1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/PostDominators.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/User.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <cstdint> 44 #include <iterator> 45 #include <map> 46 #include <set> 47 #include <utility> 48 #include <vector> 49 50 #define DEBUG_TYPE "commgep" 51 52 using namespace llvm; 53 54 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 55 cl::Hidden); 56 57 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 60 cl::Hidden); 61 62 namespace llvm { 63 64 void initializeHexagonCommonGEPPass(PassRegistry&); 65 66 } // end namespace llvm 67 68 namespace { 69 70 struct GepNode; 71 using NodeSet = std::set<GepNode *>; 72 using NodeToValueMap = std::map<GepNode *, Value *>; 73 using NodeVect = std::vector<GepNode *>; 74 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 75 using UseSet = SetVector<Use *>; 76 using NodeToUsesMap = std::map<GepNode *, UseSet>; 77 78 // Numbering map for gep nodes. Used to keep track of ordering for 79 // gep nodes. 80 struct NodeOrdering { 81 NodeOrdering() = default; 82 83 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 84 void clear() { Map.clear(); } 85 86 bool operator()(const GepNode *N1, const GepNode *N2) const { 87 auto F1 = Map.find(N1), F2 = Map.find(N2); 88 assert(F1 != Map.end() && F2 != Map.end()); 89 return F1->second < F2->second; 90 } 91 92 private: 93 std::map<const GepNode *, unsigned> Map; 94 unsigned LastNum = 0; 95 }; 96 97 class HexagonCommonGEP : public FunctionPass { 98 public: 99 static char ID; 100 101 HexagonCommonGEP() : FunctionPass(ID) { 102 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 103 } 104 105 bool runOnFunction(Function &F) override; 106 StringRef getPassName() const override { return "Hexagon Common GEP"; } 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addPreserved<DominatorTreeWrapperPass>(); 111 AU.addRequired<PostDominatorTreeWrapperPass>(); 112 AU.addPreserved<PostDominatorTreeWrapperPass>(); 113 AU.addRequired<LoopInfoWrapperPass>(); 114 AU.addPreserved<LoopInfoWrapperPass>(); 115 FunctionPass::getAnalysisUsage(AU); 116 } 117 118 private: 119 using ValueToNodeMap = std::map<Value *, GepNode *>; 120 using ValueVect = std::vector<Value *>; 121 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 122 123 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 124 bool isHandledGepForm(GetElementPtrInst *GepI); 125 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 126 void collect(); 127 void common(); 128 129 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 130 NodeToValueMap &Loc); 131 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 132 NodeToValueMap &Loc); 133 bool isInvariantIn(Value *Val, Loop *L); 134 bool isInvariantIn(GepNode *Node, Loop *L); 135 bool isInMainPath(BasicBlock *B, Loop *L); 136 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 137 NodeToValueMap &Loc); 138 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 139 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 140 NodeToValueMap &Loc); 141 void computeNodePlacement(NodeToValueMap &Loc); 142 143 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 144 BasicBlock *LocB); 145 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 146 NodeChildrenMap &NCM); 147 void materialize(NodeToValueMap &Loc); 148 149 void removeDeadCode(); 150 151 NodeVect Nodes; 152 NodeToUsesMap Uses; 153 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 154 SpecificBumpPtrAllocator<GepNode> *Mem; 155 LLVMContext *Ctx; 156 LoopInfo *LI; 157 DominatorTree *DT; 158 PostDominatorTree *PDT; 159 Function *Fn; 160 }; 161 162 } // end anonymous namespace 163 164 char HexagonCommonGEP::ID = 0; 165 166 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 167 false, false) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 171 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 172 false, false) 173 174 namespace { 175 176 struct GepNode { 177 enum { 178 None = 0, 179 Root = 0x01, 180 Internal = 0x02, 181 Used = 0x04, 182 InBounds = 0x08, 183 Pointer = 0x10, // See note below. 184 }; 185 // Note: GEP indices generally traverse nested types, and so a GepNode 186 // (representing a single index) can be associated with some composite 187 // type. The exception is the GEP input, which is a pointer, and not 188 // a composite type (at least not in the sense of having sub-types). 189 // Also, the corresponding index plays a different role as well: it is 190 // simply added to the input pointer. Since pointer types are becoming 191 // opaque (i.e. are no longer going to include the pointee type), the 192 // two pieces of information (1) the fact that it's a pointer, and 193 // (2) the pointee type, need to be stored separately. The pointee type 194 // will be stored in the PTy member, while the fact that the node 195 // operates on a pointer will be reflected by the flag "Pointer". 