1 //===- HexagonExpandCondsets.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 // Replace mux instructions with the corresponding legal instructions. 10 // It is meant to work post-SSA, but still on virtual registers. It was 11 // originally placed between register coalescing and machine instruction 12 // scheduler. 13 // In this place in the optimization sequence, live interval analysis had 14 // been performed, and the live intervals should be preserved. A large part 15 // of the code deals with preserving the liveness information. 16 // 17 // Liveness tracking aside, the main functionality of this pass is divided 18 // into two steps. The first step is to replace an instruction 19 // %0 = C2_mux %1, %2, %3 20 // with a pair of conditional transfers 21 // %0 = A2_tfrt %1, %2 22 // %0 = A2_tfrf %1, %3 23 // It is the intention that the execution of this pass could be terminated 24 // after this step, and the code generated would be functionally correct. 25 // 26 // If the uses of the source values %1 and %2 are kills, and their 27 // definitions are predicable, then in the second step, the conditional 28 // transfers will then be rewritten as predicated instructions. E.g. 29 // %0 = A2_or %1, %2 30 // %3 = A2_tfrt %99, killed %0 31 // will be rewritten as 32 // %3 = A2_port %99, %1, %2 33 // 34 // This replacement has two variants: "up" and "down". Consider this case: 35 // %0 = A2_or %1, %2 36 // ... [intervening instructions] ... 37 // %3 = A2_tfrt %99, killed %0 38 // variant "up": 39 // %3 = A2_port %99, %1, %2 40 // ... [intervening instructions, %0->vreg3] ... 41 // [deleted] 42 // variant "down": 43 // [deleted] 44 // ... [intervening instructions] ... 45 // %3 = A2_port %99, %1, %2 46 // 47 // Both, one or none of these variants may be valid, and checks are made 48 // to rule out inapplicable variants. 49 // 50 // As an additional optimization, before either of the two steps above is 51 // executed, the pass attempts to coalesce the target register with one of 52 // the source registers, e.g. given an instruction 53 // %3 = C2_mux %0, %1, %2 54 // %3 will be coalesced with either %1 or %2. If this succeeds, 55 // the instruction would then be (for example) 56 // %3 = C2_mux %0, %3, %2 57 // and, under certain circumstances, this could result in only one predicated 58 // instruction: 59 // %3 = A2_tfrf %0, %2 60 // 61 62 // Splitting a definition of a register into two predicated transfers 63 // creates a complication in liveness tracking. Live interval computation 64 // will see both instructions as actual definitions, and will mark the 65 // first one as dead. The definition is not actually dead, and this 66 // situation will need to be fixed. For example: 67 // dead %1 = A2_tfrt ... ; marked as dead 68 // %1 = A2_tfrf ... 69 // 70 // Since any of the individual predicated transfers may end up getting 71 // removed (in case it is an identity copy), some pre-existing def may 72 // be marked as dead after live interval recomputation: 73 // dead %1 = ... ; marked as dead 74 // ... 75 // %1 = A2_tfrf ... ; if A2_tfrt is removed 76 // This case happens if %1 was used as a source in A2_tfrt, which means 77 // that is it actually live at the A2_tfrf, and so the now dead definition 78 // of %1 will need to be updated to non-dead at some point. 79 // 80 // This issue could be remedied by adding implicit uses to the predicated 81 // transfers, but this will create a problem with subsequent predication, 82 // since the transfers will no longer be possible to reorder. To avoid 83 // that, the initial splitting will not add any implicit uses. These 84 // implicit uses will be added later, after predication. The extra price, 85 // however, is that finding the locations where the implicit uses need 86 // to be added, and updating the live ranges will be more involved. 87 88 #include "HexagonInstrInfo.h" 89 #include "HexagonRegisterInfo.h" 90 #include "llvm/ADT/DenseMap.h" 91 #include "llvm/ADT/SetVector.h" 92 #include "llvm/ADT/SmallVector.h" 93 #include "llvm/ADT/StringRef.h" 94 #include "llvm/CodeGen/LiveInterval.h" 95 #include "llvm/CodeGen/LiveIntervals.h" 96 #include "llvm/CodeGen/MachineBasicBlock.h" 97 #include "llvm/CodeGen/MachineDominators.h" 98 #include "llvm/CodeGen/MachineFunction.h" 99 #include "llvm/CodeGen/MachineFunctionPass.h" 100 #include "llvm/CodeGen/MachineInstr.h" 101 #include "llvm/CodeGen/MachineInstrBuilder.h" 102 #include "llvm/CodeGen/MachineOperand.h" 103 #include "llvm/CodeGen/MachineRegisterInfo.h" 104 #include "llvm/CodeGen/SlotIndexes.h" 105 #include "llvm/CodeGen/TargetRegisterInfo.h" 106 #include "llvm/CodeGen/TargetSubtargetInfo.h" 107 #include "llvm/IR/DebugLoc.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/InitializePasses.h" 110 #include "llvm/MC/LaneBitmask.h" 111 #include "llvm/Pass.h" 112 #include "llvm/Support/CommandLine.h" 113 #include "llvm/Support/Debug.h" 114 #include "llvm/Support/ErrorHandling.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include <cassert> 117 #include <iterator> 118 #include <set> 119 #include <utility> 120 121 #define DEBUG_TYPE "expand-condsets" 122 123 using namespace llvm; 124 125 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit", 126 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); 127 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit", 128 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); 129 130 namespace llvm { 131 132 void initializeHexagonExpandCondsetsPass(PassRegistry&); 133 FunctionPass *createHexagonExpandCondsets(); 134 135 } // end namespace llvm 136 137 namespace { 138 139 class HexagonExpandCondsets : public MachineFunctionPass { 140 public: 141 static char ID; 142 143 HexagonExpandCondsets() : MachineFunctionPass(ID) { 144 if (OptCoaLimit.getPosition()) 145 CoaLimitActive = true, CoaLimit = OptCoaLimit; 146 if (OptTfrLimit.getPosition()) 147 TfrLimitActive = true, TfrLimit = OptTfrLimit; 148 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); 149 } 150 151 StringRef getPassName() const override { return "Hexagon Expand Condsets"; } 152 153 void getAnalysisUsage(AnalysisUsage &AU) const override { 154 