1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "HexagonFrameLowering.h" 11 #include "HexagonBlockRanges.h" 12 #include "HexagonInstrInfo.h" 13 #include "HexagonMachineFunctionInfo.h" 14 #include "HexagonRegisterInfo.h" 15 #include "HexagonSubtarget.h" 16 #include "HexagonTargetMachine.h" 17 #include "MCTargetDesc/HexagonBaseInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/LivePhysRegs.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachinePostDominators.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/PseudoSourceValue.h" 40 #include "llvm/CodeGen/RegisterScavenging.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCDwarf.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CodeGen.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetOptions.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <map> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "hexagon-pei" 67 68 // Hexagon stack frame layout as defined by the ABI: 69 // 70 // Incoming arguments 71 // passed via stack 72 // | 73 // | 74 // SP during function's FP during function's | 75 // +-- runtime (top of stack) runtime (bottom) --+ | 76 // | | | 77 // --++---------------------+------------------+-----------------++-+------- 78 // | parameter area for | variable-size | fixed-size |LR| arg 79 // | called functions | local objects | local objects |FP| 80 // --+----------------------+------------------+-----------------+--+------- 81 // <- size known -> <- size unknown -> <- size known -> 82 // 83 // Low address High address 84 // 85 // <--- stack growth 86 // 87 // 88 // - In any circumstances, the outgoing function arguments are always accessi- 89 // ble using the SP, and the incoming arguments are accessible using the FP. 90 // - If the local objects are not aligned, they can always be accessed using 91 // the FP. 92 // - If there are no variable-sized objects, the local objects can always be 93 // accessed using the SP, regardless whether they are aligned or not. (The 94 // alignment padding will be at the bottom of the stack (highest address), 95 // and so the offset with respect to the SP will be known at the compile- 96 // -time.) 97 // 98 // The only complication occurs if there are both, local aligned objects, and 99 // dynamically allocated (variable-sized) objects. The alignment pad will be 100 // placed between the FP and the local objects, thus preventing the use of the 101 // FP to access the local objects. At the same time, the variable-sized objects 102 // will be between the SP and the local objects, thus introducing an unknown 103 // distance from the SP to the locals. 104 // 105 // To avoid this problem, a new register is created that holds the aligned 106 // address of the bottom of the stack, referred in the sources as AP (aligned 107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad 108 // that aligns AP to the required boundary (a maximum of the alignments of 109 // all stack objects, fixed- and variable-sized). All local objects[1] will 110 // then use AP as the base pointer. 111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get 112 // their name from being allocated at fixed locations on the stack, relative 113 // to the FP. In the presence of dynamic allocation and local alignment, such 114 // objects can only be accessed through the FP. 115 // 116 // Illustration of the AP: 117 // FP --+ 118 // | 119 // ---------------+---------------------+-----+-----------------------++-+-- 120 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| 121 // stack frame | (aligned) | | (CSR, spills, etc.) |FP| 122 // ---------------+---------------------+-----+-----------------+-----+--+-- 123 // |<-- Multiple of the -->| 124 // stack alignment +-- AP 125 // 126 // The AP is set up at the beginning of the function. Since it is not a dedi- 127 // cated (reserved) register, it needs to be kept live throughout the function 128 // to be available as the base register for local object accesses. 129 // Normally, an address of a stack objects is obtained by a pseudo-instruction 130 // PS_fi. To access local objects with the AP register present, a different 131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra 132 // argument compared to PS_fi: the first input register is the AP register. 133 // This keeps the register live between its definition and its uses. 134 135 // The AP register is originally set up using pseudo-instruction PS_aligna: 136 // AP = PS_aligna A 137 // where 138 // A - required stack alignment 139 // The alignment value must be the maximum of all alignments required by 140 // any stack object. 141 142 // The dynamic allocation uses a pseudo-instruction PS_alloca: 143 // Rd = PS_alloca Rs, A 144 // where 145 // Rd - address of the allocated space 146 // Rs - minimum size (the actual allocated can be larger to accommodate 147 // alignment) 148 // A - required alignment 149 150 using namespace llvm; 151 152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", 153 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); 154 155 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots", 156 cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), 157 cl::ZeroOrMore); 158 159 static cl::opt<int> SpillFuncThreshold("spill-func-threshold", 160 cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), 161 cl::init(6), cl::ZeroOrMore); 162 163 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os", 164 cl::Hidden, cl::desc("Specify Os spill func threshold"), 165 cl::init(1), cl::ZeroOrMore); 166 167 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer", 168 cl::Hidden, cl::desc("Enable runtime checks for stack overflow."), 169 cl::init(false), cl::ZeroOrMore); 170 171 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame", 172 cl::init(true), cl::Hidden, cl::ZeroOrMore, 173 cl::desc("Enable stack frame shrink wrapping")); 174 175 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", 176 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore, 177 cl::desc("Max count of stack frame shrink-wraps")); 178 179 static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long", 180 cl::Hidden, cl::desc("Enable long calls for save-restore stubs."), 181 cl::init(false), cl::ZeroOrMore); 182 183 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), 184 cl::Hidden, cl::desc("Refrain from using FP whenever possible")); 185 186 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, 187 cl::init(true), cl::desc("Optimize spill slots")); 188 189 #ifndef NDEBUG 190 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, 191 cl::init(std::numeric_limits<unsigned>::max())); 192 static unsigned SpillOptCount = 0; 193 #endif 194 195 namespace llvm { 196 197 void initializeHexagonCallFrameInformationPass(PassRegistry&); 198 FunctionPass *createHexagonCallFrameInformation(); 199 200 } // end namespace llvm 201 202 namespace { 203 204 class HexagonCallFrameInformation : public MachineFunctionPass { 205 public: 206 static char ID; 207 208 HexagonCallFrameInformation() : MachineFunctionPass(ID) { 209 PassRegistry &PR = *PassRegistry::getPassRegistry(); 210 initializeHexagonCallFrameInformationPass(PR); 211 } 212 213 bool runOnMachineFunction(MachineFunction &MF) override; 214 215 MachineFunctionProperties getRequiredProperties() const override { 216 return MachineFunctionProperties().set( 217 MachineFunctionProperties::Property::NoVRegs); 218 } 219 }; 220 221 char HexagonCallFrameInformation::ID = 0; 222 223 } // end anonymous namespace 224 225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { 226 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); 227 bool NeedCFI = MF.needsFrameMoves(); 228 229 if (!NeedCFI) 230 return false; 231 HFI.insertCFIInstructions(MF); 232 return true; 233 } 234 235 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", 236 "Hexagon call frame information", false, false) 237 238 FunctionPass *llvm::createHexagonCallFrameInformation() { 239 return new HexagonCallFrameInformation(); 240 } 241 242 /// Map a register pair Reg to the subregister that has the greater "number", 243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc. 244 static unsigned getMax32BitSubRegister(unsigned Reg, 245 const TargetRegisterInfo &TRI, 246 bool hireg = true) { 247 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) 248 return Reg; 249 250 unsigned RegNo = 0; 251 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { 252 if (hireg) { 253 if (*SubRegs > RegNo) 254 RegNo = *SubRegs; 255 } else { 256 if (!RegNo || *SubRegs < RegNo) 257 RegNo = *SubRegs; 258 } 259 } 260 return RegNo; 261 } 262 263 /// Returns the callee saved register with the largest id in the vector. 264 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, 265 const TargetRegisterInfo &TRI) { 266 static_assert(Hexagon::R1 > 0, 267 "Assume physical registers are encoded as positive integers"); 268 if (CSI.empty()) 269 return 0; 270 271 unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); 272 for (unsigned I = 1, E = CSI.size(); I < E; ++I) { 273 unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); 274 if (Reg > Max) 275 Max = Reg; 276 } 277 return Max; 278 } 279 280 /// Checks if the basic block contains any instruction that needs a stack 281 /// frame to be already in place. 282 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, 283 const HexagonRegisterInfo &HRI) { 284 for (const MachineInstr &MI : MBB) { 285 if (MI.isCall()) 286 return true; 287 unsigned Opc = MI.getOpcode(); 288 switch (Opc) { 289 case Hexagon::PS_alloca: 290 case Hexagon::PS_aligna: 291 return true; 292 default: 293 break; 294 } 295 // Check individual operands. 296 for (const MachineOperand &MO : MI.operands()) { 297 // While the presence of a frame index does not prove that a stack 298 // frame will be required, all frame indexes should be within alloc- 299 // frame/deallocframe. Otherwise, the code that translates a frame 300 // index into an offset would have to be aware of the placement of 301 // the frame creation/destruction instructions. 302 if (MO.isFI()) 303 return true; 304 if (MO.isReg()) { 305 Register R = MO.getReg(); 306 // Virtual registers will need scavenging, which then may require 307 // a stack slot. 308 if (R.isVirtual()) 309 return true; 310 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) 311 if (CSR[*S]) 312 return true; 313 continue; 314 } 315 if (MO.isRegMask()) { 316 // A regmask would normally have all callee-saved registers marked 317 // as preserved, so this check would not be needed, but in case of 318 // ever having other regmasks (for other calling conventions), 319 // make sure they would be processed correctly. 320 const uint32_t *BM = MO.getRegMask(); 321 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { 322 unsigned R = x; 323 // If this regmask does not preserve a CSR, a frame will be needed. 324 if (!(BM[R/32] & (1u << (R%32)))) 325 return true; 326 } 327 } 328 } 329 } 330 return false; 331 } 332 333 /// Returns true if MBB has a machine instructions that indicates a tail call 334 /// in the block. 335 static bool hasTailCall(const MachineBasicBlock &MBB) { 336 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 337 if (I == MBB.end()) 338 return false; 339 unsigned RetOpc = I->getOpcode(); 340 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; 341 } 342 343 /// Returns true if MBB contains an instruction that returns. 