196 197 uint32_t Flags = 0; 198 union { 199 GepNode *Parent; 200 Value *BaseVal; 201 }; 202 Value *Idx = nullptr; 203 Type *PTy = nullptr; // Type indexed by this node. For pointer nodes 204 // this is the "pointee" type, and indexing a 205 // pointer does not change the type. 206 207 GepNode() : Parent(nullptr) {} 208 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 209 if (Flags & Root) 210 BaseVal = N->BaseVal; 211 else 212 Parent = N->Parent; 213 } 214 215 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 216 }; 217 218 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 219 OS << "{ {"; 220 bool Comma = false; 221 if (GN.Flags & GepNode::Root) { 222 OS << "root"; 223 Comma = true; 224 } 225 if (GN.Flags & GepNode::Internal) { 226 if (Comma) 227 OS << ','; 228 OS << "internal"; 229 Comma = true; 230 } 231 if (GN.Flags & GepNode::Used) { 232 if (Comma) 233 OS << ','; 234 OS << "used"; 235 } 236 if (GN.Flags & GepNode::InBounds) { 237 if (Comma) 238 OS << ','; 239 OS << "inbounds"; 240 } 241 if (GN.Flags & GepNode::Pointer) { 242 if (Comma) 243 OS << ','; 244 OS << "pointer"; 245 } 246 OS << "} "; 247 if (GN.Flags & GepNode::Root) 248 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 249 else 250 OS << "Parent:" << GN.Parent; 251 252 OS << " Idx:"; 253 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 254 OS << CI->getValue().getSExtValue(); 255 else if (GN.Idx->hasName()) 256 OS << GN.Idx->getName(); 257 else 258 OS << "<anon> =" << *GN.Idx; 259 260 OS << " PTy:"; 261 if (GN.PTy->isStructTy()) { 262 StructType *STy = cast<StructType>(GN.PTy); 263 if (!STy->isLiteral()) 264 OS << GN.PTy->getStructName(); 265 else 266 OS << "<anon-struct>:" << *STy; 267 } 268 else 269 OS << *GN.PTy; 270 OS << " }"; 271 return OS; 272 } 273 274 template <typename NodeContainer> 275 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 276 using const_iterator = typename NodeContainer::const_iterator; 277 278 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 279 OS << *I << ' ' << **I << '\n'; 280 } 281 282 raw_ostream &operator<< (raw_ostream &OS, 283 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 284 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 285 dump_node_container(OS, S); 286 return OS; 287 } 288 289 raw_ostream &operator<< (raw_ostream &OS, 290 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 291 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 292 for (const auto &I : M) { 293 const UseSet &Us = I.second; 294 OS << I.first << " -> #" << Us.size() << '{'; 295 for (const Use *U : Us) { 296 User *R = U->getUser(); 297 if (R->hasName()) 298 OS << ' ' << R->getName(); 299 else 300 OS << " <?>(" << *R << ')'; 301 } 302 OS << " }\n"; 303 } 304 return OS; 305 } 306 307 struct in_set { 308 in_set(const NodeSet &S) : NS(S) {} 309 310 bool operator() (GepNode *N) const { 311 return NS.find(N) != NS.end(); 312 } 313 314 private: 315 const NodeSet &NS; 316 }; 317 318 } // end anonymous namespace 319 320 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 321 return A.Allocate(); 322 } 323 324 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 325 ValueVect &Order) { 326 // Compute block ordering for a typical DT-based traversal of the flow 327 // graph: "before visiting a block, all of its dominators must have been 328 // visited". 329 330 Order.push_back(Root); 331 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 332 getBlockTraversalOrder(DTN->getBlock(), Order); 333 } 334 335 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 336 // No vector GEPs. 337 if (!GepI->getType()->isPointerTy()) 338 return false; 339 // No GEPs without any indices. (Is this possible?) 340 if (GepI->idx_begin() == GepI->idx_end()) 341 return false; 342 return true; 343 } 344 345 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 346 ValueToNodeMap &NM) { 347 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 348 GepNode *N = new (*Mem) GepNode; 349 Value *PtrOp = GepI->getPointerOperand(); 350 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 351 ValueToNodeMap::iterator F = NM.find(PtrOp); 352 if (F == NM.end()) { 353 N->BaseVal = PtrOp; 354 N->Flags |= GepNode::Root | InBounds; 355 } else { 356 // If PtrOp was a GEP instruction, it must have already been processed. 357 // The ValueToNodeMap entry for it is the last gep node in the generated 358 // chain. Link to it here. 359 N->Parent = F->second; 360 } 361 N->PTy = GepI->getSourceElementType(); 362 N->Flags |= GepNode::Pointer; 363 N->Idx = *GepI->idx_begin(); 364 365 // Collect the list of users of this GEP instruction. Will add it to the 366 // last node created for it. 367 UseSet Us; 368 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 369 UI != UE; ++UI) { 370 // Check if this gep is used by anything other than other geps that 371 // we will process. 