1 //===- HexagonGenInsert.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "BitTracker.h" 10 #include "HexagonBitTracker.h" 11 #include "HexagonInstrInfo.h" 12 #include "HexagonRegisterInfo.h" 13 #include "HexagonSubtarget.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/GraphTraits.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Timer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 #include <vector> 45 46 #define DEBUG_TYPE "hexinsert" 47 48 using namespace llvm; 49 50 static cl::opt<unsigned> 51 VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), cl::Hidden, 52 cl::desc("Vreg# cutoff for insert generation.")); 53 // The distance cutoff is selected based on the precheckin-perf results: 54 // cutoffs 20, 25, 35, and 40 are worse than 30. 55 static cl::opt<unsigned> 56 VRegDistCutoff("insert-dist-cutoff", cl::init(30U), cl::Hidden, 57 cl::desc("Vreg distance cutoff for insert " 58 "generation.")); 59 60 // Limit the container sizes for extreme cases where we run out of memory. 61 static cl::opt<unsigned> 62 MaxORLSize("insert-max-orl", cl::init(4096), cl::Hidden, 63 cl::desc("Maximum size of OrderedRegisterList")); 64 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024), 65 cl::Hidden, 66 cl::desc("Maximum size of IFMap")); 67 68 static cl::opt<bool> OptTiming("insert-timing", cl::Hidden, 69 cl::desc("Enable timing of insert generation")); 70 static cl::opt<bool> 71 OptTimingDetail("insert-timing-detail", cl::Hidden, 72 cl::desc("Enable detailed timing of insert " 73 "generation")); 74 75 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden); 76 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden); 77 // Whether to construct constant values via "insert". Could eliminate constant 78 // extenders, but often not practical. 79 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden); 80 81 // The preprocessor gets confused when the DEBUG macro is passed larger 82 // chunks of code. Use this function to detect debugging. 83 inline static bool isDebug() { 84 #ifndef NDEBUG 85 return DebugFlag && isCurrentDebugType(DEBUG_TYPE); 86 #else 87 return false; 88 #endif 89 } 90 91 namespace { 92 93 // Set of virtual registers, based on BitVector. 94 struct RegisterSet : private BitVector { 95 RegisterSet() = default; 96 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} 97 RegisterSet(const RegisterSet &RS) = default; 98 RegisterSet &operator=(const RegisterSet &RS) = default; 99 100 using BitVector::clear; 101 102 unsigned find_first() const { 103 int First = BitVector::find_first(); 104 if (First < 0) 105 return 0; 106 return x2v(First); 107 } 108 109 unsigned find_next(unsigned Prev) const { 110 int Next = BitVector::find_next(v2x(Prev)); 111 if (Next < 0) 112 return 0; 113 return x2v(Next); 114 } 115 116 RegisterSet &insert(unsigned R) { 117 unsigned Idx = v2x(R); 118 ensure(Idx); 119 return static_cast<RegisterSet&>(BitVector::set(Idx)); 120 } 121 RegisterSet &remove(unsigned R) { 122 unsigned Idx = v2x(R); 123 if (Idx >= size()) 124 return *this; 125 return static_cast<RegisterSet&>(BitVector::reset(Idx)); 126 } 127 128 RegisterSet &insert(const RegisterSet &Rs) { 129 return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); 130 } 131 RegisterSet &remove(const RegisterSet &Rs) { 132 return static_cast<RegisterSet&>(BitVector::reset(Rs)); 133 } 134 135 reference operator[](unsigned R) { 136 unsigned Idx = v2x(R); 137 ensure(Idx); 138 return BitVector::operator[](Idx); 139 } 140 bool operator[](unsigned R) const { 141 unsigned Idx = v2x(R); 142 assert(Idx < size()); 143 return BitVector::operator[](Idx); 144 } 145 bool has(unsigned R) const { 146 unsigned Idx = v2x(R); 147 if (Idx >= size()) 148 return false; 149 return BitVector::test(Idx); 150 } 151 152 bool empty() const { 153 return !BitVector::any(); 154 } 155 bool includes(const RegisterSet &Rs) const { 156 // A.BitVector::test(B) <=> A-B != {} 157 return !Rs.BitVector::test(*this); 158 } 159 bool intersects(const RegisterSet &Rs) const { 160 return BitVector::anyCommon(Rs); 161 } 162 163 private: 164 void ensure(unsigned Idx) { 165 if (size() <= Idx) 166 resize(std::max(Idx+1, 32U)); 167 } 168 169 static inline unsigned v2x(unsigned v) { 170 return Register::virtReg2Index(v); 171 } 172 173 static inline unsigned x2v(unsigned x) { 174 return Register::index2VirtReg(x); 175 } 176 }; 177 178 struct PrintRegSet { 179 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) 180 : RS(S), TRI(RI) {} 181 182 friend raw_ostream &operator<< (raw_ostream &OS, 183 const PrintRegSet &P); 184 185 private: 186 const RegisterSet &RS; 187 const TargetRegisterInfo *TRI; 188 }; 189 190 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { 191 OS << '{'; 192 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) 193 OS << ' ' << printReg(R, P.TRI); 194 OS << " }"; 195 return OS; 196 } 197 198 // A convenience class to associate unsigned numbers (such as virtual 199 // registers) with unsigned numbers. 200 struct UnsignedMap : public DenseMap<unsigned,unsigned> { 201 UnsignedMap() = default; 202 203 private: 204 using BaseType = DenseMap<unsigned, unsigned>; 205 }; 206 207 // A utility to establish an ordering between virtual registers: 208 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB] 209 // This is meant as a cache for the ordering of virtual registers defined 210 // by a potentially expensive comparison function, or obtained by a proce- 211 // dure that should not be repeated each time two registers are compared. 212 struct RegisterOrdering : public UnsignedMap { 213 RegisterOrdering() = default; 214 215 unsigned operator[](unsigned VR) const { 216 const_iterator F = find(VR); 217 assert(F != end()); 218 return F->second; 219 } 220 221 // Add operator(), so that objects of this class can be used as 222 // comparators in std::sort et al. 223 bool operator() (unsigned VR1, unsigned VR2) const { 224 return operator[](VR1) < operator[](VR2); 225 } 226 }; 227 228 // Ordering of bit values. This class does not have operator[], but 229 // is supplies a comparison operator() for use in std:: algorithms. 230 // The order is as follows: 231 // - 0 < 1 < ref 232 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg), 233 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos. 234 struct BitValueOrdering { 235 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {} 236 237 bool operator() (const BitTracker::BitValue &V1, 238 const BitTracker::BitValue &V2) const; 239 240 const RegisterOrdering &BaseOrd; 241 }; 242 243 } // end anonymous namespace 244 245 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1, 246 const BitTracker::BitValue &V2) const { 247 if (V1 == V2) 248 return false; 249 // V1==0 => true, V2==0 => false 250 if (V1.is(0) || V2.is(0)) 251 return V1.is(0); 252 // Neither of V1,V2 is 0, and V1!