AU.addRequired<LiveIntervals>(); 155 AU.addPreserved<LiveIntervals>(); 156 AU.addPreserved<SlotIndexes>(); 157 AU.addRequired<MachineDominatorTree>(); 158 AU.addPreserved<MachineDominatorTree>(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 bool runOnMachineFunction(MachineFunction &MF) override; 163 164 private: 165 const HexagonInstrInfo *HII = nullptr; 166 const TargetRegisterInfo *TRI = nullptr; 167 MachineDominatorTree *MDT; 168 MachineRegisterInfo *MRI = nullptr; 169 LiveIntervals *LIS = nullptr; 170 bool CoaLimitActive = false; 171 bool TfrLimitActive = false; 172 unsigned CoaLimit; 173 unsigned TfrLimit; 174 unsigned CoaCounter = 0; 175 unsigned TfrCounter = 0; 176 177 struct RegisterRef { 178 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), 179 Sub(Op.getSubReg()) {} 180 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} 181 182 bool operator== (RegisterRef RR) const { 183 return Reg == RR.Reg && Sub == RR.Sub; 184 } 185 bool operator!= (RegisterRef RR) const { return !operator==(RR); } 186 bool operator< (RegisterRef RR) const { 187 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub); 188 } 189 190 unsigned Reg, Sub; 191 }; 192 193 using ReferenceMap = DenseMap<unsigned, unsigned>; 194 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; 195 enum { Exec_Then = 0x10, Exec_Else = 0x20 }; 196 197 unsigned getMaskForSub(unsigned Sub); 198 bool isCondset(const MachineInstr &MI); 199 LaneBitmask getLaneMask(unsigned Reg, unsigned Sub); 200 201 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); 202 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); 203 204 void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range); 205 void updateKillFlags(unsigned Reg); 206 void updateDeadFlags(unsigned Reg); 207 void recalculateLiveInterval(unsigned Reg); 208 void removeInstr(MachineInstr &MI); 209 void updateLiveness(std::set<unsigned> &RegSet, bool Recalc, 210 bool UpdateKills, bool UpdateDeads); 211 212 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); 213 MachineInstr *genCondTfrFor(MachineOperand &SrcOp, 214 MachineBasicBlock::iterator At, unsigned DstR, 215 unsigned DstSR, const MachineOperand &PredOp, bool PredSense, 216 bool ReadUndef, bool ImpUse); 217 bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs); 218 219 bool isPredicable(MachineInstr *MI); 220 MachineInstr *getReachingDefForPred(RegisterRef RD, 221 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); 222 bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses); 223 bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown); 224 void predicateAt(const MachineOperand &DefOp, MachineInstr &MI, 225 MachineBasicBlock::iterator Where, 226 const MachineOperand &PredOp, bool Cond, 227 std::set<unsigned> &UpdRegs); 228 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, 229 bool Cond, MachineBasicBlock::iterator First, 230 MachineBasicBlock::iterator Last); 231 bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs); 232 bool predicateInBlock(MachineBasicBlock &B, 233 std::set<unsigned> &UpdRegs); 234 235 bool isIntReg(RegisterRef RR, unsigned &BW); 236 bool isIntraBlocks(LiveInterval &LI); 237 bool coalesceRegisters(RegisterRef R1, RegisterRef R2); 238 bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets, 239 std::set<unsigned> &UpdRegs); 240 }; 241 242 } // end anonymous namespace 243 244 char HexagonExpandCondsets::ID = 0; 245 246 namespace llvm { 247 248 char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID; 249 250 } // end namespace llvm 251 252 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets", 253 "Hexagon Expand Condsets", false, false) 254 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 255 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 256 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 257 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets", 258 "Hexagon Expand Condsets", false, false) 259 260 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { 261 switch (Sub) { 262 case Hexagon::isub_lo: 263 case Hexagon::vsub_lo: 264 return Sub_Low; 265 case Hexagon::isub_hi: 266 case Hexagon::vsub_hi: 267 return Sub_High; 268 case Hexagon::NoSubRegister: 269 return Sub_None; 270 } 271 llvm_unreachable("Invalid subregister"); 272 } 273 274 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) { 275 unsigned Opc = MI.getOpcode(); 276 switch (Opc) { 277 case Hexagon::C2_mux: 278 case Hexagon::C2_muxii: 279 case Hexagon::C2_muxir: 280 case Hexagon::C2_muxri: 281 case Hexagon::PS_pselect: 282 return true; 283 break; 284 } 285 return false; 286 } 287 288 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) { 289 assert(Register::isVirtualRegister(Reg)); 290 return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 291 : MRI->getMaxLaneMaskForVReg(Reg); 292 } 293 294 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, 295 unsigned Exec) { 296 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 297 ReferenceMap::iterator F = Map.find(RR.Reg); 298 if (F == Map.end()) 299 Map.insert(std::make_pair(RR.Reg, Mask)); 300 else 301 F->second |= Mask; 302 } 303 304 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, 305 unsigned Exec) { 306 ReferenceMap::iterator F = Map.find(RR.Reg); 307 if (F == Map.end()) 308 return false; 309 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 310 if (Mask & F->second) 311 return true; 312 return false; 313 } 314 315 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) { 316 auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void { 317 // Set the <kill> flag on a use of Reg whose lane mask is contained in LM. 318 MachineInstr *MI = LIS->getInstructionFromIndex(K); 319 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 320 MachineOperand &Op = MI->getOperand(i); 321 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg || 322 MI->isRegTiedToDefOperand(i)) 323 continue; 324 LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg()); 325 if ((SLM & LM) == SLM) { 326 // Only set the kill flag on the first encountered use of Reg in this 327 // instruction. 