372 if (isa<GetElementPtrInst>(*UI)) { 373 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 374 if (isHandledGepForm(UserG)) 375 continue; 376 } 377 Us.insert(&UI.getUse()); 378 } 379 Nodes.push_back(N); 380 NodeOrder.insert(N); 381 382 // Skip the first index operand, since it was already handled above. This 383 // dereferences the pointer operand. 384 GepNode *PN = N; 385 Type *PtrTy = GepI->getSourceElementType(); 386 for (Use &U : llvm::drop_begin(GepI->indices())) { 387 Value *Op = U; 388 GepNode *Nx = new (*Mem) GepNode; 389 Nx->Parent = PN; // Link Nx to the previous node. 390 Nx->Flags |= GepNode::Internal | InBounds; 391 Nx->PTy = PtrTy; 392 Nx->Idx = Op; 393 Nodes.push_back(Nx); 394 NodeOrder.insert(Nx); 395 PN = Nx; 396 397 PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op); 398 } 399 400 // After last node has been created, update the use information. 401 if (!Us.empty()) { 402 PN->Flags |= GepNode::Used; 403 Uses[PN].insert(Us.begin(), Us.end()); 404 } 405 406 // Link the last node with the originating GEP instruction. This is to 407 // help with linking chained GEP instructions. 408 NM.insert(std::make_pair(GepI, PN)); 409 } 410 411 void HexagonCommonGEP::collect() { 412 // Establish depth-first traversal order of the dominator tree. 413 ValueVect BO; 414 getBlockTraversalOrder(&Fn->front(), BO); 415 416 // The creation of gep nodes requires DT-traversal. When processing a GEP 417 // instruction that uses another GEP instruction as the base pointer, the 418 // gep node for the base pointer should already exist. 419 ValueToNodeMap NM; 420 for (Value *I : BO) { 421 BasicBlock *B = cast<BasicBlock>(I); 422 for (Instruction &J : *B) 423 if (auto *GepI = dyn_cast<GetElementPtrInst>(&J)) 424 if (isHandledGepForm(GepI)) 425 processGepInst(GepI, NM); 426 } 427 428 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 429 } 430 431 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 432 NodeVect &Roots) { 433 for (GepNode *N : Nodes) { 434 if (N->Flags & GepNode::Root) { 435 Roots.push_back(N); 436 continue; 437 } 438 GepNode *PN = N->Parent; 439 NCM[PN].push_back(N); 440 } 441 } 442 443 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 444 NodeSet &Nodes) { 445 NodeVect Work; 446 Work.push_back(Root); 447 Nodes.insert(Root); 448 449 while (!Work.empty()) { 450 NodeVect::iterator First = Work.begin(); 451 GepNode *N = *First; 452 Work.erase(First); 453 NodeChildrenMap::iterator CF = NCM.find(N); 454 if (CF != NCM.end()) { 455 llvm::append_range(Work, CF->second); 456 Nodes.insert(CF->second.begin(), CF->second.end()); 457 } 458 } 459 } 460 461 namespace { 462 463 using NodeSymRel = std::set<NodeSet>; 464 using NodePair = std::pair<GepNode *, GepNode *>; 465 using NodePairSet = std::set<NodePair>; 466 467 } // end anonymous namespace 468 469 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 470 for (const NodeSet &S : Rel) 471 if (S.count(N)) 472 return &S; 473 return nullptr; 474 } 475 476 // Create an ordered pair of GepNode pointers. The pair will be used in 477 // determining equality. The only purpose of the ordering is to eliminate 478 // duplication due to the commutativity of equality/non-equality. 479 static NodePair node_pair(GepNode *N1, GepNode *N2) { 480 uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); 481 uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); 482 if (P1 <= P2) 483 return std::make_pair(N1, N2); 484 return std::make_pair(N2, N1); 485 } 486 487 static unsigned node_hash(GepNode *N) { 488 // Include everything except flags and parent. 489 FoldingSetNodeID ID; 490 ID.AddPointer(N->Idx); 491 ID.AddPointer(N->PTy); 492 return ID.ComputeHash(); 493 } 494 495 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 496 NodePairSet &Ne) { 497 // Don't cache the result for nodes with different hashes. The hash 498 // comparison is fast enough. 499 if (node_hash(N1) != node_hash(N2)) 500 return false; 501 502 NodePair NP = node_pair(N1, N2); 503 NodePairSet::iterator FEq = Eq.find(NP); 504 if (FEq != Eq.end()) 505 return true; 506 NodePairSet::iterator FNe = Ne.find(NP); 507 if (FNe != Ne.end()) 508 return false; 509 // Not previously compared. 510 bool Root1 = N1->Flags & GepNode::Root; 511 uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; 512 bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); 513 NodePair P = node_pair(N1, N2); 514 // If the root/pointer flags have different values, the nodes are 515 // different. 516 // If both nodes are root nodes, but their base pointers differ, 517 // they are different. 518 if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { 519 Ne.insert(P); 520 return false; 521 } 522 // Here the root/pointer flags are identical, and for root nodes the 523 // base pointers are equal, so the root nodes are equal. 524 // For non-root nodes, compare their parent nodes. 