=V2. 253 // V2==1 => false, V1==1 => true 254 if (V2.is(1) || V1.is(1)) 255 return !V2.is(1); 256 // Both V1,V2 are refs. 257 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg]; 258 if (Ind1 != Ind2) 259 return Ind1 < Ind2; 260 // If V1.Pos==V2.Pos 261 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different"); 262 return V1.RefI.Pos < V2.RefI.Pos; 263 } 264 265 namespace { 266 267 // Cache for the BitTracker's cell map. Map lookup has a logarithmic 268 // complexity, this class will memoize the lookup results to reduce 269 // the access time for repeated lookups of the same cell. 270 struct CellMapShadow { 271 CellMapShadow(const BitTracker &T) : BT(T) {} 272 273 const BitTracker::RegisterCell &lookup(unsigned VR) { 274 unsigned RInd = Register::virtReg2Index(VR); 275 // Grow the vector to at least 32 elements. 276 if (RInd >= CVect.size()) 277 CVect.resize(std::max(RInd+16, 32U), nullptr); 278 const BitTracker::RegisterCell *CP = CVect[RInd]; 279 if (CP == nullptr) 280 CP = CVect[RInd] = &BT.lookup(VR); 281 return *CP; 282 } 283 284 const BitTracker &BT; 285 286 private: 287 using CellVectType = std::vector<const BitTracker::RegisterCell *>; 288 289 CellVectType CVect; 290 }; 291 292 // Comparator class for lexicographic ordering of virtual registers 293 // according to the corresponding BitTracker::RegisterCell objects. 294 struct RegisterCellLexCompare { 295 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M) 296 : BitOrd(BO), CM(M) {} 297 298 bool operator() (unsigned VR1, unsigned VR2) const; 299 300 private: 301 const BitValueOrdering &BitOrd; 302 CellMapShadow &CM; 303 }; 304 305 // Comparator class for lexicographic ordering of virtual registers 306 // according to the specified bits of the corresponding BitTracker:: 307 // RegisterCell objects. 308 // Specifically, this class will be used to compare bit B of a register 309 // cell for a selected virtual register R with bit N of any register 310 // other than R. 311 struct RegisterCellBitCompareSel { 312 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N, 313 const BitValueOrdering &BO, CellMapShadow &M) 314 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {} 315 316 bool operator() (unsigned VR1, unsigned VR2) const; 317 318 private: 319 const unsigned SelR, SelB; 320 const unsigned BitN; 321 const BitValueOrdering &BitOrd; 322 CellMapShadow &CM; 323 }; 324 325 } // end anonymous namespace 326 327 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const { 328 // Ordering of registers, made up from two given orderings: 329 // - the ordering of the register numbers, and 330 // - the ordering of register cells. 331 // Def. R1 < R2 if: 332 // - cell(R1) < cell(R2), or 333 // - cell(R1) == cell(R2), and index(R1) < index(R2). 334 // 335 // For register cells, the ordering is lexicographic, with index 0 being 336 // the most significant. 337 if (VR1 == VR2) 338 return false; 339 340 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2); 341 uint16_t W1 = RC1.width(), W2 = RC2.width(); 342 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) { 343 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i]; 344 if (V1 != V2) 345 return BitOrd(V1, V2); 346 } 347 // Cells are equal up until the common length. 348 if (W1 != W2) 349 return W1 < W2; 350 351 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2]; 352 } 353 354 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const { 355 if (VR1 == VR2) 356 return false; 357 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1); 358 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2); 359 uint16_t W1 = RC1.width(), W2 = RC2.width(); 360 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN; 361 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN; 362 // If Bit1 exceeds the width of VR1, then: 363 // - return false, if at the same time Bit2 exceeds VR2, or 364 // - return true, otherwise. 365 // (I.e. "a bit value that does not exist is less than any bit value 366 // that does exist".) 367 if (W1 <= Bit1) 368 return Bit2 < W2; 369 // If Bit1 is within VR1, but Bit2 is not within VR2, return false. 370 if (W2 <= Bit2) 371 return false; 372 373 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2]; 374 if (V1 != V2) 375 return BitOrd(V1, V2); 376 return false; 377 } 378 379 namespace { 380 381 class OrderedRegisterList { 382 using ListType = std::vector<unsigned>; 383 const unsigned MaxSize; 384 385 public: 386 OrderedRegisterList(const RegisterOrdering &RO) 387 : MaxSize(MaxORLSize), Ord(RO) {} 388 389 void insert(unsigned VR); 390 void remove(unsigned VR); 391 392 unsigned operator[](unsigned Idx) const { 393 assert(Idx < Seq.size()); 394 return Seq[Idx]; 395 } 396 397 unsigned size() const { 398 return Seq.size(); 399 } 400 401 using iterator = ListType::iterator; 402 using const_iterator = ListType::const_iterator; 403 404 iterator begin() { return Seq.begin(); } 405 iterator end() { return Seq.end(); } 406 const_iterator begin() const { return Seq.begin(); } 407 const_iterator end() const { return Seq.end(); } 408 409 // Convenience function to convert an iterator to the corresponding index. 410 unsigned idx(iterator It) const { return It-begin(); } 411 412 private: 413 ListType Seq; 414 const RegisterOrdering &Ord; 415 }; 416 417 struct PrintORL { 418 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI) 419 : RL(L), TRI(RI) {} 420 421 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P); 422 423 private: 424 const OrderedRegisterList &RL; 425 const TargetRegisterInfo *TRI; 426 }; 427 428 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) { 429 OS << '('; 430 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end(); 431 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) { 432 if (I != B) 433 OS << ", "; 434 OS << printReg(*I, P.TRI); 435 } 436 OS << ')'; 437 return OS; 438 } 439 440 } // end anonymous namespace 441 442 void OrderedRegisterList::insert(unsigned VR) { 443 iterator L = llvm::lower_bound(Seq, VR, Ord); 444 if (L == Seq.end()) 445 Seq.push_back(VR); 446 else 447 Seq.insert(L, VR); 448 449 unsigned S = Seq.size(); 450 if (S > MaxSize) 451 Seq.resize(MaxSize); 452 assert(Seq.size() <= MaxSize); 453 } 454 455 void OrderedRegisterList::remove(unsigned VR) { 456 iterator L = llvm::lower_bound(Seq, VR, Ord); 457 if (L != Seq.end()) 458 Seq.erase(L); 459 } 460 461 namespace { 462 463 // A record of the insert form. The fields correspond to the operands 464 // of the "insert" instruction: 465 // ... = insert(SrcR, InsR, #Wdh, #Off) 466 struct IFRecord { 467 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0) 468 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {} 469 470 unsigned SrcR, InsR; 471 uint16_t Wdh, Off; 472 }; 473 474 struct PrintIFR { 475 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI) 476 : IFR(R), TRI(RI) {} 477 478 private: 479 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P); 480 481 const IFRecord &IFR; 482 const TargetRegisterInfo *TRI; 483 }; 484 485 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) { 486 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR; 487 OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI) 488 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')'; 489 return OS; 490 } 491 492 using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>; 493 494 } // end anonymous namespace 495 496 namespace llvm { 497 498 void initializeHexagonGenInsertPass(PassRegistry&); 499 FunctionPass *createHexagonGenInsert(); 500 501 } // end namespace llvm 502 503 namespace { 504 505 class HexagonGenInsert : public MachineFunctionPass { 506 public: 507 static char ID; 508 509 HexagonGenInsert() : MachineFunctionPass(ID) { 510 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry()); 511 } 512 513 StringRef getPassName() const override { 514 return "Hexagon generate \"insert\" instructions"; 515 } 516 517 void getAnalysisUsage(AnalysisUsage &AU) const override { 518 AU.addRequired<MachineDominatorTree>(); 519 AU.addPreserved<MachineDominatorTree>(); 520 MachineFunctionPass::getAnalysisUsage(AU); 521 } 522 523 bool runOnMachineFunction(MachineFunction &MF) override; 524 525 private: 526 using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>; 527 528 void buildOrderingMF(RegisterOrdering &RO) const; 529 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const; 530 bool isIntClass(const TargetRegisterClass *RC) const; 531 bool isConstant(unsigned VR) const; 532 bool isSmallConstant(unsigned VR) const; 533 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, 534 uint16_t L, uint16_t S) const; 535 bool findSelfReference(unsigned VR) const; 536 bool findNonSelfReference(unsigned VR) const; 537 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const; 538 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const; 539 unsigned distance(const MachineBasicBlock *FromB, 540 const MachineBasicBlock *ToB, const UnsignedMap &RPO, 541 PairMapType &M) const; 542 unsigned distance(MachineBasicBlock::const_iterator FromI, 543 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, 544 PairMapType &M) const; 545 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs); 546 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs); 547 void findRemovableRegisters(unsigned VR, IFRecord IF, 548 RegisterSet &RMs) const; 549 void computeRemovableRegisters(); 550 551 void pruneEmptyLists(); 552 void pruneCoveredSets(unsigned VR); 553 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M); 554 void pruneRegCopies(unsigned VR); 555 void pruneCandidates(); 556 void selectCandidates(); 557 bool generateInserts(); 558 559 bool removeDeadCode(MachineDomTreeNode *N); 560 561 // IFRecord coupled with a set of potentially removable registers: 562 using IFListType = std::vector<IFRecordWithRegSet>; 563 using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType 564 565 void dump_map() const; 566 567 const HexagonInstrInfo *HII = nullptr; 568 const HexagonRegisterInfo *HRI = nullptr; 569 570 MachineFunction *MFN; 571 MachineRegisterInfo *MRI; 572 MachineDominatorTree *MDT; 573 CellMapShadow *CMS; 574 575 RegisterOrdering BaseOrd; 576 RegisterOrdering CellOrd; 577 IFMapType IFMap; 578 }; 579 580 } // end anonymous namespace 581 582 char HexagonGenInsert::ID = 0; 583 584 void HexagonGenInsert::dump_map() const { 585 for (const auto &I : IFMap) { 586 dbgs() << " " << printReg(I.first, HRI) << ":\n"; 587 const IFListType &LL = I.second; 588 for (const auto &J : LL) 589 dbgs() << " " << PrintIFR(J.first, HRI) << ", " 590 << PrintRegSet(J.second, HRI) << '\n'; 591 } 592 } 593 594 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const { 595 unsigned Index = 0; 596 597 for (const MachineBasicBlock &B : *MFN) { 598 if (!CMS->BT.reached(&B)) 599 continue; 600 601 for (const MachineInstr &MI : B) { 602 for (const MachineOperand &MO : MI.operands()) { 603 if (MO.isReg() && MO.isDef()) { 604 Register R = MO.getReg(); 605 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition"); 606 if (R.isVirtual()) 607 RO.insert(std::make_pair(R, Index++)); 608 } 609 } 610 } 611 } 612 // Since some virtual registers may have had their def and uses eliminated, 613 // they are no longer referenced in the code, and so they will not appear 614 // in the map. 615 } 616 617 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB, 618 RegisterOrdering &RO) const { 619 // Create a vector of all virtual registers (collect them from the base 620 // ordering RB), and then sort it using the RegisterCell comparator. 621 BitValueOrdering BVO(RB); 622 RegisterCellLexCompare LexCmp(BVO, *CMS); 623 624 using SortableVectorType = std::vector<unsigned>; 625 626 SortableVectorType VRs; 627 for (auto &I : RB) 628 VRs.push_back(I.first); 629 llvm::sort(VRs, LexCmp); 630 // Transfer the results to the outgoing register ordering. 631 for (unsigned i = 0, n = VRs.size(); i < n; ++i) 632 RO.insert(std::make_pair(VRs[i], i)); 633 } 634 635 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const { 636 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass; 637 } 638 639 bool HexagonGenInsert::isConstant(unsigned VR) const { 640 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 641 uint16_t W = RC.width(); 642 for (uint16_t i = 0; i < W; ++i) { 643 const BitTracker::BitValue &BV = RC[i]; 644 if (BV.is(0) || BV.is(1)) 645 continue; 646 return false; 647 } 648 return true; 649 } 650 651 bool HexagonGenInsert::isSmallConstant(unsigned VR) const { 652 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 653 uint16_t W = RC.width(); 654 if (W > 64) 655 return false; 656 uint64_t V = 0, B = 1; 657 for (uint16_t i = 0; i < W; ++i) { 658 const BitTracker::BitValue &BV = RC[i]; 659 if (BV.is(1)) 660 V |= B; 661 else if (!BV.is(0)) 662 return false; 663 B <<= 1; 664 } 665 666 // For 32-bit registers, consider: Rd = #s16. 