328 Op.setIsKill(true); 329 break; 330 } 331 } 332 }; 333 334 LiveInterval &LI = LIS->getInterval(Reg); 335 for (auto I = LI.begin(), E = LI.end(); I != E; ++I) { 336 if (!I->end.isRegister()) 337 continue; 338 // Do not mark the end of the segment as <kill>, if the next segment 339 // starts with a predicated instruction. 340 auto NextI = std::next(I); 341 if (NextI != E && NextI->start.isRegister()) { 342 MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start); 343 if (HII->isPredicated(*DefI)) 344 continue; 345 } 346 bool WholeReg = true; 347 if (LI.hasSubRanges()) { 348 auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool { 349 LiveRange::iterator F = S.find(I->end); 350 return F != S.end() && I->end == F->end; 351 }; 352 // Check if all subranges end at I->end. If so, make sure to kill 353 // the whole register. 354 for (LiveInterval::SubRange &S : LI.subranges()) { 355 if (EndsAtI(S)) 356 KillAt(I->end, S.LaneMask); 357 else 358 WholeReg = false; 359 } 360 } 361 if (WholeReg) 362 KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg)); 363 } 364 } 365 366 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM, 367 LiveRange &Range) { 368 assert(Register::isVirtualRegister(Reg)); 369 if (Range.empty()) 370 return; 371 372 // Return two booleans: { def-modifes-reg, def-covers-reg }. 373 auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> { 374 if (!Op.isReg() || !Op.isDef()) 375 return { false, false }; 376 Register DR = Op.getReg(), DSR = Op.getSubReg(); 377 if (!Register::isVirtualRegister(DR) || DR != Reg) 378 return { false, false }; 379 LaneBitmask SLM = getLaneMask(DR, DSR); 380 LaneBitmask A = SLM & LM; 381 return { A.any(), A == SLM }; 382 }; 383 384 // The splitting step will create pairs of predicated definitions without 385 // any implicit uses (since implicit uses would interfere with predication). 386 // This can cause the reaching defs to become dead after live range 387 // recomputation, even though they are not really dead. 388 // We need to identify predicated defs that need implicit uses, and 389 // dead defs that are not really dead, and correct both problems. 390 391 auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs, 392 MachineBasicBlock *Dest) -> bool { 393 for (MachineBasicBlock *D : Defs) 394 if (D != Dest && MDT->dominates(D, Dest)) 395 return true; 396 397 MachineBasicBlock *Entry = &Dest->getParent()->front(); 398 SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end()); 399 for (unsigned i = 0; i < Work.size(); ++i) { 400 MachineBasicBlock *B = Work[i]; 401 if (Defs.count(B)) 402 continue; 403 if (B == Entry) 404 return false; 405 for (auto *P : B->predecessors()) 406 Work.insert(P); 407 } 408 return true; 409 }; 410 411 // First, try to extend live range within individual basic blocks. This 412 // will leave us only with dead defs that do not reach any predicated 413 // defs in the same block. 414 SetVector<MachineBasicBlock*> Defs; 415 SmallVector<SlotIndex,4> PredDefs; 416 for (auto &Seg : Range) { 417 if (!Seg.start.isRegister()) 418 continue; 419 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 420 Defs.insert(DefI->getParent()); 421 if (HII->isPredicated(*DefI)) 422 PredDefs.push_back(Seg.start); 423 } 424 425 SmallVector<SlotIndex,8> Undefs; 426 LiveInterval &LI = LIS->getInterval(Reg); 427 LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes()); 428 429 for (auto &SI : PredDefs) { 430 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); 431 auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI); 432 if (P.first != nullptr || P.second) 433 SI = SlotIndex(); 434 } 435 436 // Calculate reachability for those predicated defs that were not handled 437 // by the in-block extension. 438 SmallVector<SlotIndex,4> ExtTo; 439 for (auto &SI : PredDefs) { 440 if (!SI.isValid()) 441 continue; 442 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); 443 if (BB->pred_empty()) 444 continue; 445 // If the defs from this range reach SI via all predecessors, it is live. 446 // It can happen that SI is reached by the defs through some paths, but 447 // not all. In the IR coming into this optimization, SI would not be 448 // considered live, since the defs would then not jointly dominate SI. 449 // That means that SI is an overwriting def, and no implicit use is 450 // needed at this point. Do not add SI to the extension points, since 451 // extendToIndices will abort if there is no joint dominance. 452 // If the abort was avoided by adding extra undefs added to Undefs, 453 // extendToIndices could actually indicate that SI is live, contrary 454 // to the original IR. 455 if (Dominate(Defs, BB)) 456 ExtTo.push_back(SI); 457 } 458 459 if (!ExtTo.empty()) 460 LIS->extendToIndices(Range, ExtTo, Undefs); 461 462 // Remove <dead> flags from all defs that are not dead after live range 463 // extension, and collect all def operands. They will be used to generate 464 // the necessary implicit uses. 465 // At the same time, add <dead> flag to all defs that are actually dead. 466 // This can happen, for example, when a mux with identical inputs is 467 // replaced with a COPY: the use of the predicate register disappears and 468 // the dead can become dead. 469 std::set<RegisterRef> DefRegs; 470 for (auto &Seg : Range) { 471 if (!Seg.start.isRegister()) 472 continue; 473 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 474 for (auto &Op : DefI->operands()) { 475 auto P = IsRegDef(Op); 476 if (P.second && Seg.end.isDead()) { 477 Op.setIsDead(true); 478 } else if (P.first) { 479 DefRegs.insert(Op); 480 Op.setIsDead(false); 481 } 482 } 483 } 484 485 // Now, add implicit uses to each predicated def that is reached 486 // by other defs. 487 for (auto &Seg : Range) { 488 if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot())) 489 continue; 490 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 491 if (!HII->isPredicated(*DefI)) 492 continue; 493 // Construct the set of all necessary implicit uses, based on the def 494 // operands in the instruction. We need to tie the implicit uses to 495 // the corresponding defs. 496 std::map<RegisterRef,unsigned> ImpUses; 497 for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) { 498 MachineOperand &Op = DefI->getOperand(i); 499 if (!Op.isReg() || !DefRegs.count(Op)) 500 continue; 501 if (Op.isDef()) { 502 // Tied defs will always have corresponding uses, so no extra 503 // implicit uses are needed. 