525 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 526 Eq.insert(P); 527 return true; 528 } 529 return false; 530 } 531 532 void HexagonCommonGEP::common() { 533 // The essence of this commoning is finding gep nodes that are equal. 534 // To do this we need to compare all pairs of nodes. To save time, 535 // first, partition the set of all nodes into sets of potentially equal 536 // nodes, and then compare pairs from within each partition. 537 using NodeSetMap = std::map<unsigned, NodeSet>; 538 NodeSetMap MaybeEq; 539 540 for (GepNode *N : Nodes) { 541 unsigned H = node_hash(N); 542 MaybeEq[H].insert(N); 543 } 544 545 // Compute the equivalence relation for the gep nodes. Use two caches, 546 // one for equality and the other for non-equality. 547 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 548 NodePairSet Eq, Ne; // Caches. 549 for (auto &I : MaybeEq) { 550 NodeSet &S = I.second; 551 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 552 GepNode *N = *NI; 553 // If node already has a class, then the class must have been created 554 // in a prior iteration of this loop. Since equality is transitive, 555 // nothing more will be added to that class, so skip it. 556 if (node_class(N, EqRel)) 557 continue; 558 559 // Create a new class candidate now. 560 NodeSet C; 561 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 562 if (node_eq(N, *NJ, Eq, Ne)) 563 C.insert(*NJ); 564 // If Tmp is empty, N would be the only element in it. Don't bother 565 // creating a class for it then. 566 if (!C.empty()) { 567 C.insert(N); // Finalize the set before adding it to the relation. 568 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 569 (void)Ins; 570 assert(Ins.second && "Cannot add a class"); 571 } 572 } 573 } 574 575 LLVM_DEBUG({ 576 dbgs() << "Gep node equality:\n"; 577 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 578 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 579 580 dbgs() << "Gep equivalence classes:\n"; 581 for (const NodeSet &S : EqRel) { 582 dbgs() << '{'; 583 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 584 if (J != S.begin()) 585 dbgs() << ','; 586 dbgs() << ' ' << *J; 587 } 588 dbgs() << " }\n"; 589 } 590 }); 591 592 // Create a projection from a NodeSet to the minimal element in it. 593 using ProjMap = std::map<const NodeSet *, GepNode *>; 594 ProjMap PM; 595 for (const NodeSet &S : EqRel) { 596 GepNode *Min = *llvm::min_element(S, NodeOrder); 597 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 598 (void)Ins; 599 assert(Ins.second && "Cannot add minimal element"); 600 601 // Update the min element's flags, and user list. 602 uint32_t Flags = 0; 603 UseSet &MinUs = Uses[Min]; 604 for (GepNode *N : S) { 605 uint32_t NF = N->Flags; 606 // If N is used, append all original values of N to the list of 607 // original values of Min. 608 if (NF & GepNode::Used) 609 MinUs.insert(Uses[N].begin(), Uses[N].end()); 610 Flags |= NF; 611 } 612 if (MinUs.empty()) 613 Uses.erase(Min); 614 615 // The collected flags should include all the flags from the min element. 616 assert((Min->Flags & Flags) == Min->Flags); 617 Min->Flags = Flags; 618 } 619 620 // Commoning: for each non-root gep node, replace "Parent" with the 621 // selected (minimum) node from the corresponding equivalence class. 622 // If a given parent does not have an equivalence class, leave it 623 // unchanged (it means that it's the only element in its class). 624 for (GepNode *N : Nodes) { 625 if (N->Flags & GepNode::Root) 626 continue; 627 const NodeSet *PC = node_class(N->Parent, EqRel); 628 if (!PC) 629 continue; 630 ProjMap::iterator F = PM.find(PC); 631 if (F == PM.end()) 632 continue; 633 // Found a replacement, use it. 634 GepNode *Rep = F->second; 635 N->Parent = Rep; 636 } 637 638 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 639 640 // Finally, erase the nodes that are no longer used. 641 NodeSet Erase; 642 for (GepNode *N : Nodes) { 643 const NodeSet *PC = node_class(N, EqRel); 644 if (!PC) 645 continue; 646 ProjMap::iterator F = PM.find(PC); 647 if (F == PM.end()) 648 continue; 649 if (N == F->second) 650 continue; 651 // Node for removal. 652 Erase.insert(N); 653 } 654 erase_if(Nodes, in_set(Erase)); 655 656 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 657 } 658 659 template <typename T> 660 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 661 LLVM_DEBUG({ 662 dbgs() << "NCD of {"; 663 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 664 ++I) { 665 if (!*I) 666 continue; 667 BasicBlock *B = cast<BasicBlock>(*I); 668 dbgs() << ' ' << B->getName(); 669 } 670 dbgs() << " }\n"; 671 }); 672 673 // Allow null basic blocks in Blocks. In such cases, return nullptr. 674 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 675 if (I == E || !