667 if (W == 32) 668 return isInt<16>(V); 669 670 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8) 671 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V)); 672 } 673 674 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR, 675 unsigned InsR, uint16_t L, uint16_t S) const { 676 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR); 677 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR); 678 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR); 679 // Only integet (32-/64-bit) register classes. 680 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC)) 681 return false; 682 // The "source" register must be of the same class as DstR. 683 if (DstRC != SrcRC) 684 return false; 685 if (DstRC == InsRC) 686 return true; 687 // A 64-bit register can only be generated from other 64-bit registers. 688 if (DstRC == &Hexagon::DoubleRegsRegClass) 689 return false; 690 // Otherwise, the L and S cannot span 32-bit word boundary. 691 if (S < 32 && S+L > 32) 692 return false; 693 return true; 694 } 695 696 bool HexagonGenInsert::findSelfReference(unsigned VR) const { 697 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 698 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 699 const BitTracker::BitValue &V = RC[i]; 700 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR) 701 return true; 702 } 703 return false; 704 } 705 706 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const { 707 BitTracker::RegisterCell RC = CMS->lookup(VR); 708 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 709 const BitTracker::BitValue &V = RC[i]; 710 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR) 711 return true; 712 } 713 return false; 714 } 715 716 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI, 717 RegisterSet &Defs) const { 718 for (const MachineOperand &MO : MI->operands()) { 719 if (!MO.isReg() || !MO.isDef()) 720 continue; 721 Register R = MO.getReg(); 722 if (!R.isVirtual()) 723 continue; 724 Defs.insert(R); 725 } 726 } 727 728 void HexagonGenInsert::getInstrUses(const MachineInstr *MI, 729 RegisterSet &Uses) const { 730 for (const MachineOperand &MO : MI->operands()) { 731 if (!MO.isReg() || !MO.isUse()) 732 continue; 733 Register R = MO.getReg(); 734 if (!R.isVirtual()) 735 continue; 736 Uses.insert(R); 737 } 738 } 739 740 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB, 741 const MachineBasicBlock *ToB, const UnsignedMap &RPO, 742 PairMapType &M) const { 743 // Forward distance from the end of a block to the beginning of it does 744 // not make sense. This function should not be called with FromB == ToB. 745 assert(FromB != ToB); 746 747 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber(); 748 // If we have already computed it, return the cached result. 749 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN)); 750 if (F != M.end()) 751 return F->second; 752 unsigned ToRPO = RPO.lookup(ToN); 753 754 unsigned MaxD = 0; 755 756 for (const MachineBasicBlock *PB : ToB->predecessors()) { 757 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance 758 // along that path will be 0, and we don't need to do any calculations 759 // on it. 760 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO) 761 continue; 762 unsigned D = PB->size() + distance(FromB, PB, RPO, M); 763 if (D > MaxD) 764 MaxD = D; 765 } 766 767 // Memoize the result for later lookup. 768 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD)); 769 return MaxD; 770 } 771 772 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI, 773 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, 774 PairMapType &M) const { 775 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent(); 776 if (FB == TB) 777 return std::distance(FromI, ToI); 778 unsigned D1 = std::distance(TB->begin(), ToI); 779 unsigned D2 = distance(FB, TB, RPO, M); 780 unsigned D3 = std::distance(FromI, FB->end()); 781 return D1+D2+D3; 782 } 783 784 bool HexagonGenInsert::findRecordInsertForms(unsigned VR, 785 OrderedRegisterList &AVs) { 786 if (isDebug()) { 787 dbgs() << __func__ << ": " << printReg(VR, HRI) 788 << " AVs: " << PrintORL(AVs, HRI) << "\n"; 789 } 790 if (AVs.size() == 0) 791 return false; 792 793 using iterator = OrderedRegisterList::iterator; 794 795 BitValueOrdering BVO(BaseOrd); 796 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 797 uint16_t W = RC.width(); 798 799 using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift) 800 using RSListType = std::vector<RSRecord>; 801 // Have a map, with key being the matching prefix length, and the value 802 // being the list of pairs (R,S), where R's prefix matches VR at S. 803 // (DenseMap<uint16_t,RSListType> fails to instantiate.) 804 using LRSMapType = DenseMap<unsigned, RSListType>; 805 LRSMapType LM; 806 807 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S, 808 // and find matching prefixes from AVs with the rotated RC. Such a prefix 809 // would match a string of bits (of length L) in RC starting at S. 810 for (uint16_t S = 0; S < W; ++S) { 811 iterator B = AVs.begin(), E = AVs.end(); 812 // The registers in AVs are ordered according to the lexical order of 813 // the corresponding register cells. This means that the range of regis- 814 // ters in AVs that match a prefix of length L+1 will be contained in 815 // the range that matches a prefix of length L. This means that we can 816 // keep narrowing the search space as the prefix length goes up. This 817 // helps reduce the overall complexity of the search. 818 uint16_t L; 819 for (L = 0; L < W-S; ++L) { 820 // Compare against VR's bits starting at S, which emulates rotation 821 // of VR by S. 822 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS); 823 iterator NewB = std::lower_bound(B, E, VR, RCB); 824 iterator NewE = std::upper_bound(NewB, E, VR, RCB); 825 // For the registers that are eliminated from the next range, L is 826 // the longest prefix matching VR at position S (their prefixes 827 // differ from VR at S+L). If L>0, record this information for later 828 // use. 829 if (L > 0) { 830 for (iterator I = B; I != NewB; ++I) 831 LM[L].push_back(std::make_pair(*I, S)); 832 for (iterator I = NewE; I != E; ++I) 833 LM[L].push_back(std::make_pair(*I, S)); 834 } 835 B = NewB, E = NewE; 836 if (B == E) 837 break; 838 } 839 // Record the final register range. If this range is non-empty, then 840 // L=W-S. 841 assert(B == E || L == W-S); 842 if (B != E) { 843 for (iterator I = B; I != E; ++I) 844 LM[L].push_back(std::make_pair(*I, S)); 845 // If B!