344 static bool hasReturn(const MachineBasicBlock &MBB) { 345 for (const MachineInstr &MI : MBB.terminators()) 346 if (MI.isReturn()) 347 return true; 348 return false; 349 } 350 351 /// Returns the "return" instruction from this block, or nullptr if there 352 /// isn't any. 353 static MachineInstr *getReturn(MachineBasicBlock &MBB) { 354 for (auto &I : MBB) 355 if (I.isReturn()) 356 return &I; 357 return nullptr; 358 } 359 360 static bool isRestoreCall(unsigned Opc) { 361 switch (Opc) { 362 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 363 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 364 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: 365 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: 366 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: 367 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: 368 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: 369 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: 370 return true; 371 } 372 return false; 373 } 374 375 static inline bool isOptNone(const MachineFunction &MF) { 376 return MF.getFunction().hasOptNone() || 377 MF.getTarget().getOptLevel() == CodeGenOpt::None; 378 } 379 380 static inline bool isOptSize(const MachineFunction &MF) { 381 const Function &F = MF.getFunction(); 382 return F.hasOptSize() && !F.hasMinSize(); 383 } 384 385 static inline bool isMinSize(const MachineFunction &MF) { 386 return MF.getFunction().hasMinSize(); 387 } 388 389 /// Implements shrink-wrapping of the stack frame. By default, stack frame 390 /// is created in the function entry block, and is cleaned up in every block 391 /// that returns. This function finds alternate blocks: one for the frame 392 /// setup (prolog) and one for the cleanup (epilog). 393 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, 394 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { 395 static unsigned ShrinkCounter = 0; 396 397 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && 398 MF.getFunction().isVarArg()) 399 return; 400 if (ShrinkLimit.getPosition()) { 401 if (ShrinkCounter >= ShrinkLimit) 402 return; 403 ShrinkCounter++; 404 } 405 406 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 407 408 MachineDominatorTree MDT; 409 MDT.runOnMachineFunction(MF); 410 MachinePostDominatorTree MPT; 411 MPT.runOnMachineFunction(MF); 412 413 using UnsignedMap = DenseMap<unsigned, unsigned>; 414 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 415 416 UnsignedMap RPO; 417 RPOTType RPOT(&MF); 418 unsigned RPON = 0; 419 for (auto &I : RPOT) 420 RPO[I->getNumber()] = RPON++; 421 422 // Don't process functions that have loops, at least for now. Placement 423 // of prolog and epilog must take loop structure into account. For simpli- 424 // city don't do it right now. 425 for (auto &I : MF) { 426 unsigned BN = RPO[I.getNumber()]; 427 for (MachineBasicBlock *Succ : I.successors()) 428 // If found a back-edge, return. 429 if (RPO[Succ->getNumber()] <= BN) 430 return; 431 } 432 433 // Collect the set of blocks that need a stack frame to execute. Scan 434 // each block for uses/defs of callee-saved registers, calls, etc. 435 SmallVector<MachineBasicBlock*,16> SFBlocks; 436 BitVector CSR(Hexagon::NUM_TARGET_REGS); 437 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) 438 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) 439 CSR[*S] = true; 440 441 for (auto &I : MF) 442 if (needsStackFrame(I, CSR, HRI)) 443 SFBlocks.push_back(&I); 444 445 LLVM_DEBUG({ 446 dbgs() << "Blocks needing SF: {"; 447 for (auto &B : SFBlocks) 448 dbgs() << " " << printMBBReference(*B); 449 dbgs() << " }\n"; 450 }); 451 // No frame needed? 452 if (SFBlocks.empty()) 453 return; 454 455 // Pick a common dominator and a common post-dominator. 456 MachineBasicBlock *DomB = SFBlocks[0]; 457 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 458 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); 459 if (!DomB) 460 break; 461 } 462 MachineBasicBlock *PDomB = SFBlocks[0]; 463 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 464 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); 465 if (!PDomB) 466 break; 467 } 468 LLVM_DEBUG({ 469 dbgs() << "Computed dom block: "; 470 if (DomB) 471 dbgs() << printMBBReference(*DomB); 472 else 473 dbgs() << "<null>"; 474 dbgs() << ", computed pdom block: "; 475 if (PDomB) 476 dbgs() << printMBBReference(*PDomB); 477 else 478 dbgs() << "<null>"; 479 dbgs() << "\n"; 480 }); 481 if (!DomB || !PDomB) 482 return; 483 484 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. 485 if (!MDT.dominates(DomB, PDomB)) { 486 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); 487 return; 488 } 489 if (!MPT.dominates(PDomB, DomB)) { 490 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); 491 return; 492 } 493 494 // Finally, everything seems right. 495 PrologB = DomB; 496 EpilogB = PDomB; 497 } 498 499 /// Perform most of the PEI work here: 500 /// - saving/restoring of the callee-saved registers, 501 /// - stack frame creation and destruction. 502 /// Normally, this work is distributed among various functions, but doing it 503 /// in one place allows shrink-wrapping of the stack frame. 504 void HexagonFrameLowering::emitPrologue(MachineFunction &MF, 505 MachineBasicBlock &MBB) const { 506 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 507 508 MachineFrameInfo &MFI = MF.getFrameInfo(); 509 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 510 511 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; 512 if (EnableShrinkWrapping) 513 findShrunkPrologEpilog(MF, PrologB, EpilogB); 514 515 bool PrologueStubs = false; 516 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); 517 insertPrologueInBlock(*PrologB, PrologueStubs); 518 updateEntryPaths(MF, *PrologB); 519 520 if (EpilogB) { 521 insertCSRRestoresInBlock(*EpilogB, CSI, HRI); 522 insertEpilogueInBlock(*EpilogB); 523 } else { 524 for (auto &B : MF) 525 if (B.isReturnBlock()) 526 insertCSRRestoresInBlock(B, CSI, HRI); 527 528 for (auto &B : MF) 529 if (B.isReturnBlock()) 530 insertEpilogueInBlock(B); 531 532 for (auto &B : MF) { 533 if (B.empty()) 534 continue; 535 MachineInstr *RetI = getReturn(B); 536 if (!RetI || isRestoreCall(RetI->getOpcode())) 537 continue; 538 for (auto &R : CSI) 539 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 540 } 541 } 542 543 if (EpilogB) { 544 // If there is an epilog block, it may not have a return instruction. 545 // In such case, we need to add the callee-saved registers as live-ins 546 // in all blocks on all paths from the epilog to any return block. 547 unsigned MaxBN = MF.getNumBlockIDs(); 548 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); 549 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); 550 } 551 } 552 553 /// Returns true if the target can safely skip saving callee-saved registers 554 /// for noreturn nounwind functions. 555 bool HexagonFrameLowering::enableCalleeSaveSkip( 556 const MachineFunction &MF) const { 557 const auto &F = MF.getFunction(); 558 assert(F.hasFnAttribute(Attribute::NoReturn) && 559 F.getFunction().hasFnAttribute(Attribute::NoUnwind) && 560 !F.getFunction().hasFnAttribute(Attribute::UWTable)); 561 (void)F; 562 563 // No need to save callee saved registers if the function does not return. 564 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); 565 } 566 567 // Helper function used to determine when to eliminate the stack frame for 568 // functions marked as noreturn and when the noreturn-stack-elim options are 569 // specified. When both these conditions are true, then a FP may not be needed 570 // if the function makes a call. It is very similar to enableCalleeSaveSkip, 571 // but it used to check if the allocframe can be eliminated as well. 572 static bool enableAllocFrameElim(const MachineFunction &MF) { 573 const auto &F = MF.getFunction(); 574 const auto &MFI = MF.getFrameInfo(); 575 const auto &HST = MF.getSubtarget<HexagonSubtarget>(); 576 assert(!MFI.hasVarSizedObjects() && 577 !HST.getRegisterInfo()->hasStackRealignment(MF)); 578 return F.hasFnAttribute(Attribute::NoReturn) && 579 F.hasFnAttribute(Attribute::NoUnwind) && 580 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && 581 MFI.getStackSize() == 0; 582 } 583 584 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, 585 bool PrologueStubs) const { 586 MachineFunction &MF = *MBB.getParent(); 587 MachineFrameInfo &MFI = MF.getFrameInfo(); 588 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 589 auto &HII = *HST.getInstrInfo(); 590 auto &HRI = *HST.getRegisterInfo(); 591 592 Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign()); 593 594 // Calculate the total stack frame size. 595 // Get the number of bytes to allocate from the FrameInfo. 596 unsigned FrameSize = MFI.getStackSize(); 597 // Round up the max call frame size to the max alignment on the stack. 598 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); 599 MFI.setMaxCallFrameSize(MaxCFA); 600 601 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); 602 MFI.setStackSize(FrameSize); 603 604 bool AlignStack = (MaxAlign > getStackAlign()); 605 606 // Get the number of bytes to allocate from the FrameInfo. 607 unsigned NumBytes = MFI.getStackSize(); 608 unsigned SP = HRI.getStackRegister(); 609 unsigned MaxCF = MFI.getMaxCallFrameSize(); 610 MachineBasicBlock::iterator InsertPt = MBB.begin(); 611 612 SmallVector<MachineInstr *, 4> AdjustRegs; 613 for (auto &MBB : MF) 614 for (auto &MI : MBB) 615 if (MI.getOpcode() == Hexagon::PS_alloca) 616 AdjustRegs.push_back(&MI); 617 618 for (auto MI : AdjustRegs) { 619 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); 620 expandAlloca(MI, HII, SP, MaxCF); 621 MI->eraseFromParent(); 622 } 623 624 DebugLoc dl = MBB.findDebugLoc(InsertPt); 625 626 if (MF.getFunction().isVarArg() && 627 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 628 // Calculate the size of register saved area. 629 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 630 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) 631 ? NumVarArgRegs * 4 632 : NumVarArgRegs * 4 + 4; 633 if (RegisterSavedAreaSizePlusPadding > 0) { 634 // Decrement the stack pointer by size of register saved area plus 635 // padding if any. 636 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 637 .addReg(SP) 638 .addImm(-RegisterSavedAreaSizePlusPadding) 639 .setMIFlag(MachineInstr::FrameSetup); 640 641 int NumBytes = 0; 642 // Copy all the named arguments below register saved area. 643 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 644 for (int i = HMFI.getFirstNamedArgFrameIndex(), 645 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { 646 uint64_t ObjSize = MFI.getObjectSize(i); 647 Align ObjAlign = MFI.getObjectAlign(i); 648 649 // Determine the kind of load/store that should be used. 650 unsigned LDOpc, STOpc; 651 uint64_t OpcodeChecker = ObjAlign.value(); 652 653 // Handle cases where alignment of an object is > its size. 654 if (ObjAlign > ObjSize) { 655 if (ObjSize <= 1) 656 OpcodeChecker = 1; 657 else if (ObjSize <= 2) 658 OpcodeChecker = 2; 659 else if (ObjSize <= 4) 660 OpcodeChecker = 4; 661 else if (ObjSize > 4) 662 OpcodeChecker = 8; 663 } 664 665 switch (OpcodeChecker) { 666 case 1: 667 LDOpc = Hexagon::L2_loadrb_io; 668 STOpc = Hexagon::S2_storerb_io; 669 break; 670 case 2: 671 LDOpc = Hexagon::L2_loadrh_io; 672 STOpc = Hexagon::S2_storerh_io; 673 break; 674 case 4: 675 LDOpc = Hexagon::L2_loadri_io; 676 STOpc = Hexagon::S2_storeri_io; 677 break; 678 case 8: 679 default: 680 LDOpc = Hexagon::L2_loadrd_io; 681 STOpc = Hexagon::S2_storerd_io; 682 break; 683 } 684 685 unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 686 : Hexagon::R6; 687 int LoadStoreCount = ObjSize / OpcodeChecker; 688 689 if (ObjSize % OpcodeChecker) 690 ++LoadStoreCount; 691 692 // Get the start location of the load. NumBytes is basically the 693 // offset from the stack pointer of previous function, which would be 694 // the caller in this case, as this function has variable argument 695 // list. 696 if (NumBytes != 0) 697 NumBytes = alignTo(NumBytes, ObjAlign); 698 699 int Count = 0; 700 while (Count < LoadStoreCount) { 701 // Load the value of the named argument on stack. 