode == Hexagon::J2_loop1rext; 2434 } 2435 2436 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const { 2437 switch (MI.getOpcode()) { 2438 default: return false; 2439 case Hexagon::L4_iadd_memopw_io: 2440 case Hexagon::L4_isub_memopw_io: 2441 case Hexagon::L4_add_memopw_io: 2442 case Hexagon::L4_sub_memopw_io: 2443 case Hexagon::L4_and_memopw_io: 2444 case Hexagon::L4_or_memopw_io: 2445 case Hexagon::L4_iadd_memoph_io: 2446 case Hexagon::L4_isub_memoph_io: 2447 case Hexagon::L4_add_memoph_io: 2448 case Hexagon::L4_sub_memoph_io: 2449 case Hexagon::L4_and_memoph_io: 2450 case Hexagon::L4_or_memoph_io: 2451 case Hexagon::L4_iadd_memopb_io: 2452 case Hexagon::L4_isub_memopb_io: 2453 case Hexagon::L4_add_memopb_io: 2454 case Hexagon::L4_sub_memopb_io: 2455 case Hexagon::L4_and_memopb_io: 2456 case Hexagon::L4_or_memopb_io: 2457 case Hexagon::L4_ior_memopb_io: 2458 case Hexagon::L4_ior_memoph_io: 2459 case Hexagon::L4_ior_memopw_io: 2460 case Hexagon::L4_iand_memopb_io: 2461 case Hexagon::L4_iand_memoph_io: 2462 case Hexagon::L4_iand_memopw_io: 2463 return true; 2464 } 2465 return false; 2466 } 2467 2468 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const { 2469 const uint64_t F = MI.getDesc().TSFlags; 2470 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; 2471 } 2472 2473 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const { 2474 const uint64_t F = get(Opcode).TSFlags; 2475 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; 2476 } 2477 2478 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const { 2479 return isNewValueJump(MI) || isNewValueStore(MI); 2480 } 2481 2482 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const { 2483 return isNewValue(MI) && MI.isBranch(); 2484 } 2485 2486 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const { 2487 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); 2488 } 2489 2490 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const { 2491 const uint64_t F = MI.getDesc().TSFlags; 2492 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; 2493 } 2494 2495 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { 2496 const uint64_t F = get(Opcode).TSFlags; 2497 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; 2498 } 2499 2500 // Returns true if a particular operand is extendable for an instruction. 2501 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI, 2502 unsigned OperandNum) const { 2503 const uint64_t F = MI.getDesc().TSFlags; 2504 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) 2505 == OperandNum; 2506 } 2507 2508 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const { 2509 const uint64_t F = MI.getDesc().TSFlags; 2510 assert(isPredicated(MI)); 2511 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; 2512 } 2513 2514 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { 2515 const uint64_t F = get(Opcode).TSFlags; 2516 assert(isPredicated(Opcode)); 2517 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; 2518 } 2519 2520 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const { 2521 const uint64_t F = MI.getDesc().TSFlags; 2522 return !((F >> HexagonII::PredicatedFalsePos) & 2523 HexagonII::PredicatedFalseMask); 2524 } 2525 2526 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { 2527 const uint64_t F = get(Opcode).TSFlags; 2528 // Make sure that the instruction is predicated. 2529 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); 2530 return !((F >> HexagonII::PredicatedFalsePos) & 2531 HexagonII::PredicatedFalseMask); 2532 } 2533 2534 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { 2535 const uint64_t F = get(Opcode).TSFlags; 2536 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; 2537 } 2538 2539 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const { 2540 const uint64_t F = get(Opcode).TSFlags; 2541 return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask; 2542 } 2543 2544 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const { 2545 const uint64_t F = get(Opcode).TSFlags; 2546 assert(get(Opcode).isBranch() && 2547 (isPredicatedNew(Opcode) || isNewValue(Opcode))); 2548 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask; 2549 } 2550 2551 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const { 2552 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 || 2553 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT || 2554 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC || 2555 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC; 2556 } 2557 2558 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const { 2559 switch (MI.getOpcode()) { 2560 // Byte 2561 case Hexagon::L2_loadrb_io: 2562 case Hexagon::L4_loadrb_ur: 2563 case Hexagon::L4_loadrb_ap: 2564 case Hexagon::L2_loadrb_pr: 2565 case Hexagon::L2_loadrb_pbr: 2566 case Hexagon::L2_loadrb_pi: 2567 case Hexagon::L2_loadrb_pci: 2568 case Hexagon::L2_loadrb_pcr: 2569 case Hexagon::L2_loadbsw2_io: 2570 case Hexagon::L4_loadbsw2_ur: 2571 case Hexagon::L4_loadbsw2_ap: 2572 case Hexagon::L2_loadbsw2_pr: 2573 case Hexagon::L2_loadbsw2_pbr: 2574 case Hexagon::L2_loadbsw2_pi: 2575 case Hexagon::L2_loadbsw2_pci: 2576 case Hexagon::L2_loadbsw2_pcr: 2577 case Hexagon::L2_loadbsw4_io: 2578 case Hexagon::L4_loadbsw4_ur: 2579 case Hexagon::L4_loadbsw4_ap: 2580 case Hexagon::L2_loadbsw4_pr: 2581 case Hexagon::L2_loadbsw4_pbr: 2582 case Hexagon::L2_loadbsw4_pi: 2583 case Hexagon::L2_loadbsw4_pci: 2584 case Hexagon::L2_loadbsw4_pcr: 2585 case Hexagon::L4_loadrb_rr: 2586 case Hexagon::L2_ploadrbt_io: 2587 case Hexagon::L2_ploadrbt_pi: 2588 case Hexagon::L2_ploadrbf_io: 2589 case Hexagon::L2_ploadrbf_pi: 2590 case Hexagon::L2_ploadrbtnew_io: 2591 case Hexagon::L2_ploadrbfnew_io: 2592 case Hexagon::L4_ploadrbt_rr: 2593 case Hexagon::L4_ploadrbf_rr: 2594 case Hexagon::L4_ploadrbtnew_rr: 2595 case Hexagon::L4_ploadrbfnew_rr: 2596 case Hexagon::L2_ploadrbtnew_pi: 2597 case Hexagon::L2_ploadrbfnew_pi: 2598 case Hexagon::L4_ploadrbt_abs: 2599 case Hexagon::L4_ploadrbf_abs: 2600 case Hexagon::L4_ploadrbtnew_abs: 2601 case Hexagon::L4_ploadrbfnew_abs: 2602 case Hexagon::L2_loadrbgp: 2603 // Half 2604 case Hexagon::L2_loadrh_io: 2605 case Hexagon::L4_loadrh_ur: 2606 case Hexagon::L4_loadrh_ap: 2607 case Hexagon::L2_loadrh_pr: 2608 case Hexagon::L2_loadrh_pbr: 2609 case Hexagon::L2_loadrh_pi: 2610 case Hexagon::L2_loadrh_pci: 2611 case Hexagon::L2_loadrh_pcr: 2612 case Hexagon::L4_loadrh_rr: 2613 case Hexagon::L2_ploadrht_io: 2614 case Hexagon::L2_ploadrht_pi: 2615 case Hexagon::L2_ploadrhf_io: 2616 case Hexagon::L2_ploadrhf_pi: 2617 case Hexagon::L2_ploadrhtnew_io: 2618 case Hexagon::L2_ploadrhfnew_io: 2619 case Hexagon::L4_ploadrht_rr: 2620 case Hexagon::L4_ploadrhf_rr: 2621 case Hexagon::L4_ploadrhtnew_rr: 2622 case Hexagon::L4_ploadrhfnew_rr: 2623 case Hexagon::L2_ploadrhtnew_pi: 2624 case Hexagon::L2_ploadrhfnew_pi: 2625 case Hexagon::L4_ploadrht_abs: 2626 case Hexagon::L4_ploadrhf_abs: 2627 case Hexagon::L4_ploadrhtnew_abs: 2628 case Hexagon::L4_ploadrhfnew_abs: 2629 case Hexagon::L2_loadrhgp: 2630 return true; 2631 default: 2632 return false; 2633 } 2634 } 2635 2636 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const { 2637 const uint64_t F = MI.getDesc().TSFlags; 2638 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask; 2639 } 2640 2641 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const { 2642 switch (MI.getOpcode()) { 2643 case Hexagon::STriw_pred: 2644 case Hexagon::LDriw_pred: 2645 return true; 2646 default: 2647 return false; 2648 } 2649 } 2650 2651 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const { 2652 if (!MI.isBranch()) 2653 return false; 2654 2655 for (auto &Op : MI.operands()) 2656 if (Op.isGlobal() || Op.isSymbol()) 2657 return true; 2658 return false; 2659 } 2660 2661 // Returns true when SU has a timing class TC1. 2662 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const { 2663 unsigned SchedClass = MI.getDesc().getSchedClass(); 2664 return is_TC1(SchedClass); 2665 } 2666 2667 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const { 2668 unsigned SchedClass = MI.getDesc().getSchedClass(); 2669 return is_TC2(SchedClass); 2670 } 2671 2672 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const { 2673 unsigned SchedClass = MI.getDesc().getSchedClass(); 2674 return is_TC2early(SchedClass); 2675 } 2676 2677 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const { 2678 unsigned SchedClass = MI.getDesc().getSchedClass(); 2679 return is_TC4x(SchedClass); 2680 } 2681 2682 // Schedule this ASAP. 2683 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1, 2684 const MachineInstr &MI2) const { 2685 if (mayBeCurLoad(MI1)) { 2686 // if (result of SU is used in Next) return true; 2687 Register DstReg = MI1.getOperand(0).getReg(); 2688 int N = MI2.getNumOperands(); 2689 for (int I = 0; I < N; I++) 2690 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg()) 2691 return true; 2692 } 2693 if (mayBeNewStore(MI2)) 2694 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi) 2695 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() && 2696 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg()) 2697 return true; 2698 return false; 2699 } 2700 2701 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const { 2702 const uint64_t V = getType(MI); 2703 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; 2704 } 2705 2706 // Check if the Offset is a valid auto-inc imm by Load/Store Type. 2707 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const { 2708 int Size = VT.getSizeInBits() / 8; 2709 if (Offset % Size != 0) 2710 return false; 2711 int Count = Offset / Size; 2712 2713 switch (VT.getSimpleVT().SimpleTy) { 2714 // For scalars the auto-inc is s4 2715 case MVT::i8: 2716 case MVT::i16: 2717 case MVT::i32: 2718 case MVT::i64: 2719 case MVT::f32: 2720 case MVT::f64: 2721 case MVT::v2i16: 2722 case MVT::v2i32: 2723 case MVT::v4i8: 2724 case MVT::v4i16: 2725 case MVT::v8i8: 2726 return isInt<4>(Count); 2727 // For HVX vectors the auto-inc is s3 2728 case MVT::v64i8: 2729 case MVT::v32i16: 2730 case MVT::v16i32: 2731 case MVT::v8i64: 2732 case MVT::v128i8: 2733 case MVT::v64i16: 2734 case MVT::v32i32: 2735 case MVT::v16i64: 2736 return isInt<3>(Count); 2737 default: 2738 break; 2739 } 2740 2741 llvm_unreachable("Not an valid type!"); 2742 } 2743 2744 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, 2745 const TargetRegisterInfo *TRI, bool Extend) const { 2746 // This function is to check whether the "Offset" is in the correct range of 2747 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is 2748 // inserted to calculate the final address. Due to this reason, the function 2749 // assumes that the "Offset" has correct alignment. 