=E, then we found a range of registers whose prefixes cover the 846 // rest of VR from position S. There is no need to further advance S. 847 break; 848 } 849 } 850 851 if (isDebug()) { 852 dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n"; 853 for (const auto &I : LM) { 854 dbgs() << " L=" << I.first << ':'; 855 const RSListType &LL = I.second; 856 for (const auto &J : LL) 857 dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')'; 858 dbgs() << '\n'; 859 } 860 } 861 862 bool Recorded = false; 863 864 for (unsigned SrcR : AVs) { 865 int FDi = -1, LDi = -1; // First/last different bit. 866 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR); 867 uint16_t AW = AC.width(); 868 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) { 869 if (RC[i] == AC[i]) 870 continue; 871 if (FDi == -1) 872 FDi = i; 873 LDi = i; 874 } 875 if (FDi == -1) 876 continue; // TODO (future): Record identical registers. 877 // Look for a register whose prefix could patch the range [FD..LD] 878 // where VR and SrcR differ. 879 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type. 880 uint16_t MinL = LD-FD+1; 881 for (uint16_t L = MinL; L < W; ++L) { 882 LRSMapType::iterator F = LM.find(L); 883 if (F == LM.end()) 884 continue; 885 RSListType &LL = F->second; 886 for (const auto &I : LL) { 887 uint16_t S = I.second; 888 // MinL is the minimum length of the prefix. Any length above MinL 889 // allows some flexibility as to where the prefix can start: 890 // given the extra length EL=L-MinL, the prefix must start between 891 // max(0,FD-EL) and FD. 892 if (S > FD) // Starts too late. 893 continue; 894 uint16_t EL = L-MinL; 895 uint16_t LowS = (EL < FD) ? FD-EL : 0; 896 if (S < LowS) // Starts too early. 897 continue; 898 unsigned InsR = I.first; 899 if (!isValidInsertForm(VR, SrcR, InsR, L, S)) 900 continue; 901 if (isDebug()) { 902 dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI) 903 << ',' << printReg(InsR, HRI) << ",#" << L << ",#" 904 << S << ")\n"; 905 } 906 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet()); 907 IFMap[VR].push_back(RR); 908 Recorded = true; 909 } 910 } 911 } 912 913 return Recorded; 914 } 915 916 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B, 917 OrderedRegisterList &AVs) { 918 if (isDebug()) 919 dbgs() << "visiting block " << printMBBReference(*B) << "\n"; 920 921 // First, check if this block is reachable at all. If not, the bit tracker 922 // will not have any information about registers in it. 923 if (!CMS->BT.reached(B)) 924 return; 925 926 bool DoConst = OptConst; 927 // Keep a separate set of registers defined in this block, so that we 928 // can remove them from the list of available registers once all DT 929 // successors have been processed. 930 RegisterSet BlockDefs, InsDefs; 931 for (MachineInstr &MI : *B) { 932 InsDefs.clear(); 933 getInstrDefs(&MI, InsDefs); 934 // Leave those alone. They are more transparent than "insert". 935 bool Skip = MI.isCopy() || MI.isRegSequence(); 936 937 if (!Skip) { 938 // Visit all defined registers, and attempt to find the corresponding 939 // "insert" representations. 940 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) { 941 // Do not collect registers that are known to be compile-time cons- 942 // tants, unless requested. 943 if (!DoConst && isConstant(VR)) 944 continue; 945 // If VR's cell contains a reference to VR, then VR cannot be defined 946 // via "insert". If VR is a constant that can be generated in a single 947 // instruction (without constant extenders), generating it via insert 948 // makes no sense. 949 if (findSelfReference(VR) || isSmallConstant(VR)) 950 continue; 951 952 findRecordInsertForms(VR, AVs); 953 // Stop if the map size is too large. 954 if (IFMap.size() > MaxIFMSize) 955 return; 956 } 957 } 958 959 // Insert the defined registers into the list of available registers 960 // after they have been processed. 961 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) 962 AVs.insert(VR); 963 BlockDefs.insert(InsDefs); 964 } 965 966 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) { 967 MachineBasicBlock *SB = DTN->getBlock(); 968 collectInBlock(SB, AVs); 969 } 970 971 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR)) 972 AVs.remove(VR); 973 } 974 975 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF, 976 RegisterSet &RMs) const { 977 // For a given register VR and a insert form, find the registers that are 978 // used by the current definition of VR, and which would no longer be 979 // needed for it after the definition of VR is replaced with the insert 980 // form. These are the registers that could potentially become dead. 981 RegisterSet Regs[2]; 982 983 unsigned S = 0; // Register set selector. 984 Regs[S].insert(VR); 985 986 while (!Regs[S].empty()) { 987 // Breadth-first search. 988 unsigned OtherS = 1-S; 989 Regs[OtherS].clear(); 990 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) { 991 Regs[S].remove(R); 992 if (R == IF.SrcR || R == IF.InsR) 993 continue; 994 // Check if a given register has bits that are references to any other 995 // registers. This is to detect situations where the instruction that 996 // defines register R takes register Q as an operand, but R itself does 997 // not contain any bits from Q. Loads are examples of how this could 998 // happen: 999 // R = load Q 1000 // In this case (assuming we do not have any knowledge about the loaded 1001 // value), we must not treat R as a "conveyance" of the bits from Q. 1002 // (The information in BT about R's bits would have them as constants, 1003 // in case of zero-extending loads, or refs to R.) 1004 if (!findNonSelfReference(R)) 1005 continue; 1006 RMs.insert(R); 1007 const MachineInstr *DefI = MRI->getVRegDef(R); 1008 assert(DefI); 1009 // Do not iterate past PHI nodes to avoid infinite loops. This can 1010 // make the final set a bit less accurate, but the removable register 1011 // sets are an approximation anyway. 