702 BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed) 703 .addReg(SP) 704 .addImm(RegisterSavedAreaSizePlusPadding + 705 ObjAlign.value() * Count + NumBytes) 706 .setMIFlag(MachineInstr::FrameSetup); 707 708 // Store it below the register saved area plus padding. 709 BuildMI(MBB, InsertPt, dl, HII.get(STOpc)) 710 .addReg(SP) 711 .addImm(ObjAlign.value() * Count + NumBytes) 712 .addReg(RegUsed) 713 .setMIFlag(MachineInstr::FrameSetup); 714 715 Count++; 716 } 717 NumBytes += MFI.getObjectSize(i); 718 } 719 720 // Make NumBytes 8 byte aligned 721 NumBytes = alignTo(NumBytes, 8); 722 723 // If the number of registers having variable arguments is odd, 724 // leave 4 bytes of padding to get to the location where first 725 // variable argument which was passed through register was copied. 726 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; 727 728 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { 729 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io)) 730 .addReg(SP) 731 .addImm(NumBytes + 4 * i) 732 .addReg(Hexagon::R0 + j) 733 .setMIFlag(MachineInstr::FrameSetup); 734 } 735 } 736 } 737 738 if (hasFP(MF)) { 739 insertAllocframe(MBB, InsertPt, NumBytes); 740 if (AlignStack) { 741 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) 742 .addReg(SP) 743 .addImm(-int64_t(MaxAlign.value())); 744 } 745 // If the stack-checking is enabled, and we spilled the callee-saved 746 // registers inline (i.e. did not use a spill function), then call 747 // the stack checker directly. 748 if (EnableStackOVFSanitizer && !PrologueStubs) 749 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) 750 .addExternalSymbol("__runtime_stack_check"); 751 } else if (NumBytes > 0) { 752 assert(alignTo(NumBytes, 8) == NumBytes); 753 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 754 .addReg(SP) 755 .addImm(-int(NumBytes)); 756 } 757 } 758 759 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { 760 MachineFunction &MF = *MBB.getParent(); 761 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 762 auto &HII = *HST.getInstrInfo(); 763 auto &HRI = *HST.getRegisterInfo(); 764 unsigned SP = HRI.getStackRegister(); 765 766 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); 767 DebugLoc dl = MBB.findDebugLoc(InsertPt); 768 769 if (!hasFP(MF)) { 770 MachineFrameInfo &MFI = MF.getFrameInfo(); 771 unsigned NumBytes = MFI.getStackSize(); 772 if (MF.getFunction().isVarArg() && 773 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 774 // On Hexagon Linux, deallocate the stack for the register saved area. 775 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 776 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 777 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 778 NumBytes += RegisterSavedAreaSizePlusPadding; 779 } 780 if (NumBytes) { 781 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 782 .addReg(SP) 783 .addImm(NumBytes); 784 } 785 return; 786 } 787 788 MachineInstr *RetI = getReturn(MBB); 789 unsigned RetOpc = RetI ? RetI->getOpcode() : 0; 790 791 // Handle EH_RETURN. 792 if (RetOpc == Hexagon::EH_RETURN_JMPR) { 793 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 794 .addDef(Hexagon::D15) 795 .addReg(Hexagon::R30); 796 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) 797 .addReg(SP) 798 .addReg(Hexagon::R28); 799 return; 800 } 801 802 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- 803 // frame instruction if we encounter it. 804 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || 805 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || 806 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || 807 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { 808 MachineBasicBlock::iterator It = RetI; 809 ++It; 810 // Delete all instructions after the RESTORE (except labels). 811 while (It != MBB.end()) { 812 if (!It->isLabel()) 813 It = MBB.erase(It); 814 else 815 ++It; 816 } 817 return; 818 } 819 820 // It is possible that the restoring code is a call to a library function. 821 // All of the restore* functions include "deallocframe", so we need to make 822 // sure that we don't add an extra one. 823 bool NeedsDeallocframe = true; 824 if (!MBB.empty() && InsertPt != MBB.begin()) { 825 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); 826 unsigned COpc = PrevIt->getOpcode(); 827 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || 828 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || 829 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || 830 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || 831 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) 832 NeedsDeallocframe = false; 833 } 834 835 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || 836 !MF.getFunction().isVarArg()) { 837 if (!NeedsDeallocframe) 838 return; 839 // If the returning instruction is PS_jmpret, replace it with 840 // dealloc_return, otherwise just add deallocframe. The function 841 // could be returning via a tail call. 842 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { 843 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 844 .addDef(Hexagon::D15) 845 .addReg(Hexagon::R30); 846 return; 847 } 848 unsigned NewOpc = Hexagon::L4_return; 849 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) 850 .addDef(Hexagon::D15) 851 .addReg(Hexagon::R30); 852 // Transfer the function live-out registers. 853 NewI->copyImplicitOps(MF, *RetI); 854 MBB.erase(RetI); 855 } else { 856 // L2_deallocframe instruction after it. 857 // Calculate the size of register saved area. 858 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 859 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 860 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 861 862 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 863 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() 864 : std::prev(Term); 865 if (I == MBB.end() || 866 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && 867 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && 868 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && 869 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) 870 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 871 .addDef(Hexagon::D15) 872 .addReg(Hexagon::R30); 873 if (RegisterSavedAreaSizePlusPadding != 0) 874 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 875 .addReg(SP) 876 .addImm(RegisterSavedAreaSizePlusPadding); 877 } 878 } 879 880 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, 881 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { 882 MachineFunction &MF = *MBB.getParent(); 883 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 884 auto &HII = *HST.getInstrInfo(); 885 auto &HRI = *HST.getRegisterInfo(); 886 887 // Check for overflow. 888 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? 889 const unsigned int ALLOCFRAME_MAX = 16384; 890 891 // Create a dummy memory operand to avoid allocframe from being treated as 892 // a volatile memory reference. 893 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), 894 MachineMemOperand::MOStore, 4, Align(4)); 895 896 DebugLoc dl = MBB.findDebugLoc(InsertPt); 897 unsigned SP = HRI.getStackRegister(); 898 899 if (NumBytes >= ALLOCFRAME_MAX) { 900 // Emit allocframe(#0). 901 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 902 .addDef(SP) 903 .addReg(SP) 904 .addImm(0) 905 .addMemOperand(MMO); 906 907 // Subtract the size from the stack pointer. 908 unsigned SP = HRI.getStackRegister(); 909 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 910 .addReg(SP) 911 .addImm(-int(NumBytes)); 912 } else { 913 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 914 .addDef(SP) 915 .addReg(SP) 916 .addImm(NumBytes) 917 .addMemOperand(MMO); 918 } 919 } 920 921 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, 922 MachineBasicBlock &SaveB) const { 923 SetVector<unsigned> Worklist; 924 925 MachineBasicBlock &EntryB = MF.front(); 926 Worklist.insert(EntryB.getNumber()); 927 928 unsigned SaveN = SaveB.getNumber(); 929 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); 930 931 for (unsigned i = 0; i < Worklist.size(); ++i) { 932 unsigned BN = Worklist[i]; 933 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); 934 for (auto &R : CSI) 935 if (!MBB.isLiveIn(R.getReg())) 936 MBB.addLiveIn(R.getReg()); 937 if (BN != SaveN) 938 for (auto &SB : MBB.successors()) 939 Worklist.insert(SB->getNumber()); 940 } 941 } 942 943 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, 944 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, 945 BitVector &Path) const { 946 assert(MBB.getNumber() >= 0); 947 unsigned BN = MBB.getNumber(); 948 if (Path[BN] || DoneF[BN]) 949 return false; 950 if (DoneT[BN]) 951 return true; 952 953 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); 954 955 Path[BN] = true; 956 bool ReachedExit = false; 957 for (auto &SB : MBB.successors()) 958 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); 959 960 if (!MBB.empty() && MBB.back().isReturn()) { 961 // Add implicit uses of all callee-saved registers to the reached 962 // return instructions. This is to prevent the anti-dependency breaker 963 // from renaming these registers. 964 MachineInstr &RetI = MBB.back(); 965 if (!isRestoreCall(RetI.getOpcode())) 966 for (auto &R : CSI) 967 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 968 ReachedExit = true; 969 } 970 971 // We don't want to add unnecessary live-ins to the restore block: since 972 // the callee-saved registers are being defined in it, the entry of the 973 // restore block cannot be on the path from the definitions to any exit. 974 if (ReachedExit && &MBB != &RestoreB) { 975 for (auto &R : CSI) 976 if (!MBB.isLiveIn(R.getReg())) 977 MBB.addLiveIn(R.getReg()); 978 DoneT[BN] = true; 979 } 980 if (!ReachedExit) 981 DoneF[BN] = true; 982 983 Path[BN] = false; 984 return ReachedExit; 985 } 986 987 static Optional<MachineBasicBlock::iterator> 988 findCFILocation(MachineBasicBlock &B) { 989 // The CFI instructions need to be inserted right after allocframe. 990 // An exception to this is a situation where allocframe is bundled 991 // with a call: then the CFI instructions need to be inserted before 992 // the packet with the allocframe+call (in case the call throws an 993 // exception). 994 auto End = B.instr_end(); 995 996 for (MachineInstr &I : B) { 997 MachineBasicBlock::iterator It = I.getIterator(); 998 if (!I.isBundle()) { 999 if (I.getOpcode() == Hexagon::S2_allocframe) 1000 return std::next(It); 1001 continue; 1002 } 1003 // I is a bundle. 1004 bool HasCall = false, HasAllocFrame = false; 1005 auto T = It.getInstrIterator(); 1006 while (++T != End && T->isBundled()) { 1007 if (T->getOpcode() == Hexagon::S2_allocframe) 1008 HasAllocFrame = true; 1009 else if (T->isCall()) 1010 HasCall = true; 1011 } 1012 if (HasAllocFrame) 1013 return HasCall ? It : std::next(It); 1014 } 1015 return None; 1016 } 1017 1018 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { 1019 for (auto &B : MF) { 1020 auto At = findCFILocation(B); 1021 if (At.hasValue()) 1022 insertCFIInstructionsAt(B, At.getValue()); 1023 } 1024 } 1025 1026 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, 1027 MachineBasicBlock::iterator At) const { 1028 MachineFunction &MF = *MBB.getParent(); 1029 MachineFrameInfo &MFI = MF.getFrameInfo(); 1030 MachineModuleInfo &MMI = MF.getMMI(); 1031 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1032 auto &HII = *HST.getInstrInfo(); 1033 auto &HRI = *HST.getRegisterInfo(); 1034 1035 // If CFI instructions have debug information attached, something goes 1036 // wrong with the final assembly generation: the prolog_end is placed 1037 // in a wrong location. 