2750 // We used to assert if the offset was not properly aligned, however, 2751 // there are cases where a misaligned pointer recast can cause this 2752 // problem, and we need to allow for it. The front end warns of such 2753 // misaligns with respect to load size. 2754 switch (Opcode) { 2755 case Hexagon::PS_vstorerq_ai: 2756 case Hexagon::PS_vstorerv_ai: 2757 case Hexagon::PS_vstorerw_ai: 2758 case Hexagon::PS_vstorerw_nt_ai: 2759 case Hexagon::PS_vloadrq_ai: 2760 case Hexagon::PS_vloadrv_ai: 2761 case Hexagon::PS_vloadrw_ai: 2762 case Hexagon::PS_vloadrw_nt_ai: 2763 case Hexagon::V6_vL32b_ai: 2764 case Hexagon::V6_vS32b_ai: 2765 case Hexagon::V6_vS32b_qpred_ai: 2766 case Hexagon::V6_vS32b_nqpred_ai: 2767 case Hexagon::V6_vL32b_nt_ai: 2768 case Hexagon::V6_vS32b_nt_ai: 2769 case Hexagon::V6_vL32Ub_ai: 2770 case Hexagon::V6_vS32Ub_ai: 2771 case Hexagon::V6_vgathermh_pseudo: 2772 case Hexagon::V6_vgathermw_pseudo: 2773 case Hexagon::V6_vgathermhw_pseudo: 2774 case Hexagon::V6_vgathermhq_pseudo: 2775 case Hexagon::V6_vgathermwq_pseudo: 2776 case Hexagon::V6_vgathermhwq_pseudo: { 2777 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass); 2778 assert(isPowerOf2_32(VectorSize)); 2779 if (Offset & (VectorSize-1)) 2780 return false; 2781 return isInt<4>(Offset >> Log2_32(VectorSize)); 2782 } 2783 2784 case Hexagon::J2_loop0i: 2785 case Hexagon::J2_loop1i: 2786 return isUInt<10>(Offset); 2787 2788 case Hexagon::S4_storeirb_io: 2789 case Hexagon::S4_storeirbt_io: 2790 case Hexagon::S4_storeirbf_io: 2791 return isUInt<6>(Offset); 2792 2793 case Hexagon::S4_storeirh_io: 2794 case Hexagon::S4_storeirht_io: 2795 case Hexagon::S4_storeirhf_io: 2796 return isShiftedUInt<6,1>(Offset); 2797 2798 case Hexagon::S4_storeiri_io: 2799 case Hexagon::S4_storeirit_io: 2800 case Hexagon::S4_storeirif_io: 2801 return isShiftedUInt<6,2>(Offset); 2802 // Handle these two compare instructions that are not extendable. 2803 case Hexagon::A4_cmpbeqi: 2804 return isUInt<8>(Offset); 2805 case Hexagon::A4_cmpbgti: 2806 return isInt<8>(Offset); 2807 } 2808 2809 if (Extend) 2810 return true; 2811 2812 switch (Opcode) { 2813 case Hexagon::L2_loadri_io: 2814 case Hexagon::S2_storeri_io: 2815 return (Offset >= Hexagon_MEMW_OFFSET_MIN) && 2816 (Offset <= Hexagon_MEMW_OFFSET_MAX); 2817 2818 case Hexagon::L2_loadrd_io: 2819 case Hexagon::S2_storerd_io: 2820 return (Offset >= Hexagon_MEMD_OFFSET_MIN) && 2821 (Offset <= Hexagon_MEMD_OFFSET_MAX); 2822 2823 case Hexagon::L2_loadrh_io: 2824 case Hexagon::L2_loadruh_io: 2825 case Hexagon::S2_storerh_io: 2826 case Hexagon::S2_storerf_io: 2827 return (Offset >= Hexagon_MEMH_OFFSET_MIN) && 2828 (Offset <= Hexagon_MEMH_OFFSET_MAX); 2829 2830 case Hexagon::L2_loadrb_io: 2831 case Hexagon::L2_loadrub_io: 2832 case Hexagon::S2_storerb_io: 2833 return (Offset >= Hexagon_MEMB_OFFSET_MIN) && 2834 (Offset <= Hexagon_MEMB_OFFSET_MAX); 2835 2836 case Hexagon::A2_addi: 2837 return (Offset >= Hexagon_ADDI_OFFSET_MIN) && 2838 (Offset <= Hexagon_ADDI_OFFSET_MAX); 2839 2840 case Hexagon::L4_iadd_memopw_io: 2841 case Hexagon::L4_isub_memopw_io: 2842 case Hexagon::L4_add_memopw_io: 2843 case Hexagon::L4_sub_memopw_io: 2844 case Hexagon::L4_iand_memopw_io: 2845 case Hexagon::L4_ior_memopw_io: 2846 case Hexagon::L4_and_memopw_io: 2847 case Hexagon::L4_or_memopw_io: 2848 return (0 <= Offset && Offset <= 255); 2849 2850 case Hexagon::L4_iadd_memoph_io: 2851 case Hexagon::L4_isub_memoph_io: 2852 case Hexagon::L4_add_memoph_io: 2853 case Hexagon::L4_sub_memoph_io: 2854 case Hexagon::L4_iand_memoph_io: 2855 case Hexagon::L4_ior_memoph_io: 2856 case Hexagon::L4_and_memoph_io: 2857 case Hexagon::L4_or_memoph_io: 2858 return (0 <= Offset && Offset <= 127); 2859 2860 case Hexagon::L4_iadd_memopb_io: 2861 case Hexagon::L4_isub_memopb_io: 2862 case Hexagon::L4_add_memopb_io: 2863 case Hexagon::L4_sub_memopb_io: 2864 case Hexagon::L4_iand_memopb_io: 2865 case Hexagon::L4_ior_memopb_io: 2866 case Hexagon::L4_and_memopb_io: 2867 case Hexagon::L4_or_memopb_io: 2868 return (0 <= Offset && Offset <= 63); 2869 2870 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of 2871 // any size. Later pass knows how to handle it. 2872 case Hexagon::STriw_pred: 2873 case Hexagon::LDriw_pred: 2874 case Hexagon::STriw_ctr: 2875 case Hexagon::LDriw_ctr: 2876 return true; 2877 2878 case Hexagon::PS_fi: 2879 case Hexagon::PS_fia: 2880 case Hexagon::INLINEASM: 2881 return true; 2882 2883 case Hexagon::L2_ploadrbt_io: 2884 case Hexagon::L2_ploadrbf_io: 2885 case Hexagon::L2_ploadrubt_io: 2886 case Hexagon::L2_ploadrubf_io: 2887 case Hexagon::S2_pstorerbt_io: 2888 case Hexagon::S2_pstorerbf_io: 2889 return isUInt<6>(Offset); 2890 2891 case Hexagon::L2_ploadrht_io: 2892 case Hexagon::L2_ploadrhf_io: 2893 case Hexagon::L2_ploadruht_io: 2894 case Hexagon::L2_ploadruhf_io: 2895 case Hexagon::S2_pstorerht_io: 2896 case Hexagon::S2_pstorerhf_io: 2897 return isShiftedUInt<6,1>(Offset); 2898 2899 case Hexagon::L2_ploadrit_io: 2900 case Hexagon::L2_ploadrif_io: 2901 case Hexagon::S2_pstorerit_io: 2902 case Hexagon::S2_pstorerif_io: 2903 return isShiftedUInt<6,2>(Offset); 2904 2905 case Hexagon::L2_ploadrdt_io: 2906 case Hexagon::L2_ploadrdf_io: 2907 case Hexagon::S2_pstorerdt_io: 2908 case Hexagon::S2_pstorerdf_io: 2909 return isShiftedUInt<6,3>(Offset); 2910 2911 case Hexagon::L2_loadbsw2_io: 2912 case Hexagon::L2_loadbzw2_io: 2913 return isShiftedInt<11,1>(Offset); 2914 2915 case Hexagon::L2_loadbsw4_io: 2916 case Hexagon::L2_loadbzw4_io: 2917 return isShiftedInt<11,2>(Offset); 2918 } // switch 2919 2920 dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode) 2921 << ")\n"; 2922 llvm_unreachable("No offset range is defined for this opcode. " 2923 "Please define it in the above switch statement!"); 2924 } 2925 2926 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const { 2927 return isHVXVec(MI) && isAccumulator(MI); 2928 } 2929 2930 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const { 2931 const uint64_t F = get(MI.getOpcode()).TSFlags; 2932 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask); 2933 return 2934 V == HexagonII::TypeCVI_VA || 2935 V == HexagonII::TypeCVI_VA_DV; 2936 } 2937 2938 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI, 2939 const MachineInstr &ConsMI) const { 2940 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI)) 2941 return true; 2942 2943 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI))) 2944 return true; 2945 2946 if (mayBeNewStore(ConsMI)) 2947 return true; 2948 2949 return false; 2950 } 2951 2952 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const { 2953 switch (MI.getOpcode()) { 2954 // Byte 2955 case Hexagon::L2_loadrub_io: 2956 case Hexagon::L4_loadrub_ur: 2957 case Hexagon::L4_loadrub_ap: 2958 case Hexagon::L2_loadrub_pr: 2959 case Hexagon::L2_loadrub_pbr: 2960 case Hexagon::L2_loadrub_pi: 2961 case Hexagon::L2_loadrub_pci: 2962 case Hexagon::L2_loadrub_pcr: 2963 case Hexagon::L2_loadbzw2_io: 2964 case Hexagon::L4_loadbzw2_ur: 2965 case Hexagon::L4_loadbzw2_ap: 2966 case Hexagon::L2_loadbzw2_pr: 2967 case Hexagon::L2_loadbzw2_pbr: 2968 case Hexagon::L2_loadbzw2_pi: 2969 case Hexagon::L2_loadbzw2_pci: 2970 case Hexagon::L2_loadbzw2_pcr: 2971 case Hexagon::L2_loadbzw4_io: 2972 case Hexagon::L4_loadbzw4_ur: 2973 case Hexagon::L4_loadbzw4_ap: 2974 case Hexagon::L2_loadbzw4_pr: 2975 case Hexagon::L2_loadbzw4_pbr: 2976 case Hexagon::L2_loadbzw4_pi: 2977 case Hexagon::L2_loadbzw4_pci: 2978 case Hexagon::L2_loadbzw4_pcr: 2979 case Hexagon::L4_loadrub_rr: 2980 case Hexagon::L2_ploadrubt_io: 2981 case Hexagon::L2_ploadrubt_pi: 2982 case Hexagon::L2_ploadrubf_io: 2983 case Hexagon::L2_ploadrubf_pi: 2984 case Hexagon::L2_ploadrubtnew_io: 2985 case Hexagon::L2_ploadrubfnew_io: 2986 case Hexagon::L4_ploadrubt_rr: 2987 case Hexagon::L4_ploadrubf_rr: 2988 case Hexagon::L4_ploadrubtnew_rr: 2989 case Hexagon::L4_ploadrubfnew_rr: 2990 case Hexagon::L2_ploadrubtnew_pi: 2991 case Hexagon::L2_ploadrubfnew_pi: 2992 case Hexagon::L4_ploadrubt_abs: 2993 case Hexagon::L4_ploadrubf_abs: 2994 case Hexagon::L4_ploadrubtnew_abs: 2995 case Hexagon::L4_ploadrubfnew_abs: 2996 case Hexagon::L2_loadrubgp: 2997 // Half 2998 case Hexagon::L2_loadruh_io: 2999 case Hexagon::L4_loadruh_ur: 3000 case Hexagon::L4_loadruh_ap: 3001 case Hexagon::L2_loadruh_pr: 3002 case Hexagon::L2_loadruh_pbr: 3003 case Hexagon::L2_loadruh_pi: 3004 case Hexagon::L2_loadruh_pci: 3005 case Hexagon::L2_loadruh_pcr: 3006 case Hexagon::L4_loadruh_rr: 3007 case Hexagon::L2_ploadruht_io: 3008 case Hexagon::L2_ploadruht_pi: 3009 case Hexagon::L2_ploadruhf_io: 3010 case Hexagon::L2_ploadruhf_pi: 3011 case Hexagon::L2_ploadruhtnew_io: 3012 case Hexagon::L2_ploadruhfnew_io: 3013 case Hexagon::L4_ploadruht_rr: 3014 case Hexagon::L4_ploadruhf_rr: 3015 case Hexagon::L4_ploadruhtnew_rr: 3016 case Hexagon::L4_ploadruhfnew_rr: 3017 case Hexagon::L2_ploadruhtnew_pi: 3018 case Hexagon::L2_ploadruhfnew_pi: 3019 case Hexagon::L4_ploadruht_abs: 3020 case Hexagon::L4_ploadruhf_abs: 3021 case Hexagon::L4_ploadruhtnew_abs: 3022 case Hexagon::L4_ploadruhfnew_abs: 3023 case Hexagon::L2_loadruhgp: 3024 return true; 3025 default: 3026 return false; 3027 } 3028 } 3029 3030 // Add latency to instruction. 3031 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1, 3032 const MachineInstr &MI2) const { 3033 if (isHVXVec(MI1) && isHVXVec(MI2)) 3034 if (!isVecUsableNextPacket(MI1, MI2)) 3035 return true; 3036 return false; 3037 } 3038 3039 /// Get the base register and byte offset of a load/store instr. 