1012 if (DefI->isPHI()) 1013 continue; 1014 getInstrUses(DefI, Regs[OtherS]); 1015 } 1016 S = OtherS; 1017 } 1018 // The register VR is added to the list as a side-effect of the algorithm, 1019 // but it is not "potentially removable". A potentially removable register 1020 // is one that may become unused (dead) after conversion to the insert form 1021 // IF, and obviously VR (or its replacement) will not become dead by apply- 1022 // ing IF. 1023 RMs.remove(VR); 1024 } 1025 1026 void HexagonGenInsert::computeRemovableRegisters() { 1027 for (auto &I : IFMap) { 1028 IFListType &LL = I.second; 1029 for (auto &J : LL) 1030 findRemovableRegisters(I.first, J.first, J.second); 1031 } 1032 } 1033 1034 void HexagonGenInsert::pruneEmptyLists() { 1035 // Remove all entries from the map, where the register has no insert forms 1036 // associated with it. 1037 using IterListType = SmallVector<IFMapType::iterator, 16>; 1038 IterListType Prune; 1039 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1040 if (I->second.empty()) 1041 Prune.push_back(I); 1042 } 1043 for (unsigned i = 0, n = Prune.size(); i < n; ++i) 1044 IFMap.erase(Prune[i]); 1045 } 1046 1047 void HexagonGenInsert::pruneCoveredSets(unsigned VR) { 1048 IFMapType::iterator F = IFMap.find(VR); 1049 assert(F != IFMap.end()); 1050 IFListType &LL = F->second; 1051 1052 // First, examine the IF candidates for register VR whose removable-regis- 1053 // ter sets are empty. This means that a given candidate will not help eli- 1054 // minate any registers, but since "insert" is not a constant-extendable 1055 // instruction, using such a candidate may reduce code size if the defini- 1056 // tion of VR is constant-extended. 1057 // If there exists a candidate with a non-empty set, the ones with empty 1058 // sets will not be used and can be removed. 1059 MachineInstr *DefVR = MRI->getVRegDef(VR); 1060 bool DefEx = HII->isConstExtended(*DefVR); 1061 bool HasNE = false; 1062 for (const auto &I : LL) { 1063 if (I.second.empty()) 1064 continue; 1065 HasNE = true; 1066 break; 1067 } 1068 if (!DefEx || HasNE) { 1069 // The definition of VR is not constant-extended, or there is a candidate 1070 // with a non-empty set. Remove all candidates with empty sets. 1071 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool { 1072 return IR.second.empty(); 1073 }; 1074 llvm::erase_if(LL, IsEmpty); 1075 } else { 1076 // The definition of VR is constant-extended, and all candidates have 1077 // empty removable-register sets. Pick the maximum candidate, and remove 1078 // all others. The "maximum" does not have any special meaning here, it 1079 // is only so that the candidate that will remain on the list is selec- 1080 // ted deterministically. 1081 IFRecord MaxIF = LL[0].first; 1082 for (unsigned i = 1, n = LL.size(); i < n; ++i) { 1083 // If LL[MaxI] < LL[i], then MaxI = i. 1084 const IFRecord &IF = LL[i].first; 1085 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR]; 1086 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR]; 1087 if (M0 > R0) 1088 continue; 1089 if (M0 == R0) { 1090 if (M1 > R1) 1091 continue; 1092 if (M1 == R1) { 1093 if (MaxIF.Wdh > IF.Wdh) 1094 continue; 1095 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off) 1096 continue; 1097 } 1098 } 1099 // MaxIF < IF. 1100 MaxIF = IF; 1101 } 1102 // Remove everything except the maximum candidate. All register sets 1103 // are empty, so no need to preserve anything. 1104 LL.clear(); 1105 LL.push_back(std::make_pair(MaxIF, RegisterSet())); 1106 } 1107 1108 // Now, remove those whose sets of potentially removable registers are 1109 // contained in another IF candidate for VR. For example, given these 1110 // candidates for %45, 1111 // %45: 1112 // (%44,%41,#9,#8), { %42 } 1113 // (%43,%41,#9,#8), { %42 %44 } 1114 // remove the first one, since it is contained in the second one. 1115 for (unsigned i = 0, n = LL.size(); i < n; ) { 1116 const RegisterSet &RMi = LL[i].second; 1117 unsigned j = 0; 1118 while (j < n) { 1119 if (j != i && LL[j].second.includes(RMi)) 1120 break; 1121 j++; 1122 } 1123 if (j == n) { // RMi not contained in anything else. 1124 i++; 1125 continue; 1126 } 1127 LL.erase(LL.begin()+i); 1128 n = LL.size(); 1129 } 1130 } 1131 1132 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, 1133 PairMapType &M) { 1134 IFMapType::iterator F = IFMap.find(VR); 1135 assert(F != IFMap.end()); 1136 IFListType &LL = F->second; 1137 unsigned Cutoff = VRegDistCutoff; 1138 const MachineInstr *DefV = MRI->getVRegDef(VR); 1139 1140 for (unsigned i = LL.size(); i > 0; --i) { 1141 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR; 1142 const MachineInstr *DefS = MRI->getVRegDef(SR); 1143 const MachineInstr *DefI = MRI->getVRegDef(IR); 1144 unsigned DSV = distance(DefS, DefV, RPO, M); 1145 if (DSV < Cutoff) { 1146 unsigned DIV = distance(DefI, DefV, RPO, M); 1147 if (DIV < Cutoff) 1148 continue; 1149 } 1150 LL.erase(LL.begin()+(i-1)); 1151 } 1152 } 1153 1154 void HexagonGenInsert::pruneRegCopies(unsigned VR) { 1155 IFMapType::iterator F = IFMap.find(VR); 1156 assert(F != IFMap.end()); 1157 IFListType &LL = F->second; 1158 1159 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool { 1160 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32); 1161 }; 1162 llvm::erase_if(LL, IsCopy); 1163 } 1164 1165 void HexagonGenInsert::pruneCandidates() { 1166 // Remove candidates that are not beneficial, regardless of the final 1167 // selection method. 1168 // First, remove candidates whose potentially removable set is a subset 1169 // of another candidate's set. 1170 for (const auto &I : IFMap) 1171 pruneCoveredSets(I.first); 1172 1173 UnsignedMap RPO; 1174 1175 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 1176 1177 RPOTType RPOT(MFN); 1178 unsigned RPON = 0; 1179 for (const auto &I : RPOT) 1180 RPO[I->getNumber()] = RPON++; 1181 1182 PairMapType Memo; // Memoization map for distance calculation. 1183 // Remove candidates that would use registers defined too far away. 1184 for (const auto &I : IFMap) 1185 pruneUsesTooFar(I.first, RPO, Memo); 1186 1187 pruneEmptyLists(); 1188 1189 for (const auto &I : IFMap) 1190 pruneRegCopies(I.first); 1191 } 1192 1193 namespace { 1194 1195 // Class for comparing IF candidates for registers that have multiple of 1196 // them. The smaller the candidate, according to this ordering, the better. 1197 // First, compare the number of zeros in the associated potentially remova- 1198 // ble register sets. "Zero" indicates that the register is very likely to 1199 // become dead after this transformation. 