1038 DebugLoc DL; 1039 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); 1040 1041 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1042 bool HasFP = hasFP(MF); 1043 1044 if (HasFP) { 1045 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); 1046 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); 1047 1048 // Define CFA via an offset from the value of FP. 1049 // 1050 // -8 -4 0 (SP) 1051 // --+----+----+--------------------- 1052 // | FP | LR | increasing addresses --> 1053 // --+----+----+--------------------- 1054 // | +-- Old SP (before allocframe) 1055 // +-- New FP (after allocframe) 1056 // 1057 // MCCFIInstruction::cfiDefCfa adds the offset from the register. 1058 // MCCFIInstruction::createOffset takes the offset without sign change. 1059 auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8); 1060 BuildMI(MBB, At, DL, CFID) 1061 .addCFIIndex(MF.addFrameInst(DefCfa)); 1062 // R31 (return addr) = CFA - 4 1063 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); 1064 BuildMI(MBB, At, DL, CFID) 1065 .addCFIIndex(MF.addFrameInst(OffR31)); 1066 // R30 (frame ptr) = CFA - 8 1067 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); 1068 BuildMI(MBB, At, DL, CFID) 1069 .addCFIIndex(MF.addFrameInst(OffR30)); 1070 } 1071 1072 static unsigned int RegsToMove[] = { 1073 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, 1074 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, 1075 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, 1076 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, 1077 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, 1078 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, 1079 Hexagon::NoRegister 1080 }; 1081 1082 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1083 1084 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { 1085 unsigned Reg = RegsToMove[i]; 1086 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { 1087 return C.getReg() == Reg; 1088 }; 1089 auto F = find_if(CSI, IfR); 1090 if (F == CSI.end()) 1091 continue; 1092 1093 int64_t Offset; 1094 if (HasFP) { 1095 // If the function has a frame pointer (i.e. has an allocframe), 1096 // then the CFA has been defined in terms of FP. Any offsets in 1097 // the following CFI instructions have to be defined relative 1098 // to FP, which points to the bottom of the stack frame. 1099 // The function getFrameIndexReference can still choose to use SP 1100 // for the offset calculation, so we cannot simply call it here. 1101 // Instead, get the offset (relative to the FP) directly. 1102 Offset = MFI.getObjectOffset(F->getFrameIdx()); 1103 } else { 1104 Register FrameReg; 1105 Offset = 1106 getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed(); 1107 } 1108 // Subtract 8 to make room for R30 and R31, which are added above. 1109 Offset -= 8; 1110 1111 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { 1112 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); 1113 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, 1114 Offset); 1115 BuildMI(MBB, At, DL, CFID) 1116 .addCFIIndex(MF.addFrameInst(OffReg)); 1117 } else { 1118 // Split the double regs into subregs, and generate appropriate 1119 // cfi_offsets. 1120 // The only reason, we are split double regs is, llvm-mc does not 1121 // understand paired registers for cfi_offset. 1122 // Eg .cfi_offset r1:0, -64 1123 1124 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); 1125 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); 1126 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); 1127 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); 1128 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, 1129 Offset+4); 1130 BuildMI(MBB, At, DL, CFID) 1131 .addCFIIndex(MF.addFrameInst(OffHi)); 1132 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, 1133 Offset); 1134 BuildMI(MBB, At, DL, CFID) 1135 .addCFIIndex(MF.addFrameInst(OffLo)); 1136 } 1137 } 1138 } 1139 1140 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { 1141 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1142 return false; 1143 1144 auto &MFI = MF.getFrameInfo(); 1145 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1146 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1147 bool HasAlloca = MFI.hasVarSizedObjects(); 1148 1149 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think 1150 // that this shouldn't be required, but doing so now because gcc does and 1151 // gdb can't break at the start of the function without it. Will remove if 1152 // this turns out to be a gdb bug. 1153 // 1154 if (MF.getTarget().getOptLevel() == CodeGenOpt::None) 1155 return true; 1156 1157 // By default we want to use SP (since it's always there). FP requires 1158 // some setup (i.e. ALLOCFRAME). 1159 // Both, alloca and stack alignment modify the stack pointer by an 1160 // undetermined value, so we need to save it at the entry to the function 1161 // (i.e. use allocframe). 1162 if (HasAlloca || HasExtraAlign) 1163 return true; 1164 1165 if (MFI.getStackSize() > 0) { 1166 // If FP-elimination is disabled, we have to use FP at this point. 1167 const TargetMachine &TM = MF.getTarget(); 1168 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) 1169 return true; 1170 if (EnableStackOVFSanitizer) 1171 return true; 1172 } 1173 1174 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1175 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) 1176 return true; 1177 1178 return false; 1179 } 1180 1181 enum SpillKind { 1182 SK_ToMem, 1183 SK_FromMem, 1184 SK_FromMemTailcall 1185 }; 1186 1187 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType, 1188 bool Stkchk = false) { 1189 const char * V4SpillToMemoryFunctions[] = { 1190 "__save_r16_through_r17", 1191 "__save_r16_through_r19", 1192 "__save_r16_through_r21", 1193 "__save_r16_through_r23", 1194 "__save_r16_through_r25", 1195 "__save_r16_through_r27" }; 1196 1197 const char * V4SpillToMemoryStkchkFunctions[] = { 1198 "__save_r16_through_r17_stkchk", 1199 "__save_r16_through_r19_stkchk", 1200 "__save_r16_through_r21_stkchk", 1201 "__save_r16_through_r23_stkchk", 1202 "__save_r16_through_r25_stkchk", 1203 "__save_r16_through_r27_stkchk" }; 1204 1205 const char * V4SpillFromMemoryFunctions[] = { 1206 "__restore_r16_through_r17_and_deallocframe", 1207 "__restore_r16_through_r19_and_deallocframe", 1208 "__restore_r16_through_r21_and_deallocframe", 1209 "__restore_r16_through_r23_and_deallocframe", 1210 "__restore_r16_through_r25_and_deallocframe", 1211 "__restore_r16_through_r27_and_deallocframe" }; 1212 1213 const char * V4SpillFromMemoryTailcallFunctions[] = { 1214 "__restore_r16_through_r17_and_deallocframe_before_tailcall", 1215 "__restore_r16_through_r19_and_deallocframe_before_tailcall", 1216 "__restore_r16_through_r21_and_deallocframe_before_tailcall", 1217 "__restore_r16_through_r23_and_deallocframe_before_tailcall", 1218 "__restore_r16_through_r25_and_deallocframe_before_tailcall", 1219 "__restore_r16_through_r27_and_deallocframe_before_tailcall" 1220 }; 1221 1222 const char **SpillFunc = nullptr; 1223 1224 switch(SpillType) { 1225 case SK_ToMem: 1226 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions 1227 : V4SpillToMemoryFunctions; 1228 break; 1229 case SK_FromMem: 1230 SpillFunc = V4SpillFromMemoryFunctions; 1231 break; 1232 case SK_FromMemTailcall: 1233 SpillFunc = V4SpillFromMemoryTailcallFunctions; 1234 break; 1235 } 1236 assert(SpillFunc && "Unknown spill kind"); 1237 1238 // Spill all callee-saved registers up to the highest register used. 1239 switch (MaxReg) { 1240 case Hexagon::R17: 1241 return SpillFunc[0]; 1242 case Hexagon::R19: 1243 return SpillFunc[1]; 1244 case Hexagon::R21: 1245 return SpillFunc[2]; 1246 case Hexagon::R23: 1247 return SpillFunc[3]; 1248 case Hexagon::R25: 1249 return SpillFunc[4]; 1250 case Hexagon::R27: 1251 return SpillFunc[5]; 1252 default: 1253 llvm_unreachable("Unhandled maximum callee save register"); 1254 } 1255 return nullptr; 1256 } 1257 1258 StackOffset 1259 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1260 Register &FrameReg) const { 1261 auto &MFI = MF.getFrameInfo(); 1262 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1263 1264 int Offset = MFI.getObjectOffset(FI); 1265 bool HasAlloca = MFI.hasVarSizedObjects(); 1266 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1267 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; 1268 1269 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1270 unsigned FrameSize = MFI.getStackSize(); 1271 Register SP = HRI.getStackRegister(); 1272 Register FP = HRI.getFrameRegister(); 1273 Register AP = HMFI.getStackAlignBasePhysReg(); 1274 // It may happen that AP will be absent even HasAlloca && HasExtraAlign 1275 // is true. HasExtraAlign may be set because of vector spills, without 1276 // aligned locals or aligned outgoing function arguments. Since vector 1277 // spills will ultimately be "unaligned", it is safe to use FP as the 1278 // base register. 1279 // In fact, in such a scenario the stack is actually not required to be 1280 // aligned, although it may end up being aligned anyway, since this 1281 // particular case is not easily detectable. The alignment will be 1282 // unnecessary, but not incorrect. 1283 // Unfortunately there is no quick way to verify that the above is 1284 // indeed the case (and that it's not a result of an error), so just 1285 // assume that missing AP will be replaced by FP. 1286 // (A better fix would be to rematerialize AP from FP and always align 1287 // vector spills.) 1288 if (AP == 0) 1289 AP = FP; 1290 1291 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). 1292 // Use FP at -O0, except when there are objects with extra alignment. 1293 // That additional alignment requirement may cause a pad to be inserted, 1294 // which will make it impossible to use FP to access objects located 1295 // past the pad. 1296 if (NoOpt && !HasExtraAlign) 1297 UseFP = true; 1298 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { 1299 // Fixed and preallocated objects will be located before any padding 1300 // so FP must be used to access them. 1301 UseFP |= (HasAlloca || HasExtraAlign); 1302 } else { 1303 if (HasAlloca) { 1304 if (HasExtraAlign) 1305 UseAP = true; 1306 else 1307 UseFP = true; 1308 } 1309 } 1310 1311 // If FP was picked, then there had better be FP. 1312 bool HasFP = hasFP(MF); 1313 assert((HasFP || !UseFP) && "This function must have frame pointer"); 1314 1315 // Having FP implies allocframe. Allocframe will store extra 8 bytes: 1316 // FP/LR. If the base register is used to access an object across these 1317 // 8 bytes, then the offset will need to be adjusted by 8. 1318 // 1319 // After allocframe: 1320 // HexagonISelLowering adds 8 to ---+ 1321 // the offsets of all stack-based | 1322 // arguments (*) | 1323 // | 1324 // getObjectOffset < 0 0 8 getObjectOffset >= 8 1325 // ------------------------+-----+------------------------> increasing 1326 // <local objects> |FP/LR| <input arguments> addresses 1327 // -----------------+------+-----+------------------------> 1328 // | | 1329 // SP/AP point --+ +-- FP points here (**) 1330 // somewhere on 1331 // this side of FP/LR 1332 // 1333 // (*) See LowerFormalArguments. The FP/LR is assumed to be present. 1334 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. 1335 1336 // The lowering assumes that FP/LR is present, and so the offsets of 1337 // the formal arguments start at 8. If FP/LR is not there we need to 1338 // reduce the offset by 8. 1339 if (Offset > 0 && !HasFP) 1340 Offset -= 8; 1341 1342 if (UseFP) 1343 FrameReg = FP; 1344 else if (UseAP) 1345 FrameReg = AP; 1346 else 1347 FrameReg = SP; 1348 1349 // Calculate the actual offset in the instruction. If there is no FP 1350 // (in other words, no allocframe), then SP will not be adjusted (i.e. 1351 // there will be no SP -= FrameSize), so the frame size should not be 1352 // added to the calculated offset. 