xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp (revision 0ad011ececb978e22a9bff2acf76633b094f1ff6)
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/DiagnosticPrinter.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsHexagon.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <limits>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "hexagon-lowering"
70 
71 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
72   cl::init(true), cl::Hidden,
73   cl::desc("Control jump table emission on Hexagon target"));
74 
75 static cl::opt<bool>
76     EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden,
77                          cl::desc("Enable Hexagon SDNode scheduling"));
78 
79 static cl::opt<bool> EnableFastMath("ffast-math", cl::Hidden,
80                                     cl::desc("Enable Fast Math processing"));
81 
82 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", cl::Hidden,
83                                       cl::init(5),
84                                       cl::desc("Set minimum jump tables"));
85 
86 static cl::opt<int>
87     MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6),
88                          cl::desc("Max #stores to inline memcpy"));
89 
90 static cl::opt<int>
91     MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4),
92                                 cl::desc("Max #stores to inline memcpy"));
93 
94 static cl::opt<int>
95     MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6),
96                           cl::desc("Max #stores to inline memmove"));
97 
98 static cl::opt<int>
99     MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden,
100                                  cl::init(4),
101                                  cl::desc("Max #stores to inline memmove"));
102 
103 static cl::opt<int>
104     MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8),
105                          cl::desc("Max #stores to inline memset"));
106 
107 static cl::opt<int>
108     MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4),
109                                 cl::desc("Max #stores to inline memset"));
110 
111 static cl::opt<bool> AlignLoads("hexagon-align-loads",
112   cl::Hidden, cl::init(false),
113   cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
114 
115 static cl::opt<bool>
116     DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
117                             cl::init(false),
118                             cl::desc("Disable minimum alignment of 1 for "
119                                      "arguments passed by value on stack"));
120 
121 namespace {
122 
123   class HexagonCCState : public CCState {
124     unsigned NumNamedVarArgParams = 0;
125 
126   public:
127     HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
128                    SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
129                    unsigned NumNamedArgs)
130         : CCState(CC, IsVarArg, MF, locs, C),
131           NumNamedVarArgParams(NumNamedArgs) {}
132     unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
133   };
134 
135 } // end anonymous namespace
136 
137 
138 // Implement calling convention for Hexagon.
139 
140 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
141                        CCValAssign::LocInfo &LocInfo,
142                        ISD::ArgFlagsTy &ArgFlags, CCState &State) {
143   static const MCPhysReg ArgRegs[] = {
144     Hexagon::R0, Hexagon::R1, Hexagon::R2,
145     Hexagon::R3, Hexagon::R4, Hexagon::R5
146   };
147   const unsigned NumArgRegs = std::size(ArgRegs);
148   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
149 
150   // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
151   if (RegNum != NumArgRegs && RegNum % 2 == 1)
152     State.AllocateReg(ArgRegs[RegNum]);
153 
154   // Always return false here, as this function only makes sure that the first
155   // unallocated register has an even register number and does not actually
156   // allocate a register for the current argument.
157   return false;
158 }
159 
160 #include "HexagonGenCallingConv.inc"
161 
162 
163 SDValue
164 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
165       const {
166   return SDValue();
167 }
168 
169 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
170 /// by "Src" to address "Dst" of size "Size".  Alignment information is
171 /// specified by the specific parameter attribute. The copy will be passed as
172 /// a byval function parameter.  Sometimes what we are copying is the end of a
173 /// larger object, the part that does not fit in registers.
174 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
175                                          SDValue Chain, ISD::ArgFlagsTy Flags,
176                                          SelectionDAG &DAG, const SDLoc &dl) {
177   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
178   return DAG.getMemcpy(
179       Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
180       /*isVolatile=*/false, /*AlwaysInline=*/false,
181       /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
182 }
183 
184 bool
185 HexagonTargetLowering::CanLowerReturn(
186     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
187     const SmallVectorImpl<ISD::OutputArg> &Outs,
188     LLVMContext &Context) const {
189   SmallVector<CCValAssign, 16> RVLocs;
190   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
191 
192   if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
193     return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
194   return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
195 }
196 
197 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
198 // passed by value, the function prototype is modified to return void and
199 // the value is stored in memory pointed by a pointer passed by caller.
200 SDValue
201 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
202                                    bool IsVarArg,
203                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
204                                    const SmallVectorImpl<SDValue> &OutVals,
205                                    const SDLoc &dl, SelectionDAG &DAG) const {
206   // CCValAssign - represent the assignment of the return value to locations.
207   SmallVector<CCValAssign, 16> RVLocs;
208 
209   // CCState - Info about the registers and stack slot.
210   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
211                  *DAG.getContext());
212 
213   // Analyze return values of ISD::RET
214   if (Subtarget.useHVXOps())
215     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
216   else
217     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
218 
219   SDValue Glue;
220   SmallVector<SDValue, 4> RetOps(1, Chain);
221 
222   // Copy the result values into the output registers.
223   for (unsigned i = 0; i != RVLocs.size(); ++i) {
224     CCValAssign &VA = RVLocs[i];
225     SDValue Val = OutVals[i];
226 
227     switch (VA.getLocInfo()) {
228       default:
229         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
230         llvm_unreachable("Unknown loc info!");
231       case CCValAssign::Full:
232         break;
233       case CCValAssign::BCvt:
234         Val = DAG.getBitcast(VA.getLocVT(), Val);
235         break;
236       case CCValAssign::SExt:
237         Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
238         break;
239       case CCValAssign::ZExt:
240         Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
241         break;
242       case CCValAssign::AExt:
243         Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
244         break;
245     }
246 
247     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Glue);
248 
249     // Guarantee that all emitted copies are stuck together with flags.
250     Glue = Chain.getValue(1);
251     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
252   }
253 
254   RetOps[0] = Chain;  // Update chain.
255 
256   // Add the glue if we have it.
257   if (Glue.getNode())
258     RetOps.push_back(Glue);
259 
260   return DAG.getNode(HexagonISD::RET_GLUE, dl, MVT::Other, RetOps);
261 }
262 
263 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
264   // If either no tail call or told not to tail call at all, don't.
265   return CI->isTailCall();
266 }
267 
268 Register HexagonTargetLowering::getRegisterByName(
269       const char* RegName, LLT VT, const MachineFunction &) const {
270   // Just support r19, the linux kernel uses it.
271   Register Reg = StringSwitch<Register>(RegName)
272                      .Case("r0", Hexagon::R0)
273                      .Case("r1", Hexagon::R1)
274                      .Case("r2", Hexagon::R2)
275                      .Case("r3", Hexagon::R3)
276                      .Case("r4", Hexagon::R4)
277                      .Case("r5", Hexagon::R5)
278                      .Case("r6", Hexagon::R6)
279                      .Case("r7", Hexagon::R7)
280                      .Case("r8", Hexagon::R8)
281                      .Case("r9", Hexagon::R9)
282                      .Case("r10", Hexagon::R10)
283                      .Case("r11", Hexagon::R11)
284                      .Case("r12", Hexagon::R12)
285                      .Case("r13", Hexagon::R13)
286                      .Case("r14", Hexagon::R14)
287                      .Case("r15", Hexagon::R15)
288                      .Case("r16", Hexagon::R16)
289                      .Case("r17", Hexagon::R17)
290                      .Case("r18", Hexagon::R18)
291                      .Case("r19", Hexagon::R19)
292                      .Case("r20", Hexagon::R20)
293                      .Case("r21", Hexagon::R21)
294                      .Case("r22", Hexagon::R22)
295                      .Case("r23", Hexagon::R23)
296                      .Case("r24", Hexagon::R24)
297                      .Case("r25", Hexagon::R25)
298                      .Case("r26", Hexagon::R26)
299                      .Case("r27", Hexagon::R27)
300                      .Case("r28", Hexagon::R28)
301                      .Case("r29", Hexagon::R29)
302                      .Case("r30", Hexagon::R30)
303                      .Case("r31", Hexagon::R31)
304                      .Case("r1:0", Hexagon::D0)
305                      .Case("r3:2", Hexagon::D1)
306                      .Case("r5:4", Hexagon::D2)
307                      .Case("r7:6", Hexagon::D3)
308                      .Case("r9:8", Hexagon::D4)
309                      .Case("r11:10", Hexagon::D5)
310                      .Case("r13:12", Hexagon::D6)
311                      .Case("r15:14", Hexagon::D7)
312                      .Case("r17:16", Hexagon::D8)
313                      .Case("r19:18", Hexagon::D9)
314                      .Case("r21:20", Hexagon::D10)
315                      .Case("r23:22", Hexagon::D11)
316                      .Case("r25:24", Hexagon::D12)
317                      .Case("r27:26", Hexagon::D13)
318                      .Case("r29:28", Hexagon::D14)
319                      .Case("r31:30", Hexagon::D15)
320                      .Case("sp", Hexagon::R29)
321                      .Case("fp", Hexagon::R30)
322                      .Case("lr", Hexagon::R31)
323                      .Case("p0", Hexagon::P0)
324                      .Case("p1", Hexagon::P1)
325                      .Case("p2", Hexagon::P2)
326                      .Case("p3", Hexagon::P3)
327                      .Case("sa0", Hexagon::SA0)
328                      .Case("lc0", Hexagon::LC0)
329                      .Case("sa1", Hexagon::SA1)
330                      .Case("lc1", Hexagon::LC1)
331                      .Case("m0", Hexagon::M0)
332                      .Case("m1", Hexagon::M1)
333                      .Case("usr", Hexagon::USR)
334                      .Case("ugp", Hexagon::UGP)
335                      .Case("cs0", Hexagon::CS0)
336                      .Case("cs1", Hexagon::CS1)
337                      .Default(Register());
338   if (Reg)
339     return Reg;
340 
341   report_fatal_error("Invalid register name global variable");
342 }
343 
344 /// LowerCallResult - Lower the result values of an ISD::CALL into the
345 /// appropriate copies out of appropriate physical registers.  This assumes that
346 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
347 /// being lowered. Returns a SDNode with the same number of values as the
348 /// ISD::CALL.
349 SDValue HexagonTargetLowering::LowerCallResult(
350     SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
351     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
352     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
353     const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
354   // Assign locations to each value returned by this call.
355   SmallVector<CCValAssign, 16> RVLocs;
356 
357   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
358                  *DAG.getContext());
359 
360   if (Subtarget.useHVXOps())
361     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
362   else
363     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
364 
365   // Copy all of the result registers out of their specified physreg.
366   for (unsigned i = 0; i != RVLocs.size(); ++i) {
367     SDValue RetVal;
368     if (RVLocs[i].getValVT() == MVT::i1) {
369       // Return values of type MVT::i1 require special handling. The reason
370       // is that MVT::i1 is associated with the PredRegs register class, but
371       // values of that type are still returned in R0. Generate an explicit
372       // copy into a predicate register from R0, and treat the value of the
373       // predicate register as the call result.
374       auto &MRI = DAG.getMachineFunction().getRegInfo();
375       SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
376                                        MVT::i32, Glue);
377       // FR0 = (Value, Chain, Glue)
378       Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
379       SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
380                                      FR0.getValue(0), FR0.getValue(2));
381       // TPR = (Chain, Glue)
382       // Don't glue this CopyFromReg, because it copies from a virtual
383       // register. If it is glued to the call, InstrEmitter will add it
384       // as an implicit def to the call (EmitMachineNode).
385       RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
386       Glue = TPR.getValue(1);
387       Chain = TPR.getValue(0);
388     } else {
389       RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
390                                   RVLocs[i].getValVT(), Glue);
391       Glue = RetVal.getValue(2);
392       Chain = RetVal.getValue(1);
393     }
394     InVals.push_back(RetVal.getValue(0));
395   }
396 
397   return Chain;
398 }
399 
400 /// LowerCall - Functions arguments are copied from virtual regs to
401 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
402 SDValue
403 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
404                                  SmallVectorImpl<SDValue> &InVals) const {
405   SelectionDAG &DAG                     = CLI.DAG;
406   SDLoc &dl                             = CLI.DL;
407   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
408   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
409   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
410   SDValue Chain                         = CLI.Chain;
411   SDValue Callee                        = CLI.Callee;
412   CallingConv::ID CallConv              = CLI.CallConv;
413   bool IsVarArg                         = CLI.IsVarArg;
414   bool DoesNotReturn                    = CLI.DoesNotReturn;
415 
416   bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
417   MachineFunction &MF = DAG.getMachineFunction();
418   MachineFrameInfo &MFI = MF.getFrameInfo();
419   auto PtrVT = getPointerTy(MF.getDataLayout());
420 
421   unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
422   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
423     Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
424 
425   // Linux ABI treats var-arg calls the same way as regular ones.
426   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
427 
428   // Analyze operands of the call, assigning locations to each operand.
429   SmallVector<CCValAssign, 16> ArgLocs;
430   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
431                         NumParams);
432 
433   if (Subtarget.useHVXOps())
434     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
435   else if (DisableArgsMinAlignment)
436     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
437   else
438     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
439 
440   if (CLI.IsTailCall) {
441     bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
442     CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
443                         IsVarArg, IsStructRet, StructAttrFlag, Outs,
444                         OutVals, Ins, DAG);
445     for (const CCValAssign &VA : ArgLocs) {
446       if (VA.isMemLoc()) {
447         CLI.IsTailCall = false;
448         break;
449       }
450     }
451     LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
452                                          : "Argument must be passed on stack. "
453                                            "Not eligible for Tail Call\n"));
454   }
455   // Get a count of how many bytes are to be pushed on the stack.
456   unsigned NumBytes = CCInfo.getStackSize();
457   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
458   SmallVector<SDValue, 8> MemOpChains;
459 
460   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
461   SDValue StackPtr =
462       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
463 
464   bool NeedsArgAlign = false;
465   Align LargestAlignSeen;
466   // Walk the register/memloc assignments, inserting copies/loads.
467   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
468     CCValAssign &VA = ArgLocs[i];
469     SDValue Arg = OutVals[i];
470     ISD::ArgFlagsTy Flags = Outs[i].Flags;
471     // Record if we need > 8 byte alignment on an argument.
472     bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
473     NeedsArgAlign |= ArgAlign;
474 
475     // Promote the value if needed.
476     switch (VA.getLocInfo()) {
477       default:
478         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
479         llvm_unreachable("Unknown loc info!");
480       case CCValAssign::Full:
481         break;
482       case CCValAssign::BCvt:
483         Arg = DAG.getBitcast(VA.getLocVT(), Arg);
484         break;
485       case CCValAssign::SExt:
486         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
487         break;
488       case CCValAssign::ZExt:
489         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
490         break;
491       case CCValAssign::AExt:
492         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
493         break;
494     }
495 
496     if (VA.isMemLoc()) {
497       unsigned LocMemOffset = VA.getLocMemOffset();
498       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
499                                         StackPtr.getValueType());
500       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
501       if (ArgAlign)
502         LargestAlignSeen = std::max(
503             LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
504       if (Flags.isByVal()) {
505         // The argument is a struct passed by value. According to LLVM, "Arg"
506         // is a pointer.
507         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
508                                                         Flags, DAG, dl));
509       } else {
510         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
511             DAG.getMachineFunction(), LocMemOffset);
512         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
513         MemOpChains.push_back(S);
514       }
515       continue;
516     }
517 
518     // Arguments that can be passed on register must be kept at RegsToPass
519     // vector.