504 if (!Op.isTied()) 505 ImpUses.insert({Op, i}); 506 } else { 507 // This function can be called for the same register with different 508 // lane masks. If the def in this instruction was for the whole 509 // register, we can get here more than once. Avoid adding multiple 510 // implicit uses (or adding an implicit use when an explicit one is 511 // present). 512 if (Op.isTied()) 513 ImpUses.erase(Op); 514 } 515 } 516 if (ImpUses.empty()) 517 continue; 518 MachineFunction &MF = *DefI->getParent()->getParent(); 519 for (std::pair<RegisterRef, unsigned> P : ImpUses) { 520 RegisterRef R = P.first; 521 MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub); 522 DefI->tieOperands(P.second, DefI->getNumOperands()-1); 523 } 524 } 525 } 526 527 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) { 528 LiveInterval &LI = LIS->getInterval(Reg); 529 if (LI.hasSubRanges()) { 530 for (LiveInterval::SubRange &S : LI.subranges()) { 531 updateDeadsInRange(Reg, S.LaneMask, S); 532 LIS->shrinkToUses(S, Reg); 533 } 534 LI.clear(); 535 LIS->constructMainRangeFromSubranges(LI); 536 } else { 537 updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI); 538 } 539 } 540 541 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) { 542 LIS->removeInterval(Reg); 543 LIS->createAndComputeVirtRegInterval(Reg); 544 } 545 546 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) { 547 LIS->RemoveMachineInstrFromMaps(MI); 548 MI.eraseFromParent(); 549 } 550 551 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet, 552 bool Recalc, bool UpdateKills, bool UpdateDeads) { 553 UpdateKills |= UpdateDeads; 554 for (unsigned R : RegSet) { 555 if (!Register::isVirtualRegister(R)) { 556 assert(Register::isPhysicalRegister(R)); 557 // There shouldn't be any physical registers as operands, except 558 // possibly reserved registers. 559 assert(MRI->isReserved(R)); 560 continue; 561 } 562 if (Recalc) 563 recalculateLiveInterval(R); 564 if (UpdateKills) 565 MRI->clearKillFlags(R); 566 if (UpdateDeads) 567 updateDeadFlags(R); 568 // Fixing <dead> flags may extend live ranges, so reset <kill> flags 569 // after that. 570 if (UpdateKills) 571 updateKillFlags(R); 572 LIS->getInterval(R).verify(); 573 } 574 } 575 576 /// Get the opcode for a conditional transfer of the value in SO (source 577 /// operand). The condition (true/false) is given in Cond. 578 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, 579 bool IfTrue) { 580 using namespace Hexagon; 581 582 if (SO.isReg()) { 583 Register PhysR; 584 RegisterRef RS = SO; 585 if (Register::isVirtualRegister(RS.Reg)) { 586 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); 587 assert(VC->begin() != VC->end() && "Empty register class"); 588 PhysR = *VC->begin(); 589 } else { 590 assert(Register::isPhysicalRegister(RS.Reg)); 591 PhysR = RS.Reg; 592 } 593 Register PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); 594 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); 595 switch (TRI->getRegSizeInBits(*RC)) { 596 case 32: 597 return IfTrue ? A2_tfrt : A2_tfrf; 598 case 64: 599 return IfTrue ? A2_tfrpt : A2_tfrpf; 600 } 601 llvm_unreachable("Invalid register operand"); 602 } 603 switch (SO.getType()) { 604 case MachineOperand::MO_Immediate: 605 case MachineOperand::MO_FPImmediate: 606 case MachineOperand::MO_ConstantPoolIndex: 607 case MachineOperand::MO_TargetIndex: 608 case MachineOperand::MO_JumpTableIndex: 609 case MachineOperand::MO_ExternalSymbol: 610 case MachineOperand::MO_GlobalAddress: 611 case MachineOperand::MO_BlockAddress: 612 return IfTrue ? C2_cmoveit : C2_cmoveif; 613 default: 614 break; 615 } 616 llvm_unreachable("Unexpected source operand"); 617 } 618 619 /// Generate a conditional transfer, copying the value SrcOp to the 620 /// destination register DstR:DstSR, and using the predicate register from 621 /// PredOp. The Cond argument specifies whether the predicate is to be 622 /// if(PredOp), or if(!PredOp). 623 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp, 624 MachineBasicBlock::iterator At, 625 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, 626 bool PredSense, bool ReadUndef, bool ImpUse) { 627 MachineInstr *MI = SrcOp.getParent(); 628 MachineBasicBlock &B = *At->getParent(); 629 const DebugLoc &DL = MI->getDebugLoc(); 630 631 // Don't avoid identity copies here (i.e. if the source and the destination 632 // are the same registers). It is actually better to generate them here, 633 // since this would cause the copy to potentially be predicated in the next 634 // step. The predication will remove such a copy if it is unable to 635 /// predicate. 636 637 unsigned Opc = getCondTfrOpcode(SrcOp, PredSense); 638 unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0); 639 unsigned PredState = getRegState(PredOp) & ~RegState::Kill; 640 MachineInstrBuilder MIB; 641 642 if (SrcOp.isReg()) { 643 unsigned SrcState = getRegState(SrcOp); 644 if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR)) 645 SrcState &= ~RegState::Kill; 646 MIB = BuildMI(B, At, DL, HII->get(Opc)) 647 .addReg(DstR, DstState, DstSR) 648 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) 649 .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg()); 650 } else { 651 MIB = BuildMI(B, At, DL, HII->get(Opc)) 652 .addReg(DstR, DstState, DstSR) 653 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) 654 .add(SrcOp); 655 } 656 657 LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB); 658 return &*MIB; 659 } 660 661 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function 662 /// performs all necessary changes to complete the replacement. 