3040 bool HexagonInstrInfo::getMemOperandsWithOffsetWidth( 3041 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 3042 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 3043 const TargetRegisterInfo *TRI) const { 3044 OffsetIsScalable = false; 3045 const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width); 3046 if (!BaseOp || !BaseOp->isReg()) 3047 return false; 3048 BaseOps.push_back(BaseOp); 3049 return true; 3050 } 3051 3052 /// Can these instructions execute at the same time in a bundle. 3053 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First, 3054 const MachineInstr &Second) const { 3055 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) { 3056 const MachineOperand &Op = Second.getOperand(0); 3057 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29) 3058 return true; 3059 } 3060 if (DisableNVSchedule) 3061 return false; 3062 if (mayBeNewStore(Second)) { 3063 // Make sure the definition of the first instruction is the value being 3064 // stored. 3065 const MachineOperand &Stored = 3066 Second.getOperand(Second.getNumOperands() - 1); 3067 if (!Stored.isReg()) 3068 return false; 3069 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) { 3070 const MachineOperand &Op = First.getOperand(i); 3071 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg()) 3072 return true; 3073 } 3074 } 3075 return false; 3076 } 3077 3078 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const { 3079 unsigned Opc = CallMI.getOpcode(); 3080 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr; 3081 } 3082 3083 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const { 3084 for (auto &I : *B) 3085 if (I.isEHLabel()) 3086 return true; 3087 return false; 3088 } 3089 3090 // Returns true if an instruction can be converted into a non-extended 3091 // equivalent instruction. 3092 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const { 3093 short NonExtOpcode; 3094 // Check if the instruction has a register form that uses register in place 3095 // of the extended operand, if so return that as the non-extended form. 3096 if (Hexagon::getRegForm(MI.getOpcode()) >= 0) 3097 return true; 3098 3099 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { 3100 // Check addressing mode and retrieve non-ext equivalent instruction. 3101 3102 switch (getAddrMode(MI)) { 3103 case HexagonII::Absolute: 3104 // Load/store with absolute addressing mode can be converted into 3105 // base+offset mode. 3106 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode()); 3107 break; 3108 case HexagonII::BaseImmOffset: 3109 // Load/store with base+offset addressing mode can be converted into 3110 // base+register offset addressing mode. However left shift operand should 3111 // be set to 0. 3112 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode()); 3113 break; 3114 case HexagonII::BaseLongOffset: 3115 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); 3116 break; 3117 default: 3118 return false; 3119 } 3120 if (NonExtOpcode < 0) 3121 return false; 3122 return true; 3123 } 3124 return false; 3125 } 3126 3127 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const { 3128 return Hexagon::getRealHWInstr(MI.getOpcode(), 3129 Hexagon::InstrType_Pseudo) >= 0; 3130 } 3131 3132 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B) 3133 const { 3134 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); 3135 while (I != E) { 3136 if (I->isBarrier()) 3137 return true; 3138 ++I; 3139 } 3140 return false; 3141 } 3142 3143 // Returns true, if a LD insn can be promoted to a cur load. 3144 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const { 3145 const uint64_t F = MI.getDesc().TSFlags; 3146 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) && 3147 Subtarget.hasV60Ops(); 3148 } 3149 3150 // Returns true, if a ST insn can be promoted to a new-value store. 3151 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const { 3152 if (MI.mayStore() && !Subtarget.useNewValueStores()) 3153 return false; 3154 3155 const uint64_t F = MI.getDesc().TSFlags; 3156 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask; 3157 } 3158 3159 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI, 3160 const MachineInstr &ConsMI) const { 3161 // There is no stall when ProdMI is not a V60 vector. 3162 if (!isHVXVec(ProdMI)) 3163 return false; 3164 3165 // There is no stall when ProdMI and ConsMI are not dependent. 3166 if (!isDependent(ProdMI, ConsMI)) 3167 return false; 3168 3169 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI 3170 // are scheduled in consecutive packets. 3171 if (isVecUsableNextPacket(ProdMI, ConsMI)) 3172 return false; 3173 3174 return true; 3175 } 3176 3177 bool HexagonInstrInfo::producesStall(const MachineInstr &MI, 3178 MachineBasicBlock::const_instr_iterator BII) const { 3179 // There is no stall when I is not a V60 vector. 3180 if (!isHVXVec(MI)) 3181 return false; 3182 3183 MachineBasicBlock::const_instr_iterator MII = BII; 3184 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end(); 3185 3186 if (!MII->isBundle()) 3187 return producesStall(*MII, MI); 3188 3189 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) { 3190 const MachineInstr &J = *MII; 3191 if (producesStall(J, MI)) 3192 return true; 3193 } 3194 return false; 3195 } 3196 3197 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI, 3198 Register PredReg) const { 3199 for (const MachineOperand &MO : MI.operands()) { 3200 // Predicate register must be explicitly defined. 3201 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg)) 3202 return false; 3203 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg)) 3204 return false; 3205 } 3206 3207 // Instruction that produce late predicate cannot be used as sources of 3208 // dot-new. 3209 switch (MI.getOpcode()) { 3210 case Hexagon::A4_addp_c: 3211 case Hexagon::A4_subp_c: 3212 case Hexagon::A4_tlbmatch: 3213 case Hexagon::A5_ACS: 3214 case Hexagon::F2_sfinvsqrta: 3215 case Hexagon::F2_sfrecipa: 3216 case Hexagon::J2_endloop0: 3217 case Hexagon::J2_endloop01: 3218 case Hexagon::J2_ploop1si: 3219 case Hexagon::J2_ploop1sr: 3220 case Hexagon::J2_ploop2si: 3221 case Hexagon::J2_ploop2sr: 3222 case Hexagon::J2_ploop3si: 3223 case Hexagon::J2_ploop3sr: 3224 case Hexagon::S2_cabacdecbin: 3225 case Hexagon::S2_storew_locked: 3226 case Hexagon::S4_stored_locked: 3227 return false; 3228 } 3229 return true; 3230 } 3231 3232 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const { 3233 return Opcode == Hexagon::J2_jumpt || 3234 Opcode == Hexagon::J2_jumptpt || 3235 Opcode == Hexagon::J2_jumpf || 3236 Opcode == Hexagon::J2_jumpfpt || 3237 Opcode == Hexagon::J2_jumptnew || 3238 Opcode == Hexagon::J2_jumpfnew || 3239 Opcode == Hexagon::J2_jumptnewpt || 3240 Opcode == Hexagon::J2_jumpfnewpt; 3241 } 3242 3243 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const { 3244 if (Cond.empty() || !isPredicated(Cond[0].getImm())) 3245 return false; 3246 return !isPredicatedTrue(Cond[0].getImm()); 3247 } 3248 3249 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const { 3250 const uint64_t F = MI.getDesc().TSFlags; 3251 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; 3252 } 3253 3254 // Returns the base register in a memory access (load/store). The offset is 3255 // returned in Offset and the access size is returned in AccessSize. 3256 // If the base operand has a subregister or the offset field does not contain 3257 // an immediate value, return nullptr. 3258 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI, 3259 int64_t &Offset, 3260 unsigned &AccessSize) const { 3261 // Return if it is not a base+offset type instruction or a MemOp. 3262 if (getAddrMode(MI) != HexagonII::BaseImmOffset && 3263 getAddrMode(MI) != HexagonII::BaseLongOffset && 3264 !isMemOp(MI) && !isPostIncrement(MI)) 3265 return nullptr; 3266 3267 AccessSize = getMemAccessSize(MI); 3268 3269 unsigned BasePos = 0, OffsetPos = 0; 3270 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) 3271 return nullptr; 3272 3273 // Post increment updates its EA after the mem access, 3274 // so we need to treat its offset as zero. 3275 if (isPostIncrement(MI)) { 3276 Offset = 0; 3277 } else { 3278 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); 3279 if (!OffsetOp.isImm()) 3280 return nullptr; 3281 Offset = OffsetOp.getImm(); 3282 } 3283 3284 const MachineOperand &BaseOp = MI.getOperand(BasePos); 3285 if (BaseOp.getSubReg() != 0) 3286 return nullptr; 3287 return &const_cast<MachineOperand&>(BaseOp); 3288 } 3289 3290 /// Return the position of the base and offset operands for this instruction. 3291 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI, 3292 unsigned &BasePos, unsigned &OffsetPos) const { 3293 if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI)) 3294 return false; 3295 3296 // Deal with memops first. 3297 if (isMemOp(MI)) { 3298 BasePos = 0; 3299 OffsetPos = 1; 3300 } else if (MI.mayStore()) { 3301 BasePos = 0; 3302 OffsetPos = 1; 3303 } else if (MI.mayLoad()) { 3304 BasePos = 1; 3305 OffsetPos = 2; 3306 } else 3307 return false; 3308 3309 if (isPredicated(MI)) { 3310 BasePos++; 3311 OffsetPos++; 3312 } 3313 if (isPostIncrement(MI)) { 3314 BasePos++; 3315 OffsetPos++; 3316 } 3317 3318 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm()) 3319 return false; 3320 3321 return true; 3322 } 3323 3324 // Inserts branching instructions in reverse order of their occurrence. 3325 // e.g. jump_t t1 (i1) 3326 // jump t2 (i2) 3327 // Jumpers = {i2, i1} 3328 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs( 3329 MachineBasicBlock& MBB) const { 3330 SmallVector<MachineInstr*, 2> Jumpers; 3331 // If the block has no terminators, it just falls into the block after it. 3332 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 3333 if (I == MBB.instr_begin()) 3334 return Jumpers; 3335 3336 // A basic block may looks like this: 3337 // 3338 // [ insn 3339 // EH_LABEL 3340 // insn 3341 // insn 3342 // insn 3343 // EH_LABEL 3344 // insn ] 3345 // 3346 // It has two succs but does not have a terminator 3347 // Don't know how to handle it. 3348 do { 3349 --I; 3350 if (I->isEHLabel()) 3351 return Jumpers; 3352 } while (I != MBB.instr_begin()); 3353 3354 I = MBB.instr_end(); 3355 --I; 3356 3357 while (I->isDebugInstr()) { 3358 if (I == MBB.instr_begin()) 3359 return Jumpers; 3360 --I; 3361 } 3362 if (!isUnpredicatedTerminator(*I)) 3363 return Jumpers; 3364 3365 // Get the last instruction in the block. 