1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "DirectXIRPasses/PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Bitcode/BitcodeCommon.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/Bitstream/BitCodes.h" 21 #include "llvm/Bitstream/BitstreamWriter.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/UseListOrder.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Object/IRSymtab.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/ModRef.h" 52 #include "llvm/Support/SHA1.h" 53 #include "llvm/TargetParser/Triple.h" 54 55 namespace llvm { 56 namespace dxil { 57 58 // Generates an enum to use as an index in the Abbrev array of Metadata record. 59 enum MetadataAbbrev : unsigned { 60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 61 #include "llvm/IR/Metadata.def" 62 LastPlusOne 63 }; 64 65 class DXILBitcodeWriter { 66 67 /// These are manifest constants used by the bitcode writer. They do not need 68 /// to be kept in sync with the reader, but need to be consistent within this 69 /// file. 70 enum { 71 // VALUE_SYMTAB_BLOCK abbrev id's. 72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 73 VST_ENTRY_7_ABBREV, 74 VST_ENTRY_6_ABBREV, 75 VST_BBENTRY_6_ABBREV, 76 77 // CONSTANTS_BLOCK abbrev id's. 78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 79 CONSTANTS_INTEGER_ABBREV, 80 CONSTANTS_CE_CAST_Abbrev, 81 CONSTANTS_NULL_Abbrev, 82 83 // FUNCTION_BLOCK abbrev id's. 84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 85 FUNCTION_INST_BINOP_ABBREV, 86 FUNCTION_INST_BINOP_FLAGS_ABBREV, 87 FUNCTION_INST_CAST_ABBREV, 88 FUNCTION_INST_RET_VOID_ABBREV, 89 FUNCTION_INST_RET_VAL_ABBREV, 90 FUNCTION_INST_UNREACHABLE_ABBREV, 91 FUNCTION_INST_GEP_ABBREV, 92 }; 93 94 // Cache some types 95 Type *I8Ty; 96 Type *I8PtrTy; 97 98 /// The stream created and owned by the client. 99 BitstreamWriter &Stream; 100 101 StringTableBuilder &StrtabBuilder; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 /// Saves the offset of the VSTOffset record that must eventually be 118 /// backpatched with the offset of the actual VST. 119 uint64_t VSTOffsetPlaceholder = 0; 120 121 /// Pointer to the buffer allocated by caller for bitcode writing. 122 const SmallVectorImpl<char> &Buffer; 123 124 /// The start bit of the identification block. 125 uint64_t BitcodeStartBit; 126 127 /// This maps values to their typed pointers 128 PointerTypeMap PointerMap; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 135 : I8Ty(Type::getInt8Ty(M.getContext())), 136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 138 BitcodeStartBit(Stream.GetCurrentBitNo()), 139 PointerMap(PointerTypeAnalysis::run(M)) { 140 GlobalValueId = VE.getValues().size(); 141 // Enumerate the typed pointers 142 for (auto El : PointerMap) 143 VE.EnumerateType(El.second); 144 } 145 146 /// Emit the current module to the bitstream. 147 void write(); 148 149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 151 StringRef Str, unsigned AbbrevToUse); 152 static void writeIdentificationBlock(BitstreamWriter &Stream); 153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 155 156 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 158 static unsigned getEncodedLinkage(const GlobalValue &GV); 159 static unsigned getEncodedVisibility(const GlobalValue &GV); 160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 162 static unsigned getEncodedCastOpcode(unsigned Opcode); 163 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 164 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 166 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 167 static uint64_t getOptimizationFlags(const Value *V); 168 169 private: 170 void writeModuleVersion(); 171 void writePerModuleGlobalValueSummary(); 172 173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 174 GlobalValueSummary *Summary, 175 unsigned ValueID, 176 unsigned FSCallsAbbrev, 177 unsigned FSCallsProfileAbbrev, 178 const Function &F); 179 void writeModuleLevelReferences(const GlobalVariable &V, 180 SmallVector<uint64_t, 64> &NameVals, 181 unsigned FSModRefsAbbrev, 182 unsigned FSModVTableRefsAbbrev); 183 184 void assignValueId(GlobalValue::GUID ValGUID) { 185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 186 } 187 188 unsigned getValueId(GlobalValue::GUID ValGUID) { 189 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 190 // Expect that any GUID value had a value Id assigned by an 191 // earlier call to assignValueId. 