*I) 676 return nullptr; 677 BasicBlock *Dom = cast<BasicBlock>(*I); 678 while (++I != E) { 679 BasicBlock *B = cast_or_null<BasicBlock>(*I); 680 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 681 if (!Dom) 682 return nullptr; 683 } 684 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 685 return Dom; 686 } 687 688 template <typename T> 689 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 690 // If two blocks, A and B, dominate a block C, then A dominates B, 691 // or B dominates A. 692 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 693 // Find the first non-null block. 694 while (I != E && !*I) 695 ++I; 696 if (I == E) 697 return DT->getRoot(); 698 BasicBlock *DomB = cast<BasicBlock>(*I); 699 while (++I != E) { 700 if (!*I) 701 continue; 702 BasicBlock *B = cast<BasicBlock>(*I); 703 if (DT->dominates(B, DomB)) 704 continue; 705 if (!DT->dominates(DomB, B)) 706 return nullptr; 707 DomB = B; 708 } 709 return DomB; 710 } 711 712 // Find the first use in B of any value from Values. If no such use, 713 // return B->end(). 714 template <typename T> 715 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 716 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 717 718 using iterator = typename T::iterator; 719 720 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 721 Value *V = *I; 722 // If V is used in a PHI node, the use belongs to the incoming block, 723 // not the block with the PHI node. In the incoming block, the use 724 // would be considered as being at the end of it, so it cannot 725 // influence the position of the first use (which is assumed to be 726 // at the end to start with). 727 if (isa<PHINode>(V)) 728 continue; 729 if (!isa<Instruction>(V)) 730 continue; 731 Instruction *In = cast<Instruction>(V); 732 if (In->getParent() != B) 733 continue; 734 BasicBlock::iterator It = In->getIterator(); 735 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 736 FirstUse = It; 737 } 738 return FirstUse; 739 } 740 741 static bool is_empty(const BasicBlock *B) { 742 return B->empty() || (&*B->begin() == B->getTerminator()); 743 } 744 745 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 746 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 747 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 748 // Recalculate the placement for Node, assuming that the locations of 749 // its children in Loc are valid. 750 // Return nullptr if there is no valid placement for Node (for example, it 751 // uses an index value that is not available at the location required 752 // to dominate all children, etc.). 753 754 // Find the nearest common dominator for: 755 // - all users, if the node is used, and 756 // - all children. 757 ValueVect Bs; 758 if (Node->Flags & GepNode::Used) { 759 // Append all blocks with uses of the original values to the 760 // block vector Bs. 761 NodeToUsesMap::iterator UF = Uses.find(Node); 762 assert(UF != Uses.end() && "Used node with no use information"); 763 UseSet &Us = UF->second; 764 for (Use *U : Us) { 765 User *R = U->getUser(); 766 if (!isa<Instruction>(R)) 767 continue; 768 BasicBlock *PB = isa<PHINode>(R) 769 ? cast<PHINode>(R)->getIncomingBlock(*U) 770 : cast<Instruction>(R)->getParent(); 771 Bs.push_back(PB); 772 } 773 } 774 // Append the location of each child. 775 NodeChildrenMap::iterator CF = NCM.find(Node); 776 if (CF != NCM.end()) { 777 NodeVect &Cs = CF->second; 778 for (GepNode *CN : Cs) { 779 NodeToValueMap::iterator LF = Loc.find(CN); 780 // If the child is only used in GEP instructions (i.e. is not used in 781 // non-GEP instructions), the nearest dominator computed for it may 782 // have been null. In such case it won't have a location available. 783 if (LF == Loc.end()) 784 continue; 785 Bs.push_back(LF->second); 786 } 787 } 788 789 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 790 if (!DomB) 791 return nullptr; 792 // Check if the index used by Node dominates the computed dominator. 793 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 794 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 795 return nullptr; 796 797 // Avoid putting nodes into empty blocks. 798 while (is_empty(DomB)) { 799 DomTreeNode *N = (*DT)[DomB]->getIDom(); 800 if (!N) 801 break; 802 DomB = N->getBlock(); 803 } 804 805 // Otherwise, DomB is fine. Update the location map. 806 Loc[Node] = DomB; 807 return DomB; 808 } 809 810 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 811 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 812 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 813 // Recalculate the placement of Node, after recursively recalculating the 814 // placements of all its children. 