3366 MachineInstr *LastInst = &*I; 3367 Jumpers.push_back(LastInst); 3368 MachineInstr *SecondLastInst = nullptr; 3369 // Find one more terminator if present. 3370 do { 3371 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { 3372 if (!SecondLastInst) { 3373 SecondLastInst = &*I; 3374 Jumpers.push_back(SecondLastInst); 3375 } else // This is a third branch. 3376 return Jumpers; 3377 } 3378 if (I == MBB.instr_begin()) 3379 break; 3380 --I; 3381 } while (true); 3382 return Jumpers; 3383 } 3384 3385 // Returns Operand Index for the constant extended instruction. 3386 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const { 3387 const uint64_t F = MI.getDesc().TSFlags; 3388 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask; 3389 } 3390 3391 // See if instruction could potentially be a duplex candidate. 3392 // If so, return its group. Zero otherwise. 3393 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup( 3394 const MachineInstr &MI) const { 3395 Register DstReg, SrcReg, Src1Reg, Src2Reg; 3396 3397 switch (MI.getOpcode()) { 3398 default: 3399 return HexagonII::HCG_None; 3400 // 3401 // Compound pairs. 3402 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2" 3403 // "Rd16=#U6 ; jump #r9:2" 3404 // "Rd16=Rs16 ; jump #r9:2" 3405 // 3406 case Hexagon::C2_cmpeq: 3407 case Hexagon::C2_cmpgt: 3408 case Hexagon::C2_cmpgtu: 3409 DstReg = MI.getOperand(0).getReg(); 3410 Src1Reg = MI.getOperand(1).getReg(); 3411 Src2Reg = MI.getOperand(2).getReg(); 3412 if (Hexagon::PredRegsRegClass.contains(DstReg) && 3413 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && 3414 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg)) 3415 return HexagonII::HCG_A; 3416 break; 3417 case Hexagon::C2_cmpeqi: 3418 case Hexagon::C2_cmpgti: 3419 case Hexagon::C2_cmpgtui: 3420 // P0 = cmp.eq(Rs,#u2) 3421 DstReg = MI.getOperand(0).getReg(); 3422 SrcReg = MI.getOperand(1).getReg(); 3423 if (Hexagon::PredRegsRegClass.contains(DstReg) && 3424 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && 3425 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && 3426 ((isUInt<5>(MI.getOperand(2).getImm())) || 3427 (MI.getOperand(2).getImm() == -1))) 3428 return HexagonII::HCG_A; 3429 break; 3430 case Hexagon::A2_tfr: 3431 // Rd = Rs 3432 DstReg = MI.getOperand(0).getReg(); 3433 SrcReg = MI.getOperand(1).getReg(); 3434 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) 3435 return HexagonII::HCG_A; 3436 break; 3437 case Hexagon::A2_tfrsi: 3438 // Rd = #u6 3439 // Do not test for #u6 size since the const is getting extended 3440 // regardless and compound could be formed. 3441 DstReg = MI.getOperand(0).getReg(); 3442 if (isIntRegForSubInst(DstReg)) 3443 return HexagonII::HCG_A; 3444 break; 3445 case Hexagon::S2_tstbit_i: 3446 DstReg = MI.getOperand(0).getReg(); 3447 Src1Reg = MI.getOperand(1).getReg(); 3448 if (Hexagon::PredRegsRegClass.contains(DstReg) && 3449 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && 3450 MI.getOperand(2).isImm() && 3451 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0)) 3452 return HexagonII::HCG_A; 3453 break; 3454 // The fact that .new form is used pretty much guarantees 3455 // that predicate register will match. Nevertheless, 3456 // there could be some false positives without additional 3457 // checking. 3458 case Hexagon::J2_jumptnew: 3459 case Hexagon::J2_jumpfnew: 3460 case Hexagon::J2_jumptnewpt: 3461 case Hexagon::J2_jumpfnewpt: 3462 Src1Reg = MI.getOperand(0).getReg(); 3463 if (Hexagon::PredRegsRegClass.contains(Src1Reg) && 3464 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg)) 3465 return HexagonII::HCG_B; 3466 break; 3467 // Transfer and jump: 3468 // Rd=#U6 ; jump #r9:2 3469 // Rd=Rs ; jump #r9:2 3470 // Do not test for jump range here. 3471 case Hexagon::J2_jump: 3472 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 3473 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 3474 return HexagonII::HCG_C; 3475 } 3476 3477 return HexagonII::HCG_None; 3478 } 3479 3480 // Returns -1 when there is no opcode found. 3481 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA, 3482 const MachineInstr &GB) const { 3483 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A); 3484 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B); 3485 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) || 3486 (GB.getOpcode() != Hexagon::J2_jumptnew)) 3487 return -1u; 3488 Register DestReg = GA.getOperand(0).getReg(); 3489 if (!GB.readsRegister(DestReg)) 3490 return -1u; 3491 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1) 3492 return -1u; 3493 // The value compared against must be either u5 or -1. 3494 const MachineOperand &CmpOp = GA.getOperand(2); 3495 if (!CmpOp.isImm()) 3496 return -1u; 3497 int V = CmpOp.getImm(); 3498 if (V == -1) 3499 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt 3500 : Hexagon::J4_cmpeqn1_tp1_jump_nt; 3501 if (!isUInt<5>(V)) 3502 return -1u; 3503 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt 3504 : Hexagon::J4_cmpeqi_tp1_jump_nt; 3505 } 3506 3507 // Returns -1 if there is no opcode found. 3508 int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI, 3509 bool ForBigCore) const { 3510 // Static table to switch the opcodes across Tiny Core and Big Core. 3511 // dup_ opcodes are Big core opcodes. 3512 // NOTE: There are special instructions that need to handled later. 3513 // L4_return* instructions, they will only occupy SLOT0 (on big core too). 3514 // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2. 3515 // The compiler need to base the root instruction to L6_return_map_to_raw 3516 // which can go any slot. 3517 static const std::map<unsigned, unsigned> DupMap = { 3518 {Hexagon::A2_add, Hexagon::dup_A2_add}, 3519 {Hexagon::A2_addi, Hexagon::dup_A2_addi}, 3520 {Hexagon::A2_andir, Hexagon::dup_A2_andir}, 3521 {Hexagon::A2_combineii, Hexagon::dup_A2_combineii}, 3522 {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb}, 3523 {Hexagon::A2_sxth, Hexagon::dup_A2_sxth}, 3524 {Hexagon::A2_tfr, Hexagon::dup_A2_tfr}, 3525 {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi}, 3526 {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb}, 3527 {Hexagon::A2_zxth, Hexagon::dup_A2_zxth}, 3528 {Hexagon::A4_combineii, Hexagon::dup_A4_combineii}, 3529 {Hexagon::A4_combineir, Hexagon::dup_A4_combineir}, 3530 {Hexagon::A4_combineri, Hexagon::dup_A4_combineri}, 3531 {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif}, 3532 {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit}, 3533 {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif}, 3534 {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit}, 3535 {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi}, 3536 {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe}, 3537 {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io}, 3538 {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io}, 3539 {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io}, 3540 {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io}, 3541 {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io}, 3542 {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io}, 3543 {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe}, 3544 {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io}, 3545 {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io}, 3546 {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io}, 3547 {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io}, 3548 {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io}, 3549 {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io}, 3550 }; 3551 unsigned OpNum = MI.getOpcode(); 3552 // Conversion to Big core. 3553 if (ForBigCore) { 3554 auto Iter = DupMap.find(OpNum); 3555 if (Iter != DupMap.end()) 3556 return Iter->second; 3557 } else { // Conversion to Tiny core. 3558 for (const auto &Iter : DupMap) 3559 if (Iter.second == OpNum) 3560 return Iter.first; 3561 } 3562 return -1; 3563 } 3564 3565 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { 3566 enum Hexagon::PredSense inPredSense; 3567 inPredSense = invertPredicate ? Hexagon::PredSense_false : 3568 Hexagon::PredSense_true; 3569 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); 3570 if (CondOpcode >= 0) // Valid Conditional opcode/instruction 3571 return CondOpcode; 3572 3573 llvm_unreachable("Unexpected predicable instruction"); 3574 } 3575 3576 // Return the cur value instruction for a given store. 3577 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const { 3578 switch (MI.getOpcode()) { 3579 default: llvm_unreachable("Unknown .cur type"); 3580 case Hexagon::V6_vL32b_pi: 3581 return Hexagon::V6_vL32b_cur_pi; 3582 case Hexagon::V6_vL32b_ai: 3583 return Hexagon::V6_vL32b_cur_ai; 3584 case Hexagon::V6_vL32b_nt_pi: 3585 return Hexagon::V6_vL32b_nt_cur_pi; 3586 case Hexagon::V6_vL32b_nt_ai: 3587 return Hexagon::V6_vL32b_nt_cur_ai; 3588 case Hexagon::V6_vL32b_ppu: 3589 return Hexagon::V6_vL32b_cur_ppu; 3590 case Hexagon::V6_vL32b_nt_ppu: 3591 return Hexagon::V6_vL32b_nt_cur_ppu; 3592 } 3593 return 0; 3594 } 3595 3596 // Return the regular version of the .cur instruction. 3597 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const { 3598 switch (MI.getOpcode()) { 3599 default: llvm_unreachable("Unknown .cur type"); 3600 case Hexagon::V6_vL32b_cur_pi: 3601 return Hexagon::V6_vL32b_pi; 3602 case Hexagon::V6_vL32b_cur_ai: 3603 return Hexagon::V6_vL32b_ai; 3604 case Hexagon::V6_vL32b_nt_cur_pi: 3605 return Hexagon::V6_vL32b_nt_pi; 3606 case Hexagon::V6_vL32b_nt_cur_ai: 3607 return Hexagon::V6_vL32b_nt_ai; 3608 case Hexagon::V6_vL32b_cur_ppu: 3609 return Hexagon::V6_vL32b_ppu; 3610 case Hexagon::V6_vL32b_nt_cur_ppu: 3611 return Hexagon::V6_vL32b_nt_ppu; 3612 } 3613 return 0; 3614 } 3615 3616 // The diagram below shows the steps involved in the conversion of a predicated 3617 // store instruction to its .new predicated new-value form. 3618 // 3619 // Note: It doesn't include conditional new-value stores as they can't be 3620 // converted to .new predicate. 