1353 int RealOffset = Offset; 1354 if (!UseFP && !UseAP) 1355 RealOffset = FrameSize+Offset; 1356 return StackOffset::getFixed(RealOffset); 1357 } 1358 1359 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, 1360 const CSIVect &CSI, const HexagonRegisterInfo &HRI, 1361 bool &PrologueStubs) const { 1362 if (CSI.empty()) 1363 return true; 1364 1365 MachineBasicBlock::iterator MI = MBB.begin(); 1366 PrologueStubs = false; 1367 MachineFunction &MF = *MBB.getParent(); 1368 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1369 auto &HII = *HST.getInstrInfo(); 1370 1371 if (useSpillFunction(MF, CSI)) { 1372 PrologueStubs = true; 1373 unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); 1374 bool StkOvrFlowEnabled = EnableStackOVFSanitizer; 1375 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, 1376 StkOvrFlowEnabled); 1377 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1378 bool IsPIC = HTM.isPositionIndependent(); 1379 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1380 1381 // Call spill function. 1382 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1383 unsigned SpillOpc; 1384 if (StkOvrFlowEnabled) { 1385 if (LongCalls) 1386 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC 1387 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; 1388 else 1389 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC 1390 : Hexagon::SAVE_REGISTERS_CALL_V4STK; 1391 } else { 1392 if (LongCalls) 1393 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC 1394 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; 1395 else 1396 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC 1397 : Hexagon::SAVE_REGISTERS_CALL_V4; 1398 } 1399 1400 MachineInstr *SaveRegsCall = 1401 BuildMI(MBB, MI, DL, HII.get(SpillOpc)) 1402 .addExternalSymbol(SpillFun); 1403 1404 // Add callee-saved registers as use. 1405 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); 1406 // Add live in registers. 1407 for (const CalleeSavedInfo &I : CSI) 1408 MBB.addLiveIn(I.getReg()); 1409 return true; 1410 } 1411 1412 for (const CalleeSavedInfo &I : CSI) { 1413 Register Reg = I.getReg(); 1414 // Add live in registers. We treat eh_return callee saved register r0 - r3 1415 // specially. They are not really callee saved registers as they are not 1416 // supposed to be killed. 1417 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); 1418 int FI = I.getFrameIdx(); 1419 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1420 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); 1421 if (IsKill) 1422 MBB.addLiveIn(Reg); 1423 } 1424 return true; 1425 } 1426 1427 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, 1428 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { 1429 if (CSI.empty()) 1430 return false; 1431 1432 MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); 1433 MachineFunction &MF = *MBB.getParent(); 1434 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1435 auto &HII = *HST.getInstrInfo(); 1436 1437 if (useRestoreFunction(MF, CSI)) { 1438 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); 1439 unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); 1440 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; 1441 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); 1442 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1443 bool IsPIC = HTM.isPositionIndependent(); 1444 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1445 1446 // Call spill function. 1447 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() 1448 : MBB.findDebugLoc(MBB.end()); 1449 MachineInstr *DeallocCall = nullptr; 1450 1451 if (HasTC) { 1452 unsigned RetOpc; 1453 if (LongCalls) 1454 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC 1455 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; 1456 else 1457 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC 1458 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; 1459 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) 1460 .addExternalSymbol(RestoreFn); 1461 } else { 1462 // The block has a return. 1463 MachineBasicBlock::iterator It = MBB.getFirstTerminator(); 1464 assert(It->isReturn() && std::next(It) == MBB.end()); 1465 unsigned RetOpc; 1466 if (LongCalls) 1467 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC 1468 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; 1469 else 1470 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC 1471 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; 1472 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) 1473 .addExternalSymbol(RestoreFn); 1474 // Transfer the function live-out registers. 1475 DeallocCall->copyImplicitOps(MF, *It); 1476 } 1477 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); 1478 return true; 1479 } 1480 1481 for (const CalleeSavedInfo &I : CSI) { 1482 Register Reg = I.getReg(); 1483 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1484 int FI = I.getFrameIdx(); 1485 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); 1486 } 1487 1488 return true; 1489 } 1490 1491 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( 1492 MachineFunction &MF, MachineBasicBlock &MBB, 1493 MachineBasicBlock::iterator I) const { 1494 MachineInstr &MI = *I; 1495 unsigned Opc = MI.getOpcode(); 1496 (void)Opc; // Silence compiler warning. 1497 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && 1498 "Cannot handle this call frame pseudo instruction"); 1499 return MBB.erase(I); 1500 } 1501 1502 void HexagonFrameLowering::processFunctionBeforeFrameFinalized( 1503 MachineFunction &MF, RegScavenger *RS) const { 1504 // If this function has uses aligned stack and also has variable sized stack 1505 // objects, then we need to map all spill slots to fixed positions, so that 1506 // they can be accessed through FP. Otherwise they would have to be accessed 1507 // via AP, which may not be available at the particular place in the program. 1508 MachineFrameInfo &MFI = MF.getFrameInfo(); 1509 bool HasAlloca = MFI.hasVarSizedObjects(); 1510 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); 1511 1512 if (!HasAlloca || !NeedsAlign) 1513 return; 1514 1515 SmallSet<int, 4> DealignSlots; 1516 unsigned LFS = MFI.getLocalFrameSize(); 1517 for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { 1518 if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i)) 1519 continue; 1520 unsigned S = MFI.getObjectSize(i); 1521 // Reduce the alignment to at most 8. This will require unaligned vector 1522 // stores if they happen here. 1523 Align A = std::max(MFI.getObjectAlign(i), Align(8)); 1524 MFI.setObjectAlignment(i, Align(8)); 1525 LFS = alignTo(LFS+S, A); 1526 MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS)); 1527 DealignSlots.insert(i); 1528 } 1529 1530 MFI.setLocalFrameSize(LFS); 1531 Align A = MFI.getLocalFrameMaxAlign(); 1532 assert(A <= 8 && "Unexpected local frame alignment"); 1533 if (A == 1) 1534 MFI.setLocalFrameMaxAlign(Align(8)); 1535 MFI.setUseLocalStackAllocationBlock(true); 1536 1537 // Go over all MachineMemOperands in the code, and change the ones that 1538 // refer to the dealigned stack slots to reflect the new alignment. 1539 if (!DealignSlots.empty()) { 1540 for (MachineBasicBlock &BB : MF) { 1541 for (MachineInstr &MI : BB) { 1542 bool KeepOld = true; 1543 ArrayRef<MachineMemOperand*> memops = MI.memoperands(); 1544 SmallVector<MachineMemOperand*,1> new_memops; 1545 for (MachineMemOperand *MMO : memops) { 1546 auto *PV = MMO->getPseudoValue(); 1547 if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) { 1548 int FI = FS->getFrameIndex(); 1549 if (DealignSlots.count(FI)) { 1550 auto *NewMMO = MF.getMachineMemOperand( 1551 MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(), 1552 MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(), 1553 MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 1554 MMO->getFailureOrdering()); 1555 new_memops.push_back(NewMMO); 1556 KeepOld = false; 1557 continue; 1558 } 1559 } 1560 new_memops.push_back(MMO); 1561 } 1562 if (!KeepOld) 1563 MI.setMemRefs(MF, new_memops); 1564 } 1565 } 1566 } 1567 1568 // Set the physical aligned-stack base address register. 1569 unsigned AP = 0; 1570 if (const MachineInstr *AI = getAlignaInstr(MF)) 1571 AP = AI->getOperand(0).getReg(); 1572 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1573 HMFI.setStackAlignBasePhysReg(AP); 1574 } 1575 1576 /// Returns true if there are no caller-saved registers available in class RC. 1577 static bool needToReserveScavengingSpillSlots(MachineFunction &MF, 1578 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { 1579 MachineRegisterInfo &MRI = MF.getRegInfo(); 1580 1581 auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool { 1582 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) 1583 if (MRI.isPhysRegUsed(*AI)) 1584 return true; 1585 return false; 1586 }; 1587 1588 // Check for an unused caller-saved register. Callee-saved registers 1589 // have become pristine by now. 1590 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) 1591 if (!IsUsed(*P)) 1592 return false; 1593 1594 // All caller-saved registers are used. 1595 return true; 1596 } 1597 1598 #ifndef NDEBUG 1599 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { 1600 dbgs() << '{'; 1601 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { 1602 unsigned R = x; 1603 dbgs() << ' ' << printReg(R, &TRI); 1604 } 1605 dbgs() << " }"; 1606 } 1607 #endif 1608 1609 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, 1610 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { 1611 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); 1612 MachineFrameInfo &MFI = MF.getFrameInfo(); 1613 BitVector SRegs(Hexagon::NUM_TARGET_REGS); 1614 1615 // Generate a set of unique, callee-saved registers (SRegs), where each 1616 // register in the set is maximal in terms of sub-/super-register relation, 1617 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. 1618 1619 // (1) For each callee-saved register, add that register and all of its 1620 // sub-registers to SRegs. 1621 LLVM_DEBUG(dbgs() << "Initial CS registers: {"); 1622 for (const CalleeSavedInfo &I : CSI) { 1623 Register R = I.getReg(); 1624 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); 1625 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1626 SRegs[*SR] = true; 1627 } 1628 LLVM_DEBUG(dbgs() << " }\n"); 1629 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); 1630 dbgs() << "\n"); 1631 1632 // (2) For each reserved register, remove that register and all of its 1633 // sub- and super-registers from SRegs. 1634 BitVector Reserved = TRI->getReservedRegs(MF); 1635 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { 1636 unsigned R = x; 1637 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1638 SRegs[*SR] = false; 1639 } 1640 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); 1641 dbgs() << "\n"); 1642 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); 1643 dbgs() << "\n"); 1644 1645 // (3) Collect all registers that have at least one sub-register in SRegs, 1646 // and also have no sub-registers that are reserved. These will be the can- 1647 // didates for saving as a whole instead of their individual sub-registers. 1648 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) 1649 BitVector TmpSup(Hexagon::NUM_TARGET_REGS); 1650 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1651 unsigned R = x; 1652 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) 1653 TmpSup[*SR] = true; 1654 } 1655 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { 1656 unsigned R = x; 1657 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { 1658 if (!Reserved[*SR]) 1659 continue; 1660 TmpSup[R] = false; 1661 break; 1662 } 1663 } 1664 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); 1665 dbgs() << "\n"); 1666 1667 // (4) Include all super-registers found in (3) into SRegs. 1668 SRegs |= TmpSup; 1669 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); 1670 dbgs() << "\n"); 1671 1672 // (5) For each register R in SRegs, if any super-register of R is in SRegs, 1673 // remove R from SRegs. 