815 NodeChildrenMap::iterator CF = NCM.find(Node); 816 if (CF != NCM.end()) { 817 NodeVect &Cs = CF->second; 818 for (GepNode *C : Cs) 819 recalculatePlacementRec(C, NCM, Loc); 820 } 821 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 822 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 823 return LB; 824 } 825 826 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 827 if (isa<Constant>(Val) || isa<Argument>(Val)) 828 return true; 829 Instruction *In = dyn_cast<Instruction>(Val); 830 if (!In) 831 return false; 832 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 833 return DT->properlyDominates(DefB, HdrB); 834 } 835 836 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 837 if (Node->Flags & GepNode::Root) 838 if (!isInvariantIn(Node->BaseVal, L)) 839 return false; 840 return isInvariantIn(Node->Idx, L); 841 } 842 843 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 844 BasicBlock *HB = L->getHeader(); 845 BasicBlock *LB = L->getLoopLatch(); 846 // B must post-dominate the loop header or dominate the loop latch. 847 if (PDT->dominates(B, HB)) 848 return true; 849 if (LB && DT->dominates(B, LB)) 850 return true; 851 return false; 852 } 853 854 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 855 if (BasicBlock *PH = L->getLoopPreheader()) 856 return PH; 857 if (!OptSpeculate) 858 return nullptr; 859 DomTreeNode *DN = DT->getNode(L->getHeader()); 860 if (!DN) 861 return nullptr; 862 return DN->getIDom()->getBlock(); 863 } 864 865 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 866 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 867 // Find the "topmost" location for Node: it must be dominated by both, 868 // its parent (or the BaseVal, if it's a root node), and by the index 869 // value. 870 ValueVect Bs; 871 if (Node->Flags & GepNode::Root) { 872 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 873 Bs.push_back(PIn->getParent()); 874 } else { 875 Bs.push_back(Loc[Node->Parent]); 876 } 877 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 878 Bs.push_back(IIn->getParent()); 879 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 880 881 // Traverse the loop nest upwards until we find a loop in which Node 882 // is no longer invariant, or until we get to the upper limit of Node's 883 // placement. The traversal will also stop when a suitable "preheader" 884 // cannot be found for a given loop. The "preheader" may actually be 885 // a regular block outside of the loop (i.e. not guarded), in which case 886 // the Node will be speculated. 887 // For nodes that are not in the main path of the containing loop (i.e. 888 // are not executed in each iteration), do not move them out of the loop. 889 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 890 if (LocB) { 891 Loop *Lp = LI->getLoopFor(LocB); 892 while (Lp) { 893 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 894 break; 895 BasicBlock *NewLoc = preheader(DT, Lp); 896 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 897 break; 898 Lp = Lp->getParentLoop(); 899 LocB = NewLoc; 900 } 901 } 902 Loc[Node] = LocB; 903 904 // Recursively compute the locations of all children nodes. 905 NodeChildrenMap::iterator CF = NCM.find(Node); 906 if (CF != NCM.end()) { 907 NodeVect &Cs = CF->second; 908 for (GepNode *C : Cs) 909 adjustForInvariance(C, NCM, Loc); 910 } 911 return LocB; 912 } 913 914 namespace { 915 916 struct LocationAsBlock { 917 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 918 919 const NodeToValueMap ⤅ 920 }; 921 922 raw_ostream &operator<< (raw_ostream &OS, 923 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 924 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 925 for (const auto &I : Loc.Map) { 926 OS << I.first << " -> "; 927 if (BasicBlock *B = cast_or_null<BasicBlock>(I.second)) 928 OS << B->getName() << '(' << B << ')'; 929 else 930 OS << "<null-block>"; 931 OS << '\n'; 932 } 933 return OS; 934 } 935 936 inline bool is_constant(GepNode *N) { 937 return isa<ConstantInt>(N->Idx); 938 } 939 940 } // end anonymous namespace 941 942 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 943 NodeToValueMap &Loc) { 944 User *R = U->getUser(); 945 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 946 << '\n'); 947 BasicBlock *PB = cast<Instruction>(R)->getParent(); 948 949 GepNode *N = Node; 950 GepNode *C = nullptr, *NewNode = nullptr; 951 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 952 // XXX if (single-use) dont-replicate; 953 GepNode *NewN = new (*Mem) GepNode(N); 954 Nodes.push_back(NewN); 955 Loc[NewN] = PB; 956 957 if (N == Node) 958 NewNode = NewN; 959 NewN->Flags &= ~GepNode::Used; 960 if (C) 961 C->Parent = NewN; 962 C = NewN; 963 N = N->Parent; 964 } 965 if (!NewNode) 966 return; 967 968 // Move over all uses that share the same user as U from Node to NewNode. 969 NodeToUsesMap::iterator UF = Uses.find(Node); 970 assert(UF != Uses.end()); 971 UseSet &Us = UF->second; 972 UseSet NewUs; 973 for (Use *U : Us) { 974 if (U->getUser() == R) 975 NewUs.insert(U); 976 } 977 for (Use *U : NewUs) 978 Us.remove(U); // erase takes an iterator. 979 980 if (Us.empty()) { 981 Node->Flags &= ~GepNode::Used; 982 Uses.erase(UF); 983 } 984 985 // Should at least have U in NewUs. 