3621 // 3622 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] 3623 // ^ ^ 3624 // / \ (not OK. it will cause new-value store to be 3625 // / X conditional on p0.new while R2 producer is 3626 // / \ on p0) 3627 // / \. 3628 // p.new store p.old NV store 3629 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] 3630 // ^ ^ 3631 // \ / 3632 // \ / 3633 // \ / 3634 // p.old store 3635 // [if (p0)memw(R0+#0)=R2] 3636 // 3637 // The following set of instructions further explains the scenario where 3638 // conditional new-value store becomes invalid when promoted to .new predicate 3639 // form. 3640 // 3641 // { 1) if (p0) r0 = add(r1, r2) 3642 // 2) p0 = cmp.eq(r3, #0) } 3643 // 3644 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with 3645 // the first two instructions because in instr 1, r0 is conditional on old value 3646 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which 3647 // is not valid for new-value stores. 3648 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded 3649 // from the "Conditional Store" list. Because a predicated new value store 3650 // would NOT be promoted to a double dot new store. See diagram below: 3651 // This function returns yes for those stores that are predicated but not 3652 // yet promoted to predicate dot new instructions. 3653 // 3654 // +---------------------+ 3655 // /-----| if (p0) memw(..)=r0 |---------\~ 3656 // || +---------------------+ || 3657 // promote || /\ /\ || promote 3658 // || /||\ /||\ || 3659 // \||/ demote || \||/ 3660 // \/ || || \/ 3661 // +-------------------------+ || +-------------------------+ 3662 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | 3663 // +-------------------------+ || +-------------------------+ 3664 // || || || 3665 // || demote \||/ 3666 // promote || \/ NOT possible 3667 // || || /\~ 3668 // \||/ || /||\~ 3669 // \/ || || 3670 // +-----------------------------+ 3671 // | if (p0.new) memw(..)=r0.new | 3672 // +-----------------------------+ 3673 // Double Dot New Store 3674 // 3675 // Returns the most basic instruction for the .new predicated instructions and 3676 // new-value stores. 3677 // For example, all of the following instructions will be converted back to the 3678 // same instruction: 3679 // 1) if (p0.new) memw(R0+#0) = R1.new ---> 3680 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 3681 // 3) if (p0.new) memw(R0+#0) = R1 ---> 3682 // 3683 // To understand the translation of instruction 1 to its original form, consider 3684 // a packet with 3 instructions. 3685 // { p0 = cmp.eq(R0,R1) 3686 // if (p0.new) R2 = add(R3, R4) 3687 // R5 = add (R3, R1) 3688 // } 3689 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet 3690 // 3691 // This instruction can be part of the previous packet only if both p0 and R2 3692 // are promoted to .new values. This promotion happens in steps, first 3693 // predicate register is promoted to .new and in the next iteration R2 is 3694 // promoted. Therefore, in case of dependence check failure (due to R5) during 3695 // next iteration, it should be converted back to its most basic form. 3696 3697 // Return the new value instruction for a given store. 3698 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const { 3699 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode()); 3700 if (NVOpcode >= 0) // Valid new-value store instruction. 3701 return NVOpcode; 3702 3703 switch (MI.getOpcode()) { 3704 default: 3705 report_fatal_error(Twine("Unknown .new type: ") + 3706 std::to_string(MI.getOpcode())); 3707 case Hexagon::S4_storerb_ur: 3708 return Hexagon::S4_storerbnew_ur; 3709 3710 case Hexagon::S2_storerb_pci: 3711 return Hexagon::S2_storerb_pci; 3712 3713 case Hexagon::S2_storeri_pci: 3714 return Hexagon::S2_storeri_pci; 3715 3716 case Hexagon::S2_storerh_pci: 3717 return Hexagon::S2_storerh_pci; 3718 3719 case Hexagon::S2_storerd_pci: 3720 return Hexagon::S2_storerd_pci; 3721 3722 case Hexagon::S2_storerf_pci: 3723 return Hexagon::S2_storerf_pci; 3724 3725 case Hexagon::V6_vS32b_ai: 3726 return Hexagon::V6_vS32b_new_ai; 3727 3728 case Hexagon::V6_vS32b_pi: 3729 return Hexagon::V6_vS32b_new_pi; 3730 } 3731 return 0; 3732 } 3733 3734 // Returns the opcode to use when converting MI, which is a conditional jump, 3735 // into a conditional instruction which uses the .new value of the predicate. 3736 // We also use branch probabilities to add a hint to the jump. 3737 // If MBPI is null, all edges will be treated as equally likely for the 3738 // purposes of establishing a predication hint. 3739 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI, 3740 const MachineBranchProbabilityInfo *MBPI) const { 3741 // We assume that block can have at most two successors. 3742 const MachineBasicBlock *Src = MI.getParent(); 3743 const MachineOperand &BrTarget = MI.getOperand(1); 3744 bool Taken = false; 3745 const BranchProbability OneHalf(1, 2); 3746 3747 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src, 3748 const MachineBasicBlock *Dst) { 3749 if (MBPI) 3750 return MBPI->getEdgeProbability(Src, Dst); 3751 return BranchProbability(1, Src->succ_size()); 3752 }; 3753 3754 if (BrTarget.isMBB()) { 3755 const MachineBasicBlock *Dst = BrTarget.getMBB(); 3756 Taken = getEdgeProbability(Src, Dst) >= OneHalf; 3757 } else { 3758 // The branch target is not a basic block (most likely a function). 3759 // Since BPI only gives probabilities for targets that are basic blocks, 3760 // try to identify another target of this branch (potentially a fall- 3761 // -through) and check the probability of that target. 3762 // 3763 // The only handled branch combinations are: 3764 // - one conditional branch, 3765 // - one conditional branch followed by one unconditional branch. 3766 // Otherwise, assume not-taken. 3767 assert(MI.isConditionalBranch()); 3768 const MachineBasicBlock &B = *MI.getParent(); 3769 bool SawCond = false, Bad = false; 3770 for (const MachineInstr &I : B) { 3771 if (!I.isBranch()) 3772 continue; 3773 if (I.isConditionalBranch()) { 3774 SawCond = true; 3775 if (&I != &MI) { 3776 Bad = true; 3777 break; 3778 } 3779 } 3780 if (I.isUnconditionalBranch() && !SawCond) { 3781 Bad = true; 3782 break; 3783 } 3784 } 3785 if (!Bad) { 3786 MachineBasicBlock::const_instr_iterator It(MI); 3787 MachineBasicBlock::const_instr_iterator NextIt = std::next(It); 3788 if (NextIt == B.instr_end()) { 3789 // If this branch is the last, look for the fall-through block. 3790 for (const MachineBasicBlock *SB : B.successors()) { 3791 if (!B.isLayoutSuccessor(SB)) 3792 continue; 3793 Taken = getEdgeProbability(Src, SB) < OneHalf; 3794 break; 3795 } 3796 } else { 3797 assert(NextIt->isUnconditionalBranch()); 3798 // Find the first MBB operand and assume it's the target. 3799 const MachineBasicBlock *BT = nullptr; 3800 for (const MachineOperand &Op : NextIt->operands()) { 3801 if (!Op.isMBB()) 3802 continue; 3803 BT = Op.getMBB(); 3804 break; 3805 } 3806 Taken = BT && getEdgeProbability(Src, BT) < OneHalf; 3807 } 3808 } // if (!Bad) 3809 } 3810 3811 // The Taken flag should be set to something reasonable by this point. 3812 3813 switch (MI.getOpcode()) { 3814 case Hexagon::J2_jumpt: 3815 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; 3816 case Hexagon::J2_jumpf: 3817 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; 3818 3819 default: 3820 llvm_unreachable("Unexpected jump instruction."); 3821 } 3822 } 3823 3824 // Return .new predicate version for an instruction. 3825 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI, 3826 const MachineBranchProbabilityInfo *MBPI) const { 3827 switch (MI.getOpcode()) { 3828 // Condtional Jumps 3829 case Hexagon::J2_jumpt: 3830 case Hexagon::J2_jumpf: 3831 return getDotNewPredJumpOp(MI, MBPI); 3832 } 3833 3834 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode()); 3835 if (NewOpcode >= 0) 3836 return NewOpcode; 3837 return 0; 3838 } 3839 3840 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const { 3841 int NewOp = MI.getOpcode(); 3842 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form 3843 NewOp = Hexagon::getPredOldOpcode(NewOp); 3844 // All Hexagon architectures have prediction bits on dot-new branches, 3845 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure 3846 // to pick the right opcode when converting back to dot-old. 3847 if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) { 3848 switch (NewOp) { 3849 case Hexagon::J2_jumptpt: 3850 NewOp = Hexagon::J2_jumpt; 3851 break; 3852 case Hexagon::J2_jumpfpt: 3853 NewOp = Hexagon::J2_jumpf; 3854 break; 3855 case Hexagon::J2_jumprtpt: 3856 NewOp = Hexagon::J2_jumprt; 3857 break; 3858 case Hexagon::J2_jumprfpt: 3859 NewOp = Hexagon::J2_jumprf; 3860 break; 3861 } 3862 } 3863 assert(NewOp >= 0 && 3864 "Couldn't change predicate new instruction to its old form."); 3865 } 3866 3867 if (isNewValueStore(NewOp)) { // Convert into non-new-value format 3868 NewOp = Hexagon::getNonNVStore(NewOp); 3869 assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); 3870 } 3871 3872 if (Subtarget.hasV60Ops()) 3873 return NewOp; 3874 3875 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps. 3876 switch (NewOp) { 3877 case Hexagon::J2_jumpfpt: 3878 return Hexagon::J2_jumpf; 3879 case Hexagon::J2_jumptpt: 3880 return Hexagon::J2_jumpt; 3881 case Hexagon::J2_jumprfpt: 3882 return Hexagon::J2_jumprf; 3883 case Hexagon::J2_jumprtpt: 3884 return Hexagon::J2_jumprt; 3885 } 3886 return NewOp; 3887 } 3888 3889 // See if instruction could potentially be a duplex candidate. 3890 // If so, return its group. Zero otherwise. 3891 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup( 3892 const MachineInstr &MI) const { 3893 Register DstReg, SrcReg, Src1Reg, Src2Reg; 3894 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 3895 3896 switch (MI.getOpcode()) { 3897 default: 3898 return HexagonII::HSIG_None; 3899 // 3900 // Group L1: 3901 // 3902 // Rd = memw(Rs+#u4:2) 3903 // Rd = memub(Rs+#u4:0) 3904 case Hexagon::L2_loadri_io: 3905 case Hexagon::dup_L2_loadri_io: 3906 DstReg = MI.getOperand(0).getReg(); 3907 SrcReg = MI.getOperand(1).getReg(); 3908 // Special case this one from Group L2. 