520     if (VA.isRegLoc())
521       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
522   }
523 
524   if (NeedsArgAlign && Subtarget.hasV60Ops()) {
525     LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
526     Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
527     LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
528     MFI.ensureMaxAlignment(LargestAlignSeen);
529   }
530   // Transform all store nodes into one single node because all store
531   // nodes are independent of each other.
532   if (!MemOpChains.empty())
533     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
534 
535   SDValue Glue;
536   if (!CLI.IsTailCall) {
537     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
538     Glue = Chain.getValue(1);
539   }
540 
541   // Build a sequence of copy-to-reg nodes chained together with token
542   // chain and flag operands which copy the outgoing args into registers.
543   // The Glue is necessary since all emitted instructions must be
544   // stuck together.
545   if (!CLI.IsTailCall) {
546     for (const auto &R : RegsToPass) {
547       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
548       Glue = Chain.getValue(1);
549     }
550   } else {
551     // For tail calls lower the arguments to the 'real' stack slot.
552     //
553     // Force all the incoming stack arguments to be loaded from the stack
554     // before any new outgoing arguments are stored to the stack, because the
555     // outgoing stack slots may alias the incoming argument stack slots, and
556     // the alias isn't otherwise explicit. This is slightly more conservative
557     // than necessary, because it means that each store effectively depends
558     // on every argument instead of just those arguments it would clobber.
559     //
560     // Do not flag preceding copytoreg stuff together with the following stuff.
561     Glue = SDValue();
562     for (const auto &R : RegsToPass) {
563       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
564       Glue = Chain.getValue(1);
565     }
566     Glue = SDValue();
567   }
568 
569   bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570   unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
571 
572   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574   // node so that legalize doesn't hack it.
575   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577   } else if (ExternalSymbolSDNode *S =
578              dyn_cast<ExternalSymbolSDNode>(Callee)) {
579     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
580   }
581 
582   // Returns a chain & a flag for retval copy to use.
583   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584   SmallVector<SDValue, 8> Ops;
585   Ops.push_back(Chain);
586   Ops.push_back(Callee);
587 
588   // Add argument registers to the end of the list so that they are
589   // known live into the call.
590   for (const auto &R : RegsToPass)
591     Ops.push_back(DAG.getRegister(R.first, R.second.getValueType()));
592 
593   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
594   assert(Mask && "Missing call preserved mask for calling convention");
595   Ops.push_back(DAG.getRegisterMask(Mask));
596 
597   if (Glue.getNode())
598     Ops.push_back(Glue);
599 
600   if (CLI.IsTailCall) {
601     MFI.setHasTailCall();
602     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
603   }
604 
605   // Set this here because we need to know this for "hasFP" in frame lowering.
606   // The target-independent code calls getFrameRegister before setting it, and
607   // getFrameRegister uses hasFP to determine whether the function has FP.
608   MFI.setHasCalls(true);
609 
610   unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
611   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
612   Glue = Chain.getValue(1);
613 
614   // Create the CALLSEQ_END node.
615   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl);
616   Glue = Chain.getValue(1);
617 
618   // Handle result values, copying them out of physregs into vregs that we
619   // return.
620   return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
621                          InVals, OutVals, Callee);
622 }
623 
624 /// Returns true by value, base pointer and offset pointer and addressing
625 /// mode by reference if this node can be combined with a load / store to
626 /// form a post-indexed load / store.
627 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
628       SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
629       SelectionDAG &DAG) const {
630   LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
631   if (!LSN)
632     return false;
633   EVT VT = LSN->getMemoryVT();
634   if (!VT.isSimple())
635     return false;
636   bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
637                      VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
638                      VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
639                      VT == MVT::v4i16 || VT == MVT::v8i8 ||
640                      Subtarget.isHVXVectorType(VT.getSimpleVT());
641   if (!IsLegalType)
642     return false;
643 
644   if (Op->getOpcode() != ISD::ADD)
645     return false;
646   Base = Op->getOperand(0);
647   Offset = Op->getOperand(1);
648   if (!isa<ConstantSDNode>(Offset.getNode()))
649     return false;
650   AM = ISD::POST_INC;
651 
652   int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
653   return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
654 }
655 
656 SDValue
657 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
658   MachineFunction &MF = DAG.getMachineFunction();
659   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
660   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
661   unsigned LR = HRI.getRARegister();
662 
663   if ((Op.getOpcode() != ISD::INLINEASM &&
664        Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
665     return Op;
666 
667   unsigned NumOps = Op.getNumOperands();
668   if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
669     --NumOps;  // Ignore the flag operand.
670 
671   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
672     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
673     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
674     ++i;  // Skip the ID value.
675 
676     switch (InlineAsm::getKind(Flags)) {
677       default:
678         llvm_unreachable("Bad flags!");
679       case InlineAsm::Kind_RegUse:
680       case InlineAsm::Kind_Imm:
681       case InlineAsm::Kind_Mem:
682         i += NumVals;
683         break;
684       case InlineAsm::Kind_Clobber:
685       case InlineAsm::Kind_RegDef:
686       case InlineAsm::Kind_RegDefEarlyClobber: {
687         for (; NumVals; --NumVals, ++i) {
688           Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
689           if (Reg != LR)
690             continue;
691           HMFI.setHasClobberLR(true);
692           return Op;
693         }
694         break;
695       }
696     }
697   }
698 
699   return Op;
700 }
701 
702 // Need to transform ISD::PREFETCH into something that doesn't inherit
703 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
704 // SDNPMayStore.
705 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
706                                              SelectionDAG &DAG) const {
707   SDValue Chain = Op.getOperand(0);
708   SDValue Addr = Op.getOperand(1);
709   // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
710   // if the "reg" is fed by an "add".
711   SDLoc DL(Op);
712   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
713   return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
714 }
715 
716 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
717 // is marked as having side-effects, while the register read on Hexagon does
718 // not have any. TableGen refuses to accept the direct pattern from that node
719 // to the A4_tfrcpp.
720 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
721                                                      SelectionDAG &DAG) const {
722   SDValue Chain = Op.getOperand(0);
723   SDLoc dl(Op);
724   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
725   return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
726 }
727 
728 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
729       SelectionDAG &DAG) const {
730   SDValue Chain = Op.getOperand(0);
731   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
732   // Lower the hexagon_prefetch builtin to DCFETCH, as above.
733   if (IntNo == Intrinsic::hexagon_prefetch) {
734     SDValue Addr = Op.getOperand(2);
735     SDLoc DL(Op);
736     SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
737     return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
738   }
739   return SDValue();
740 }
741 
742 SDValue
743 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
744                                                SelectionDAG &DAG) const {
745   SDValue Chain = Op.getOperand(0);
746   SDValue Size = Op.getOperand(1);
747   SDValue Align = Op.getOperand(2);
748   SDLoc dl(Op);
749 
750   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
751   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
752 
753   unsigned A = AlignConst->getSExtValue();
754   auto &HFI = *Subtarget.getFrameLowering();
755   // "Zero" means natural stack alignment.
756   if (A == 0)
757     A = HFI.getStackAlign().value();
758 
759   LLVM_DEBUG({
760     dbgs () << __func__ << " Align: " << A << " Size: ";
761     Size.getNode()->dump(&DAG);
762     dbgs() << "\n";
763   });
764 
765   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
766   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
767   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
768 
769   DAG.ReplaceAllUsesOfValueWith(Op, AA);
770   return AA;
771 }
772 
773 SDValue HexagonTargetLowering::LowerFormalArguments(
774     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
775     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
776     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
777   MachineFunction &MF = DAG.getMachineFunction();
778   MachineFrameInfo &MFI = MF.getFrameInfo();
779   MachineRegisterInfo &MRI = MF.getRegInfo();
780 
781   // Linux ABI treats var-arg calls the same way as regular ones.
782   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
783 
784   // Assign locations to all of the incoming arguments.
785   SmallVector<CCValAssign, 16> ArgLocs;
786   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
787                         *DAG.getContext(),
788                         MF.getFunction().getFunctionType()->getNumParams());
789 
790   if (Subtarget.useHVXOps())
791     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
792   else if (DisableArgsMinAlignment)
793     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
794   else
795     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
796 
797   // For LLVM, in the case when returning a struct by value (>8byte),
798   // the first argument is a pointer that points to the location on caller's
799   // stack where the return value will be stored. For Hexagon, the location on
800   // caller's stack is passed only when the struct size is smaller than (and
801   // equal to) 8 bytes. If not, no address will be passed into callee and
802   // callee return the result direclty through R0/R1.
803   auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
804     switch (RC.getID()) {
805     case Hexagon::IntRegsRegClassID:
806       return Reg - Hexagon::R0 + 1;
807     case Hexagon::DoubleRegsRegClassID:
808       return (Reg - Hexagon::D0 + 1) * 2;
809     case Hexagon::HvxVRRegClassID:
810       return Reg - Hexagon::V0 + 1;
811     case Hexagon::HvxWRRegClassID:
812       return (Reg - Hexagon::W0 + 1) * 2;
813     }
814     llvm_unreachable("Unexpected register class");
815   };
816 
817   auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
818   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
819   HFL.FirstVarArgSavedReg = 0;
820   HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
821 
822   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
823     CCValAssign &VA = ArgLocs[i];
824     ISD::ArgFlagsTy Flags = Ins[i].Flags;
825     bool ByVal = Flags.isByVal();
826 
827     // Arguments passed in registers:
828     // 1. 32- and 64-bit values and HVX vectors are passed directly,
829     // 2. Large structs are passed via an address, and the address is
830     //    passed in a register.
831     if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
832       llvm_unreachable("ByValSize must be bigger than 8 bytes");
833 
834     bool InReg = VA.isRegLoc() &&
835                  (!ByVal || (ByVal && Flags.getByValSize() > 8));
836 
837     if (InReg) {
838       MVT RegVT = VA.getLocVT();
839       if (VA.getLocInfo() == CCValAssign::BCvt)
840         RegVT = VA.getValVT();
841 
842       const TargetRegisterClass *RC = getRegClassFor(RegVT);
843       Register VReg = MRI.createVirtualRegister(RC);
844       SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
845 
846       // Treat values of type MVT::i1 specially: they are passed in
847       // registers of type i32, but they need to remain as values of
848       // type i1 for consistency of the argument lowering.
849       if (VA.getValVT() == MVT::i1) {
850         assert(RegVT.getSizeInBits() <= 32);
851         SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
852                                 Copy, DAG.getConstant(1, dl, RegVT));
853         Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
854                             ISD::SETNE);
855       } else {
856 #ifndef NDEBUG
857         unsigned RegSize = RegVT.getSizeInBits();
858         assert(RegSize == 32 || RegSize == 64 ||
859                Subtarget.isHVXVectorType(RegVT));
860 #endif
861       }
862       InVals.push_back(Copy);
863       MRI.addLiveIn(VA.getLocReg(), VReg);
864       HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
865     } else {
866       assert(VA.isMemLoc() && "Argument should be passed in memory");
867 
868       // If it's a byval parameter, then we need to compute the
869       // "real" size, not the size of the pointer.
870       unsigned ObjSize = Flags.isByVal()
871                             ? Flags.getByValSize()
872                             : VA.getLocVT().getStoreSizeInBits() / 8;
873 
874       // Create the frame index object for this incoming parameter.
875       int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
876       int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
877       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
878 
879       if (Flags.isByVal()) {
880         // If it's a pass-by-value aggregate, then do not dereference the stack
881         // location. Instead, we should generate a reference to the stack
882         // location.
883         InVals.push_back(FIN);
884       } else {
885         SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
886                                 MachinePointerInfo::getFixedStack(MF, FI, 0));
887         InVals.push_back(L);
888       }
889     }
890   }
891 
892   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
893     for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
894       MRI.addLiveIn(Hexagon::R0+i);
895   }
896 
897   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
898     HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
899     HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
900 
901     // Create Frame index for the start of register saved area.
902     int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
903     bool RequiresPadding = (NumVarArgRegs & 1);
904     int RegSaveAreaSizePlusPadding = RequiresPadding
905                                         ? (NumVarArgRegs + 1) * 4
906                                         : NumVarArgRegs * 4;
907 
908     if (RegSaveAreaSizePlusPadding > 0) {
909       // The offset to saved register area should be 8 byte aligned.
910       int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
911       if (!(RegAreaStart % 8))
912         RegAreaStart = (RegAreaStart + 7) & -8;
913 
914       int RegSaveAreaFrameIndex =
915         MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
916       HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
917 
918       // This will point to the next argument passed via stack.
919       int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
920       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
921       HMFI.setVarArgsFrameIndex(FI);
922     } else {
923       // This will point to the next argument passed via stack, when
924       // there is no saved register area.
925       int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
926       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
927       HMFI.setRegSavedAreaStartFrameIndex(FI);
928       HMFI.setVarArgsFrameIndex(FI);
929     }
930   }
931 
932 
933   if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
934     // This will point to the next argument passed via stack.
935     int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
936     int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
937     HMFI.setVarArgsFrameIndex(FI);
938   }
939 
940   return Chain;
941 }
942 
943 SDValue
944 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
945   // VASTART stores the address of the VarArgsFrameIndex slot into the
946   // memory location argument.
947   MachineFunction &MF = DAG.getMachineFunction();
948   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
949   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
950   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
951 
952   if (!Subtarget.isEnvironmentMusl()) {
953     return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
954                         MachinePointerInfo(SV));
955   }
956   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
957   auto &HFL = *Subtarget.getFrameLowering();
958   SDLoc DL(Op);
959   SmallVector<SDValue, 8> MemOps;
960 
961   // Get frame index of va_list.
962   SDValue FIN = Op.getOperand(1);
963 
964   // If first Vararg register is odd, add 4 bytes to start of
965   // saved register area to point to the first register location.
966   // This is because the saved register area has to be 8 byte aligned.
967   // Incase of an odd start register, there will be 4 bytes of padding in
968   // the beginning of saved register area. If all registers area used up,
969   // the following condition will handle it correctly.
970   SDValue SavedRegAreaStartFrameIndex =
971     DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
972 
973   auto PtrVT = getPointerTy(DAG.getDataLayout());
974 
975   if (HFL.FirstVarArgSavedReg & 1)
976     SavedRegAreaStartFrameIndex =
977       DAG.getNode(ISD::ADD, DL, PtrVT,
978                   DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
979                                     MVT::i32),
980                   DAG.getIntPtrConstant(4, DL));
981 
982   // Store the saved register area start pointer.
983   SDValue Store =
984     DAG.getStore(Op.getOperand(0), DL,
985                  SavedRegAreaStartFrameIndex,
986                  FIN, MachinePointerInfo(SV));
987   MemOps.push_back(Store);
988 
989   // Store saved register area end pointer.
990   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
991                     FIN, DAG.getIntPtrConstant(4, DL));
992   Store = DAG.getStore(Op.getOperand(0), DL,
993                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
994                                          PtrVT),
995                        FIN, MachinePointerInfo(SV, 4));
996   MemOps.push_back(Store);
997 
998   // Store overflow area pointer.