1674 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1675 unsigned R = x; 1676 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { 1677 if (!SRegs[*SR]) 1678 continue; 1679 SRegs[R] = false; 1680 break; 1681 } 1682 } 1683 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); 1684 dbgs() << "\n"); 1685 1686 // Now, for each register that has a fixed stack slot, create the stack 1687 // object for it. 1688 CSI.clear(); 1689 1690 using SpillSlot = TargetFrameLowering::SpillSlot; 1691 1692 unsigned NumFixed; 1693 int MinOffset = 0; // CS offsets are negative. 1694 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); 1695 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { 1696 if (!SRegs[S->Reg]) 1697 continue; 1698 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); 1699 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); 1700 MinOffset = std::min(MinOffset, S->Offset); 1701 CSI.push_back(CalleeSavedInfo(S->Reg, FI)); 1702 SRegs[S->Reg] = false; 1703 } 1704 1705 // There can be some registers that don't have fixed slots. For example, 1706 // we need to store R0-R3 in functions with exception handling. For each 1707 // such register, create a non-fixed stack object. 1708 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1709 unsigned R = x; 1710 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); 1711 unsigned Size = TRI->getSpillSize(*RC); 1712 int Off = MinOffset - Size; 1713 Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign()); 1714 Off &= -Alignment.value(); 1715 int FI = MFI.CreateFixedSpillStackObject(Size, Off); 1716 MinOffset = std::min(MinOffset, Off); 1717 CSI.push_back(CalleeSavedInfo(R, FI)); 1718 SRegs[R] = false; 1719 } 1720 1721 LLVM_DEBUG({ 1722 dbgs() << "CS information: {"; 1723 for (const CalleeSavedInfo &I : CSI) { 1724 int FI = I.getFrameIdx(); 1725 int Off = MFI.getObjectOffset(FI); 1726 dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp"; 1727 if (Off >= 0) 1728 dbgs() << '+'; 1729 dbgs() << Off; 1730 } 1731 dbgs() << " }\n"; 1732 }); 1733 1734 #ifndef NDEBUG 1735 // Verify that all registers were handled. 1736 bool MissedReg = false; 1737 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1738 unsigned R = x; 1739 dbgs() << printReg(R, TRI) << ' '; 1740 MissedReg = true; 1741 } 1742 if (MissedReg) 1743 llvm_unreachable("...there are unhandled callee-saved registers!"); 1744 #endif 1745 1746 return true; 1747 } 1748 1749 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, 1750 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1751 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1752 MachineInstr *MI = &*It; 1753 DebugLoc DL = MI->getDebugLoc(); 1754 Register DstR = MI->getOperand(0).getReg(); 1755 Register SrcR = MI->getOperand(1).getReg(); 1756 if (!Hexagon::ModRegsRegClass.contains(DstR) || 1757 !Hexagon::ModRegsRegClass.contains(SrcR)) 1758 return false; 1759 1760 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1761 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); 1762 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) 1763 .addReg(TmpR, RegState::Kill); 1764 1765 NewRegs.push_back(TmpR); 1766 B.erase(It); 1767 return true; 1768 } 1769 1770 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, 1771 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1772 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1773 MachineInstr *MI = &*It; 1774 if (!MI->getOperand(0).isFI()) 1775 return false; 1776 1777 DebugLoc DL = MI->getDebugLoc(); 1778 unsigned Opc = MI->getOpcode(); 1779 Register SrcR = MI->getOperand(2).getReg(); 1780 bool IsKill = MI->getOperand(2).isKill(); 1781 int FI = MI->getOperand(0).getIndex(); 1782 1783 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register 1784 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register 1785 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1786 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr 1787 : Hexagon::A2_tfrcrr; 1788 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) 1789 .addReg(SrcR, getKillRegState(IsKill)); 1790 1791 // S2_storeri_io FI, 0, TmpR 1792 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) 1793 .addFrameIndex(FI) 1794 .addImm(0) 1795 .addReg(TmpR, RegState::Kill) 1796 .cloneMemRefs(*MI); 1797 1798 NewRegs.push_back(TmpR); 1799 B.erase(It); 1800 return true; 1801 } 1802 1803 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, 1804 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1805 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1806 MachineInstr *MI = &*It; 1807 if (!MI->getOperand(1).isFI()) 1808 return false; 1809 1810 DebugLoc DL = MI->getDebugLoc(); 1811 unsigned Opc = MI->getOpcode(); 1812 Register DstR = MI->getOperand(0).getReg(); 1813 int FI = MI->getOperand(1).getIndex(); 1814 1815 // TmpR = L2_loadri_io FI, 0 1816 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1817 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) 1818 .addFrameIndex(FI) 1819 .addImm(0) 1820 .cloneMemRefs(*MI); 1821 1822 // DstR = C2_tfrrp TmpR if DstR is a predicate register 1823 // DstR = A2_tfrrcr TmpR if DstR is a modifier register 1824 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp 1825 : Hexagon::A2_tfrrcr; 1826 BuildMI(B, It, DL, HII.get(TfrOpc), DstR) 1827 .addReg(TmpR, RegState::Kill); 1828 1829 NewRegs.push_back(TmpR); 1830 B.erase(It); 1831 return true; 1832 } 1833 1834 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, 1835 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1836 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1837 MachineInstr *MI = &*It; 1838 if (!MI->getOperand(0).isFI()) 1839 return false; 1840 1841 DebugLoc DL = MI->getDebugLoc(); 1842 Register SrcR = MI->getOperand(2).getReg(); 1843 bool IsKill = MI->getOperand(2).isKill(); 1844 int FI = MI->getOperand(0).getIndex(); 1845 auto *RC = &Hexagon::HvxVRRegClass; 1846 1847 // Insert transfer to general vector register. 1848 // TmpR0 = A2_tfrsi 0x01010101 1849 // TmpR1 = V6_vandqrt Qx, TmpR0 1850 // store FI, 0, TmpR1 1851 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1852 Register TmpR1 = MRI.createVirtualRegister(RC); 1853 1854 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1855 .addImm(0x01010101); 1856 1857 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) 1858 .addReg(SrcR, getKillRegState(IsKill)) 1859 .addReg(TmpR0, RegState::Kill); 1860 1861 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1862 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI); 1863 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); 1864 1865 NewRegs.push_back(TmpR0); 1866 NewRegs.push_back(TmpR1); 1867 B.erase(It); 1868 return true; 1869 } 1870 1871 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, 1872 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1873 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1874 MachineInstr *MI = &*It; 1875 if (!MI->getOperand(1).isFI()) 1876 return false; 1877 1878 DebugLoc DL = MI->getDebugLoc(); 1879 Register DstR = MI->getOperand(0).getReg(); 1880 int FI = MI->getOperand(1).getIndex(); 1881 auto *RC = &Hexagon::HvxVRRegClass; 1882 1883 // TmpR0 = A2_tfrsi 0x01010101 1884 // TmpR1 = load FI, 0 1885 // DstR = V6_vandvrt TmpR1, TmpR0 1886 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1887 Register TmpR1 = MRI.createVirtualRegister(RC); 1888 1889 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1890 .addImm(0x01010101); 1891 MachineFunction &MF = *B.getParent(); 1892 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1893 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI); 1894 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); 1895 1896 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) 1897 .addReg(TmpR1, RegState::Kill) 1898 .addReg(TmpR0, RegState::Kill); 1899 1900 NewRegs.push_back(TmpR0); 1901 NewRegs.push_back(TmpR1); 1902 B.erase(It); 1903 return true; 1904 } 1905 1906 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, 1907 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1908 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1909 MachineFunction &MF = *B.getParent(); 1910 auto &MFI = MF.getFrameInfo(); 1911 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1912 MachineInstr *MI = &*It; 1913 if (!MI->getOperand(0).isFI()) 1914 return false; 1915 1916 // It is possible that the double vector being stored is only partially 1917 // defined. From the point of view of the liveness tracking, it is ok to 1918 // store it as a whole, but if we break it up we may end up storing a 1919 // register that is entirely undefined. 1920 LivePhysRegs LPR(HRI); 1921 LPR.addLiveIns(B); 1922 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; 1923 for (auto R = B.begin(); R != It; ++R) { 1924 Clobbers.clear(); 1925 LPR.stepForward(*R, Clobbers); 1926 } 1927 1928 DebugLoc DL = MI->getDebugLoc(); 1929 Register SrcR = MI->getOperand(2).getReg(); 1930 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); 1931 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); 1932 bool IsKill = MI->getOperand(2).isKill(); 1933 int FI = MI->getOperand(0).getIndex(); 1934 bool NeedsAligna = needsAligna(MF); 1935 1936 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1937 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1938 Align HasAlign = MFI.getObjectAlign(FI); 1939 unsigned StoreOpc; 1940 1941 auto UseAligned = [&](Align NeedAlign, Align HasAlign) { 1942 return !NeedsAligna && (NeedAlign <= HasAlign); 1943 }; 1944 1945 // Store low part. 1946 if (LPR.contains(SrcLo)) { 1947 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai 1948 : Hexagon::V6_vS32Ub_ai; 1949 BuildMI(B, It, DL, HII.get(StoreOpc)) 1950 .addFrameIndex(FI) 1951 .addImm(0) 1952 .addReg(SrcLo, getKillRegState(IsKill)) 1953 .cloneMemRefs(*MI); 1954 } 1955 1956 // Store high part. 1957 if (LPR.contains(SrcHi)) { 1958 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai 1959 : Hexagon::V6_vS32Ub_ai; 1960 BuildMI(B, It, DL, HII.get(StoreOpc)) 1961 .addFrameIndex(FI) 1962 .addImm(Size) 1963 .addReg(SrcHi, getKillRegState(IsKill)) 1964 .cloneMemRefs(*MI); 1965 } 1966 1967 B.erase(It); 1968 return true; 1969 } 1970 1971 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, 1972 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1973 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1974 MachineFunction &MF = *B.getParent(); 1975 auto &MFI = MF.getFrameInfo(); 1976 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1977 MachineInstr *MI = &*It; 1978 if (!MI->getOperand(1).isFI()) 1979 return false; 1980 1981 DebugLoc DL = MI->getDebugLoc(); 1982 Register DstR = MI->getOperand(0).getReg(); 1983 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); 1984 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); 1985 int FI = MI->getOperand(1).getIndex(); 1986 bool NeedsAligna = needsAligna(MF); 1987 1988 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1989 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1990 Align HasAlign = MFI.getObjectAlign(FI); 1991 unsigned LoadOpc; 1992 1993 auto UseAligned = [&](Align NeedAlign, Align HasAlign) { 1994 return !NeedsAligna && (NeedAlign <= HasAlign); 1995 }; 1996 1997 // Load low part. 1998 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai 1999 : Hexagon::V6_vL32Ub_ai; 2000 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) 2001 .addFrameIndex(FI) 2002 .addImm(0) 2003 .cloneMemRefs(*MI); 2004 2005 // Load high part. 2006 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai 2007 : Hexagon::V6_vL32Ub_ai; 2008 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) 2009 .addFrameIndex(FI) 2010 .addImm(Size) 2011 .cloneMemRefs(*MI); 2012 2013 B.erase(It); 2014 return true; 2015 } 2016 2017 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, 2018 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 2019 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 2020 MachineFunction &MF = *B.getParent(); 2021 auto &MFI = MF.getFrameInfo(); 2022 MachineInstr *MI = &*It; 2023 if (!MI->getOperand(0).isFI()) 2024 return false; 2025 2026 bool NeedsAligna = needsAligna(MF); 2027 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2028 DebugLoc DL = MI->getDebugLoc(); 2029 Register SrcR = MI->getOperand(2).getReg(); 2030 bool IsKill = MI->getOperand(2).isKill(); 2031 int FI = MI->getOperand(0).getIndex(); 2032 2033 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 2034 Align HasAlign = MFI.getObjectAlign(FI); 2035 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign); 2036 unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai 2037 : Hexagon::V6_vS32Ub_ai; 2038 BuildMI(B, It, DL, HII.get(StoreOpc)) 2039 .addFrameIndex(FI) 2040 .addImm(0) 2041 .addReg(SrcR, getKillRegState(IsKill)) 2042 .cloneMemRefs(*MI); 2043 2044 B.erase(It); 2045 return true; 2046 } 2047 2048 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, 2049 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 2050 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 2051 MachineFunction &MF = *B.getParent(); 2052 auto &MFI = MF.getFrameInfo(); 2053 MachineInstr *MI = &*It; 2054 if (!MI->getOperand(1).isFI()) 2055 return false; 2056 2057 bool NeedsAligna = needsAligna(MF); 2058 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2059 DebugLoc DL = MI->getDebugLoc(); 2060 Register DstR = MI->getOperand(0).getReg(); 2061 int FI = MI->getOperand(1).getIndex(); 2062 2063 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 2064 Align HasAlign = MFI.getObjectAlign(FI); 2065 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign); 2066 unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai 2067 : Hexagon::V6_vL32Ub_ai; 2068 BuildMI(B, It, DL, HII.get(LoadOpc), DstR) 2069 .addFrameIndex(FI) 2070 .addImm(0) 2071 .cloneMemRefs(*MI); 2072 2073 B.erase(It); 2074 return true; 2075 } 2076 2077 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, 2078 SmallVectorImpl<unsigned> &NewRegs) const { 2079 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 2080 MachineRegisterInfo &MRI = MF.getRegInfo(); 2081 bool Changed = false; 2082 2083 for (auto &B : MF) { 2084 // Traverse the basic block. 2085 MachineBasicBlock::iterator NextI; 2086 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { 2087 MachineInstr *MI = &*I; 2088 NextI = std::next(I); 2089 unsigned Opc = MI->getOpcode(); 2090 2091 switch (Opc) { 2092 case TargetOpcode::COPY: 2093 Changed |= expandCopy(B, I, MRI, HII, NewRegs); 2094 break; 2095 case Hexagon::STriw_pred: 2096 case Hexagon::STriw_ctr: 2097 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); 2098 break; 2099 case Hexagon::LDriw_pred: 2100 case Hexagon::LDriw_ctr: 2101 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); 2102 break; 2103 case Hexagon::PS_vstorerq_ai: 2104 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); 2105 break; 2106 case Hexagon::PS_vloadrq_ai: 2107 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); 2108 break; 2109 case Hexagon::PS_vloadrw_ai: 2110 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); 2111 break; 2112 case Hexagon::PS_vstorerw_ai: 2113 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); 2114 break; 2115 } 2116 } 2117 } 2118 2119 return Changed; 2120 } 2121 2122 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, 2123 BitVector &SavedRegs, 2124 RegScavenger *RS) const { 2125 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2126 2127 SavedRegs.resize(HRI.getNumRegs()); 2128 2129 // If we have a function containing __builtin_eh_return we want to spill and 2130 // restore all callee saved registers. Pretend that they are used. 2131 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2132 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) 2133 SavedRegs.set(*R); 2134 2135 // Replace predicate register pseudo spill code. 2136 SmallVector<unsigned,8> NewRegs; 2137 expandSpillMacros(MF, NewRegs); 2138 if (OptimizeSpillSlots && !isOptNone(MF)) 2139 optimizeSpillSlots(MF, NewRegs); 2140 2141 // We need to reserve a spill slot if scavenging could potentially require 2142 // spilling a scavenged register. 2143 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { 2144 MachineFrameInfo &MFI = MF.getFrameInfo(); 2145 MachineRegisterInfo &MRI = MF.getRegInfo(); 2146 SetVector<const TargetRegisterClass*> SpillRCs; 2147 // Reserve an int register in any case, because it could be used to hold 2148 // the stack offset in case it does not fit into a spill instruction. 2149 SpillRCs.insert(&Hexagon::IntRegsRegClass); 2150 2151 for (unsigned VR : NewRegs) 2152 SpillRCs.insert(MRI.getRegClass(VR)); 2153 2154 for (auto *RC : SpillRCs) { 2155 if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) 2156 continue; 2157 unsigned Num = 1; 2158 switch (RC->getID()) { 2159 case Hexagon::IntRegsRegClassID: 2160 Num = NumberScavengerSlots; 2161 break; 2162 case Hexagon::HvxQRRegClassID: 2163 Num = 2; // Vector predicate spills also need a vector register. 2164 break; 2165 } 2166 unsigned S = HRI.getSpillSize(*RC); 2167 Align A = HRI.getSpillAlign(*RC); 2168 for (unsigned i = 0; i < Num; i++) { 2169 int NewFI = MFI.CreateSpillStackObject(S, A); 2170 RS->addScavengingFrameIndex(NewFI); 2171 } 2172 } 2173 } 2174 2175 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2176 } 2177 2178 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF, 2179 HexagonBlockRanges::IndexRange &FIR, 2180 HexagonBlockRanges::InstrIndexMap &IndexMap, 2181 HexagonBlockRanges::RegToRangeMap &DeadMap, 2182 const TargetRegisterClass *RC) const { 2183 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2184 auto &MRI = MF.getRegInfo(); 2185 2186 auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool { 2187 auto F = DeadMap.find({Reg,0}); 2188 if (F == DeadMap.end()) 2189 return false; 2190 for (auto &DR : F->second) 2191 if (DR.contains(FIR)) 2192 return true; 2193 return false; 2194 }; 2195 2196 for (unsigned Reg : RC->getRawAllocationOrder(MF)) { 2197 bool Dead = true; 2198 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { 2199 if (isDead(R.Reg)) 2200 continue; 2201 Dead = false; 2202 break; 2203 } 2204 if (Dead) 2205 return Reg; 2206 } 2207 return 0; 2208 } 2209 2210 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, 2211 SmallVectorImpl<unsigned> &VRegs) const { 2212 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2213 auto &HII = *HST.getInstrInfo(); 2214 auto &HRI = *HST.getRegisterInfo(); 2215 auto &MRI = MF.getRegInfo(); 2216 HexagonBlockRanges HBR(MF); 2217 2218 using BlockIndexMap = 2219 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; 2220 using BlockRangeMap = 2221 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; 2222 using IndexType = HexagonBlockRanges::IndexType; 2223 2224 struct SlotInfo { 2225 BlockRangeMap Map; 2226 unsigned Size = 0; 2227 const TargetRegisterClass *RC = nullptr; 2228 2229 SlotInfo() = default; 2230 }; 2231 2232 BlockIndexMap BlockIndexes; 2233 SmallSet<int,4> BadFIs; 2234 std::map<int,SlotInfo> FIRangeMap; 2235 2236 // Accumulate register classes: get a common class for a pre-existing 2237 // class HaveRC and a new class NewRC. Return nullptr if a common class 2238 // cannot be found, otherwise return the resulting class. If HaveRC is 2239 // nullptr, assume that it is still unset. 2240 auto getCommonRC = 2241 [](const TargetRegisterClass *HaveRC, 2242 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { 2243 if (HaveRC == nullptr || HaveRC == NewRC) 2244 return NewRC; 2245 // Different classes, both non-null. Pick the more general one. 2246 if (HaveRC->hasSubClassEq(NewRC)) 2247 return HaveRC; 2248 if (NewRC->hasSubClassEq(HaveRC)) 2249 return NewRC; 2250 return nullptr; 2251 }; 2252 2253 // Scan all blocks in the function. Check all occurrences of frame indexes, 2254 // and collect relevant information. 2255 for (auto &B : MF) { 2256 std::map<int,IndexType> LastStore, LastLoad; 2257 // Emplace appears not to be supported in gcc 4.7.2-4. 2258 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); 2259 auto P = BlockIndexes.insert( 2260 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); 2261 auto &IndexMap = P.first->second; 2262 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" 2263 << IndexMap << '\n'); 2264 2265 for (auto &In : B) { 2266 int LFI, SFI; 2267 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); 2268 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); 2269 if (Load && Store) { 2270 // If it's both a load and a store, then we won't handle it. 2271 BadFIs.insert(LFI); 2272 BadFIs.insert(SFI); 2273 continue; 2274 } 2275 // Check for register classes of the register used as the source for 2276 // the store, and the register used as the destination for the load. 2277 // Also, only accept base+imm_offset addressing modes. Other addressing 2278 // modes can have side-effects (post-increments, etc.). For stack 2279 // slots they are very unlikely, so there is not much loss due to 2280 // this restriction. 2281 if (Load || Store) { 2282 int TFI = Load ? LFI : SFI; 2283 unsigned AM = HII.getAddrMode(In); 2284 SlotInfo &SI = FIRangeMap[TFI]; 2285 bool Bad = (AM != HexagonII::BaseImmOffset); 2286 if (!Bad) { 2287 // If the addressing mode is ok, check the register class. 2288 unsigned OpNum = Load ? 0 : 2; 2289 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); 2290 RC = getCommonRC(SI.RC, RC); 2291 if (RC == nullptr) 2292 Bad = true; 2293 else 2294 SI.RC = RC; 2295 } 2296 if (!Bad) { 2297 // Check sizes. 2298 unsigned S = HII.getMemAccessSize(In); 2299 if (SI.Size != 0 && SI.Size != S) 2300 Bad = true; 2301 else 2302 SI.Size = S; 2303 } 2304 if (!Bad) { 2305 for (auto *Mo : In.memoperands()) { 2306 if (!Mo->isVolatile() && !Mo->isAtomic()) 2307 continue; 2308 Bad = true; 2309 break; 2310 } 2311 } 2312 if (Bad) 2313 BadFIs.insert(TFI); 2314 } 2315 2316 // Locate uses of frame indices. 2317 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { 2318 const MachineOperand &Op = In.getOperand(i); 2319 if (!Op.isFI()) 2320 continue; 2321 int FI = Op.getIndex(); 2322 // Make sure that the following operand is an immediate and that 2323 // it is 0. This is the offset in the stack object. 2324 if (i+1 >= n || !In.getOperand(i+1).isImm() || 2325 In.getOperand(i+1).getImm() != 0) 2326 BadFIs.insert(FI); 2327 if (BadFIs.count(FI)) 2328 continue; 2329 2330 IndexType Index = IndexMap.getIndex(&In); 2331 if (Load) { 2332 if (LastStore[FI] == IndexType::None) 2333 LastStore[FI] = IndexType::Entry; 2334 LastLoad[FI] = Index; 2335 } else if (Store) { 2336 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2337 if (LastStore[FI] != IndexType::None) 2338 RL.add(LastStore[FI], LastLoad[FI], false, false); 2339 else if (LastLoad[FI] != IndexType::None) 2340 RL.add(IndexType::Entry, LastLoad[FI], false, false); 2341 LastLoad[FI] = IndexType::None; 2342 LastStore[FI] = Index; 2343 } else { 2344 BadFIs.insert(FI); 2345 } 2346 } 2347 } 2348 2349 for (auto &I : LastLoad) { 2350 IndexType LL = I.second; 2351 if (LL == IndexType::None) 2352 continue; 2353 auto &RL = FIRangeMap[I.first].Map[&B]; 2354 IndexType &LS = LastStore[I.first]; 2355 if (LS != IndexType::None) 2356 RL.add(LS, LL, false, false); 2357 else 2358 RL.add(IndexType::Entry, LL, false, false); 2359 LS = IndexType::None; 2360 } 2361 for (auto &I : LastStore) { 2362 IndexType LS = I.second; 2363 if (LS == IndexType::None) 2364 continue; 2365 auto &RL = FIRangeMap[I.first].Map[&B]; 2366 RL.add(LS, IndexType::None, false, false); 2367 } 2368 } 2369 2370 LLVM_DEBUG({ 2371 for (auto &P : FIRangeMap) { 2372 dbgs() << "fi#" << P.first; 2373 if (BadFIs.count(P.first)) 2374 dbgs() << " (bad)"; 2375 dbgs() << " RC: "; 2376 if (P.second.RC != nullptr) 2377 dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; 2378 else 2379 dbgs() << "<null>\n"; 2380 for (auto &R : P.second.Map) 2381 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second 2382 << "}\n"; 2383 } 2384 }); 2385 2386 // When a slot is loaded from in a block without being stored to in the 2387 // same block, it is live-on-entry to this block. To avoid CFG analysis, 2388 // consider this slot to be live-on-exit from all blocks. 