663 bool HexagonExpandCondsets::split(MachineInstr &MI, 664 std::set<unsigned> &UpdRegs) { 665 if (TfrLimitActive) { 666 if (TfrCounter >= TfrLimit) 667 return false; 668 TfrCounter++; 669 } 670 LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent()) 671 << ": " << MI); 672 MachineOperand &MD = MI.getOperand(0); // Definition 673 MachineOperand &MP = MI.getOperand(1); // Predicate register 674 assert(MD.isDef()); 675 Register DR = MD.getReg(), DSR = MD.getSubReg(); 676 bool ReadUndef = MD.isUndef(); 677 MachineBasicBlock::iterator At = MI; 678 679 auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void { 680 for (auto &Op : MI.operands()) 681 if (Op.isReg()) 682 UpdRegs.insert(Op.getReg()); 683 }; 684 685 // If this is a mux of the same register, just replace it with COPY. 686 // Ideally, this would happen earlier, so that register coalescing would 687 // see it. 688 MachineOperand &ST = MI.getOperand(2); 689 MachineOperand &SF = MI.getOperand(3); 690 if (ST.isReg() && SF.isReg()) { 691 RegisterRef RT(ST); 692 if (RT == RegisterRef(SF)) { 693 // Copy regs to update first. 694 updateRegs(MI); 695 MI.setDesc(HII->get(TargetOpcode::COPY)); 696 unsigned S = getRegState(ST); 697 while (MI.getNumOperands() > 1) 698 MI.RemoveOperand(MI.getNumOperands()-1); 699 MachineFunction &MF = *MI.getParent()->getParent(); 700 MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub); 701 return true; 702 } 703 } 704 705 // First, create the two invididual conditional transfers, and add each 706 // of them to the live intervals information. Do that first and then remove 707 // the old instruction from live intervals. 708 MachineInstr *TfrT = 709 genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false); 710 MachineInstr *TfrF = 711 genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true); 712 LIS->InsertMachineInstrInMaps(*TfrT); 713 LIS->InsertMachineInstrInMaps(*TfrF); 714 715 // Will need to recalculate live intervals for all registers in MI. 716 updateRegs(MI); 717 718 removeInstr(MI); 719 return true; 720 } 721 722 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { 723 if (HII->isPredicated(*MI) || !HII->isPredicable(*MI)) 724 return false; 725 if (MI->hasUnmodeledSideEffects() || MI->mayStore()) 726 return false; 727 // Reject instructions with multiple defs (e.g. post-increment loads). 728 bool HasDef = false; 729 for (auto &Op : MI->operands()) { 730 if (!Op.isReg() || !Op.isDef()) 731 continue; 732 if (HasDef) 733 return false; 734 HasDef = true; 735 } 736 for (auto &Mo : MI->memoperands()) 737 if (Mo->isVolatile() || Mo->isAtomic()) 738 return false; 739 return true; 740 } 741 742 /// Find the reaching definition for a predicated use of RD. The RD is used 743 /// under the conditions given by PredR and Cond, and this function will ignore 744 /// definitions that set RD under the opposite conditions. 745 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, 746 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { 747 MachineBasicBlock &B = *UseIt->getParent(); 748 MachineBasicBlock::iterator I = UseIt, S = B.begin(); 749 if (I == S) 750 return nullptr; 751 752 bool PredValid = true; 753 do { 754 --I; 755 MachineInstr *MI = &*I; 756 // Check if this instruction can be ignored, i.e. if it is predicated 757 // on the complementary condition. 758 if (PredValid && HII->isPredicated(*MI)) { 759 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI))) 760 continue; 761 } 762 763 // Check the defs. If the PredR is defined, invalidate it. If RD is 764 // defined, return the instruction or 0, depending on the circumstances. 765 for (auto &Op : MI->operands()) { 766 if (!Op.isReg() || !Op.isDef()) 767 continue; 768 RegisterRef RR = Op; 769 if (RR.Reg == PredR) { 770 PredValid = false; 771 continue; 772 } 773 if (RR.Reg != RD.Reg) 774 continue; 775 // If the "Reg" part agrees, there is still the subregister to check. 776 // If we are looking for %1:loreg, we can skip %1:hireg, but 777 // not %1 (w/o subregisters). 778 if (RR.Sub == RD.Sub) 779 return MI; 780 if (RR.Sub == 0 || RD.Sub == 0) 781 return nullptr; 782 // We have different subregisters, so we can continue looking. 783 } 784 } while (I != S); 785 786 return nullptr; 787 } 788 789 /// Check if the instruction MI can be safely moved over a set of instructions 790 /// whose side-effects (in terms of register defs and uses) are expressed in 791 /// the maps Defs and Uses. These maps reflect the conditional defs and uses 792 /// that depend on the same predicate register to allow moving instructions 793 /// over instructions predicated on the opposite condition. 794 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs, 795 ReferenceMap &Uses) { 796 // In order to be able to safely move MI over instructions that define 797 // "Defs" and use "Uses", no def operand from MI can be defined or used 798 // and no use operand can be defined. 799 for (auto &Op : MI.operands()) { 800 if (!Op.isReg()) 801 continue; 802 RegisterRef RR = Op; 803 // For physical register we would need to check register aliases, etc. 804 // and we don't want to bother with that. It would be of little value 805 // before the actual register rewriting (from virtual to physical). 806 if (!Register::isVirtualRegister(RR.Reg)) 807 return false; 808 // No redefs for any operand. 809 if (isRefInMap(RR, Defs, Exec_Then)) 810 return false; 811 // For defs, there cannot be uses. 812 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) 813 return false; 814 } 815 return true; 816 } 817 818 /// Check if the instruction accessing memory (TheI) can be moved to the 819 /// location ToI. 820 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI, 821 bool IsDown) { 822 bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore(); 823 if (!IsLoad && !IsStore) 824 return true; 825 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) 826 return true; 827 if (TheI.hasUnmodeledSideEffects()) 828 return false; 829 830 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; 831 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; 832 bool Ordered = TheI.hasOrderedMemoryRef(); 833 834 // Search for aliased memory reference in (StartI, EndI). 835 for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) { 836 MachineInstr *MI = &*I; 837 if (MI->hasUnmodeledSideEffects()) 838 return false; 839 bool L = MI->mayLoad(), S = MI->mayStore(); 840 if (!L && !S) 841 continue; 842 if (Ordered && MI->hasOrderedMemoryRef()) 843 return false; 844 845 bool Conflict = (L && IsStore) || S; 846 if (Conflict) 847 return false; 848 } 849 return true; 850 } 851 852 /// Generate a predicated version of MI (where the condition is given via 853 /// PredR and Cond) at the point indicated by Where. 