999   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1000                     FIN, DAG.getIntPtrConstant(4, DL));
1001   Store = DAG.getStore(Op.getOperand(0), DL,
1002                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1003                                          PtrVT),
1004                        FIN, MachinePointerInfo(SV, 8));
1005   MemOps.push_back(Store);
1006 
1007   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1008 }
1009 
1010 SDValue
1011 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1012   // Assert that the linux ABI is enabled for the current compilation.
1013   assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1014   SDValue Chain = Op.getOperand(0);
1015   SDValue DestPtr = Op.getOperand(1);
1016   SDValue SrcPtr = Op.getOperand(2);
1017   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1018   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1019   SDLoc DL(Op);
1020   // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1021   // we need to memcopy 12 bytes from va_list to another similar list.
1022   return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
1023                        DAG.getIntPtrConstant(12, DL), Align(4),
1024                        /*isVolatile*/ false, false, false,
1025                        MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1026 }
1027 
1028 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1029   const SDLoc &dl(Op);
1030   SDValue LHS = Op.getOperand(0);
1031   SDValue RHS = Op.getOperand(1);
1032   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1033   MVT ResTy = ty(Op);
1034   MVT OpTy = ty(LHS);
1035 
1036   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1037     MVT ElemTy = OpTy.getVectorElementType();
1038     assert(ElemTy.isScalarInteger());
1039     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1040                                   OpTy.getVectorNumElements());
1041     return DAG.getSetCC(dl, ResTy,
1042                         DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1043                         DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1044   }
1045 
1046   // Treat all other vector types as legal.
1047   if (ResTy.isVector())
1048     return Op;
1049 
1050   // Comparisons of short integers should use sign-extend, not zero-extend,
1051   // since we can represent small negative values in the compare instructions.
1052   // The LLVM default is to use zero-extend arbitrarily in these cases.
1053   auto isSExtFree = [this](SDValue N) {
1054     switch (N.getOpcode()) {
1055       case ISD::TRUNCATE: {
1056         // A sign-extend of a truncate of a sign-extend is free.
1057         SDValue Op = N.getOperand(0);
1058         if (Op.getOpcode() != ISD::AssertSext)
1059           return false;
1060         EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1061         unsigned ThisBW = ty(N).getSizeInBits();
1062         unsigned OrigBW = OrigTy.getSizeInBits();
1063         // The type that was sign-extended to get the AssertSext must be
1064         // narrower than the type of N (so that N has still the same value
1065         // as the original).
1066         return ThisBW >= OrigBW;
1067       }
1068       case ISD::LOAD:
1069         // We have sign-extended loads.
1070         return true;
1071     }
1072     return false;
1073   };
1074 
1075   if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1076     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1077     bool IsNegative = C && C->getAPIntValue().isNegative();
1078     if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1079       return DAG.getSetCC(dl, ResTy,
1080                           DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1081                           DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1082   }
1083 
1084   return SDValue();
1085 }
1086 
1087 SDValue
1088 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1089   SDValue PredOp = Op.getOperand(0);
1090   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1091   MVT OpTy = ty(Op1);
1092   const SDLoc &dl(Op);
1093 
1094   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1095     MVT ElemTy = OpTy.getVectorElementType();
1096     assert(ElemTy.isScalarInteger());
1097     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1098                                   OpTy.getVectorNumElements());
1099     // Generate (trunc (select (_, sext, sext))).
1100     return DAG.getSExtOrTrunc(
1101               DAG.getSelect(dl, WideTy, PredOp,
1102                             DAG.getSExtOrTrunc(Op1, dl, WideTy),
1103                             DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1104               dl, OpTy);
1105   }
1106 
1107   return SDValue();
1108 }
1109 
1110 SDValue
1111 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1112   EVT ValTy = Op.getValueType();
1113   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1114   Constant *CVal = nullptr;
1115   bool isVTi1Type = false;
1116   if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1117     if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1118       IRBuilder<> IRB(CV->getContext());
1119       SmallVector<Constant*, 128> NewConst;
1120       unsigned VecLen = CV->getNumOperands();
1121       assert(isPowerOf2_32(VecLen) &&
1122              "conversion only supported for pow2 VectorSize");
1123       for (unsigned i = 0; i < VecLen; ++i)
1124         NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1125 
1126       CVal = ConstantVector::get(NewConst);
1127       isVTi1Type = true;
1128     }
1129   }
1130   Align Alignment = CPN->getAlign();
1131   bool IsPositionIndependent = isPositionIndependent();
1132   unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1133 
1134   unsigned Offset = 0;
1135   SDValue T;
1136   if (CPN->isMachineConstantPoolEntry())
1137     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1138                                   Offset, TF);
1139   else if (isVTi1Type)
1140     T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1141   else
1142     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1143                                   TF);
1144 
1145   assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1146          "Inconsistent target flag encountered");
1147 
1148   if (IsPositionIndependent)
1149     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1150   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1151 }
1152 
1153 SDValue
1154 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1155   EVT VT = Op.getValueType();
1156   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1157   if (isPositionIndependent()) {
1158     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1159     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1160   }
1161 
1162   SDValue T = DAG.getTargetJumpTable(Idx, VT);
1163   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1164 }
1165 
1166 SDValue
1167 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1168   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1169   MachineFunction &MF = DAG.getMachineFunction();
1170   MachineFrameInfo &MFI = MF.getFrameInfo();
1171   MFI.setReturnAddressIsTaken(true);
1172 
1173   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1174     return SDValue();
1175 
1176   EVT VT = Op.getValueType();
1177   SDLoc dl(Op);
1178   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1179   if (Depth) {
1180     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1181     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1182     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1183                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1184                        MachinePointerInfo());
1185   }
1186 
1187   // Return LR, which contains the return address. Mark it an implicit live-in.
1188   Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1189   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1190 }
1191 
1192 SDValue
1193 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1194   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1195   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1196   MFI.setFrameAddressIsTaken(true);
1197 
1198   EVT VT = Op.getValueType();
1199   SDLoc dl(Op);
1200   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1201   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1202                                          HRI.getFrameRegister(), VT);
1203   while (Depth--)
1204     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1205                             MachinePointerInfo());
1206   return FrameAddr;
1207 }
1208 
1209 SDValue
1210 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1211   SDLoc dl(Op);
1212   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1213 }
1214 
1215 SDValue
1216 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1217   SDLoc dl(Op);
1218   auto *GAN = cast<GlobalAddressSDNode>(Op);
1219   auto PtrVT = getPointerTy(DAG.getDataLayout());
1220   auto *GV = GAN->getGlobal();
1221   int64_t Offset = GAN->getOffset();
1222 
1223   auto &HLOF = *HTM.getObjFileLowering();
1224   Reloc::Model RM = HTM.getRelocationModel();
1225 
1226   if (RM == Reloc::Static) {
1227     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1228     const GlobalObject *GO = GV->getAliaseeObject();
1229     if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1230       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1231     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1232   }
1233 
1234   bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1235   if (UsePCRel) {
1236     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1237                                             HexagonII::MO_PCREL);
1238     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1239   }
1240 
1241   // Use GOT index.
1242   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1243   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1244   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1245   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1246 }
1247 
1248 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1249 SDValue
1250 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1251   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1252   SDLoc dl(Op);
1253   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1254 
1255   Reloc::Model RM = HTM.getRelocationModel();
1256   if (RM == Reloc::Static) {
1257     SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1258     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1259   }
1260 
1261   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1262   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1263 }
1264 
1265 SDValue
1266 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1267       const {
1268   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1269   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1270                                                HexagonII::MO_PCREL);
1271   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1272 }
1273 
1274 SDValue
1275 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1276       GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1277       unsigned char OperandFlags) const {
1278   MachineFunction &MF = DAG.getMachineFunction();
1279   MachineFrameInfo &MFI = MF.getFrameInfo();
1280   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1281   SDLoc dl(GA);
1282   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1283                                            GA->getValueType(0),
1284                                            GA->getOffset(),
1285                                            OperandFlags);
1286   // Create Operands for the call.The Operands should have the following:
1287   // 1. Chain SDValue
1288   // 2. Callee which in this case is the Global address value.
1289   // 3. Registers live into the call.In this case its R0, as we
1290   //    have just one argument to be passed.
1291   // 4. Glue.
1292   // Note: The order is important.
1293 
1294   const auto &HRI = *Subtarget.getRegisterInfo();
1295   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1296   assert(Mask && "Missing call preserved mask for calling convention");
1297   SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1298                     DAG.getRegisterMask(Mask), Glue };
1299   Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1300 
1301   // Inform MFI that function has calls.
1302   MFI.setAdjustsStack(true);
1303 
1304   Glue = Chain.getValue(1);
1305   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1306 }
1307 
1308 //
1309 // Lower using the intial executable model for TLS addresses
1310 //
1311 SDValue
1312 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1313       SelectionDAG &DAG) const {
1314   SDLoc dl(GA);
1315   int64_t Offset = GA->getOffset();
1316   auto PtrVT = getPointerTy(DAG.getDataLayout());
1317 
1318   // Get the thread pointer.
1319   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1320 
1321   bool IsPositionIndependent = isPositionIndependent();
1322   unsigned char TF =
1323       IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1324 
1325   // First generate the TLS symbol address
1326   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1327                                            Offset, TF);
1328 
1329   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1330 
1331   if (IsPositionIndependent) {
1332     // Generate the GOT pointer in case of position independent code
1333     SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1334 
1335     // Add the TLS Symbol address to GOT pointer.This gives
1336     // GOT relative relocation for the symbol.
1337     Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1338   }
1339 
1340   // Load the offset value for TLS symbol.This offset is relative to
1341   // thread pointer.
1342   SDValue LoadOffset =
1343       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1344 
1345   // Address of the thread local variable is the add of thread
1346   // pointer and the offset of the variable.
1347   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1348 }
1349 
1350 //
1351 // Lower using the local executable model for TLS addresses
1352 //
1353 SDValue
1354 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1355       SelectionDAG &DAG) const {
1356   SDLoc dl(GA);
1357   int64_t Offset = GA->getOffset();
1358   auto PtrVT = getPointerTy(DAG.getDataLayout());
1359 
1360   // Get the thread pointer.
1361   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1362   // Generate the TLS symbol address
1363   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1364                                            HexagonII::MO_TPREL);
1365   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1366 
1367   // Address of the thread local variable is the add of thread
1368   // pointer and the offset of the variable.
1369   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1370 }
1371 
1372 //
1373 // Lower using the general dynamic model for TLS addresses
1374 //
1375 SDValue
1376 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1377       SelectionDAG &DAG) const {
1378   SDLoc dl(GA);
1379   int64_t Offset = GA->getOffset();
1380   auto PtrVT = getPointerTy(DAG.getDataLayout());
1381 
1382   // First generate the TLS symbol address
1383   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1384                                            HexagonII::MO_GDGOT);
1385 
1386   // Then, generate the GOT pointer
1387   SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1388 
1389   // Add the TLS symbol and the GOT pointer
1390   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1391   SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1392 
1393   // Copy over the argument to R0
1394   SDValue InGlue;
1395   Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InGlue);
1396   InGlue = Chain.getValue(1);
1397 
1398   unsigned Flags = DAG.getSubtarget<HexagonSubtarget>().useLongCalls()
1399                        ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1400                        : HexagonII::MO_GDPLT;
1401 
1402   return GetDynamicTLSAddr(DAG, Chain, GA, InGlue, PtrVT,
1403                            Hexagon::R0, Flags);
1404 }
1405 
1406 //
1407 // Lower TLS addresses.
1408 //
1409 // For now for dynamic models, we only support the general dynamic model.
1410 //
1411 SDValue
1412 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1413       SelectionDAG &DAG) const {
1414   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1415 
1416   switch (HTM.getTLSModel(GA->getGlobal())) {
1417     case TLSModel::GeneralDynamic:
1418     case TLSModel::LocalDynamic:
1419       return LowerToTLSGeneralDynamicModel(GA, DAG);
1420     case TLSModel::InitialExec:
1421       return LowerToTLSInitialExecModel(GA, DAG);
1422     case TLSModel::LocalExec:
1423       return LowerToTLSLocalExecModel(GA, DAG);
1424   }
1425   llvm_unreachable("Bogus TLS model");
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 // TargetLowering Implementation
1430 //===----------------------------------------------------------------------===//
1431 
1432 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1433                                              const HexagonSubtarget &ST)
1434     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1435       Subtarget(ST) {
1436   auto &HRI = *Subtarget.getRegisterInfo();
1437 
1438   setPrefLoopAlignment(Align(16));
1439   setMinFunctionAlignment(Align(4));
1440   setPrefFunctionAlignment(Align(16));
1441   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1442   setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1443   setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1444 
1445   setMaxAtomicSizeInBitsSupported(64);
1446   setMinCmpXchgSizeInBits(32);
1447 
1448   if (EnableHexSDNodeSched)
1449     setSchedulingPreference(Sched::VLIW);
1450   else
1451     setSchedulingPreference(Sched::Source);
1452 
1453   // Limits for inline expansion of memcpy/memmove
1454   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1455   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1456   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1457   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1458   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1459   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1460 
1461   //
1462   // Set up register classes.
1463   //
1464 
1465   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1466   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1467   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1468   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1469   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1470   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1471   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1472   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1473   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1474   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1475   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1476 
1477   addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1478   addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1479 
1480   //
1481   // Handling of scalar operations.
1482   //
1483   // All operations default to "legal", except:
1484   // - indexed loads and stores (pre-/post-incremented),
1485   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1486   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1487   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1488   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1489   // which default to "expand" for at least one type.
1490 
1491   // Misc operations.
1492   setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1493   setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1494   setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1495   setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1496   setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1497   setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1498   setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1499   setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1500   setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1501   setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1502   setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1503   setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1504   setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1505   setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1506   setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1507   setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1508 
1509   // Custom legalize GlobalAddress nodes into CONST32.
1510   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1511   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1512   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1513 
1514   // Hexagon needs to optimize cases with negative constants.
1515   setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1516   setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1517   setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1518   setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1519 
1520   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1521   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1522   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1523   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1524   if (Subtarget.isEnvironmentMusl())
1525     setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1526   else
1527     setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1528 
1529   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1530   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1531   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1532 
1533   if (EmitJumpTables)
1534     setMinimumJumpTableEntries(MinimumJumpTables);
1535   else
1536     setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1537   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1538 
1539   for (unsigned LegalIntOp :
1540        {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1541     setOperationAction(LegalIntOp, MVT::i32, Legal);
1542     setOperationAction(LegalIntOp, MVT::i64, Legal);
1543   }
1544 
1545   // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1546   // but they only operate on i64.
1547   for (MVT VT : MVT::integer_valuetypes()) {
1548     setOperationAction(ISD::UADDO, VT, Custom);
1549     setOperationAction(ISD::USUBO, VT, Custom);
1550     setOperationAction(ISD::SADDO, VT, Expand);
1551     setOperationAction(ISD::SSUBO, VT, Expand);
1552     setOperationAction(ISD::UADDO_CARRY, VT, Expand);
1553     setOperationAction(ISD::USUBO_CARRY, VT, Expand);
1554   }
1555   setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom);
1556   setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom);
1557 
1558   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1559   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1560   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1561   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1562 
1563   // Popcount can count # of 1s in i64 but returns i32.