3909 // Rd = memw(r29+#u5:2) 3910 if (isIntRegForSubInst(DstReg)) { 3911 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 3912 HRI.getStackRegister() == SrcReg && 3913 MI.getOperand(2).isImm() && 3914 isShiftedUInt<5,2>(MI.getOperand(2).getImm())) 3915 return HexagonII::HSIG_L2; 3916 // Rd = memw(Rs+#u4:2) 3917 if (isIntRegForSubInst(SrcReg) && 3918 (MI.getOperand(2).isImm() && 3919 isShiftedUInt<4,2>(MI.getOperand(2).getImm()))) 3920 return HexagonII::HSIG_L1; 3921 } 3922 break; 3923 case Hexagon::L2_loadrub_io: 3924 case Hexagon::dup_L2_loadrub_io: 3925 // Rd = memub(Rs+#u4:0) 3926 DstReg = MI.getOperand(0).getReg(); 3927 SrcReg = MI.getOperand(1).getReg(); 3928 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3929 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm())) 3930 return HexagonII::HSIG_L1; 3931 break; 3932 // 3933 // Group L2: 3934 // 3935 // Rd = memh/memuh(Rs+#u3:1) 3936 // Rd = memb(Rs+#u3:0) 3937 // Rd = memw(r29+#u5:2) - Handled above. 3938 // Rdd = memd(r29+#u5:3) 3939 // deallocframe 3940 // [if ([!]p0[.new])] dealloc_return 3941 // [if ([!]p0[.new])] jumpr r31 3942 case Hexagon::L2_loadrh_io: 3943 case Hexagon::L2_loadruh_io: 3944 case Hexagon::dup_L2_loadrh_io: 3945 case Hexagon::dup_L2_loadruh_io: 3946 // Rd = memh/memuh(Rs+#u3:1) 3947 DstReg = MI.getOperand(0).getReg(); 3948 SrcReg = MI.getOperand(1).getReg(); 3949 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3950 MI.getOperand(2).isImm() && 3951 isShiftedUInt<3,1>(MI.getOperand(2).getImm())) 3952 return HexagonII::HSIG_L2; 3953 break; 3954 case Hexagon::L2_loadrb_io: 3955 case Hexagon::dup_L2_loadrb_io: 3956 // Rd = memb(Rs+#u3:0) 3957 DstReg = MI.getOperand(0).getReg(); 3958 SrcReg = MI.getOperand(1).getReg(); 3959 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3960 MI.getOperand(2).isImm() && 3961 isUInt<3>(MI.getOperand(2).getImm())) 3962 return HexagonII::HSIG_L2; 3963 break; 3964 case Hexagon::L2_loadrd_io: 3965 case Hexagon::dup_L2_loadrd_io: 3966 // Rdd = memd(r29+#u5:3) 3967 DstReg = MI.getOperand(0).getReg(); 3968 SrcReg = MI.getOperand(1).getReg(); 3969 if (isDblRegForSubInst(DstReg, HRI) && 3970 Hexagon::IntRegsRegClass.contains(SrcReg) && 3971 HRI.getStackRegister() == SrcReg && 3972 MI.getOperand(2).isImm() && 3973 isShiftedUInt<5,3>(MI.getOperand(2).getImm())) 3974 return HexagonII::HSIG_L2; 3975 break; 3976 // dealloc_return is not documented in Hexagon Manual, but marked 3977 // with A_SUBINSN attribute in iset_v4classic.py. 3978 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 3979 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 3980 case Hexagon::L4_return: 3981 case Hexagon::L2_deallocframe: 3982 case Hexagon::dup_L2_deallocframe: 3983 return HexagonII::HSIG_L2; 3984 case Hexagon::EH_RETURN_JMPR: 3985 case Hexagon::PS_jmpret: 3986 case Hexagon::SL2_jumpr31: 3987 // jumpr r31 3988 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0 3989 DstReg = MI.getOperand(0).getReg(); 3990 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)) 3991 return HexagonII::HSIG_L2; 3992 break; 3993 case Hexagon::PS_jmprett: 3994 case Hexagon::PS_jmpretf: 3995 case Hexagon::PS_jmprettnewpt: 3996 case Hexagon::PS_jmpretfnewpt: 3997 case Hexagon::PS_jmprettnew: 3998 case Hexagon::PS_jmpretfnew: 3999 case Hexagon::SL2_jumpr31_t: 4000 case Hexagon::SL2_jumpr31_f: 4001 case Hexagon::SL2_jumpr31_tnew: 4002 case Hexagon::SL2_jumpr31_fnew: 4003 DstReg = MI.getOperand(1).getReg(); 4004 SrcReg = MI.getOperand(0).getReg(); 4005 // [if ([!]p0[.new])] jumpr r31 4006 if ((Hexagon::PredRegsRegClass.contains(SrcReg) && 4007 (Hexagon::P0 == SrcReg)) && 4008 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))) 4009 return HexagonII::HSIG_L2; 4010 break; 4011 case Hexagon::L4_return_t: 4012 case Hexagon::L4_return_f: 4013 case Hexagon::L4_return_tnew_pnt: 4014 case Hexagon::L4_return_fnew_pnt: 4015 case Hexagon::L4_return_tnew_pt: 4016 case Hexagon::L4_return_fnew_pt: 4017 // [if ([!]p0[.new])] dealloc_return 4018 SrcReg = MI.getOperand(0).getReg(); 4019 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg)) 4020 return HexagonII::HSIG_L2; 4021 break; 4022 // 4023 // Group S1: 4024 // 4025 // memw(Rs+#u4:2) = Rt 4026 // memb(Rs+#u4:0) = Rt 4027 case Hexagon::S2_storeri_io: 4028 case Hexagon::dup_S2_storeri_io: 4029 // Special case this one from Group S2. 4030 // memw(r29+#u5:2) = Rt 4031 Src1Reg = MI.getOperand(0).getReg(); 4032 Src2Reg = MI.getOperand(2).getReg(); 4033 if (Hexagon::IntRegsRegClass.contains(Src1Reg) && 4034 isIntRegForSubInst(Src2Reg) && 4035 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && 4036 isShiftedUInt<5,2>(MI.getOperand(1).getImm())) 4037 return HexagonII::HSIG_S2; 4038 // memw(Rs+#u4:2) = Rt 4039 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && 4040 MI.getOperand(1).isImm() && 4041 isShiftedUInt<4,2>(MI.getOperand(1).getImm())) 4042 return HexagonII::HSIG_S1; 4043 break; 4044 case Hexagon::S2_storerb_io: 4045 case Hexagon::dup_S2_storerb_io: 4046 // memb(Rs+#u4:0) = Rt 4047 Src1Reg = MI.getOperand(0).getReg(); 4048 Src2Reg = MI.getOperand(2).getReg(); 4049 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && 4050 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm())) 4051 return HexagonII::HSIG_S1; 4052 break; 4053 // 4054 // Group S2: 4055 // 4056 // memh(Rs+#u3:1) = Rt 4057 // memw(r29+#u5:2) = Rt 4058 // memd(r29+#s6:3) = Rtt 4059 // memw(Rs+#u4:2) = #U1 4060 // memb(Rs+#u4) = #U1 4061 // allocframe(#u5:3) 4062 case Hexagon::S2_storerh_io: 4063 case Hexagon::dup_S2_storerh_io: 4064 // memh(Rs+#u3:1) = Rt 4065 Src1Reg = MI.getOperand(0).getReg(); 4066 Src2Reg = MI.getOperand(2).getReg(); 4067 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && 4068 MI.getOperand(1).isImm() && 4069 isShiftedUInt<3,1>(MI.getOperand(1).getImm())) 4070 return HexagonII::HSIG_S1; 4071 break; 4072 case Hexagon::S2_storerd_io: 4073 case Hexagon::dup_S2_storerd_io: 4074 // memd(r29+#s6:3) = Rtt 4075 Src1Reg = MI.getOperand(0).getReg(); 4076 Src2Reg = MI.getOperand(2).getReg(); 4077 if (isDblRegForSubInst(Src2Reg, HRI) && 4078 Hexagon::IntRegsRegClass.contains(Src1Reg) && 4079 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && 4080 isShiftedInt<6,3>(MI.getOperand(1).getImm())) 4081 return HexagonII::HSIG_S2; 4082 break; 4083 case Hexagon::S4_storeiri_io: 4084 case Hexagon::dup_S4_storeiri_io: 4085 // memw(Rs+#u4:2) = #U1 4086 Src1Reg = MI.getOperand(0).getReg(); 4087 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() && 4088 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) && 4089 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) 4090 return HexagonII::HSIG_S2; 4091 break; 4092 case Hexagon::S4_storeirb_io: 4093 case Hexagon::dup_S4_storeirb_io: 4094 // memb(Rs+#u4) = #U1 4095 Src1Reg = MI.getOperand(0).getReg(); 4096 if (isIntRegForSubInst(Src1Reg) && 4097 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) && 4098 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) 4099 return HexagonII::HSIG_S2; 4100 break; 4101 case Hexagon::S2_allocframe: 4102 case Hexagon::dup_S2_allocframe: 4103 if (MI.getOperand(2).isImm() && 4104 isShiftedUInt<5,3>(MI.getOperand(2).getImm())) 4105 return HexagonII::HSIG_S1; 4106 break; 4107 // 4108 // Group A: 4109 // 4110 // Rx = add(Rx,#s7) 4111 // Rd = Rs 4112 // Rd = #u6 4113 // Rd = #-1 4114 // if ([!]P0[.new]) Rd = #0 4115 // Rd = add(r29,#u6:2) 4116 // Rx = add(Rx,Rs) 4117 // P0 = cmp.eq(Rs,#u2) 4118 // Rdd = combine(#0,Rs) 4119 // Rdd = combine(Rs,#0) 4120 // Rdd = combine(#u2,#U2) 4121 // Rd = add(Rs,#1) 4122 // Rd = add(Rs,#-1) 4123 // Rd = sxth/sxtb/zxtb/zxth(Rs) 4124 // Rd = and(Rs,#1) 4125 case Hexagon::A2_addi: 4126 case Hexagon::dup_A2_addi: 4127 DstReg = MI.getOperand(0).getReg(); 4128 SrcReg = MI.getOperand(1).getReg(); 4129 if (isIntRegForSubInst(DstReg)) { 4130 // Rd = add(r29,#u6:2) 4131 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 4132 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() && 4133 isShiftedUInt<6,2>(MI.getOperand(2).getImm())) 4134 return HexagonII::HSIG_A; 4135 // Rx = add(Rx,#s7) 4136 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() && 4137 isInt<7>(MI.getOperand(2).getImm())) 4138 return HexagonII::HSIG_A; 4139 // Rd = add(Rs,#1) 4140 // Rd = add(Rs,#-1) 4141 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && 4142 ((MI.getOperand(2).getImm() == 1) || 4143 (MI.getOperand(2).getImm() == -1))) 4144 return HexagonII::HSIG_A; 4145 } 4146 break; 4147 case Hexagon::A2_add: 4148 case Hexagon::dup_A2_add: 4149 // Rx = add(Rx,Rs) 4150 DstReg = MI.getOperand(0).getReg(); 4151 Src1Reg = MI.getOperand(1).getReg(); 4152 Src2Reg = MI.getOperand(2).getReg(); 4153 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) && 4154 isIntRegForSubInst(Src2Reg)) 4155 return HexagonII::HSIG_A; 4156 break; 4157 case Hexagon::A2_andir: 4158 case Hexagon::dup_A2_andir: 4159 // Same as zxtb. 4160 // Rd16=and(Rs16,#255) 4161 // Rd16=and(Rs16,#1) 4162 DstReg = MI.getOperand(0).getReg(); 4163 SrcReg = MI.getOperand(1).getReg(); 4164 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 4165 MI.getOperand(2).isImm() && 4166 ((MI.getOperand(2).getImm() == 1) || 4167 (MI.getOperand(2).getImm() == 255))) 4168 return HexagonII::HSIG_A; 4169 break; 4170 case Hexagon::A2_tfr: 4171 case Hexagon::dup_A2_tfr: 4172 // Rd = Rs 4173 DstReg = MI.getOperand(0).getReg(); 4174 SrcReg = MI.getOperand(1).getReg(); 4175 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) 4176 return HexagonII::HSIG_A; 4177 break; 4178 case Hexagon::A2_tfrsi: 4179 case Hexagon::dup_A2_tfrsi: 4180 // Rd = #u6 4181 // Do not test for #u6 size since the const is getting extended 4182 // regardless and compound could be formed. 