1200 // Second, compare "averages", i.e. use-count per size. The lower wins. 1201 // After that, it does not really matter which one is smaller. Resolve 1202 // the tie in some deterministic way. 1203 struct IFOrdering { 1204 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO) 1205 : UseC(UC), BaseOrd(BO) {} 1206 1207 bool operator() (const IFRecordWithRegSet &A, 1208 const IFRecordWithRegSet &B) const; 1209 1210 private: 1211 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, 1212 unsigned &Sum) const; 1213 1214 const UnsignedMap &UseC; 1215 const RegisterOrdering &BaseOrd; 1216 }; 1217 1218 } // end anonymous namespace 1219 1220 bool IFOrdering::operator() (const IFRecordWithRegSet &A, 1221 const IFRecordWithRegSet &B) const { 1222 unsigned SizeA = 0, ZeroA = 0, SumA = 0; 1223 unsigned SizeB = 0, ZeroB = 0, SumB = 0; 1224 stats(A.second, SizeA, ZeroA, SumA); 1225 stats(B.second, SizeB, ZeroB, SumB); 1226 1227 // We will pick the minimum element. The more zeros, the better. 1228 if (ZeroA != ZeroB) 1229 return ZeroA > ZeroB; 1230 // Compare SumA/SizeA with SumB/SizeB, lower is better. 1231 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA; 1232 if (AvgA != AvgB) 1233 return AvgA < AvgB; 1234 1235 // The sets compare identical so far. Resort to comparing the IF records. 1236 // The actual values don't matter, this is only for determinism. 1237 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR]; 1238 if (OSA != OSB) 1239 return OSA < OSB; 1240 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR]; 1241 if (OIA != OIB) 1242 return OIA < OIB; 1243 if (A.first.Wdh != B.first.Wdh) 1244 return A.first.Wdh < B.first.Wdh; 1245 return A.first.Off < B.first.Off; 1246 } 1247 1248 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, 1249 unsigned &Sum) const { 1250 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) { 1251 UnsignedMap::const_iterator F = UseC.find(R); 1252 assert(F != UseC.end()); 1253 unsigned UC = F->second; 1254 if (UC == 0) 1255 Zero++; 1256 Sum += UC; 1257 Size++; 1258 } 1259 } 1260 1261 void HexagonGenInsert::selectCandidates() { 1262 // Some registers may have multiple valid candidates. Pick the best one 1263 // (or decide not to use any). 1264 1265 // Compute the "removability" measure of R: 1266 // For each potentially removable register R, record the number of regis- 1267 // ters with IF candidates, where R appears in at least one set. 1268 RegisterSet AllRMs; 1269 UnsignedMap UseC, RemC; 1270 IFMapType::iterator End = IFMap.end(); 1271 1272 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1273 const IFListType &LL = I->second; 1274 RegisterSet TT; 1275 for (const auto &J : LL) 1276 TT.insert(J.second); 1277 for (unsigned R = TT.find_first(); R; R = TT.find_next(R)) 1278 RemC[R]++; 1279 AllRMs.insert(TT); 1280 } 1281 1282 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) { 1283 using use_iterator = MachineRegisterInfo::use_nodbg_iterator; 1284 using InstrSet = SmallSet<const MachineInstr *, 16>; 1285 1286 InstrSet UIs; 1287 // Count as the number of instructions in which R is used, not the 1288 // number of operands. 1289 use_iterator E = MRI->use_nodbg_end(); 1290 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I) 1291 UIs.insert(I->getParent()); 1292 unsigned C = UIs.size(); 1293 // Calculate a measure, which is the number of instructions using R, 1294 // minus the "removability" count computed earlier. 1295 unsigned D = RemC[R]; 1296 UseC[R] = (C > D) ? C-D : 0; // doz 1297 } 1298 1299 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0; 1300 if (!SelectAll0 && !SelectHas0) 1301 SelectAll0 = true; 1302 1303 // The smaller the number UseC for a given register R, the "less used" 1304 // R is aside from the opportunities for removal offered by generating 1305 // "insert" instructions. 1306 // Iterate over the IF map, and for those registers that have multiple 1307 // candidates, pick the minimum one according to IFOrdering. 1308 IFOrdering IFO(UseC, BaseOrd); 1309 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1310 IFListType &LL = I->second; 1311 if (LL.empty()) 1312 continue; 1313 // Get the minimum element, remember it and clear the list. If the 1314 // element found is adequate, we will put it back on the list, other- 1315 // wise the list will remain empty, and the entry for this register 1316 // will be removed (i.e. this register will not be replaced by insert). 1317 IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO); 1318 assert(MinI != LL.end()); 1319 IFRecordWithRegSet M = *MinI; 1320 LL.clear(); 1321 1322 // We want to make sure that this replacement will have a chance to be 1323 // beneficial, and that means that we want to have indication that some 1324 // register will be removed. The most likely registers to be eliminated 1325 // are the use operands in the definition of I->first. Accept/reject a 1326 // candidate based on how many of its uses it can potentially eliminate. 1327 1328 RegisterSet Us; 1329 const MachineInstr *DefI = MRI->getVRegDef(I->first); 1330 getInstrUses(DefI, Us); 1331 bool Accept = false; 1332 1333 if (SelectAll0) { 1334 bool All0 = true; 1335 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { 1336 if (UseC[R] == 0) 1337 continue; 1338 All0 = false; 1339 break; 1340 } 1341 Accept = All0; 1342 } else if (SelectHas0) { 1343 bool Has0 = false; 1344 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { 1345 if (UseC[R] != 0) 1346 continue; 1347 Has0 = true; 1348 break; 1349 } 1350 Accept = Has0; 1351 } 1352 if (Accept) 1353 LL.push_back(M); 1354 } 1355 1356 // Remove candidates that add uses of removable registers, unless the 1357 // removable registers are among replacement candidates. 1358 // Recompute the removable registers, since some candidates may have 1359 // been eliminated. 1360 AllRMs.clear(); 1361 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1362 const IFListType &LL = I->second; 1363 if (!LL.empty()) 1364 AllRMs.insert(LL[0].second); 1365 } 1366 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1367 IFListType &LL = I->second; 1368 if (LL.empty()) 1369 continue; 1370 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR; 1371 if (AllRMs[SR] || AllRMs[IR]) 1372 LL.clear(); 1373 } 1374 1375 pruneEmptyLists(); 1376 } 1377 1378 bool HexagonGenInsert::generateInserts() { 1379 // Create a new register for each one from IFMap, and store them in the 1380 // map. 1381 UnsignedMap RegMap; 1382 for (auto &I : IFMap) { 1383 unsigned VR = I.first; 1384 const TargetRegisterClass *RC = MRI->getRegClass(VR); 1385 Register NewVR = MRI->createVirtualRegister(RC); 1386 RegMap[VR] = NewVR; 1387 } 1388 1389 // We can generate the "insert" instructions using potentially stale re- 1390 // gisters: SrcR and InsR for a given VR may be among other registers that 1391 // are also replaced. This is fine, we will do the mass "rauw" a bit later. 