1564   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1565   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1566   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1567   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1568 
1569   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1570   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1571   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1572   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1573 
1574   setOperationAction(ISD::FSHL, MVT::i32, Legal);
1575   setOperationAction(ISD::FSHL, MVT::i64, Legal);
1576   setOperationAction(ISD::FSHR, MVT::i32, Legal);
1577   setOperationAction(ISD::FSHR, MVT::i64, Legal);
1578 
1579   for (unsigned IntExpOp :
1580        {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1581         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1582         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1583         ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1584     for (MVT VT : MVT::integer_valuetypes())
1585       setOperationAction(IntExpOp, VT, Expand);
1586   }
1587 
1588   for (unsigned FPExpOp :
1589        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1590         ISD::FPOW, ISD::FCOPYSIGN}) {
1591     for (MVT VT : MVT::fp_valuetypes())
1592       setOperationAction(FPExpOp, VT, Expand);
1593   }
1594 
1595   // No extending loads from i32.
1596   for (MVT VT : MVT::integer_valuetypes()) {
1597     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1598     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1599     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1600   }
1601   // Turn FP truncstore into trunc + store.
1602   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1603   // Turn FP extload into load/fpextend.
1604   for (MVT VT : MVT::fp_valuetypes())
1605     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1606 
1607   // Expand BR_CC and SELECT_CC for all integer and fp types.
1608   for (MVT VT : MVT::integer_valuetypes()) {
1609     setOperationAction(ISD::BR_CC,     VT, Expand);
1610     setOperationAction(ISD::SELECT_CC, VT, Expand);
1611   }
1612   for (MVT VT : MVT::fp_valuetypes()) {
1613     setOperationAction(ISD::BR_CC,     VT, Expand);
1614     setOperationAction(ISD::SELECT_CC, VT, Expand);
1615   }
1616   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1617 
1618   //
1619   // Handling of vector operations.
1620   //
1621 
1622   // Set the action for vector operations to "expand", then override it with
1623   // either "custom" or "legal" for specific cases.
1624   static const unsigned VectExpOps[] = {
1625     // Integer arithmetic:
1626     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1627     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1628     ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1629     // Logical/bit:
1630     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1631     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,    ISD::BSWAP,   ISD::BITREVERSE,
1632     // Floating point arithmetic/math functions:
1633     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1634     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1635     ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1636     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1637     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1638     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, ISD::FLDEXP,
1639     // Misc:
1640     ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1641     // Vector:
1642     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1643     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1644     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1645     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE,
1646     ISD::SPLAT_VECTOR,
1647   };
1648 
1649   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1650     for (unsigned VectExpOp : VectExpOps)
1651       setOperationAction(VectExpOp, VT, Expand);
1652 
1653     // Expand all extending loads and truncating stores:
1654     for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1655       if (TargetVT == VT)
1656         continue;
1657       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1658       setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1659       setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1660       setTruncStoreAction(VT, TargetVT, Expand);
1661     }
1662 
1663     // Normalize all inputs to SELECT to be vectors of i32.
1664     if (VT.getVectorElementType() != MVT::i32) {
1665       MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1666       setOperationAction(ISD::SELECT, VT, Promote);
1667       AddPromotedToType(ISD::SELECT, VT, VT32);
1668     }
1669     setOperationAction(ISD::SRA, VT, Custom);
1670     setOperationAction(ISD::SHL, VT, Custom);
1671     setOperationAction(ISD::SRL, VT, Custom);
1672   }
1673 
1674   // Extending loads from (native) vectors of i8 into (native) vectors of i16
1675   // are legal.
1676   setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1677   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1678   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1679   setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1680   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1681   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1682 
1683   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1684   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1685   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1686 
1687   // Types natively supported:
1688   for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1689                        MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1690     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1691     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1692     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1693     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1694     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1695     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1696 
1697     setOperationAction(ISD::ADD, NativeVT, Legal);
1698     setOperationAction(ISD::SUB, NativeVT, Legal);
1699     setOperationAction(ISD::MUL, NativeVT, Legal);
1700     setOperationAction(ISD::AND, NativeVT, Legal);
1701     setOperationAction(ISD::OR,  NativeVT, Legal);
1702     setOperationAction(ISD::XOR, NativeVT, Legal);
1703 
1704     if (NativeVT.getVectorElementType() != MVT::i1) {
1705       setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1706       setOperationAction(ISD::BSWAP,        NativeVT, Legal);
1707       setOperationAction(ISD::BITREVERSE,   NativeVT, Legal);
1708     }
1709   }
1710 
1711   for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1712     setOperationAction(ISD::SMIN, VT, Legal);
1713     setOperationAction(ISD::SMAX, VT, Legal);
1714     setOperationAction(ISD::UMIN, VT, Legal);
1715     setOperationAction(ISD::UMAX, VT, Legal);
1716   }
1717 
1718   // Custom lower unaligned loads.
1719   // Also, for both loads and stores, verify the alignment of the address
1720   // in case it is a compile-time constant. This is a usability feature to
1721   // provide a meaningful error message to users.
1722   for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1723                  MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1724     setOperationAction(ISD::LOAD,  VT, Custom);
1725     setOperationAction(ISD::STORE, VT, Custom);
1726   }
1727 
1728   // Custom-lower load/stores of boolean vectors.
1729   for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1730     setOperationAction(ISD::LOAD,  VT, Custom);
1731     setOperationAction(ISD::STORE, VT, Custom);
1732   }
1733 
1734   // Normalize integer compares to EQ/GT/UGT
1735   for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1736                  MVT::v2i32}) {
1737     setCondCodeAction(ISD::SETNE,  VT, Expand);
1738     setCondCodeAction(ISD::SETLE,  VT, Expand);
1739     setCondCodeAction(ISD::SETGE,  VT, Expand);
1740     setCondCodeAction(ISD::SETLT,  VT, Expand);
1741     setCondCodeAction(ISD::SETULE, VT, Expand);
1742     setCondCodeAction(ISD::SETUGE, VT, Expand);
1743     setCondCodeAction(ISD::SETULT, VT, Expand);
1744   }
1745 
1746   // Normalize boolean compares to [U]LE/[U]LT
1747   for (MVT VT : {MVT::i1, MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1748     setCondCodeAction(ISD::SETGE,  VT, Expand);
1749     setCondCodeAction(ISD::SETGT,  VT, Expand);
1750     setCondCodeAction(ISD::SETUGE, VT, Expand);
1751     setCondCodeAction(ISD::SETUGT, VT, Expand);
1752   }
1753 
1754   // Custom-lower bitcasts from i8 to v8i1.
1755   setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1756   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1757   setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
1758   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1759   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1760   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1761   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1762 
1763   // V5+.
1764   setOperationAction(ISD::FMA,  MVT::f64, Expand);
1765   setOperationAction(ISD::FADD, MVT::f64, Expand);
1766   setOperationAction(ISD::FSUB, MVT::f64, Expand);
1767   setOperationAction(ISD::FMUL, MVT::f64, Expand);
1768 
1769   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1770   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1771 
1772   setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1773   setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1774   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1775   setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1776   setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1777   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1778   setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1779   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1780   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1781   setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1782   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1783   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1784 
1785   // Special handling for half-precision floating point conversions.
1786   // Lower half float conversions into library calls.
1787   setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1788   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1789   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1790   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1791 
1792   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
1793   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
1794   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1795   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1796 
1797   // Handling of indexed loads/stores: default is "expand".
1798   //
1799   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1800                  MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1801     setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1802     setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1803   }
1804 
1805   // Subtarget-specific operation actions.
1806   //
1807   if (Subtarget.hasV60Ops()) {
1808     setOperationAction(ISD::ROTL, MVT::i32, Legal);
1809     setOperationAction(ISD::ROTL, MVT::i64, Legal);
1810     setOperationAction(ISD::ROTR, MVT::i32, Legal);
1811     setOperationAction(ISD::ROTR, MVT::i64, Legal);
1812   }
1813   if (Subtarget.hasV66Ops()) {
1814     setOperationAction(ISD::FADD, MVT::f64, Legal);
1815     setOperationAction(ISD::FSUB, MVT::f64, Legal);
1816   }
1817   if (Subtarget.hasV67Ops()) {
1818     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1819     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1820     setOperationAction(ISD::FMUL,    MVT::f64, Legal);
1821   }
1822 
1823   setTargetDAGCombine(ISD::OR);
1824   setTargetDAGCombine(ISD::TRUNCATE);
1825   setTargetDAGCombine(ISD::VSELECT);
1826 
1827   if (Subtarget.useHVXOps())
1828     initializeHVXLowering();
1829 
1830   computeRegisterProperties(&HRI);
1831 
1832   //
1833   // Library calls for unsupported operations
1834   //
1835   bool FastMath  = EnableFastMath;
1836 
1837   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1838   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1839   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1840   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1841   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1842   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1843   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1844   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1845 
1846   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1847   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1848   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1849   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1850   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1851   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1852 
1853   // This is the only fast library function for sqrtd.
1854   if (FastMath)
1855     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1856 
1857   // Prefix is: nothing  for "slow-math",
1858   //            "fast2_" for V5+ fast-math double-precision
1859   // (actually, keep fast-math and fast-math2 separate for now)
1860   if (FastMath) {
1861     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1862     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1863     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1864     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1865     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1866   } else {
1867     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1868     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1869     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1870     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1871     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1872   }
1873 
1874   if (FastMath)
1875     setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1876   else
1877     setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1878 
1879   // Routines to handle fp16 storage type.
1880   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1881   setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2");
1882   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1883 
1884   // These cause problems when the shift amount is non-constant.
1885   setLibcallName(RTLIB::SHL_I128, nullptr);
1886   setLibcallName(RTLIB::SRL_I128, nullptr);
1887   setLibcallName(RTLIB::SRA_I128, nullptr);
1888 }
1889 
1890 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1891   switch ((HexagonISD::NodeType)Opcode) {
1892   case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1893   case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1894   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1895   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1896   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1897   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1898   case HexagonISD::CALL:          return "HexagonISD::CALL";
1899   case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1900   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1901   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1902   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1903   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1904   case HexagonISD::CP:            return "HexagonISD::CP";
1905   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1906   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1907   case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1908   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1909   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1910   case HexagonISD::JT:            return "HexagonISD::JT";
1911   case HexagonISD::RET_GLUE:      return "HexagonISD::RET_GLUE";
1912   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1913   case HexagonISD::VASL:          return "HexagonISD::VASL";
1914   case HexagonISD::VASR:          return "HexagonISD::VASR";
1915   case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1916   case HexagonISD::MFSHL:         return "HexagonISD::MFSHL";
1917   case HexagonISD::MFSHR:         return "HexagonISD::MFSHR";
1918   case HexagonISD::SSAT:          return "HexagonISD::SSAT";
1919   case HexagonISD::USAT:          return "HexagonISD::USAT";
1920   case HexagonISD::SMUL_LOHI:     return "HexagonISD::SMUL_LOHI";
1921   case HexagonISD::UMUL_LOHI:     return "HexagonISD::UMUL_LOHI";
1922   case HexagonISD::USMUL_LOHI:    return "HexagonISD::USMUL_LOHI";
1923   case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1924   case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1925   case HexagonISD::VROR:          return "HexagonISD::VROR";
1926   case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1927   case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
1928   case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
1929   case HexagonISD::D2P:           return "HexagonISD::D2P";
1930   case HexagonISD::P2D:           return "HexagonISD::P2D";
1931   case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1932   case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1933   case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1934   case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1935   case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1936   case HexagonISD::TL_EXTEND:     return "HexagonISD::TL_EXTEND";
1937   case HexagonISD::TL_TRUNCATE:   return "HexagonISD::TL_TRUNCATE";
1938   case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1939   case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1940   case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1941   case HexagonISD::ISEL:          return "HexagonISD::ISEL";
1942   case HexagonISD::OP_END:        break;
1943   }
1944   return nullptr;
1945 }
1946 
1947 bool
1948 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign,
1949       const SDLoc &dl, SelectionDAG &DAG) const {
1950   auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1951   if (!CA)
1952     return true;
1953   unsigned Addr = CA->getZExtValue();
1954   Align HaveAlign =
1955       Addr != 0 ? Align(1ull << llvm::countr_zero(Addr)) : NeedAlign;
1956   if (HaveAlign >= NeedAlign)
1957     return true;
1958 
1959   static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind();
1960 
1961   struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo {
1962     DiagnosticInfoMisalignedTrap(StringRef M)
1963       : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {}
1964     void print(DiagnosticPrinter &DP) const override {
1965       DP << Msg;
1966     }
1967     static bool classof(const DiagnosticInfo *DI) {
1968       return DI->getKind() == DK_MisalignedTrap;
1969     }
1970     StringRef Msg;
1971   };
1972 
1973   std::string ErrMsg;
1974   raw_string_ostream O(ErrMsg);
1975   O << "Misaligned constant address: " << format_hex(Addr, 10)
1976     << " has alignment " << HaveAlign.value()
1977     << ", but the memory access requires " << NeedAlign.value();
1978   if (DebugLoc DL = dl.getDebugLoc())
1979     DL.print(O << ", at ");
1980   O << ". The instruction has been replaced with a trap.";
1981 
1982   DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str()));
1983   return false;
1984 }
1985 
1986 SDValue
1987 HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG)
1988       const {
1989   const SDLoc &dl(Op);
1990   auto *LS = cast<LSBaseSDNode>(Op.getNode());
1991   assert(!LS->isIndexed() && "Not expecting indexed ops on constant address");
1992 
1993   SDValue Chain = LS->getChain();
1994   SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain);
1995   if (LS->getOpcode() == ISD::LOAD)
1996     return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl);
1997   return Trap;
1998 }
1999 
2000 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
2001 // intrinsic.
2002 static bool isBrevLdIntrinsic(const Value *Inst) {
2003   unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
2004   return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
2005           ID == Intrinsic::hexagon_L2_loadri_pbr ||
2006           ID == Intrinsic::hexagon_L2_loadrh_pbr ||
2007           ID == Intrinsic::hexagon_L2_loadruh_pbr ||
2008           ID == Intrinsic::hexagon_L2_loadrb_pbr ||
2009           ID == Intrinsic::hexagon_L2_loadrub_pbr);
2010 }
2011 
2012 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
2013 // instruction. So far we only handle bitcast, extract value and bit reverse
2014 // load intrinsic instructions. Should we handle CGEP ?
2015 static Value *getBrevLdObject(Value *V) {
2016   if (Operator::getOpcode(V) == Instruction::ExtractValue ||
2017       Operator::getOpcode(V) == Instruction::BitCast)
2018     V = cast<Operator>(V)->getOperand(0);
2019   else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
2020     V = cast<Instruction>(V)->getOperand(0);
2021   return V;
2022 }
2023 
2024 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
2025 // a back edge. If the back edge comes from the intrinsic itself, the incoming
2026 // edge is returned.
2027 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
2028   const BasicBlock *Parent = PN->getParent();
2029   int Idx = -1;
2030   for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
2031     BasicBlock *Blk = PN->getIncomingBlock(i);
2032     // Determine if the back edge is originated from intrinsic.
2033     if (Blk == Parent) {
2034       Value *BackEdgeVal = PN->getIncomingValue(i);
2035       Value *BaseVal;
2036       // Loop over till we return the same Value or we hit the IntrBaseVal.