4183 // Rd = #-1 4184 DstReg = MI.getOperand(0).getReg(); 4185 if (isIntRegForSubInst(DstReg)) 4186 return HexagonII::HSIG_A; 4187 break; 4188 case Hexagon::C2_cmoveit: 4189 case Hexagon::C2_cmovenewit: 4190 case Hexagon::C2_cmoveif: 4191 case Hexagon::C2_cmovenewif: 4192 case Hexagon::dup_C2_cmoveit: 4193 case Hexagon::dup_C2_cmovenewit: 4194 case Hexagon::dup_C2_cmoveif: 4195 case Hexagon::dup_C2_cmovenewif: 4196 // if ([!]P0[.new]) Rd = #0 4197 // Actual form: 4198 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; 4199 DstReg = MI.getOperand(0).getReg(); 4200 SrcReg = MI.getOperand(1).getReg(); 4201 if (isIntRegForSubInst(DstReg) && 4202 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg && 4203 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) 4204 return HexagonII::HSIG_A; 4205 break; 4206 case Hexagon::C2_cmpeqi: 4207 case Hexagon::dup_C2_cmpeqi: 4208 // P0 = cmp.eq(Rs,#u2) 4209 DstReg = MI.getOperand(0).getReg(); 4210 SrcReg = MI.getOperand(1).getReg(); 4211 if (Hexagon::PredRegsRegClass.contains(DstReg) && 4212 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) && 4213 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) 4214 return HexagonII::HSIG_A; 4215 break; 4216 case Hexagon::A2_combineii: 4217 case Hexagon::A4_combineii: 4218 case Hexagon::dup_A2_combineii: 4219 case Hexagon::dup_A4_combineii: 4220 // Rdd = combine(#u2,#U2) 4221 DstReg = MI.getOperand(0).getReg(); 4222 if (isDblRegForSubInst(DstReg, HRI) && 4223 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) || 4224 (MI.getOperand(1).isGlobal() && 4225 isUInt<2>(MI.getOperand(1).getOffset()))) && 4226 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) || 4227 (MI.getOperand(2).isGlobal() && 4228 isUInt<2>(MI.getOperand(2).getOffset())))) 4229 return HexagonII::HSIG_A; 4230 break; 4231 case Hexagon::A4_combineri: 4232 case Hexagon::dup_A4_combineri: 4233 // Rdd = combine(Rs,#0) 4234 // Rdd = combine(Rs,#0) 4235 DstReg = MI.getOperand(0).getReg(); 4236 SrcReg = MI.getOperand(1).getReg(); 4237 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && 4238 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) || 4239 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0))) 4240 return HexagonII::HSIG_A; 4241 break; 4242 case Hexagon::A4_combineir: 4243 case Hexagon::dup_A4_combineir: 4244 // Rdd = combine(#0,Rs) 4245 DstReg = MI.getOperand(0).getReg(); 4246 SrcReg = MI.getOperand(2).getReg(); 4247 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && 4248 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) || 4249 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0))) 4250 return HexagonII::HSIG_A; 4251 break; 4252 case Hexagon::A2_sxtb: 4253 case Hexagon::A2_sxth: 4254 case Hexagon::A2_zxtb: 4255 case Hexagon::A2_zxth: 4256 case Hexagon::dup_A2_sxtb: 4257 case Hexagon::dup_A2_sxth: 4258 case Hexagon::dup_A2_zxtb: 4259 case Hexagon::dup_A2_zxth: 4260 // Rd = sxth/sxtb/zxtb/zxth(Rs) 4261 DstReg = MI.getOperand(0).getReg(); 4262 SrcReg = MI.getOperand(1).getReg(); 4263 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) 4264 return HexagonII::HSIG_A; 4265 break; 4266 } 4267 4268 return HexagonII::HSIG_None; 4269 } 4270 4271 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const { 4272 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real); 4273 } 4274 4275 unsigned HexagonInstrInfo::getInstrTimingClassLatency( 4276 const InstrItineraryData *ItinData, const MachineInstr &MI) const { 4277 // Default to one cycle for no itinerary. However, an "empty" itinerary may 4278 // still have a MinLatency property, which getStageLatency checks. 4279 if (!ItinData) 4280 return getInstrLatency(ItinData, MI); 4281 4282 if (MI.isTransient()) 4283 return 0; 4284 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 4285 } 4286 4287 /// getOperandLatency - Compute and return the use operand latency of a given 4288 /// pair of def and use. 4289 /// In most cases, the static scheduling itinerary was enough to determine the 4290 /// operand latency. But it may not be possible for instructions with variable 4291 /// number of defs / uses. 4292 /// 4293 /// This is a raw interface to the itinerary that may be directly overriden by 4294 /// a target. Use computeOperandLatency to get the best estimate of latency. 4295 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4296 const MachineInstr &DefMI, 4297 unsigned DefIdx, 4298 const MachineInstr &UseMI, 4299 unsigned UseIdx) const { 4300 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 4301 4302 // Get DefIdx and UseIdx for super registers. 4303 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4304 4305 if (DefMO.isReg() && DefMO.getReg().isPhysical()) { 4306 if (DefMO.isImplicit()) { 4307 for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) { 4308 int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI); 4309 if (Idx != -1) { 4310 DefIdx = Idx; 4311 break; 4312 } 4313 } 4314 } 4315 4316 const MachineOperand &UseMO = UseMI.getOperand(UseIdx); 4317 if (UseMO.isImplicit()) { 4318 for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) { 4319 int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI); 4320 if (Idx != -1) { 4321 UseIdx = Idx; 4322 break; 4323 } 4324 } 4325 } 4326 } 4327 4328 int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 4329 UseMI, UseIdx); 4330 if (!Latency) 4331 // We should never have 0 cycle latency between two instructions unless 4332 // they can be packetized together. However, this decision can't be made 4333 // here. 4334 Latency = 1; 4335 return Latency; 4336 } 4337 4338 // inverts the predication logic. 4339 // p -> NotP 4340 // NotP -> P 4341 bool HexagonInstrInfo::getInvertedPredSense( 4342 SmallVectorImpl<MachineOperand> &Cond) const { 4343 if (Cond.empty()) 4344 return false; 4345 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm()); 4346 Cond[0].setImm(Opc); 4347 return true; 4348 } 4349 4350 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { 4351 int InvPredOpcode; 4352 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) 4353 : Hexagon::getTruePredOpcode(Opc); 4354 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. 4355 return InvPredOpcode; 4356 4357 llvm_unreachable("Unexpected predicated instruction"); 4358 } 4359 4360 // Returns the max value that doesn't need to be extended. 4361 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const { 4362 const uint64_t F = MI.getDesc().TSFlags; 4363 unsigned isSigned = (F >> HexagonII::ExtentSignedPos) 4364 & HexagonII::ExtentSignedMask; 4365 unsigned bits = (F >> HexagonII::ExtentBitsPos) 4366 & HexagonII::ExtentBitsMask; 4367 4368 if (isSigned) // if value is signed 4369 return ~(-1U << (bits - 1)); 4370 else 4371 return ~(-1U << bits); 4372 } 4373 4374 4375 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const { 4376 switch (MI.getOpcode()) { 4377 case Hexagon::L2_loadrbgp: 4378 case Hexagon::L2_loadrdgp: 4379 case Hexagon::L2_loadrhgp: 4380 case Hexagon::L2_loadrigp: 4381 case Hexagon::L2_loadrubgp: 4382 case Hexagon::L2_loadruhgp: 4383 case Hexagon::S2_storerbgp: 4384 case Hexagon::S2_storerbnewgp: 4385 case Hexagon::S2_storerhgp: 4386 case Hexagon::S2_storerhnewgp: 4387 case Hexagon::S2_storerigp: 4388 case Hexagon::S2_storerinewgp: 4389 case Hexagon::S2_storerdgp: 4390 case Hexagon::S2_storerfgp: 4391 return true; 4392 } 4393 const uint64_t F = MI.getDesc().TSFlags; 4394 unsigned addrMode = 4395 ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); 4396 // Disallow any base+offset instruction. The assembler does not yet reorder 4397 // based up any zero offset instruction. 4398 return (addrMode == HexagonII::BaseRegOffset || 4399 addrMode == HexagonII::BaseImmOffset || 4400 addrMode == HexagonII::BaseLongOffset); 4401 } 4402 4403 bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const { 4404 // Workaround for the Global Scheduler. Sometimes, it creates 4405 // A4_ext as a Pseudo instruction and calls this function to see if 4406 // it can be added to an existing bundle. Since the instruction doesn't 4407 // belong to any BB yet, we can't use getUnits API. 4408 if (MI.getOpcode() == Hexagon::A4_ext) 4409 return false; 4410 4411 unsigned FuncUnits = getUnits(MI); 4412 return HexagonFUnits::isSlot0Only(FuncUnits); 4413 } 4414 4415 bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const { 4416 const uint64_t F = MI.getDesc().TSFlags; 4417 return ((F >> HexagonII::RestrictNoSlot1StorePos) & 4418 HexagonII::RestrictNoSlot1StoreMask); 4419 } 4420 4421 void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, 4422 bool ToBigInstrs) const { 4423 int Opcode = -1; 4424 if (ToBigInstrs) { // To BigCore Instr. 4425 // Check if the instruction can form a Duplex. 4426 if (getDuplexCandidateGroup(*MII)) 4427 // Get the opcode marked "dup_*" tag. 4428 Opcode = getDuplexOpcode(*MII, ToBigInstrs); 4429 } else // To TinyCore Instr. 4430 Opcode = getDuplexOpcode(*MII, ToBigInstrs); 4431 4432 // Change the opcode of the instruction. 4433 if (Opcode >= 0) 4434 MII->setDesc(get(Opcode)); 4435 } 4436 4437 // This function is used to translate instructions to facilitate generating 4438 // Duplexes on TinyCore. 4439 void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF, 4440 bool ToBigInstrs) const { 4441 for (auto &MB : MF) 4442 for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(), 4443 End = MB.instr_end(); 4444 Instr != End; ++Instr) 4445 changeDuplexOpcode(Instr, ToBigInstrs); 4446 } 4447 4448 // This is a specialized form of above function. 4449 void HexagonInstrInfo::translateInstrsForDup( 4450 MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const { 4451 MachineBasicBlock *MBB = MII->getParent(); 4452 while ((MII != MBB->instr_end()) && MII->isInsideBundle()) { 4453 changeDuplexOpcode(MII, ToBigInstrs); 4454 ++MII; 4455 } 4456 } 4457 4458 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const { 4459 using namespace HexagonII; 4460 4461 const uint64_t F = MI.getDesc().TSFlags; 4462 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask; 4463 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S)); 4464 if (Size != 0) 4465 return Size; 4466 // Y2_dcfetchbo is special 4467 if (MI.getOpcode() == Hexagon::Y2_dcfetchbo) 4468 return HexagonII::DoubleWordAccess; 4469 4470 // Handle vector access sizes. 