854 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp, 855 MachineInstr &MI, 856 MachineBasicBlock::iterator Where, 857 const MachineOperand &PredOp, bool Cond, 858 std::set<unsigned> &UpdRegs) { 859 // The problem with updating live intervals is that we can move one def 860 // past another def. In particular, this can happen when moving an A2_tfrt 861 // over an A2_tfrf defining the same register. From the point of view of 862 // live intervals, these two instructions are two separate definitions, 863 // and each one starts another live segment. LiveIntervals's "handleMove" 864 // does not allow such moves, so we need to handle it ourselves. To avoid 865 // invalidating liveness data while we are using it, the move will be 866 // implemented in 4 steps: (1) add a clone of the instruction MI at the 867 // target location, (2) update liveness, (3) delete the old instruction, 868 // and (4) update liveness again. 869 870 MachineBasicBlock &B = *MI.getParent(); 871 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. 872 unsigned Opc = MI.getOpcode(); 873 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); 874 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); 875 unsigned Ox = 0, NP = MI.getNumOperands(); 876 // Skip all defs from MI first. 877 while (Ox < NP) { 878 MachineOperand &MO = MI.getOperand(Ox); 879 if (!MO.isReg() || !MO.isDef()) 880 break; 881 Ox++; 882 } 883 // Add the new def, then the predicate register, then the rest of the 884 // operands. 885 MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg()); 886 MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0, 887 PredOp.getSubReg()); 888 while (Ox < NP) { 889 MachineOperand &MO = MI.getOperand(Ox); 890 if (!MO.isReg() || !MO.isImplicit()) 891 MB.add(MO); 892 Ox++; 893 } 894 MB.cloneMemRefs(MI); 895 896 MachineInstr *NewI = MB; 897 NewI->clearKillInfo(); 898 LIS->InsertMachineInstrInMaps(*NewI); 899 900 for (auto &Op : NewI->operands()) 901 if (Op.isReg()) 902 UpdRegs.insert(Op.getReg()); 903 } 904 905 /// In the range [First, Last], rename all references to the "old" register RO 906 /// to the "new" register RN, but only in instructions predicated on the given 907 /// condition. 908 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, 909 unsigned PredR, bool Cond, MachineBasicBlock::iterator First, 910 MachineBasicBlock::iterator Last) { 911 MachineBasicBlock::iterator End = std::next(Last); 912 for (MachineBasicBlock::iterator I = First; I != End; ++I) { 913 MachineInstr *MI = &*I; 914 // Do not touch instructions that are not predicated, or are predicated 915 // on the opposite condition. 916 if (!HII->isPredicated(*MI)) 917 continue; 918 if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI))) 919 continue; 920 921 for (auto &Op : MI->operands()) { 922 if (!Op.isReg() || RO != RegisterRef(Op)) 923 continue; 924 Op.setReg(RN.Reg); 925 Op.setSubReg(RN.Sub); 926 // In practice, this isn't supposed to see any defs. 927 assert(!Op.isDef() && "Not expecting a def"); 928 } 929 } 930 } 931 932 /// For a given conditional copy, predicate the definition of the source of 933 /// the copy under the given condition (using the same predicate register as 934 /// the copy). 935 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond, 936 std::set<unsigned> &UpdRegs) { 937 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). 938 unsigned Opc = TfrI.getOpcode(); 939 (void)Opc; 940 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); 941 LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") 942 << ": " << TfrI); 943 944 MachineOperand &MD = TfrI.getOperand(0); 945 MachineOperand &MP = TfrI.getOperand(1); 946 MachineOperand &MS = TfrI.getOperand(2); 947 // The source operand should be a <kill>. This is not strictly necessary, 948 // but it makes things a lot simpler. Otherwise, we would need to rename 949 // some registers, which would complicate the transformation considerably. 950 if (!MS.isKill()) 951 return false; 952 // Avoid predicating instructions that define a subregister if subregister 953 // liveness tracking is not enabled. 954 if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg())) 955 return false; 956 957 RegisterRef RT(MS); 958 Register PredR = MP.getReg(); 959 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); 960 if (!DefI || !isPredicable(DefI)) 961 return false; 962 963 LLVM_DEBUG(dbgs() << "Source def: " << *DefI); 964 965 // Collect the information about registers defined and used between the 966 // DefI and the TfrI. 967 // Map: reg -> bitmask of subregs 968 ReferenceMap Uses, Defs; 969 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; 970 971 // Check if the predicate register is valid between DefI and TfrI. 972 // If it is, we can then ignore instructions predicated on the negated 973 // conditions when collecting def and use information. 974 bool PredValid = true; 975 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { 976 if (!I->modifiesRegister(PredR, nullptr)) 977 continue; 978 PredValid = false; 979 break; 980 } 981 982 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { 983 MachineInstr *MI = &*I; 984 // If this instruction is predicated on the same register, it could 985 // potentially be ignored. 986 // By default assume that the instruction executes on the same condition 987 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). 988 unsigned Exec = Exec_Then | Exec_Else; 989 if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR)) 990 Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else; 991 992 for (auto &Op : MI->operands()) { 993 if (!Op.isReg()) 994 continue; 995 // We don't want to deal with physical registers. The reason is that 996 // they can be aliased with other physical registers. Aliased virtual 997 // registers must share the same register number, and can only differ 998 // in the subregisters, which we are keeping track of. Physical 999 // registers ters no longer have subregisters---their super- and 1000 // subregisters are other physical registers, and we are not checking 1001 // that. 1002 RegisterRef RR = Op; 1003 if (!Register::isVirtualRegister(RR.Reg)) 1004 return false; 1005 1006 ReferenceMap &Map = Op.isDef() ? Defs : Uses; 1007 if (Op.isDef() && Op.isUndef()) { 1008 assert(RR.Sub && "Expecting a subregister on <def,read-undef>"); 1009 // If this is a <def,read-undef>, then it invalidates the non-written 1010 // part of the register. For the purpose of checking the validity of 1011 // the move, assume that it modifies the whole register. 