2037       do {
2038         BaseVal = BackEdgeVal;
2039         BackEdgeVal = getBrevLdObject(BackEdgeVal);
2040       } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
2041       // If the getBrevLdObject returns IntrBaseVal, we should return the
2042       // incoming edge.
2043       if (IntrBaseVal == BackEdgeVal)
2044         continue;
2045       Idx = i;
2046       break;
2047     } else // Set the node to incoming edge.
2048       Idx = i;
2049   }
2050   assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
2051   return PN->getIncomingValue(Idx);
2052 }
2053 
2054 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
2055 // pointer points to, for the bit-reverse load intrinsic. Setting this to
2056 // memoperand might help alias analysis to figure out the dependencies.
2057 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
2058   Value *IntrBaseVal = V;
2059   Value *BaseVal;
2060   // Loop over till we return the same Value, implies we either figure out
2061   // the object or we hit a PHI
2062   do {
2063     BaseVal = V;
2064     V = getBrevLdObject(V);
2065   } while (BaseVal != V);
2066 
2067   // Identify the object from PHINode.
2068   if (const PHINode *PN = dyn_cast<PHINode>(V))
2069     return returnEdge(PN, IntrBaseVal);
2070   // For non PHI nodes, the object is the last value returned by getBrevLdObject
2071   else
2072     return V;
2073 }
2074 
2075 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2076 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2077 /// true and store the intrinsic information into the IntrinsicInfo that was
2078 /// passed to the function.
2079 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2080                                                const CallInst &I,
2081                                                MachineFunction &MF,
2082                                                unsigned Intrinsic) const {
2083   switch (Intrinsic) {
2084   case Intrinsic::hexagon_L2_loadrd_pbr:
2085   case Intrinsic::hexagon_L2_loadri_pbr:
2086   case Intrinsic::hexagon_L2_loadrh_pbr:
2087   case Intrinsic::hexagon_L2_loadruh_pbr:
2088   case Intrinsic::hexagon_L2_loadrb_pbr:
2089   case Intrinsic::hexagon_L2_loadrub_pbr: {
2090     Info.opc = ISD::INTRINSIC_W_CHAIN;
2091     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
2092     auto &Cont = I.getCalledFunction()->getParent()->getContext();
2093     // The intrinsic function call is of the form { ElTy, i8* }
2094     // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2095     // should be derived from ElTy.
2096     Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2097     Info.memVT = MVT::getVT(ElTy);
2098     llvm::Value *BasePtrVal = I.getOperand(0);
2099     Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2100     // The offset value comes through Modifier register. For now, assume the
2101     // offset is 0.
2102     Info.offset = 0;
2103     Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2104     Info.flags = MachineMemOperand::MOLoad;
2105     return true;
2106   }
2107   case Intrinsic::hexagon_V6_vgathermw:
2108   case Intrinsic::hexagon_V6_vgathermw_128B:
2109   case Intrinsic::hexagon_V6_vgathermh:
2110   case Intrinsic::hexagon_V6_vgathermh_128B:
2111   case Intrinsic::hexagon_V6_vgathermhw:
2112   case Intrinsic::hexagon_V6_vgathermhw_128B:
2113   case Intrinsic::hexagon_V6_vgathermwq:
2114   case Intrinsic::hexagon_V6_vgathermwq_128B:
2115   case Intrinsic::hexagon_V6_vgathermhq:
2116   case Intrinsic::hexagon_V6_vgathermhq_128B:
2117   case Intrinsic::hexagon_V6_vgathermhwq:
2118   case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2119     const Module &M = *I.getParent()->getParent()->getParent();
2120     Info.opc = ISD::INTRINSIC_W_CHAIN;
2121     Type *VecTy = I.getArgOperand(1)->getType();
2122     Info.memVT = MVT::getVT(VecTy);
2123     Info.ptrVal = I.getArgOperand(0);
2124     Info.offset = 0;
2125     Info.align =
2126         MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2127     Info.flags = MachineMemOperand::MOLoad |
2128                  MachineMemOperand::MOStore |
2129                  MachineMemOperand::MOVolatile;
2130     return true;
2131   }
2132   default:
2133     break;
2134   }
2135   return false;
2136 }
2137 
2138 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2139   return X.getValueType().isScalarInteger(); // 'tstbit'
2140 }
2141 
2142 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2143   return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2144 }
2145 
2146 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2147   if (!VT1.isSimple() || !VT2.isSimple())
2148     return false;
2149   return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2150 }
2151 
2152 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2153     const MachineFunction &MF, EVT VT) const {
2154   return isOperationLegalOrCustom(ISD::FMA, VT);
2155 }
2156 
2157 // Should we expand the build vector with shuffles?
2158 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2159       unsigned DefinedValues) const {
2160   return false;
2161 }
2162 
2163 bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2164       unsigned Index) const {
2165   assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType());
2166   if (!ResVT.isSimple() || !SrcVT.isSimple())
2167     return false;
2168 
2169   MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT();
2170   if (ResTy.getVectorElementType() != MVT::i1)
2171     return true;
2172 
2173   // Non-HVX bool vectors are relatively cheap.
2174   return SrcTy.getVectorNumElements() <= 8;
2175 }
2176 
2177 bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
2178   return Op.getOpcode() == ISD::CONCAT_VECTORS ||
2179          TargetLowering::isTargetCanonicalConstantNode(Op);
2180 }
2181 
2182 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2183                                                EVT VT) const {
2184   return true;
2185 }
2186 
2187 TargetLoweringBase::LegalizeTypeAction
2188 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2189   unsigned VecLen = VT.getVectorMinNumElements();
2190   MVT ElemTy = VT.getVectorElementType();
2191 
2192   if (VecLen == 1 || VT.isScalableVector())
2193     return TargetLoweringBase::TypeScalarizeVector;
2194 
2195   if (Subtarget.useHVXOps()) {
2196     unsigned Action = getPreferredHvxVectorAction(VT);
2197     if (Action != ~0u)
2198       return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2199   }
2200 
2201   // Always widen (remaining) vectors of i1.
2202   if (ElemTy == MVT::i1)
2203     return TargetLoweringBase::TypeWidenVector;
2204   // Widen non-power-of-2 vectors. Such types cannot be split right now,
2205   // and computeRegisterProperties will override "split" with "widen",
2206   // which can cause other issues.
2207   if (!isPowerOf2_32(VecLen))
2208     return TargetLoweringBase::TypeWidenVector;
2209 
2210   return TargetLoweringBase::TypeSplitVector;
2211 }
2212 
2213 TargetLoweringBase::LegalizeAction
2214 HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const {
2215   if (Subtarget.useHVXOps()) {
2216     unsigned Action = getCustomHvxOperationAction(Op);
2217     if (Action != ~0u)
2218       return static_cast<TargetLoweringBase::LegalizeAction>(Action);
2219   }
2220   return TargetLoweringBase::Legal;
2221 }
2222 
2223 std::pair<SDValue, int>
2224 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2225   if (Addr.getOpcode() == ISD::ADD) {
2226     SDValue Op1 = Addr.getOperand(1);
2227     if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2228       return { Addr.getOperand(0), CN->getSExtValue() };
2229   }
2230   return { Addr, 0 };
2231 }
2232 
2233 // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
2234 // to select data from, V3 is the permutation.
2235 SDValue
2236 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2237       const {
2238   const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2239   ArrayRef<int> AM = SVN->getMask();
2240   assert(AM.size() <= 8 && "Unexpected shuffle mask");
2241   unsigned VecLen = AM.size();
2242 
2243   MVT VecTy = ty(Op);
2244   assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2245          "HVX shuffles should be legal");
2246   assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2247 
2248   SDValue Op0 = Op.getOperand(0);
2249   SDValue Op1 = Op.getOperand(1);
2250   const SDLoc &dl(Op);
2251 
2252   // If the inputs are not the same as the output, bail. This is not an
2253   // error situation, but complicates the handling and the default expansion
2254   // (into BUILD_VECTOR) should be adequate.
2255   if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2256     return SDValue();
2257 
2258   // Normalize the mask so that the first non-negative index comes from
2259   // the first operand.
2260   SmallVector<int,8> Mask(AM.begin(), AM.end());
2261   unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2262   if (F == AM.size())
2263     return DAG.getUNDEF(VecTy);
2264   if (AM[F] >= int(VecLen)) {
2265     ShuffleVectorSDNode::commuteMask(Mask);
2266     std::swap(Op0, Op1);
2267   }
2268 
2269   // Express the shuffle mask in terms of bytes.
2270   SmallVector<int,8> ByteMask;
2271   unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2272   for (int M : Mask) {
2273     if (M < 0) {
2274       for (unsigned j = 0; j != ElemBytes; ++j)
2275         ByteMask.push_back(-1);
2276     } else {
2277       for (unsigned j = 0; j != ElemBytes; ++j)
2278         ByteMask.push_back(M*ElemBytes + j);
2279     }
2280   }
2281   assert(ByteMask.size() <= 8);
2282 
2283   // All non-undef (non-negative) indexes are well within [0..127], so they
2284   // fit in a single byte. Build two 64-bit words:
2285   // - MaskIdx where each byte is the corresponding index (for non-negative
2286   //   indexes), and 0xFF for negative indexes, and
2287   // - MaskUnd that has 0xFF for each negative index.
2288   uint64_t MaskIdx = 0;
2289   uint64_t MaskUnd = 0;
2290   for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2291     unsigned S = 8*i;
2292     uint64_t M = ByteMask[i] & 0xFF;
2293     if (M == 0xFF)
2294       MaskUnd |= M << S;
2295     MaskIdx |= M << S;
2296   }
2297 
2298   if (ByteMask.size() == 4) {
2299     // Identity.
2300     if (MaskIdx == (0x03020100 | MaskUnd))
2301       return Op0;
2302     // Byte swap.
2303     if (MaskIdx == (0x00010203 | MaskUnd)) {
2304       SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2305       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2306       return DAG.getBitcast(VecTy, T1);
2307     }
2308 
2309     // Byte packs.
2310     SDValue Concat10 =
2311         getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG);
2312     if (MaskIdx == (0x06040200 | MaskUnd))
2313       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2314     if (MaskIdx == (0x07050301 | MaskUnd))
2315       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2316 
2317     SDValue Concat01 =
2318         getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG);
2319     if (MaskIdx == (0x02000604 | MaskUnd))
2320       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2321     if (MaskIdx == (0x03010705 | MaskUnd))
2322       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2323   }
2324 
2325   if (ByteMask.size() == 8) {
2326     // Identity.
2327     if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2328       return Op0;
2329     // Byte swap.
2330     if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2331       SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2332       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2333       return DAG.getBitcast(VecTy, T1);
2334     }
2335 
2336     // Halfword picks.
2337     if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2338       return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2339     if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2340       return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2341     if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2342       return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2343     if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2344       return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2345     if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2346       VectorPair P = opSplit(Op0, dl, DAG);
2347       return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2348     }
2349 
2350     // Byte packs.
2351     if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2352       return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2353     if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2354       return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2355   }
2356 
2357   return SDValue();
2358 }
2359 
2360 SDValue
2361 HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const {
2362   switch (Op.getOpcode()) {
2363     case ISD::BUILD_VECTOR:
2364       if (SDValue S = cast<BuildVectorSDNode>(Op)->getSplatValue())
2365         return S;
2366       break;
2367     case ISD::SPLAT_VECTOR:
2368       return Op.getOperand(0);
2369   }
2370   return SDValue();
2371 }
2372 
2373 // Create a Hexagon-specific node for shifting a vector by an integer.
2374 SDValue
2375 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2376       const {
2377   unsigned NewOpc;
2378   switch (Op.getOpcode()) {
2379     case ISD::SHL:
2380       NewOpc = HexagonISD::VASL;
2381       break;
2382     case ISD::SRA:
2383       NewOpc = HexagonISD::VASR;
2384       break;
2385     case ISD::SRL:
2386       NewOpc = HexagonISD::VLSR;
2387       break;
2388     default:
2389       llvm_unreachable("Unexpected shift opcode");
2390   }
2391 
2392   if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG))
2393     return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp);
2394   return SDValue();
2395 }
2396 
2397 SDValue
2398 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2399   const SDLoc &dl(Op);
2400 
2401   // First try to convert the shift (by vector) to a shift by a scalar.
2402   // If we first split the shift, the shift amount will become 'extract
2403   // subvector', and will no longer be recognized as scalar.
2404   SDValue Res = Op;
2405   if (SDValue S = getVectorShiftByInt(Op, DAG))
2406     Res = S;
2407 
2408   unsigned Opc = Res.getOpcode();
2409   switch (Opc) {
2410   case HexagonISD::VASR:
2411   case HexagonISD::VLSR:
2412   case HexagonISD::VASL:
2413     break;
2414   default:
2415     // No instructions for shifts by non-scalars.
2416     return SDValue();
2417   }
2418 
2419   MVT ResTy = ty(Res);
2420   if (ResTy.getVectorElementType() != MVT::i8)
2421     return Res;
2422 
2423   // For shifts of i8, extend the inputs to i16, then truncate back to i8.
2424   assert(ResTy.getVectorElementType() == MVT::i8);
2425   SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1);
2426 
2427   auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) {
2428     MVT Ty = ty(V);
2429     MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements());
2430     SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy)
2431                                            : DAG.getZExtOrTrunc(V, dl, ExtTy);
2432     SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A});
2433     return DAG.getZExtOrTrunc(ExtS, dl, Ty);
2434   };
2435 
2436   if (ResTy.getSizeInBits() == 32)
2437     return ShiftPartI8(Opc, Val, Amt);
2438 
2439   auto [LoV, HiV] = opSplit(Val, dl, DAG);
2440   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy,
2441                      {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)});
2442 }
2443 
2444 SDValue
2445 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2446   if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2447     return Op;
2448   return SDValue();
2449 }
2450 
2451 SDValue
2452 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2453   MVT ResTy = ty(Op);
2454   SDValue InpV = Op.getOperand(0);
2455   MVT InpTy = ty(InpV);
2456   assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2457   const SDLoc &dl(Op);
2458 
2459   // Handle conversion from i8 to v8i1.
2460   if (InpTy == MVT::i8) {
2461     if (ResTy == MVT::v8i1) {
2462       SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2463       SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2464       return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2465     }
2466     return SDValue();
2467   }
2468 
2469   return Op;
2470 }
2471 
2472 bool
2473 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2474       MVT VecTy, SelectionDAG &DAG,
2475       MutableArrayRef<ConstantInt*> Consts) const {
2476   MVT ElemTy = VecTy.getVectorElementType();
2477   unsigned ElemWidth = ElemTy.getSizeInBits();
2478   IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2479   bool AllConst = true;
2480 
2481   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2482     SDValue V = Values[i];
2483     if (V.isUndef()) {
2484       Consts[i] = ConstantInt::get(IntTy, 0);
2485       continue;
2486     }
2487     // Make sure to always cast to IntTy.