986 NewNode->Flags |= GepNode::Used; 987 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 988 assert(!NewUs.empty()); 989 Uses[NewNode] = NewUs; 990 } 991 992 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 993 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 994 // First approximation: extract all chains. 995 NodeSet Ns; 996 nodes_for_root(Node, NCM, Ns); 997 998 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 999 // Collect all used nodes together with the uses from loads and stores, 1000 // where the GEP node could be folded into the load/store instruction. 1001 NodeToUsesMap FNs; // Foldable nodes. 1002 for (GepNode *N : Ns) { 1003 if (!(N->Flags & GepNode::Used)) 1004 continue; 1005 NodeToUsesMap::iterator UF = Uses.find(N); 1006 assert(UF != Uses.end()); 1007 UseSet &Us = UF->second; 1008 // Loads/stores that use the node N. 1009 UseSet LSs; 1010 for (Use *U : Us) { 1011 User *R = U->getUser(); 1012 // We're interested in uses that provide the address. It can happen 1013 // that the value may also be provided via GEP, but we won't handle 1014 // those cases here for now. 1015 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1016 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1017 if (&Ld->getOperandUse(PtrX) == U) 1018 LSs.insert(U); 1019 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1020 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1021 if (&St->getOperandUse(PtrX) == U) 1022 LSs.insert(U); 1023 } 1024 } 1025 // Even if the total use count is 1, separating the chain may still be 1026 // beneficial, since the constant chain may be longer than the GEP alone 1027 // would be (e.g. if the parent node has a constant index and also has 1028 // other children). 1029 if (!LSs.empty()) 1030 FNs.insert(std::make_pair(N, LSs)); 1031 } 1032 1033 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1034 1035 for (auto &FN : FNs) { 1036 GepNode *N = FN.first; 1037 UseSet &Us = FN.second; 1038 for (Use *U : Us) 1039 separateChainForNode(N, U, Loc); 1040 } 1041 } 1042 1043 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1044 // Compute the inverse of the Node.Parent links. Also, collect the set 1045 // of root nodes. 1046 NodeChildrenMap NCM; 1047 NodeVect Roots; 1048 invert_find_roots(Nodes, NCM, Roots); 1049 1050 // Compute the initial placement determined by the users' locations, and 1051 // the locations of the child nodes. 1052 for (GepNode *Root : Roots) 1053 recalculatePlacementRec(Root, NCM, Loc); 1054 1055 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1056 1057 if (OptEnableInv) { 1058 for (GepNode *Root : Roots) 1059 adjustForInvariance(Root, NCM, Loc); 1060 1061 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1062 << LocationAsBlock(Loc)); 1063 } 1064 if (OptEnableConst) { 1065 for (GepNode *Root : Roots) 1066 separateConstantChains(Root, NCM, Loc); 1067 } 1068 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1069 1070 // At the moment, there is no further refinement of the initial placement. 1071 // Such a refinement could include splitting the nodes if they are placed 1072 // too far from some of its users. 1073 1074 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1075 } 1076 1077 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1078 BasicBlock *LocB) { 1079 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1080 << " for nodes:\n" 1081 << NA); 1082 unsigned Num = NA.size(); 1083 GepNode *RN = NA[0]; 1084 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1085 1086 GetElementPtrInst *NewInst = nullptr; 1087 Value *Input = RN->BaseVal; 1088 Type *InpTy = RN->PTy; 1089 1090 unsigned Idx = 0; 1091 do { 1092 SmallVector<Value*, 4> IdxList; 1093 // If the type of the input of the first node is not a pointer, 1094 // we need to add an artificial i32 0 to the indices (because the 1095 // actual input in the IR will be a pointer). 1096 if (!(NA[Idx]->Flags & GepNode::Pointer)) { 1097 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1098 IdxList.push_back(ConstantInt::get(Int32Ty, 0)); 1099 } 1100 1101 // Keep adding indices from NA until we have to stop and generate 1102 // an "intermediate" GEP. 1103 while (++Idx <= Num) { 1104 GepNode *N = NA[Idx-1]; 1105 IdxList.push_back(N->Idx); 1106 if (Idx < Num) { 1107 // We have to stop if we reach a pointer. 