1012 RR.Sub = 0; 1013 } 1014 addRefToMap(RR, Map, Exec); 1015 } 1016 } 1017 1018 // The situation: 1019 // RT = DefI 1020 // ... 1021 // RD = TfrI ..., RT 1022 1023 // If the register-in-the-middle (RT) is used or redefined between 1024 // DefI and TfrI, we may not be able proceed with this transformation. 1025 // We can ignore a def that will not execute together with TfrI, and a 1026 // use that will. If there is such a use (that does execute together with 1027 // TfrI), we will not be able to move DefI down. If there is a use that 1028 // executed if TfrI's condition is false, then RT must be available 1029 // unconditionally (cannot be predicated). 1030 // Essentially, we need to be able to rename RT to RD in this segment. 1031 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) 1032 return false; 1033 RegisterRef RD = MD; 1034 // If the predicate register is defined between DefI and TfrI, the only 1035 // potential thing to do would be to move the DefI down to TfrI, and then 1036 // predicate. The reaching def (DefI) must be movable down to the location 1037 // of the TfrI. 1038 // If the target register of the TfrI (RD) is not used or defined between 1039 // DefI and TfrI, consider moving TfrI up to DefI. 1040 bool CanUp = canMoveOver(TfrI, Defs, Uses); 1041 bool CanDown = canMoveOver(*DefI, Defs, Uses); 1042 // The TfrI does not access memory, but DefI could. Check if it's safe 1043 // to move DefI down to TfrI. 1044 if (DefI->mayLoadOrStore()) 1045 if (!canMoveMemTo(*DefI, TfrI, true)) 1046 CanDown = false; 1047 1048 LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") 1049 << ", can move down: " << (CanDown ? "yes\n" : "no\n")); 1050 MachineBasicBlock::iterator PastDefIt = std::next(DefIt); 1051 if (CanUp) 1052 predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs); 1053 else if (CanDown) 1054 predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs); 1055 else 1056 return false; 1057 1058 if (RT != RD) { 1059 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); 1060 UpdRegs.insert(RT.Reg); 1061 } 1062 1063 removeInstr(TfrI); 1064 removeInstr(*DefI); 1065 return true; 1066 } 1067 1068 /// Predicate all cases of conditional copies in the specified block. 1069 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B, 1070 std::set<unsigned> &UpdRegs) { 1071 bool Changed = false; 1072 MachineBasicBlock::iterator I, E, NextI; 1073 for (I = B.begin(), E = B.end(); I != E; I = NextI) { 1074 NextI = std::next(I); 1075 unsigned Opc = I->getOpcode(); 1076 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { 1077 bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs); 1078 if (!Done) { 1079 // If we didn't predicate I, we may need to remove it in case it is 1080 // an "identity" copy, e.g. %1 = A2_tfrt %2, %1. 1081 if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) { 1082 for (auto &Op : I->operands()) 1083 if (Op.isReg()) 1084 UpdRegs.insert(Op.getReg()); 1085 removeInstr(*I); 1086 } 1087 } 1088 Changed |= Done; 1089 } 1090 } 1091 return Changed; 1092 } 1093 1094 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { 1095 if (!Register::isVirtualRegister(RR.Reg)) 1096 return false; 1097 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); 1098 if (RC == &Hexagon::IntRegsRegClass) { 1099 BW = 32; 1100 return true; 1101 } 1102 if (RC == &Hexagon::DoubleRegsRegClass) { 1103 BW = (RR.Sub != 0) ? 32 : 64; 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { 1110 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 1111 LiveRange::Segment &LR = *I; 1112 // Range must start at a register... 1113 if (!LR.start.isRegister()) 1114 return false; 1115 // ...and end in a register or in a dead slot. 1116 if (!LR.end.isRegister() && !LR.end.isDead()) 1117 return false; 1118 } 1119 return true; 1120 } 1121 1122 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { 1123 if (CoaLimitActive) { 1124 if (CoaCounter >= CoaLimit) 1125 return false; 1126 CoaCounter++; 1127 } 1128 unsigned BW1, BW2; 1129 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) 1130 return false; 1131 if (MRI->isLiveIn(R1.Reg)) 1132 return false; 1133 if (MRI->isLiveIn(R2.Reg)) 1134 return false; 1135 1136 LiveInterval &L1 = LIS->getInterval(R1.Reg); 1137 LiveInterval &L2 = LIS->getInterval(R2.Reg); 1138 if (L2.empty()) 1139 return false; 1140 if (L1.hasSubRanges() || L2.hasSubRanges()) 1141 return false; 1142 bool Overlap = L1.overlaps(L2); 1143 1144 LLVM_DEBUG(dbgs() << "compatible registers: (" 1145 << (Overlap ? "overlap" : "disjoint") << ")\n " 1146 << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " 1147 << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); 1148 if (R1.Sub || R2.Sub) 1149 return false; 1150 if (Overlap) 1151 return false; 1152 1153 // Coalescing could have a negative impact on scheduling, so try to limit 1154 // to some reasonable extent. Only consider coalescing segments, when one 1155 // of them does not cross basic block boundaries. 1156 if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) 1157 return false; 1158 1159 MRI->replaceRegWith(R2.Reg, R1.Reg); 1160 1161 // Move all live segments from L2 to L1. 