2488     if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2489       const ConstantInt *CI = CN->getConstantIntValue();
2490       Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2491     } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2492       const ConstantFP *CF = CN->getConstantFPValue();
2493       APInt A = CF->getValueAPF().bitcastToAPInt();
2494       Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2495     } else {
2496       AllConst = false;
2497     }
2498   }
2499   return AllConst;
2500 }
2501 
2502 SDValue
2503 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2504                                      MVT VecTy, SelectionDAG &DAG) const {
2505   MVT ElemTy = VecTy.getVectorElementType();
2506   assert(VecTy.getVectorNumElements() == Elem.size());
2507 
2508   SmallVector<ConstantInt*,4> Consts(Elem.size());
2509   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2510 
2511   unsigned First, Num = Elem.size();
2512   for (First = 0; First != Num; ++First) {
2513     if (!isUndef(Elem[First]))
2514       break;
2515   }
2516   if (First == Num)
2517     return DAG.getUNDEF(VecTy);
2518 
2519   if (AllConst &&
2520       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2521     return getZero(dl, VecTy, DAG);
2522 
2523   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2524     assert(Elem.size() == 2);
2525     if (AllConst) {
2526       // The 'Consts' array will have all values as integers regardless
2527       // of the vector element type.
2528       uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2529                    Consts[1]->getZExtValue() << 16;
2530       return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32));
2531     }
2532     SDValue E0, E1;
2533     if (ElemTy == MVT::f16) {
2534       E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32);
2535       E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32);
2536     } else {
2537       E0 = Elem[0];
2538       E1 = Elem[1];
2539     }
2540     SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG);
2541     return DAG.getBitcast(VecTy, N);
2542   }
2543 
2544   if (ElemTy == MVT::i8) {
2545     // First try generating a constant.
2546     if (AllConst) {
2547       int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2548                   (Consts[1]->getZExtValue() & 0xFF) << 8 |
2549                   (Consts[2]->getZExtValue() & 0xFF) << 16 |
2550                   Consts[3]->getZExtValue() << 24;
2551       return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2552     }
2553 
2554     // Then try splat.
2555     bool IsSplat = true;
2556     for (unsigned i = First+1; i != Num; ++i) {
2557       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2558         continue;
2559       IsSplat = false;
2560       break;
2561     }
2562     if (IsSplat) {
2563       // Legalize the operand of SPLAT_VECTOR.
2564       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2565       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2566     }
2567 
2568     // Generate
2569     //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2570     //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2571     assert(Elem.size() == 4);
2572     SDValue Vs[4];
2573     for (unsigned i = 0; i != 4; ++i) {
2574       Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2575       Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2576     }
2577     SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2578     SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2579     SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2580     SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2581     SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2582 
2583     SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2584     return DAG.getBitcast(MVT::v4i8, R);
2585   }
2586 
2587 #ifndef NDEBUG
2588   dbgs() << "VecTy: " << VecTy << '\n';
2589 #endif
2590   llvm_unreachable("Unexpected vector element type");
2591 }
2592 
2593 SDValue
2594 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2595                                      MVT VecTy, SelectionDAG &DAG) const {
2596   MVT ElemTy = VecTy.getVectorElementType();
2597   assert(VecTy.getVectorNumElements() == Elem.size());
2598 
2599   SmallVector<ConstantInt*,8> Consts(Elem.size());
2600   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2601 
2602   unsigned First, Num = Elem.size();
2603   for (First = 0; First != Num; ++First) {
2604     if (!isUndef(Elem[First]))
2605       break;
2606   }
2607   if (First == Num)
2608     return DAG.getUNDEF(VecTy);
2609 
2610   if (AllConst &&
2611       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2612     return getZero(dl, VecTy, DAG);
2613 
2614   // First try splat if possible.
2615   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2616     bool IsSplat = true;
2617     for (unsigned i = First+1; i != Num; ++i) {
2618       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2619         continue;
2620       IsSplat = false;
2621       break;
2622     }
2623     if (IsSplat) {
2624       // Legalize the operand of SPLAT_VECTOR
2625       SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First])
2626                                      : Elem[First];
2627       SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32);
2628       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2629     }
2630   }
2631 
2632   // Then try constant.
2633   if (AllConst) {
2634     uint64_t Val = 0;
2635     unsigned W = ElemTy.getSizeInBits();
2636     uint64_t Mask = (1ull << W) - 1;
2637     for (unsigned i = 0; i != Num; ++i)
2638       Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2639     SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2640     return DAG.getBitcast(VecTy, V0);
2641   }
2642 
2643   // Build two 32-bit vectors and concatenate.
2644   MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2645   SDValue L = (ElemTy == MVT::i32)
2646                 ? Elem[0]
2647                 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2648   SDValue H = (ElemTy == MVT::i32)
2649                 ? Elem[1]
2650                 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2651   return getCombine(H, L, dl, VecTy, DAG);
2652 }
2653 
2654 SDValue
2655 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2656                                      const SDLoc &dl, MVT ValTy, MVT ResTy,
2657                                      SelectionDAG &DAG) const {
2658   MVT VecTy = ty(VecV);
2659   assert(!ValTy.isVector() ||
2660          VecTy.getVectorElementType() == ValTy.getVectorElementType());
2661   if (VecTy.getVectorElementType() == MVT::i1)
2662     return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG);
2663 
2664   unsigned VecWidth = VecTy.getSizeInBits();
2665   unsigned ValWidth = ValTy.getSizeInBits();
2666   unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2667   assert((VecWidth % ElemWidth) == 0);
2668   assert(VecWidth == 32 || VecWidth == 64);
2669 
2670   // Cast everything to scalar integer types.
2671   MVT ScalarTy = tyScalar(VecTy);
2672   VecV = DAG.getBitcast(ScalarTy, VecV);
2673 
2674   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2675   SDValue ExtV;
2676 
2677   if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2678     unsigned Off = IdxN->getZExtValue() * ElemWidth;
2679     if (VecWidth == 64 && ValWidth == 32) {
2680       assert(Off == 0 || Off == 32);
2681       ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG);
2682     } else if (Off == 0 && (ValWidth % 8) == 0) {
2683       ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2684     } else {
2685       SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2686       // The return type of EXTRACTU must be the same as the type of the
2687       // input vector.
2688       ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2689                          {VecV, WidthV, OffV});
2690     }
2691   } else {
2692     if (ty(IdxV) != MVT::i32)
2693       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2694     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2695                                DAG.getConstant(ElemWidth, dl, MVT::i32));
2696     ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2697                        {VecV, WidthV, OffV});
2698   }
2699 
2700   // Cast ExtV to the requested result type.
2701   ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2702   ExtV = DAG.getBitcast(ResTy, ExtV);
2703   return ExtV;
2704 }
2705 
2706 SDValue
2707 HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV,
2708                                          const SDLoc &dl, MVT ValTy, MVT ResTy,
2709                                          SelectionDAG &DAG) const {
2710   // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2711   // without any coprocessors).
2712   MVT VecTy = ty(VecV);
2713   unsigned VecWidth = VecTy.getSizeInBits();
2714   unsigned ValWidth = ValTy.getSizeInBits();
2715   assert(VecWidth == VecTy.getVectorNumElements() &&
2716          "Vector elements should equal vector width size");
2717   assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2718 
2719   // Check if this is an extract of the lowest bit.
2720   if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2721     // Extracting the lowest bit is a no-op, but it changes the type,
2722     // so it must be kept as an operation to avoid errors related to
2723     // type mismatches.
2724     if (IdxN->isZero() && ValTy.getSizeInBits() == 1)
2725       return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2726   }
2727 
2728   // If the value extracted is a single bit, use tstbit.
2729   if (ValWidth == 1) {
2730     SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2731     SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2732     SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2733     return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2734   }
2735 
2736   // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2737   // a predicate register. The elements of the vector are repeated
2738   // in the register (if necessary) so that the total number is 8.
2739   // The extracted subvector will need to be expanded in such a way.
2740   unsigned Scale = VecWidth / ValWidth;
2741 
2742   // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2743   // position 0.
2744   assert(ty(IdxV) == MVT::i32);
2745   unsigned VecRep = 8 / VecWidth;
2746   SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2747                            DAG.getConstant(8*VecRep, dl, MVT::i32));
2748   SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2749   SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2750   while (Scale > 1) {
2751     // The longest possible subvector is at most 32 bits, so it is always
2752     // contained in the low subregister.
2753     T1 = LoHalf(T1, DAG);
2754     T1 = expandPredicate(T1, dl, DAG);
2755     Scale /= 2;
2756   }
2757 
2758   return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2759 }
2760 
2761 SDValue
2762 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2763                                     const SDLoc &dl, MVT ValTy,
2764                                     SelectionDAG &DAG) const {
2765   MVT VecTy = ty(VecV);
2766   if (VecTy.getVectorElementType() == MVT::i1)
2767     return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG);
2768 
2769   unsigned VecWidth = VecTy.getSizeInBits();
2770   unsigned ValWidth = ValTy.getSizeInBits();
2771   assert(VecWidth == 32 || VecWidth == 64);
2772   assert((VecWidth % ValWidth) == 0);
2773 
2774   // Cast everything to scalar integer types.
2775   MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2776   // The actual type of ValV may be different than ValTy (which is related
2777   // to the vector type).
2778   unsigned VW = ty(ValV).getSizeInBits();
2779   ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2780   VecV = DAG.getBitcast(ScalarTy, VecV);
2781   if (VW != VecWidth)
2782     ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2783 
2784   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2785   SDValue InsV;
2786 
2787   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2788     unsigned W = C->getZExtValue() * ValWidth;
2789     SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2790     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2791                        {VecV, ValV, WidthV, OffV});
2792   } else {
2793     if (ty(IdxV) != MVT::i32)
2794       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2795     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2796     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2797                        {VecV, ValV, WidthV, OffV});
2798   }
2799 
2800   return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2801 }
2802 
2803 SDValue
2804 HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV,
2805                                         SDValue IdxV, const SDLoc &dl,
2806                                         MVT ValTy, SelectionDAG &DAG) const {
2807   MVT VecTy = ty(VecV);
2808   unsigned VecLen = VecTy.getVectorNumElements();
2809 
2810   if (ValTy == MVT::i1) {
2811     SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2812     SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32);
2813     SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32);
2814     SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2815     SDValue Ins =
2816         DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx});
2817     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG);
2818   }
2819 
2820   assert(ValTy.getVectorElementType() == MVT::i1);
2821   SDValue ValR = ValTy.isVector()
2822                      ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV)
2823                      : DAG.getSExtOrTrunc(ValV, dl, MVT::i64);
2824 
2825   unsigned Scale = VecLen / ValTy.getVectorNumElements();
2826   assert(Scale > 1);
2827 
2828   for (unsigned R = Scale; R > 1; R /= 2) {
2829     ValR = contractPredicate(ValR, dl, DAG);
2830     ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG);
2831   }
2832 
2833   SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32);
2834   SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2835   SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2836   SDValue Ins =
2837       DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx});
2838   return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2839 }
2840 
2841 SDValue
2842 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2843                                        SelectionDAG &DAG) const {
2844   assert(ty(Vec32).getSizeInBits() == 32);
2845   if (isUndef(Vec32))
2846     return DAG.getUNDEF(MVT::i64);
2847   SDValue P = DAG.getBitcast(MVT::v4i8, Vec32);
2848   SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P);
2849   return DAG.getBitcast(MVT::i64, X);
2850 }
2851 
2852 SDValue
2853 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2854                                          SelectionDAG &DAG) const {
2855   assert(ty(Vec64).getSizeInBits() == 64);
2856   if (isUndef(Vec64))
2857     return DAG.getUNDEF(MVT::i32);
2858   // Collect even bytes:
2859   SDValue A = DAG.getBitcast(MVT::v8i8, Vec64);
2860   SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8),
2861                                    {0, 2, 4, 6, 1, 3, 5, 7});
2862   return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8,
2863                        MVT::i32, DAG);
2864 }
2865 
2866 SDValue
2867 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2868       const {
2869   if (Ty.isVector()) {
2870     unsigned W = Ty.getSizeInBits();
2871     if (W <= 64)
2872       return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2873     return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2874   }
2875 
2876   if (Ty.isInteger())
2877     return DAG.getConstant(0, dl, Ty);
2878   if (Ty.isFloatingPoint())
2879     return DAG.getConstantFP(0.0, dl, Ty);
2880   llvm_unreachable("Invalid type for zero");
2881 }
2882 
2883 SDValue
2884 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2885       const {
2886   MVT ValTy = ty(Val);
2887   assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2888 
2889   unsigned ValLen = ValTy.getVectorNumElements();
2890   unsigned ResLen = ResTy.getVectorNumElements();
2891   if (ValLen == ResLen)
2892     return Val;
2893 
2894   const SDLoc &dl(Val);
2895   assert(ValLen < ResLen);
2896   assert(ResLen % ValLen == 0);
2897 
2898   SmallVector<SDValue, 4> Concats = {Val};
2899   for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2900     Concats.push_back(DAG.getUNDEF(ValTy));
2901 
2902   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2903 }
2904 
2905 SDValue
2906 HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl,
2907                                   MVT ResTy, SelectionDAG &DAG) const {
2908   MVT ElemTy = ty(Hi);
2909   assert(ElemTy == ty(Lo));
2910 
2911   if (!ElemTy.isVector()) {
2912     assert(ElemTy.isScalarInteger());
2913     MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits());
2914     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi);
2915     return DAG.getBitcast(ResTy, Pair);
2916   }
2917 
2918   unsigned Width = ElemTy.getSizeInBits();
2919   MVT IntTy = MVT::getIntegerVT(Width);
2920   MVT PairTy = MVT::getIntegerVT(2 * Width);
2921   SDValue Pair =
2922       DAG.getNode(ISD::BUILD_PAIR, dl, PairTy,
2923                   {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)});
2924   return DAG.getBitcast(ResTy, Pair);
2925 }
2926 
2927 SDValue
2928 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2929   MVT VecTy = ty(Op);
2930   unsigned BW = VecTy.getSizeInBits();
2931   const SDLoc &dl(Op);
2932   SmallVector<SDValue,8> Ops;
2933   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2934     Ops.push_back(Op.getOperand(i));
2935 
2936   if (BW == 32)
2937     return buildVector32(Ops, dl, VecTy, DAG);
2938   if (BW == 64)
2939     return buildVector64(Ops, dl, VecTy, DAG);
2940 
2941   if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2942     // Check if this is a special case or all-0 or all-1.
2943     bool All0 = true, All1 = true;
2944     for (SDValue P : Ops) {
2945       auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2946       if (CN == nullptr) {
2947         All0 = All1 = false;
2948         break;
2949       }
2950       uint32_t C = CN->getZExtValue();
2951       All0 &= (C == 0);
2952       All1 &= (C == 1);
2953     }
2954     if (All0)
2955       return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2956     if (All1)
2957       return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2958 
2959     // For each i1 element in the resulting predicate register, put 1
2960     // shifted by the index of the element into a general-purpose register,
2961     // then or them together and transfer it back into a predicate register.
2962     SDValue Rs[8];
2963     SDValue Z = getZero(dl, MVT::i32, DAG);
2964     // Always produce 8 bits, repeat inputs if necessary.
2965     unsigned Rep = 8 / VecTy.getVectorNumElements();
2966     for (unsigned i = 0; i != 8; ++i) {
2967       SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2968       Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2969     }
2970     for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2971       for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2972         Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2973     }
2974     // Move the value directly to a predicate register.