1392 for (auto &I : IFMap) { 1393 MachineInstr *MI = MRI->getVRegDef(I.first); 1394 MachineBasicBlock &B = *MI->getParent(); 1395 DebugLoc DL = MI->getDebugLoc(); 1396 unsigned NewR = RegMap[I.first]; 1397 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass; 1398 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert) 1399 : HII->get(Hexagon::S2_insertp); 1400 IFRecord IF = I.second[0].first; 1401 unsigned Wdh = IF.Wdh, Off = IF.Off; 1402 unsigned InsS = 0; 1403 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) { 1404 InsS = Hexagon::isub_lo; 1405 if (Off >= 32) { 1406 InsS = Hexagon::isub_hi; 1407 Off -= 32; 1408 } 1409 } 1410 // Advance to the proper location for inserting instructions. This could 1411 // be B.end(). 1412 MachineBasicBlock::iterator At = MI; 1413 if (MI->isPHI()) 1414 At = B.getFirstNonPHI(); 1415 1416 BuildMI(B, At, DL, D, NewR) 1417 .addReg(IF.SrcR) 1418 .addReg(IF.InsR, 0, InsS) 1419 .addImm(Wdh) 1420 .addImm(Off); 1421 1422 MRI->clearKillFlags(IF.SrcR); 1423 MRI->clearKillFlags(IF.InsR); 1424 } 1425 1426 for (const auto &I : IFMap) { 1427 MachineInstr *DefI = MRI->getVRegDef(I.first); 1428 MRI->replaceRegWith(I.first, RegMap[I.first]); 1429 DefI->eraseFromParent(); 1430 } 1431 1432 return true; 1433 } 1434 1435 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) { 1436 bool Changed = false; 1437 1438 for (auto *DTN : children<MachineDomTreeNode*>(N)) 1439 Changed |= removeDeadCode(DTN); 1440 1441 MachineBasicBlock *B = N->getBlock(); 1442 std::vector<MachineInstr*> Instrs; 1443 for (MachineInstr &MI : llvm::reverse(*B)) 1444 Instrs.push_back(&MI); 1445 1446 for (MachineInstr *MI : Instrs) { 1447 unsigned Opc = MI->getOpcode(); 1448 // Do not touch lifetime markers. This is why the target-independent DCE 1449 // cannot be used. 1450 if (Opc == TargetOpcode::LIFETIME_START || 1451 Opc == TargetOpcode::LIFETIME_END) 1452 continue; 1453 bool Store = false; 1454 if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store)) 1455 continue; 1456 1457 bool AllDead = true; 1458 SmallVector<unsigned,2> Regs; 1459 for (const MachineOperand &MO : MI->operands()) { 1460 if (!MO.isReg() || !MO.isDef()) 1461 continue; 1462 Register R = MO.getReg(); 1463 if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) { 1464 AllDead = false; 1465 break; 1466 } 1467 Regs.push_back(R); 1468 } 1469 if (!AllDead) 1470 continue; 1471 1472 B->erase(MI); 1473 for (unsigned I = 0, N = Regs.size(); I != N; ++I) 1474 MRI->markUsesInDebugValueAsUndef(Regs[I]); 1475 Changed = true; 1476 } 1477 1478 return Changed; 1479 } 1480 1481 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) { 1482 if (skipFunction(MF.getFunction())) 1483 return false; 1484 1485 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail; 1486 bool Changed = false; 1487 1488 // Verify: one, but not both. 1489 assert(!OptSelectAll0 || !OptSelectHas0); 1490 1491 IFMap.clear(); 1492 BaseOrd.clear(); 1493 CellOrd.clear(); 1494 1495 const auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1496 HII = ST.getInstrInfo(); 1497 HRI = ST.getRegisterInfo(); 1498 MFN = &MF; 1499 MRI = &MF.getRegInfo(); 1500 MDT = &getAnalysis<MachineDominatorTree>(); 1501 1502 // Clean up before any further processing, so that dead code does not 1503 // get used in a newly generated "insert" instruction. Have a custom 1504 // version of DCE that preserves lifetime markers. Without it, merging 1505 // of stack objects can fail to recognize and merge disjoint objects 1506 // leading to unnecessary stack growth. 1507 Changed = removeDeadCode(MDT->getRootNode()); 1508 1509 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); 1510 BitTracker BTLoc(HE, MF); 1511 BTLoc.trace(isDebug()); 1512 BTLoc.run(); 1513 CellMapShadow MS(BTLoc); 1514 CMS = &MS; 1515 1516 buildOrderingMF(BaseOrd); 1517 buildOrderingBT(BaseOrd, CellOrd); 1518 1519 if (isDebug()) { 1520 dbgs() << "Cell ordering:\n"; 1521 for (const auto &I : CellOrd) { 1522 unsigned VR = I.first, Pos = I.second; 1523 dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n"; 1524 } 1525 } 1526 1527 // Collect candidates for conversion into the insert forms. 1528 MachineBasicBlock *RootB = MDT->getRoot(); 1529 OrderedRegisterList AvailR(CellOrd); 1530 1531 const char *const TGName = "hexinsert"; 1532 const char *const TGDesc = "Generate Insert Instructions"; 1533 1534 { 1535 NamedRegionTimer _T("collection", "collection", TGName, TGDesc, 1536 TimingDetail); 1537 collectInBlock(RootB, AvailR); 1538 // Complete the information gathered in IFMap. 1539 computeRemovableRegisters(); 1540 } 1541 1542 if (isDebug()) { 1543 dbgs() << "Candidates after collection:\n"; 1544 dump_map(); 1545 } 1546 1547 if (IFMap.empty()) 1548 return Changed; 1549 1550 { 1551 NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail); 1552 pruneCandidates(); 1553 } 1554 1555 if (isDebug()) { 1556 dbgs() << "Candidates after pruning:\n"; 1557 dump_map(); 1558 } 1559 1560 if (IFMap.empty()) 1561 return Changed; 1562 1563 { 1564 NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail); 1565 selectCandidates(); 1566 } 1567 1568 if (isDebug()) { 1569 dbgs() << "Candidates after selection:\n"; 1570 dump_map(); 1571 } 1572 1573 // Filter out vregs beyond the cutoff. 1574 if (VRegIndexCutoff.getPosition()) { 1575 unsigned Cutoff = VRegIndexCutoff; 1576 1577 using IterListType = SmallVector<IFMapType::iterator, 16>; 1578 1579 IterListType Out; 1580 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1581 unsigned Idx = Register::virtReg2Index(I->first); 1582 if (Idx >= Cutoff) 1583 Out.push_back(I); 1584 } 1585 for (unsigned i = 0, n = Out.size(); i < n; ++i) 1586 IFMap.erase(Out[i]); 1587 } 1588 if (IFMap.empty()) 1589 return Changed; 1590 1591 { 1592 NamedRegionTimer _T("generation", "generation", TGName, TGDesc, 1593 TimingDetail); 1594 generateInserts(); 1595 } 1596 1597 return true; 1598 } 1599 1600 FunctionPass *llvm::createHexagonGenInsert() { 1601 return new HexagonGenInsert(); 1602 } 1603 1604 //===----------------------------------------------------------------------===// 1605 // Public Constructor Functions 1606 //===----------------------------------------------------------------------===// 1607 1608 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert", 1609 "Hexagon generate \"insert\" instructions", false, false) 1610 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 1611 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert", 1612 "Hexagon generate \"insert\" instructions", false, false) 1613