1108 if (NA[Idx]->Flags & GepNode::Pointer) 1109 break; 1110 } 1111 } 1112 NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", At); 1113 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1114 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1115 if (Idx < Num) { 1116 Input = NewInst; 1117 InpTy = NA[Idx]->PTy; 1118 } 1119 } while (Idx <= Num); 1120 1121 return NewInst; 1122 } 1123 1124 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1125 NodeChildrenMap &NCM) { 1126 NodeVect Work; 1127 Work.push_back(Node); 1128 1129 while (!Work.empty()) { 1130 NodeVect::iterator First = Work.begin(); 1131 GepNode *N = *First; 1132 Work.erase(First); 1133 if (N->Flags & GepNode::Used) { 1134 NodeToUsesMap::iterator UF = Uses.find(N); 1135 assert(UF != Uses.end() && "No use information for used node"); 1136 UseSet &Us = UF->second; 1137 for (const auto &U : Us) 1138 Values.push_back(U->getUser()); 1139 } 1140 NodeChildrenMap::iterator CF = NCM.find(N); 1141 if (CF != NCM.end()) { 1142 NodeVect &Cs = CF->second; 1143 llvm::append_range(Work, Cs); 1144 } 1145 } 1146 } 1147 1148 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1149 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1150 NodeChildrenMap NCM; 1151 NodeVect Roots; 1152 // Compute the inversion again, since computing placement could alter 1153 // "parent" relation between nodes. 1154 invert_find_roots(Nodes, NCM, Roots); 1155 1156 while (!Roots.empty()) { 1157 NodeVect::iterator First = Roots.begin(); 1158 GepNode *Root = *First, *Last = *First; 1159 Roots.erase(First); 1160 1161 NodeVect NA; // Nodes to assemble. 1162 // Append to NA all child nodes up to (and including) the first child 1163 // that: 1164 // (1) has more than 1 child, or 1165 // (2) is used, or 1166 // (3) has a child located in a different block. 1167 bool LastUsed = false; 1168 unsigned LastCN = 0; 1169 // The location may be null if the computation failed (it can legitimately 1170 // happen for nodes created from dead GEPs). 1171 Value *LocV = Loc[Last]; 1172 if (!LocV) 1173 continue; 1174 BasicBlock *LastB = cast<BasicBlock>(LocV); 1175 do { 1176 NA.push_back(Last); 1177 LastUsed = (Last->Flags & GepNode::Used); 1178 if (LastUsed) 1179 break; 1180 NodeChildrenMap::iterator CF = NCM.find(Last); 1181 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1182 if (LastCN != 1) 1183 break; 1184 GepNode *Child = CF->second.front(); 1185 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1186 if (ChildB != nullptr && LastB != ChildB) 1187 break; 1188 Last = Child; 1189 } while (true); 1190 1191 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1192 if (LastUsed || LastCN > 0) { 1193 ValueVect Urs; 1194 getAllUsersForNode(Root, Urs, NCM); 1195 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1196 if (FirstUse != LastB->end()) 1197 InsertAt = FirstUse; 1198 } 1199 1200 // Generate a new instruction for NA. 1201 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1202 1203 // Convert all the children of Last node into roots, and append them 1204 // to the Roots list. 1205 if (LastCN > 0) { 1206 NodeVect &Cs = NCM[Last]; 1207 for (GepNode *CN : Cs) { 1208 CN->Flags &= ~GepNode::Internal; 1209 CN->Flags |= GepNode::Root; 1210 CN->BaseVal = NewInst; 1211 Roots.push_back(CN); 1212 } 1213 } 1214 1215 // Lastly, if the Last node was used, replace all uses with the new GEP. 1216 // The uses reference the original GEP values. 1217 if (LastUsed) { 1218 NodeToUsesMap::iterator UF = Uses.find(Last); 1219 assert(UF != Uses.end() && "No use information found"); 1220 UseSet &Us = UF->second; 1221 for (Use *U : Us) 1222 U->set(NewInst); 1223 } 1224 } 1225 } 1226 1227 void HexagonCommonGEP::removeDeadCode() { 1228 ValueVect BO; 1229 BO.push_back(&Fn->front()); 1230 1231 for (unsigned i = 0; i < BO.size(); ++i) { 1232 BasicBlock *B = cast<BasicBlock>(BO[i]); 1233 for (auto *DTN : children<DomTreeNode *>(DT->getNode(B))) 1234 BO.push_back(DTN->getBlock()); 1235 } 1236 1237 for (Value *V : llvm::reverse(BO)) { 1238 BasicBlock *B = cast<BasicBlock>(V); 1239 ValueVect Ins; 1240 for (Instruction &I : llvm::reverse(*B)) 1241 Ins.push_back(&I); 1242 for (Value *I : Ins) { 1243 Instruction *In = cast<Instruction>(I); 1244 if (isInstructionTriviallyDead(In)) 1245 In->eraseFromParent(); 1246 } 1247 } 1248 } 1249 1250 bool HexagonCommonGEP::runOnFunction(Function &F) { 1251 if (skipFunction(F)) 1252 return false; 1253 1254 // For now bail out on C++ exception handling. 1255 for (const BasicBlock &BB : F) 1256 for (const Instruction &I : BB) 1257 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1258 return false; 1259 1260 Fn = &F; 1261 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1262 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1263 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1264 Ctx = &F.getContext(); 1265 1266 Nodes.clear(); 1267 Uses.clear(); 1268 NodeOrder.clear(); 1269 1270 SpecificBumpPtrAllocator<GepNode> Allocator; 1271 Mem = &Allocator; 1272 1273 collect(); 1274 common(); 1275 1276 NodeToValueMap Loc; 1277 computeNodePlacement(Loc); 1278 materialize(Loc); 1279 removeDeadCode(); 1280 1281 #ifdef EXPENSIVE_CHECKS 1282 // Run this only when expensive checks are enabled. 1283 if (verifyFunction(F, &dbgs())) 1284 report_fatal_error("Broken function"); 1285 #endif 1286 return true; 1287 } 1288 1289 namespace llvm { 1290 1291 FunctionPass *createHexagonCommonGEP() { 1292 return new HexagonCommonGEP(); 1293 } 1294 1295 } // end namespace llvm 1296