2975     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2976   }
2977 
2978   return SDValue();
2979 }
2980 
2981 SDValue
2982 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2983                                            SelectionDAG &DAG) const {
2984   MVT VecTy = ty(Op);
2985   const SDLoc &dl(Op);
2986   if (VecTy.getSizeInBits() == 64) {
2987     assert(Op.getNumOperands() == 2);
2988     return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG);
2989   }
2990 
2991   MVT ElemTy = VecTy.getVectorElementType();
2992   if (ElemTy == MVT::i1) {
2993     assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2994     MVT OpTy = ty(Op.getOperand(0));
2995     // Scale is how many times the operands need to be contracted to match
2996     // the representation in the target register.
2997     unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2998     assert(Scale == Op.getNumOperands() && Scale > 1);
2999 
3000     // First, convert all bool vectors to integers, then generate pairwise
3001     // inserts to form values of doubled length. Up until there are only
3002     // two values left to concatenate, all of these values will fit in a
3003     // 32-bit integer, so keep them as i32 to use 32-bit inserts.
3004     SmallVector<SDValue,4> Words[2];
3005     unsigned IdxW = 0;
3006 
3007     for (SDValue P : Op.getNode()->op_values()) {
3008       SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
3009       for (unsigned R = Scale; R > 1; R /= 2) {
3010         W = contractPredicate(W, dl, DAG);
3011         W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG);
3012       }
3013       W = LoHalf(W, DAG);
3014       Words[IdxW].push_back(W);
3015     }
3016 
3017     while (Scale > 2) {
3018       SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
3019       Words[IdxW ^ 1].clear();
3020 
3021       for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
3022         SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
3023         // Insert W1 into W0 right next to the significant bits of W0.
3024         SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
3025                                 {W0, W1, WidthV, WidthV});
3026         Words[IdxW ^ 1].push_back(T);
3027       }
3028       IdxW ^= 1;
3029       Scale /= 2;
3030     }
3031 
3032     // At this point there should only be two words left, and Scale should be 2.
3033     assert(Scale == 2 && Words[IdxW].size() == 2);
3034 
3035     SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG);
3036     return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
3037   }
3038 
3039   return SDValue();
3040 }
3041 
3042 SDValue
3043 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
3044                                                SelectionDAG &DAG) const {
3045   SDValue Vec = Op.getOperand(0);
3046   MVT ElemTy = ty(Vec).getVectorElementType();
3047   return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
3048 }
3049 
3050 SDValue
3051 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
3052                                               SelectionDAG &DAG) const {
3053   return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
3054                        ty(Op), ty(Op), DAG);
3055 }
3056 
3057 SDValue
3058 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
3059                                               SelectionDAG &DAG) const {
3060   return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
3061                       SDLoc(Op), ty(Op).getVectorElementType(), DAG);
3062 }
3063 
3064 SDValue
3065 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
3066                                              SelectionDAG &DAG) const {
3067   SDValue ValV = Op.getOperand(1);
3068   return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
3069                       SDLoc(Op), ty(ValV), DAG);
3070 }
3071 
3072 bool
3073 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
3074   // Assuming the caller does not have either a signext or zeroext modifier, and
3075   // only one value is accepted, any reasonable truncation is allowed.
3076   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
3077     return false;
3078 
3079   // FIXME: in principle up to 64-bit could be made safe, but it would be very
3080   // fragile at the moment: any support for multiple value returns would be
3081   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
3082   return Ty1->getPrimitiveSizeInBits() <= 32;
3083 }
3084 
3085 SDValue
3086 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
3087   MVT Ty = ty(Op);
3088   const SDLoc &dl(Op);
3089   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3090   MVT MemTy = LN->getMemoryVT().getSimpleVT();
3091   ISD::LoadExtType ET = LN->getExtensionType();
3092 
3093   bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1;
3094   if (LoadPred) {
3095     SDValue NL = DAG.getLoad(
3096         LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(),
3097         LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
3098         /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(),
3099         LN->getAAInfo(), LN->getRanges());
3100     LN = cast<LoadSDNode>(NL.getNode());
3101   }
3102 
3103   Align ClaimAlign = LN->getAlign();
3104   if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG))
3105     return replaceMemWithUndef(Op, DAG);
3106 
3107   // Call LowerUnalignedLoad for all loads, it recognizes loads that
3108   // don't need extra aligning.
3109   SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
3110   if (LoadPred) {
3111     SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG);
3112     if (ET == ISD::SEXTLOAD) {
3113       TP = DAG.getSExtOrTrunc(TP, dl, Ty);
3114     } else if (ET != ISD::NON_EXTLOAD) {
3115       TP = DAG.getZExtOrTrunc(TP, dl, Ty);
3116     }
3117     SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
3118     return DAG.getMergeValues({TP, Ch}, dl);
3119   }
3120   return LU;
3121 }
3122 
3123 SDValue
3124 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
3125   const SDLoc &dl(Op);
3126   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
3127   SDValue Val = SN->getValue();
3128   MVT Ty = ty(Val);
3129 
3130   if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) {
3131     // Store the exact predicate (all bits).
3132     SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG);
3133     SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(),
3134                                    MVT::i8, SN->getMemOperand());
3135     if (SN->isIndexed()) {
3136       NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
3137                                SN->getAddressingMode());
3138     }
3139     SN = cast<StoreSDNode>(NS.getNode());
3140   }
3141 
3142   Align ClaimAlign = SN->getAlign();
3143   if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG))
3144     return replaceMemWithUndef(Op, DAG);
3145 
3146   MVT StoreTy = SN->getMemoryVT().getSimpleVT();
3147   Align NeedAlign = Subtarget.getTypeAlignment(StoreTy);
3148   if (ClaimAlign < NeedAlign)
3149     return expandUnalignedStore(SN, DAG);
3150   return SDValue(SN, 0);
3151 }
3152 
3153 SDValue
3154 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
3155       const {
3156   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3157   MVT LoadTy = ty(Op);
3158   unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value();
3159   unsigned HaveAlign = LN->getAlign().value();
3160   if (HaveAlign >= NeedAlign)
3161     return Op;
3162 
3163   const SDLoc &dl(Op);
3164   const DataLayout &DL = DAG.getDataLayout();
3165   LLVMContext &Ctx = *DAG.getContext();
3166 
3167   // If the load aligning is disabled or the load can be broken up into two
3168   // smaller legal loads, do the default (target-independent) expansion.
3169   bool DoDefault = false;
3170   // Handle it in the default way if this is an indexed load.
3171   if (!LN->isUnindexed())
3172     DoDefault = true;
3173 
3174   if (!AlignLoads) {
3175     if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
3176                                        *LN->getMemOperand()))
3177       return Op;
3178     DoDefault = true;
3179   }
3180   if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
3181     // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
3182     MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
3183                                 : MVT::getVectorVT(MVT::i8, HaveAlign);
3184     DoDefault =
3185         allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
3186   }
3187   if (DoDefault) {
3188     std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
3189     return DAG.getMergeValues({P.first, P.second}, dl);
3190   }
3191 
3192   // The code below generates two loads, both aligned as NeedAlign, and
3193   // with the distance of NeedAlign between them. For that to cover the
3194   // bits that need to be loaded (and without overlapping), the size of
3195   // the loads should be equal to NeedAlign. This is true for all loadable
3196   // types, but add an assertion in case something changes in the future.
3197   assert(LoadTy.getSizeInBits() == 8*NeedAlign);
3198 
3199   unsigned LoadLen = NeedAlign;
3200   SDValue Base = LN->getBasePtr();
3201   SDValue Chain = LN->getChain();
3202   auto BO = getBaseAndOffset(Base);
3203   unsigned BaseOpc = BO.first.getOpcode();
3204   if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
3205     return Op;
3206 
3207   if (BO.second % LoadLen != 0) {
3208     BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3209                            DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3210     BO.second -= BO.second % LoadLen;
3211   }
3212   SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3213       ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3214                     DAG.getConstant(NeedAlign, dl, MVT::i32))
3215       : BO.first;
3216   SDValue Base0 =
3217       DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::Fixed(BO.second), dl);
3218   SDValue Base1 = DAG.getMemBasePlusOffset(
3219       BaseNoOff, TypeSize::Fixed(BO.second + LoadLen), dl);
3220 
3221   MachineMemOperand *WideMMO = nullptr;
3222   if (MachineMemOperand *MMO = LN->getMemOperand()) {
3223     MachineFunction &MF = DAG.getMachineFunction();
3224     WideMMO = MF.getMachineMemOperand(
3225         MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3226         MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3227         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
3228   }
3229 
3230   SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3231   SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3232 
3233   SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3234                                 {Load1, Load0, BaseNoOff.getOperand(0)});
3235   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3236                                  Load0.getValue(1), Load1.getValue(1));
3237   SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3238   return M;
3239 }
3240 
3241 SDValue
3242 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3243   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3244   auto *CY = dyn_cast<ConstantSDNode>(Y);
3245   if (!CY)
3246     return SDValue();
3247 
3248   const SDLoc &dl(Op);
3249   SDVTList VTs = Op.getNode()->getVTList();
3250   assert(VTs.NumVTs == 2);
3251   assert(VTs.VTs[1] == MVT::i1);
3252   unsigned Opc = Op.getOpcode();
3253 
3254   if (CY) {
3255     uint64_t VY = CY->getZExtValue();
3256     assert(VY != 0 && "This should have been folded");
3257     // X +/- 1
3258     if (VY != 1)
3259       return SDValue();
3260 
3261     if (Opc == ISD::UADDO) {
3262       SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3263       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3264                                 ISD::SETEQ);
3265       return DAG.getMergeValues({Op, Ov}, dl);
3266     }
3267     if (Opc == ISD::USUBO) {
3268       SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3269       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3270                                 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3271       return DAG.getMergeValues({Op, Ov}, dl);
3272     }
3273   }
3274 
3275   return SDValue();
3276 }
3277 
3278 SDValue HexagonTargetLowering::LowerUAddSubOCarry(SDValue Op,
3279                                                   SelectionDAG &DAG) const {
3280   const SDLoc &dl(Op);
3281   unsigned Opc = Op.getOpcode();
3282   SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3283 
3284   if (Opc == ISD::UADDO_CARRY)
3285     return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3286                        { X, Y, C });
3287 
3288   EVT CarryTy = C.getValueType();
3289   SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3290                              { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3291   SDValue Out[] = { SubC.getValue(0),
3292                     DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3293   return DAG.getMergeValues(Out, dl);
3294 }
3295 
3296 SDValue
3297 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3298   SDValue Chain     = Op.getOperand(0);
3299   SDValue Offset    = Op.getOperand(1);
3300   SDValue Handler   = Op.getOperand(2);
3301   SDLoc dl(Op);
3302   auto PtrVT = getPointerTy(DAG.getDataLayout());
3303 
3304   // Mark function as containing a call to EH_RETURN.
3305   HexagonMachineFunctionInfo *FuncInfo =
3306     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3307   FuncInfo->setHasEHReturn();
3308 
3309   unsigned OffsetReg = Hexagon::R28;
3310 
3311   SDValue StoreAddr =
3312       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3313                   DAG.getIntPtrConstant(4, dl));
3314   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3315   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3316 
3317   // Not needed we already use it as explict input to EH_RETURN.
3318   // MF.getRegInfo().addLiveOut(OffsetReg);
3319 
3320   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3321 }
3322 
3323 SDValue
3324 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3325   unsigned Opc = Op.getOpcode();
3326 
3327   // Handle INLINEASM first.
3328   if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3329     return LowerINLINEASM(Op, DAG);
3330 
3331   if (isHvxOperation(Op.getNode(), DAG)) {
3332     // If HVX lowering returns nothing, try the default lowering.
3333     if (SDValue V = LowerHvxOperation(Op, DAG))
3334       return V;
3335   }
3336 
3337   switch (Opc) {
3338     default:
3339 #ifndef NDEBUG
3340       Op.getNode()->dumpr(&DAG);
3341       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3342         errs() << "Error: check for a non-legal type in this operation\n";
3343 #endif
3344       llvm_unreachable("Should not custom lower this!");
3345     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
3346     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
3347     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
3348     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
3349     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3350     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
3351     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
3352     case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
3353     case ISD::LOAD:                 return LowerLoad(Op, DAG);
3354     case ISD::STORE:                return LowerStore(Op, DAG);
3355     case ISD::UADDO:
3356     case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
3357     case ISD::UADDO_CARRY:
3358     case ISD::USUBO_CARRY:          return LowerUAddSubOCarry(Op, DAG);
3359     case ISD::SRA:
3360     case ISD::SHL:
3361     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
3362     case ISD::ROTL:                 return LowerROTL(Op, DAG);
3363     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
3364     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
3365     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
3366     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
3367     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
3368     case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
3369     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
3370     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
3371     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
3372     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3373     case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
3374     case ISD::VASTART:              return LowerVASTART(Op, DAG);
3375     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
3376     case ISD::SETCC:                return LowerSETCC(Op, DAG);
3377     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
3378     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3379     case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
3380     case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
3381     case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
3382       break;
3383   }
3384 
3385   return SDValue();
3386 }
3387 
3388 void
3389 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3390                                              SmallVectorImpl<SDValue> &Results,
3391                                              SelectionDAG &DAG) const {
3392   if (isHvxOperation(N, DAG)) {
3393     LowerHvxOperationWrapper(N, Results, DAG);
3394     if (!Results.empty())
3395       return;
3396   }
3397 
3398   SDValue Op(N, 0);
3399   unsigned Opc = N->getOpcode();
3400 
3401   switch (Opc) {
3402     case HexagonISD::SSAT:
3403     case HexagonISD::USAT:
3404       Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG));
3405       break;
3406     case ISD::STORE:
3407       // We are only custom-lowering stores to verify the alignment of the
3408       // address if it is a compile-time constant. Since a store can be
3409       // modified during type-legalization (the value being stored may need
3410       // legalization), return empty Results here to indicate that we don't
3411       // really make any changes in the custom lowering.
3412       return;
3413     default:
3414       TargetLowering::LowerOperationWrapper(N, Results, DAG);
3415       break;
3416   }
3417 }
3418 
3419 void
3420 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3421                                           SmallVectorImpl<SDValue> &Results,
3422                                           SelectionDAG &DAG) const {
3423   if (isHvxOperation(N, DAG)) {
3424     ReplaceHvxNodeResults(N, Results, DAG);
3425     if (!Results.empty())
3426       return;
3427   }
3428 
3429   const SDLoc &dl(N);
3430   switch (N->getOpcode()) {
3431     case ISD::SRL:
3432     case ISD::SRA:
3433     case ISD::SHL:
3434       return;
3435     case ISD::BITCAST:
3436       // Handle a bitcast from v8i1 to i8.
3437       if (N->getValueType(0) == MVT::i8) {
3438         if (N->getOperand(0).getValueType() == MVT::v8i1) {
3439           SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3440                                N->getOperand(0), DAG);
3441           SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3442           Results.push_back(T);
3443         }
3444       }
3445       break;
3446   }
3447 }
3448 
3449 SDValue
3450 HexagonTargetLowering::PerformDAGCombine(SDNode *N,
3451                                          DAGCombinerInfo &DCI) const {
3452   if (isHvxOperation(N, DCI.DAG)) {
3453     if (SDValue V = PerformHvxDAGCombine(N, DCI))
3454       return V;
3455     return SDValue();
3456   }
3457 
3458   SDValue Op(N, 0);
3459   const SDLoc &dl(Op);
3460   unsigned Opc = Op.getOpcode();
3461 
3462   if (Opc == ISD::TRUNCATE) {
3463     SDValue Op0 = Op.getOperand(0);
3464     // fold (truncate (build pair x, y)) -> (truncate x) or x
3465     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3466       EVT TruncTy = Op.getValueType();
3467       SDValue Elem0 = Op0.getOperand(0);
3468       // if we match the low element of the pair, just return it.