2389 SmallSet<int,4> LoxFIs; 2390 2391 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; 2392 2393 for (auto &P : FIRangeMap) { 2394 // P = pair(FI, map: BB->RangeList) 2395 if (BadFIs.count(P.first)) 2396 continue; 2397 for (auto &B : MF) { 2398 auto F = P.second.Map.find(&B); 2399 // F = pair(BB, RangeList) 2400 if (F == P.second.Map.end() || F->second.empty()) 2401 continue; 2402 HexagonBlockRanges::IndexRange &IR = F->second.front(); 2403 if (IR.start() == IndexType::Entry) 2404 LoxFIs.insert(P.first); 2405 BlockFIMap[&B].push_back(P.first); 2406 } 2407 } 2408 2409 LLVM_DEBUG({ 2410 dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; 2411 for (auto &P : BlockFIMap) { 2412 auto &FIs = P.second; 2413 if (FIs.empty()) 2414 continue; 2415 dbgs() << " " << printMBBReference(*P.first) << ": {"; 2416 for (auto I : FIs) { 2417 dbgs() << " fi#" << I; 2418 if (LoxFIs.count(I)) 2419 dbgs() << '*'; 2420 } 2421 dbgs() << " }\n"; 2422 } 2423 }); 2424 2425 #ifndef NDEBUG 2426 bool HasOptLimit = SpillOptMax.getPosition(); 2427 #endif 2428 2429 // eliminate loads, when all loads eliminated, eliminate all stores. 2430 for (auto &B : MF) { 2431 auto F = BlockIndexes.find(&B); 2432 assert(F != BlockIndexes.end()); 2433 HexagonBlockRanges::InstrIndexMap &IM = F->second; 2434 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); 2435 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); 2436 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" 2437 << HexagonBlockRanges::PrintRangeMap(DM, HRI)); 2438 2439 for (auto FI : BlockFIMap[&B]) { 2440 if (BadFIs.count(FI)) 2441 continue; 2442 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); 2443 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2444 for (auto &Range : RL) { 2445 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); 2446 if (!IndexType::isInstr(Range.start()) || 2447 !IndexType::isInstr(Range.end())) 2448 continue; 2449 MachineInstr &SI = *IM.getInstr(Range.start()); 2450 MachineInstr &EI = *IM.getInstr(Range.end()); 2451 assert(SI.mayStore() && "Unexpected start instruction"); 2452 assert(EI.mayLoad() && "Unexpected end instruction"); 2453 MachineOperand &SrcOp = SI.getOperand(2); 2454 2455 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), 2456 SrcOp.getSubReg() }; 2457 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); 2458 // The this-> is needed to unconfuse MSVC. 2459 unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC); 2460 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) 2461 << '\n'); 2462 if (FoundR == 0) 2463 continue; 2464 #ifndef NDEBUG 2465 if (HasOptLimit) { 2466 if (SpillOptCount >= SpillOptMax) 2467 return; 2468 SpillOptCount++; 2469 } 2470 #endif 2471 2472 // Generate the copy-in: "FoundR = COPY SrcR" at the store location. 2473 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; 2474 MachineInstr *CopyIn = nullptr; 2475 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { 2476 const DebugLoc &DL = SI.getDebugLoc(); 2477 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) 2478 .add(SrcOp); 2479 } 2480 2481 ++StartIt; 2482 // Check if this is a last store and the FI is live-on-exit. 2483 if (LoxFIs.count(FI) && (&Range == &RL.back())) { 2484 // Update store's source register. 2485 if (unsigned SR = SrcOp.getSubReg()) 2486 SrcOp.setReg(HRI.getSubReg(FoundR, SR)); 2487 else 2488 SrcOp.setReg(FoundR); 2489 SrcOp.setSubReg(0); 2490 // We are keeping this register live. 2491 SrcOp.setIsKill(false); 2492 } else { 2493 B.erase(&SI); 2494 IM.replaceInstr(&SI, CopyIn); 2495 } 2496 2497 auto EndIt = std::next(EI.getIterator()); 2498 for (auto It = StartIt; It != EndIt; It = NextIt) { 2499 MachineInstr &MI = *It; 2500 NextIt = std::next(It); 2501 int TFI; 2502 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) 2503 continue; 2504 Register DstR = MI.getOperand(0).getReg(); 2505 assert(MI.getOperand(0).getSubReg() == 0); 2506 MachineInstr *CopyOut = nullptr; 2507 if (DstR != FoundR) { 2508 DebugLoc DL = MI.getDebugLoc(); 2509 unsigned MemSize = HII.getMemAccessSize(MI); 2510 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); 2511 unsigned CopyOpc = TargetOpcode::COPY; 2512 if (HII.isSignExtendingLoad(MI)) 2513 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; 2514 else if (HII.isZeroExtendingLoad(MI)) 2515 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; 2516 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) 2517 .addReg(FoundR, getKillRegState(&MI == &EI)); 2518 } 2519 IM.replaceInstr(&MI, CopyOut); 2520 B.erase(It); 2521 } 2522 2523 // Update the dead map. 2524 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; 2525 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) 2526 DM[RR].subtract(Range); 2527 } // for Range in range list 2528 } 2529 } 2530 } 2531 2532 void HexagonFrameLowering::expandAlloca(MachineInstr *AI, 2533 const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { 2534 MachineBasicBlock &MB = *AI->getParent(); 2535 DebugLoc DL = AI->getDebugLoc(); 2536 unsigned A = AI->getOperand(2).getImm(); 2537 2538 // Have 2539 // Rd = alloca Rs, #A 2540 // 2541 // If Rs and Rd are different registers, use this sequence: 2542 // Rd = sub(r29, Rs) 2543 // r29 = sub(r29, Rs) 2544 // Rd = and(Rd, #-A) ; if necessary 2545 // r29 = and(r29, #-A) ; if necessary 2546 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2547 // otherwise, do 2548 // Rd = sub(r29, Rs) 2549 // Rd = and(Rd, #-A) ; if necessary 2550 // r29 = Rd 2551 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2552 2553 MachineOperand &RdOp = AI->getOperand(0); 2554 MachineOperand &RsOp = AI->getOperand(1); 2555 unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); 2556 2557 // Rd = sub(r29, Rs) 2558 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) 2559 .addReg(SP) 2560 .addReg(Rs); 2561 if (Rs != Rd) { 2562 // r29 = sub(r29, Rs) 2563 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) 2564 .addReg(SP) 2565 .addReg(Rs); 2566 } 2567 if (A > 8) { 2568 // Rd = and(Rd, #-A) 2569 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) 2570 .addReg(Rd) 2571 .addImm(-int64_t(A)); 2572 if (Rs != Rd) 2573 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) 2574 .addReg(SP) 2575 .addImm(-int64_t(A)); 2576 } 2577 if (Rs == Rd) { 2578 // r29 = Rd 2579 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) 2580 .addReg(Rd); 2581 } 2582 if (CF > 0) { 2583 // Rd = add(Rd, #CF) 2584 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) 2585 .addReg(Rd) 2586 .addImm(CF); 2587 } 2588 } 2589 2590 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { 2591 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2592 if (!MFI.hasVarSizedObjects()) 2593 return false; 2594 // Do not check for max stack object alignment here, because the stack 2595 // may not be complete yet. Assume that we will need PS_aligna if there 2596 // are variable-sized objects. 2597 return true; 2598 } 2599 2600 const MachineInstr *HexagonFrameLowering::getAlignaInstr( 2601 const MachineFunction &MF) const { 2602 for (auto &B : MF) 2603 for (auto &I : B) 2604 if (I.getOpcode() == Hexagon::PS_aligna) 2605 return &I; 2606 return nullptr; 2607 } 2608 2609 /// Adds all callee-saved registers as implicit uses or defs to the 2610 /// instruction. 2611 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, 2612 const CSIVect &CSI, bool IsDef, bool IsKill) const { 2613 // Add the callee-saved registers as implicit uses. 2614 for (auto &R : CSI) 2615 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); 2616 } 2617 2618 /// Determine whether the callee-saved register saves and restores should 2619 /// be generated via inline code. If this function returns "true", inline 2620 /// code will be generated. If this function returns "false", additional 2621 /// checks are performed, which may still lead to the inline code. 2622 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, 2623 const CSIVect &CSI) const { 2624 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) 2625 return true; 2626 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2627 return true; 2628 if (!hasFP(MF)) 2629 return true; 2630 if (!isOptSize(MF) && !isMinSize(MF)) 2631 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) 2632 return true; 2633 2634 // Check if CSI only has double registers, and if the registers form 2635 // a contiguous block starting from D8. 2636 BitVector Regs(Hexagon::NUM_TARGET_REGS); 2637 for (const CalleeSavedInfo &I : CSI) { 2638 Register R = I.getReg(); 2639 if (!Hexagon::DoubleRegsRegClass.contains(R)) 2640 return true; 2641 Regs[R] = true; 2642 } 2643 int F = Regs.find_first(); 2644 if (F != Hexagon::D8) 2645 return true; 2646 while (F >= 0) { 2647 int N = Regs.find_next(F); 2648 if (N >= 0 && N != F+1) 2649 return true; 2650 F = N; 2651 } 2652 2653 return false; 2654 } 2655 2656 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, 2657 const CSIVect &CSI) const { 2658 if (shouldInlineCSR(MF, CSI)) 2659 return false; 2660 unsigned NumCSI = CSI.size(); 2661 if (NumCSI <= 1) 2662 return false; 2663 2664 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs 2665 : SpillFuncThreshold; 2666 return Threshold < NumCSI; 2667 } 2668 2669 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, 2670 const CSIVect &CSI) const { 2671 if (shouldInlineCSR(MF, CSI)) 2672 return false; 2673 // The restore functions do a bit more than just restoring registers. 2674 // The non-returning versions will go back directly to the caller's 2675 // caller, others will clean up the stack frame in preparation for 2676 // a tail call. Using them can still save code size even if only one 2677 // register is getting restores. Make the decision based on -Oz: 2678 // using -Os will use inline restore for a single register. 2679 if (isMinSize(MF)) 2680 return true; 2681 unsigned NumCSI = CSI.size(); 2682 if (NumCSI <= 1) 2683 return false; 2684 2685 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 2686 : SpillFuncThreshold; 2687 return Threshold < NumCSI; 2688 } 2689 2690 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { 2691 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); 2692 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2693 // A fairly simplistic guess as to whether a potential load/store to a 2694 // stack location could require an extra register. 2695 if (HST.useHVXOps() && StackSize > 256) 2696 return true; 2697 2698 // Check if the function has store-immediate instructions that access 2699 // the stack. Since the offset field is not extendable, if the stack 2700 // size exceeds the offset limit (6 bits, shifted), the stores will 2701 // require a new base register. 2702 bool HasImmStack = false; 2703 unsigned MinLS = ~0u; // Log_2 of the memory access size. 2704 2705 for (const MachineBasicBlock &B : MF) { 2706 for (const MachineInstr &MI : B) { 2707 unsigned LS = 0; 2708 switch (MI.getOpcode()) { 2709 case Hexagon::S4_storeirit_io: 2710 case Hexagon::S4_storeirif_io: 2711 case Hexagon::S4_storeiri_io: 2712 ++LS; 2713 LLVM_FALLTHROUGH; 2714 case Hexagon::S4_storeirht_io: 2715 case Hexagon::S4_storeirhf_io: 2716 case Hexagon::S4_storeirh_io: 2717 ++LS; 2718 LLVM_FALLTHROUGH; 2719 case Hexagon::S4_storeirbt_io: 2720 case Hexagon::S4_storeirbf_io: 2721 case Hexagon::S4_storeirb_io: 2722 if (MI.getOperand(0).isFI()) 2723 HasImmStack = true; 2724 MinLS = std::min(MinLS, LS); 2725 break; 2726 } 2727 } 2728 } 2729 2730 if (HasImmStack) 2731 return !isUInt<6>(StackSize >> MinLS); 2732 2733 return false; 2734 } 2735