1162 using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>; 1163 ValueInfoMap VM; 1164 for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) { 1165 VNInfo *NewVN, *OldVN = I->valno; 1166 ValueInfoMap::iterator F = VM.find(OldVN); 1167 if (F == VM.end()) { 1168 NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator()); 1169 VM.insert(std::make_pair(OldVN, NewVN)); 1170 } else { 1171 NewVN = F->second; 1172 } 1173 L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN)); 1174 } 1175 while (L2.begin() != L2.end()) 1176 L2.removeSegment(*L2.begin()); 1177 LIS->removeInterval(R2.Reg); 1178 1179 updateKillFlags(R1.Reg); 1180 LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n"); 1181 L1.verify(); 1182 1183 return true; 1184 } 1185 1186 /// Attempt to coalesce one of the source registers to a MUX instruction with 1187 /// the destination register. This could lead to having only one predicated 1188 /// instruction in the end instead of two. 1189 bool HexagonExpandCondsets::coalesceSegments( 1190 const SmallVectorImpl<MachineInstr*> &Condsets, 1191 std::set<unsigned> &UpdRegs) { 1192 SmallVector<MachineInstr*,16> TwoRegs; 1193 for (MachineInstr *MI : Condsets) { 1194 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); 1195 if (!S1.isReg() && !S2.isReg()) 1196 continue; 1197 TwoRegs.push_back(MI); 1198 } 1199 1200 bool Changed = false; 1201 for (MachineInstr *CI : TwoRegs) { 1202 RegisterRef RD = CI->getOperand(0); 1203 RegisterRef RP = CI->getOperand(1); 1204 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); 1205 bool Done = false; 1206 // Consider this case: 1207 // %1 = instr1 ... 1208 // %2 = instr2 ... 1209 // %0 = C2_mux ..., %1, %2 1210 // If %0 was coalesced with %1, we could end up with the following 1211 // code: 1212 // %0 = instr1 ... 1213 // %2 = instr2 ... 1214 // %0 = A2_tfrf ..., %2 1215 // which will later become: 1216 // %0 = instr1 ... 1217 // %0 = instr2_cNotPt ... 1218 // i.e. there will be an unconditional definition (instr1) of %0 1219 // followed by a conditional one. The output dependency was there before 1220 // and it unavoidable, but if instr1 is predicable, we will no longer be 1221 // able to predicate it here. 1222 // To avoid this scenario, don't coalesce the destination register with 1223 // a source register that is defined by a predicable instruction. 1224 if (S1.isReg()) { 1225 RegisterRef RS = S1; 1226 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); 1227 if (!RDef || !HII->isPredicable(*RDef)) { 1228 Done = coalesceRegisters(RD, RegisterRef(S1)); 1229 if (Done) { 1230 UpdRegs.insert(RD.Reg); 1231 UpdRegs.insert(S1.getReg()); 1232 } 1233 } 1234 } 1235 if (!Done && S2.isReg()) { 1236 RegisterRef RS = S2; 1237 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); 1238 if (!RDef || !HII->isPredicable(*RDef)) { 1239 Done = coalesceRegisters(RD, RegisterRef(S2)); 1240 if (Done) { 1241 UpdRegs.insert(RD.Reg); 1242 UpdRegs.insert(S2.getReg()); 1243 } 1244 } 1245 } 1246 Changed |= Done; 1247 } 1248 return Changed; 1249 } 1250 1251 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { 1252 if (skipFunction(MF.getFunction())) 1253 return false; 1254 1255 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo()); 1256 TRI = MF.getSubtarget().getRegisterInfo(); 1257 MDT = &getAnalysis<MachineDominatorTree>(); 1258 LIS = &getAnalysis<LiveIntervals>(); 1259 MRI = &MF.getRegInfo(); 1260 1261 LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n", 1262 MF.getFunction().getParent())); 1263 1264 bool Changed = false; 1265 std::set<unsigned> CoalUpd, PredUpd; 1266 1267 SmallVector<MachineInstr*,16> Condsets; 1268 for (auto &B : MF) 1269 for (auto &I : B) 1270 if (isCondset(I)) 1271 Condsets.push_back(&I); 1272 1273 // Try to coalesce the target of a mux with one of its sources. 1274 // This could eliminate a register copy in some circumstances. 1275 Changed |= coalesceSegments(Condsets, CoalUpd); 1276 1277 // Update kill flags on all source operands. This is done here because 1278 // at this moment (when expand-condsets runs), there are no kill flags 1279 // in the IR (they have been removed by live range analysis). 1280 // Updating them right before we split is the easiest, because splitting 1281 // adds definitions which would interfere with updating kills afterwards. 1282 std::set<unsigned> KillUpd; 1283 for (MachineInstr *MI : Condsets) 1284 for (MachineOperand &Op : MI->operands()) 1285 if (Op.isReg() && Op.isUse()) 1286 if (!CoalUpd.count(Op.getReg())) 1287 KillUpd.insert(Op.getReg()); 1288 updateLiveness(KillUpd, false, true, false); 1289 LLVM_DEBUG( 1290 LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent())); 1291 1292 // First, simply split all muxes into a pair of conditional transfers 1293 // and update the live intervals to reflect the new arrangement. The 1294 // goal is to update the kill flags, since predication will rely on 1295 // them. 1296 for (MachineInstr *MI : Condsets) 1297 Changed |= split(*MI, PredUpd); 1298 Condsets.clear(); // The contents of Condsets are invalid here anyway. 1299 1300 // Do not update live ranges after splitting. Recalculation of live 1301 // intervals removes kill flags, which were preserved by splitting on 1302 // the source operands of condsets. These kill flags are needed by 1303 // predication, and after splitting they are difficult to recalculate 1304 // (because of predicated defs), so make sure they are left untouched. 1305 // Predication does not use live intervals. 1306 LLVM_DEBUG( 1307 LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent())); 1308 1309 // Traverse all blocks and collapse predicable instructions feeding 1310 // conditional transfers into predicated instructions. 1311 // Walk over all the instructions again, so we may catch pre-existing 1312 // cases that were not created in the previous step. 1313 for (auto &B : MF) 1314 Changed |= predicateInBlock(B, PredUpd); 1315 LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n", 1316 MF.getFunction().getParent())); 1317 1318 PredUpd.insert(CoalUpd.begin(), CoalUpd.end()); 1319 updateLiveness(PredUpd, true, true, true); 1320 1321 LLVM_DEBUG({ 1322 if (Changed) 1323 LIS->print(dbgs() << "After expand-condsets\n", 1324 MF.getFunction().getParent()); 1325 }); 1326 1327 return Changed; 1328 } 1329 1330 //===----------------------------------------------------------------------===// 1331 // Public Constructor Functions 1332 //===----------------------------------------------------------------------===// 1333 FunctionPass *llvm::createHexagonExpandCondsets() { 1334 return new HexagonExpandCondsets(); 1335 } 1336