3469       if (Elem0.getValueType() == TruncTy)
3470         return Elem0;
3471       // otherwise, if the low part is still too large, apply the truncate.
3472       if (Elem0.getValueType().bitsGT(TruncTy))
3473         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3474     }
3475   }
3476 
3477   if (DCI.isBeforeLegalizeOps())
3478     return SDValue();
3479 
3480   if (Opc == HexagonISD::P2D) {
3481     SDValue P = Op.getOperand(0);
3482     switch (P.getOpcode()) {
3483     case HexagonISD::PTRUE:
3484       return DCI.DAG.getConstant(-1, dl, ty(Op));
3485     case HexagonISD::PFALSE:
3486       return getZero(dl, ty(Op), DCI.DAG);
3487     default:
3488       break;
3489     }
3490   } else if (Opc == ISD::VSELECT) {
3491     // This is pretty much duplicated in HexagonISelLoweringHVX...
3492     //
3493     // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3494     SDValue Cond = Op.getOperand(0);
3495     if (Cond->getOpcode() == ISD::XOR) {
3496       SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3497       if (C1->getOpcode() == HexagonISD::PTRUE) {
3498         SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3499                                        Op.getOperand(2), Op.getOperand(1));
3500         return VSel;
3501       }
3502     }
3503   } else if (Opc == ISD::TRUNCATE) {
3504     SDValue Op0 = Op.getOperand(0);
3505     // fold (truncate (build pair x, y)) -> (truncate x) or x
3506     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3507       MVT TruncTy = ty(Op);
3508       SDValue Elem0 = Op0.getOperand(0);
3509       // if we match the low element of the pair, just return it.
3510       if (ty(Elem0) == TruncTy)
3511         return Elem0;
3512       // otherwise, if the low part is still too large, apply the truncate.
3513       if (ty(Elem0).bitsGT(TruncTy))
3514         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3515     }
3516   } else if (Opc == ISD::OR) {
3517     // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y)
3518     // if s >= 32
3519     auto fold0 = [&, this](SDValue Op) {
3520       if (ty(Op) != MVT::i64)
3521         return SDValue();
3522       SDValue Shl = Op.getOperand(0);
3523       SDValue Zxt = Op.getOperand(1);
3524       if (Shl.getOpcode() != ISD::SHL)
3525         std::swap(Shl, Zxt);
3526 
3527       if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND)
3528         return SDValue();
3529 
3530       SDValue Z = Zxt.getOperand(0);
3531       auto *Amt = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
3532       if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) {
3533         unsigned A = Amt->getZExtValue();
3534         SDValue S = Shl.getOperand(0);
3535         SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S,
3536                                      DCI.DAG.getConstant(32 - A, dl, MVT::i32));
3537         SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32);
3538         SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32);
3539         return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2});
3540       }
3541       return SDValue();
3542     };
3543 
3544     if (SDValue R = fold0(Op))
3545       return R;
3546   }
3547 
3548   return SDValue();
3549 }
3550 
3551 /// Returns relocation base for the given PIC jumptable.
3552 SDValue
3553 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3554                                                 SelectionDAG &DAG) const {
3555   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3556   EVT VT = Table.getValueType();
3557   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3558   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3559 }
3560 
3561 //===----------------------------------------------------------------------===//
3562 // Inline Assembly Support
3563 //===----------------------------------------------------------------------===//
3564 
3565 TargetLowering::ConstraintType
3566 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3567   if (Constraint.size() == 1) {
3568     switch (Constraint[0]) {
3569       case 'q':
3570       case 'v':
3571         if (Subtarget.useHVXOps())
3572           return C_RegisterClass;
3573         break;
3574       case 'a':
3575         return C_RegisterClass;
3576       default:
3577         break;
3578     }
3579   }
3580   return TargetLowering::getConstraintType(Constraint);
3581 }
3582 
3583 std::pair<unsigned, const TargetRegisterClass*>
3584 HexagonTargetLowering::getRegForInlineAsmConstraint(
3585     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3586 
3587   if (Constraint.size() == 1) {
3588     switch (Constraint[0]) {
3589     case 'r':   // R0-R31
3590       switch (VT.SimpleTy) {
3591       default:
3592         return {0u, nullptr};
3593       case MVT::i1:
3594       case MVT::i8:
3595       case MVT::i16:
3596       case MVT::i32:
3597       case MVT::f32:
3598         return {0u, &Hexagon::IntRegsRegClass};
3599       case MVT::i64:
3600       case MVT::f64:
3601         return {0u, &Hexagon::DoubleRegsRegClass};
3602       }
3603       break;
3604     case 'a': // M0-M1
3605       if (VT != MVT::i32)
3606         return {0u, nullptr};
3607       return {0u, &Hexagon::ModRegsRegClass};
3608     case 'q': // q0-q3
3609       switch (VT.getSizeInBits()) {
3610       default:
3611         return {0u, nullptr};
3612       case 64:
3613       case 128:
3614         return {0u, &Hexagon::HvxQRRegClass};
3615       }
3616       break;
3617     case 'v': // V0-V31
3618       switch (VT.getSizeInBits()) {
3619       default:
3620         return {0u, nullptr};
3621       case 512:
3622         return {0u, &Hexagon::HvxVRRegClass};
3623       case 1024:
3624         if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3625           return {0u, &Hexagon::HvxVRRegClass};
3626         return {0u, &Hexagon::HvxWRRegClass};
3627       case 2048:
3628         return {0u, &Hexagon::HvxWRRegClass};
3629       }
3630       break;
3631     default:
3632       return {0u, nullptr};
3633     }
3634   }
3635 
3636   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3637 }
3638 
3639 /// isFPImmLegal - Returns true if the target can instruction select the
3640 /// specified FP immediate natively. If false, the legalizer will
3641 /// materialize the FP immediate as a load from a constant pool.
3642 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3643                                          bool ForCodeSize) const {
3644   return true;
3645 }
3646 
3647 /// isLegalAddressingMode - Return true if the addressing mode represented by
3648 /// AM is legal for this target, for a load/store of the specified type.
3649 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3650                                                   const AddrMode &AM, Type *Ty,
3651                                                   unsigned AS, Instruction *I) const {
3652   if (Ty->isSized()) {
3653     // When LSR detects uses of the same base address to access different
3654     // types (e.g. unions), it will assume a conservative type for these
3655     // uses:
3656     //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
3657     // The type Ty passed here would then be "void". Skip the alignment
3658     // checks, but do not return false right away, since that confuses
3659     // LSR into crashing.
3660     Align A = DL.getABITypeAlign(Ty);
3661     // The base offset must be a multiple of the alignment.
3662     if (!isAligned(A, AM.BaseOffs))
3663       return false;
3664     // The shifted offset must fit in 11 bits.
3665     if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3666       return false;
3667   }
3668 
3669   // No global is ever allowed as a base.
3670   if (AM.BaseGV)
3671     return false;
3672 
3673   int Scale = AM.Scale;
3674   if (Scale < 0)
3675     Scale = -Scale;
3676   switch (Scale) {
3677   case 0:  // No scale reg, "r+i", "r", or just "i".
3678     break;
3679   default: // No scaled addressing mode.
3680     return false;
3681   }
3682   return true;
3683 }
3684 
3685 /// Return true if folding a constant offset with the given GlobalAddress is
3686 /// legal.  It is frequently not legal in PIC relocation models.
3687 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3688       const {
3689   return HTM.getRelocationModel() == Reloc::Static;
3690 }
3691 
3692 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3693 /// icmp immediate, that is the target has icmp instructions which can compare
3694 /// a register against the immediate without having to materialize the
3695 /// immediate into a register.
3696 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3697   return Imm >= -512 && Imm <= 511;
3698 }
3699 
3700 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3701 /// for tail call optimization. Targets which want to do tail call
3702 /// optimization should implement this function.
3703 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3704                                  SDValue Callee,
3705                                  CallingConv::ID CalleeCC,
3706                                  bool IsVarArg,
3707                                  bool IsCalleeStructRet,
3708                                  bool IsCallerStructRet,
3709                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3710                                  const SmallVectorImpl<SDValue> &OutVals,
3711                                  const SmallVectorImpl<ISD::InputArg> &Ins,
3712                                  SelectionDAG& DAG) const {
3713   const Function &CallerF = DAG.getMachineFunction().getFunction();
3714   CallingConv::ID CallerCC = CallerF.getCallingConv();
3715   bool CCMatch = CallerCC == CalleeCC;
3716 
3717   // ***************************************************************************
3718   //  Look for obvious safe cases to perform tail call optimization that do not
3719   //  require ABI changes.
3720   // ***************************************************************************
3721 
3722   // If this is a tail call via a function pointer, then don't do it!
3723   if (!isa<GlobalAddressSDNode>(Callee) &&
3724       !isa<ExternalSymbolSDNode>(Callee)) {
3725     return false;
3726   }
3727 
3728   // Do not optimize if the calling conventions do not match and the conventions
3729   // used are not C or Fast.
3730   if (!CCMatch) {
3731     bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3732     bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3733     // If R & E, then ok.
3734     if (!R || !E)
3735       return false;
3736   }
3737 
3738   // Do not tail call optimize vararg calls.
3739   if (IsVarArg)
3740     return false;
3741 
3742   // Also avoid tail call optimization if either caller or callee uses struct
3743   // return semantics.
3744   if (IsCalleeStructRet || IsCallerStructRet)
3745     return false;
3746 
3747   // In addition to the cases above, we also disable Tail Call Optimization if
3748   // the calling convention code that at least one outgoing argument needs to
3749   // go on the stack. We cannot check that here because at this point that
3750   // information is not available.
3751   return true;
3752 }
3753 
3754 /// Returns the target specific optimal type for load and store operations as
3755 /// a result of memset, memcpy, and memmove lowering.
3756 ///
3757 /// If DstAlign is zero that means it's safe to destination alignment can
3758 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3759 /// a need to check it against alignment requirement, probably because the
3760 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3761 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3762 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3763 /// does not need to be loaded.  It returns EVT::Other if the type should be
3764 /// determined using generic target-independent logic.
3765 EVT HexagonTargetLowering::getOptimalMemOpType(
3766     const MemOp &Op, const AttributeList &FuncAttributes) const {
3767   if (Op.size() >= 8 && Op.isAligned(Align(8)))
3768     return MVT::i64;
3769   if (Op.size() >= 4 && Op.isAligned(Align(4)))
3770     return MVT::i32;
3771   if (Op.size() >= 2 && Op.isAligned(Align(2)))
3772     return MVT::i16;
3773   return MVT::Other;
3774 }
3775 
3776 bool HexagonTargetLowering::allowsMemoryAccess(
3777     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3778     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
3779   MVT SVT = VT.getSimpleVT();
3780   if (Subtarget.isHVXVectorType(SVT, true))
3781     return allowsHvxMemoryAccess(SVT, Flags, Fast);
3782   return TargetLoweringBase::allowsMemoryAccess(
3783               Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3784 }
3785 
3786 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3787     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3788     unsigned *Fast) const {
3789   MVT SVT = VT.getSimpleVT();
3790   if (Subtarget.isHVXVectorType(SVT, true))
3791     return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3792   if (Fast)
3793     *Fast = 0;
3794   return false;
3795 }
3796 
3797 std::pair<const TargetRegisterClass*, uint8_t>
3798 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3799       MVT VT) const {
3800   if (Subtarget.isHVXVectorType(VT, true)) {
3801     unsigned BitWidth = VT.getSizeInBits();
3802     unsigned VecWidth = Subtarget.getVectorLength() * 8;
3803 
3804     if (VT.getVectorElementType() == MVT::i1)
3805       return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3806     if (BitWidth == VecWidth)
3807       return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3808     assert(BitWidth == 2 * VecWidth);
3809     return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3810   }
3811 
3812   return TargetLowering::findRepresentativeClass(TRI, VT);
3813 }
3814 
3815 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3816       ISD::LoadExtType ExtTy, EVT NewVT) const {
3817   // TODO: This may be worth removing. Check regression tests for diffs.
3818   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3819     return false;
3820 
3821   auto *L = cast<LoadSDNode>(Load);
3822   std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3823   // Small-data object, do not shrink.
3824   if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3825     return false;
3826   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3827     auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3828     const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3829     return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3830   }
3831   return true;
3832 }
3833 
3834 void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3835       SDNode *Node) const {
3836   AdjustHvxInstrPostInstrSelection(MI, Node);
3837 }
3838 
3839 Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder,
3840                                              Type *ValueTy, Value *Addr,
3841                                              AtomicOrdering Ord) const {
3842   BasicBlock *BB = Builder.GetInsertBlock();
3843   Module *M = BB->getParent()->getParent();
3844   unsigned SZ = ValueTy->getPrimitiveSizeInBits();
3845   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3846   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3847                                    : Intrinsic::hexagon_L4_loadd_locked;
3848   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3849 
3850   auto PtrTy = cast<PointerType>(Addr->getType());
3851   PointerType *NewPtrTy =
3852       Builder.getIntNTy(SZ)->getPointerTo(PtrTy->getAddressSpace());
3853   Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3854 
3855   Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3856 
3857   return Builder.CreateBitCast(Call, ValueTy);
3858 }
3859 
3860 /// Perform a store-conditional operation to Addr. Return the status of the
3861 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3862 Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
3863                                                    Value *Val, Value *Addr,
3864                                                    AtomicOrdering Ord) const {
3865   BasicBlock *BB = Builder.GetInsertBlock();
3866   Module *M = BB->getParent()->getParent();
3867   Type *Ty = Val->getType();
3868   unsigned SZ = Ty->getPrimitiveSizeInBits();
3869 
3870   Type *CastTy = Builder.getIntNTy(SZ);
3871   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3872   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3873                                    : Intrinsic::hexagon_S4_stored_locked;
3874   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3875 
3876   unsigned AS = Addr->getType()->getPointerAddressSpace();
3877   Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3878   Val = Builder.CreateBitCast(Val, CastTy);
3879 
3880   Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3881   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3882   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3883   return Ext;
3884 }
3885 
3886 TargetLowering::AtomicExpansionKind
3887 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3888   // Do not expand loads and stores that don't exceed 64 bits.
3889   return LI->getType()->getPrimitiveSizeInBits() > 64
3890              ? AtomicExpansionKind::LLOnly
3891              : AtomicExpansionKind::None;
3892 }
3893 
3894 TargetLowering::AtomicExpansionKind
3895 HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3896   // Do not expand loads and stores that don't exceed 64 bits.
3897   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64
3898              ? AtomicExpansionKind::Expand
3899              : AtomicExpansionKind::None;
3900 }
3901 
3902 TargetLowering::AtomicExpansionKind
3903 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3904     AtomicCmpXchgInst *AI) const {
3905   return AtomicExpansionKind::LLSC;
3906 }
3907