4471 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 4472 switch (S) { 4473 case HexagonII::HVXVectorAccess: 4474 return HRI.getSpillSize(Hexagon::HvxVRRegClass); 4475 default: 4476 llvm_unreachable("Unexpected instruction"); 4477 } 4478 } 4479 4480 // Returns the min value that doesn't need to be extended. 4481 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const { 4482 const uint64_t F = MI.getDesc().TSFlags; 4483 unsigned isSigned = (F >> HexagonII::ExtentSignedPos) 4484 & HexagonII::ExtentSignedMask; 4485 unsigned bits = (F >> HexagonII::ExtentBitsPos) 4486 & HexagonII::ExtentBitsMask; 4487 4488 if (isSigned) // if value is signed 4489 return -1U << (bits - 1); 4490 else 4491 return 0; 4492 } 4493 4494 // Returns opcode of the non-extended equivalent instruction. 4495 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const { 4496 // Check if the instruction has a register form that uses register in place 4497 // of the extended operand, if so return that as the non-extended form. 4498 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode()); 4499 if (NonExtOpcode >= 0) 4500 return NonExtOpcode; 4501 4502 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { 4503 // Check addressing mode and retrieve non-ext equivalent instruction. 4504 switch (getAddrMode(MI)) { 4505 case HexagonII::Absolute: 4506 return Hexagon::changeAddrMode_abs_io(MI.getOpcode()); 4507 case HexagonII::BaseImmOffset: 4508 return Hexagon::changeAddrMode_io_rr(MI.getOpcode()); 4509 case HexagonII::BaseLongOffset: 4510 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); 4511 4512 default: 4513 return -1; 4514 } 4515 } 4516 return -1; 4517 } 4518 4519 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond, 4520 Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { 4521 if (Cond.empty()) 4522 return false; 4523 assert(Cond.size() == 2); 4524 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) { 4525 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop"); 4526 return false; 4527 } 4528 PredReg = Cond[1].getReg(); 4529 PredRegPos = 1; 4530 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef 4531 PredRegFlags = 0; 4532 if (Cond[1].isImplicit()) 4533 PredRegFlags = RegState::Implicit; 4534 if (Cond[1].isUndef()) 4535 PredRegFlags |= RegState::Undef; 4536 return true; 4537 } 4538 4539 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const { 4540 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo); 4541 } 4542 4543 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const { 4544 return Hexagon::getRegForm(MI.getOpcode()); 4545 } 4546 4547 // Return the number of bytes required to encode the instruction. 4548 // Hexagon instructions are fixed length, 4 bytes, unless they 4549 // use a constant extender, which requires another 4 bytes. 4550 // For debug instructions and prolog labels, return 0. 4551 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const { 4552 if (MI.isDebugInstr() || MI.isPosition()) 4553 return 0; 4554 4555 unsigned Size = MI.getDesc().getSize(); 4556 if (!Size) 4557 // Assume the default insn size in case it cannot be determined 4558 // for whatever reason. 4559 Size = HEXAGON_INSTR_SIZE; 4560 4561 if (isConstExtended(MI) || isExtended(MI)) 4562 Size += HEXAGON_INSTR_SIZE; 4563 4564 // Try and compute number of instructions in asm. 4565 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) { 4566 const MachineBasicBlock &MBB = *MI.getParent(); 4567 const MachineFunction *MF = MBB.getParent(); 4568 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 4569 4570 // Count the number of register definitions to find the asm string. 4571 unsigned NumDefs = 0; 4572 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef(); 4573 ++NumDefs) 4574 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?"); 4575 4576 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?"); 4577 // Disassemble the AsmStr and approximate number of instructions. 4578 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName(); 4579 Size = getInlineAsmLength(AsmStr, *MAI); 4580 } 4581 4582 return Size; 4583 } 4584 4585 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const { 4586 const uint64_t F = MI.getDesc().TSFlags; 4587 return (F >> HexagonII::TypePos) & HexagonII::TypeMask; 4588 } 4589 4590 InstrStage::FuncUnits HexagonInstrInfo::getUnits(const MachineInstr &MI) const { 4591 const InstrItineraryData &II = *Subtarget.getInstrItineraryData(); 4592 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass()); 4593 4594 return IS.getUnits(); 4595 } 4596 4597 // Calculate size of the basic block without debug instructions. 4598 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const { 4599 return nonDbgMICount(BB->instr_begin(), BB->instr_end()); 4600 } 4601 4602 unsigned HexagonInstrInfo::nonDbgBundleSize( 4603 MachineBasicBlock::const_iterator BundleHead) const { 4604 assert(BundleHead->isBundle() && "Not a bundle header"); 4605 auto MII = BundleHead.getInstrIterator(); 4606 // Skip the bundle header. 4607 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator())); 4608 } 4609 4610 /// immediateExtend - Changes the instruction in place to one using an immediate 4611 /// extender. 4612 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const { 4613 assert((isExtendable(MI)||isConstExtended(MI)) && 4614 "Instruction must be extendable"); 4615 // Find which operand is extendable. 4616 short ExtOpNum = getCExtOpNum(MI); 4617 MachineOperand &MO = MI.getOperand(ExtOpNum); 4618 // This needs to be something we understand. 4619 assert((MO.isMBB() || MO.isImm()) && 4620 "Branch with unknown extendable field type"); 4621 // Mark given operand as extended. 4622 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); 4623 } 4624 4625 bool HexagonInstrInfo::invertAndChangeJumpTarget( 4626 MachineInstr &MI, MachineBasicBlock *NewTarget) const { 4627 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to " 4628 << printMBBReference(*NewTarget); 4629 MI.dump();); 4630 assert(MI.isBranch()); 4631 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode()); 4632 int TargetPos = MI.getNumOperands() - 1; 4633 // In general branch target is the last operand, 4634 // but some implicit defs added at the end might change it. 4635 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB()) 4636 --TargetPos; 4637 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB()); 4638 MI.getOperand(TargetPos).setMBB(NewTarget); 4639 if (EnableBranchPrediction && isPredicatedNew(MI)) { 4640 NewOpcode = reversePrediction(NewOpcode); 4641 } 4642 MI.setDesc(get(NewOpcode)); 4643 return true; 4644 } 4645 4646 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const { 4647 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */ 4648 MachineFunction::iterator A = MF.begin(); 4649 MachineBasicBlock &B = *A; 4650 MachineBasicBlock::iterator I = B.begin(); 4651 DebugLoc DL = I->getDebugLoc(); 4652 MachineInstr *NewMI; 4653 4654 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1; 4655 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) { 4656 NewMI = BuildMI(B, I, DL, get(insn)); 4657 LLVM_DEBUG(dbgs() << "\n" 4658 << getName(NewMI->getOpcode()) 4659 << " Class: " << NewMI->getDesc().getSchedClass()); 4660 NewMI->eraseFromParent(); 4661 } 4662 /* --- The code above is used to generate complete set of Hexagon Insn --- */ 4663 } 4664 4665 // inverts the predication logic. 4666 // p -> NotP 4667 // NotP -> P 4668 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const { 4669 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump()); 4670 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode()))); 4671 return true; 4672 } 4673 4674 // Reverse the branch prediction. 4675 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const { 4676 int PredRevOpcode = -1; 4677 if (isPredictedTaken(Opcode)) 4678 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode); 4679 else 4680 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode); 4681 assert(PredRevOpcode > 0); 4682 return PredRevOpcode; 4683 } 4684 4685 // TODO: Add more rigorous validation. 4686 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond) 4687 const { 4688 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1)); 4689 } 4690 4691 void HexagonInstrInfo:: 4692 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const { 4693 assert(MIB->isBundle()); 4694 MachineOperand &Operand = MIB->getOperand(0); 4695 if (Operand.isImm()) 4696 Operand.setImm(Operand.getImm() | memShufDisabledMask); 4697 else 4698 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask)); 4699 } 4700 4701 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const { 4702 assert(MIB.isBundle()); 4703 const MachineOperand &Operand = MIB.getOperand(0); 4704 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0); 4705 } 4706 4707 // Addressing mode relations. 4708 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const { 4709 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc; 4710 } 4711 4712 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const { 4713 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc; 4714 } 4715 4716 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const { 4717 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc; 4718 } 4719 4720 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const { 4721 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc; 4722 } 4723 4724 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const { 4725 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc; 4726 } 4727 4728 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const { 4729 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc; 4730 } 4731 4732 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const { 4733 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc; 4734 } 4735 4736 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const { 4737 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc; 4738 } 4739 4740 MCInst HexagonInstrInfo::getNop() const { 4741 static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop); 4742 4743 return MCInstBuilder(Hexagon::BUNDLE) 4744 .addImm(0) 4745 .addInst(&Nop); 4746 } 4747