192 assert(VMI != GUIDToValueIdMap.end() && 193 "GUID does not have assigned value Id"); 194 return VMI->second; 195 } 196 197 // Helper to get the valueId for the type of value recorded in VI. 198 unsigned getValueId(ValueInfo VI) { 199 if (!VI.haveGVs() || !VI.getValue()) 200 return getValueId(VI.getGUID()); 201 return VE.getValueID(VI.getValue()); 202 } 203 204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 205 206 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 207 208 size_t addToStrtab(StringRef Str); 209 210 unsigned createDILocationAbbrev(); 211 unsigned createGenericDINodeAbbrev(); 212 213 void writeAttributeGroupTable(); 214 void writeAttributeTable(); 215 void writeTypeTable(); 216 void writeComdats(); 217 void writeValueSymbolTableForwardDecl(); 218 void writeModuleInfo(); 219 void writeValueAsMetadata(const ValueAsMetadata *MD, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned &Abbrev); 225 void writeGenericDINode(const GenericDINode *N, 226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 227 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 228 } 229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGenericSubrange(const DIGenericSubrange *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev) { 234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 235 } 236 void writeDIEnumerator(const DIEnumerator *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIStringType(const DIStringType *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 242 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 243 } 244 void writeDIDerivedType(const DIDerivedType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDICompositeType(const DICompositeType *N, 247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 248 void writeDISubroutineType(const DISubroutineType *N, 249 SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 252 unsigned Abbrev); 253 void writeDICompileUnit(const DICompileUnit *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDISubprogram(const DISubprogram *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlock(const DILexicalBlock *N, 258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 259 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 260 SmallVectorImpl<uint64_t> &Record, 261 unsigned Abbrev); 262 void writeDICommonBlock(const DICommonBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 265 } 266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev); 268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 269 unsigned Abbrev) { 270 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 271 } 272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 273 unsigned Abbrev) { 274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 275 } 276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev) { 278 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 279 } 280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev) { 282 // DIAssignID is experimental feature to track variable location in IR.. 283 // FIXME: translate DIAssignID to debug info DXIL supports. 284 // See https://github.com/llvm/llvm-project/issues/58989 285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); 286 } 287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 290 SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 293 SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 void writeDIGlobalVariable(const DIGlobalVariable *N, 296 SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDILocalVariable(const DILocalVariable *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev) { 302 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 303 } 304 void writeDIExpression(const DIExpression *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev) { 309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 310 } 311 void writeDIObjCProperty(const DIObjCProperty *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIImportedEntity(const DIImportedEntity *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 unsigned createNamedMetadataAbbrev(); 317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 318 unsigned createMetadataStringsAbbrev(); 319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 320 SmallVectorImpl<uint64_t> &Record); 321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 322 SmallVectorImpl<uint64_t> &Record, 323 std::vector<unsigned> *MDAbbrevs = nullptr, 324 std::vector<uint64_t> *IndexPos = nullptr); 325 void writeModuleMetadata(); 326 void writeFunctionMetadata(const Function &F); 327 void writeFunctionMetadataAttachment(const Function &F); 328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 329 const GlobalObject &GO); 330 void writeModuleMetadataKinds(); 331 void writeOperandBundleTags(); 332 void writeSyncScopeNames(); 333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 334 void writeModuleConstants(); 335 bool pushValueAndType(const Value *V, unsigned InstID, 336 SmallVectorImpl<unsigned> &Vals); 337 void writeOperandBundles(const CallBase &CB, unsigned InstID); 338 void pushValue(const Value *V, unsigned InstID, 339 SmallVectorImpl<unsigned> &Vals); 340 void pushValueSigned(const Value *V, unsigned InstID, 341 SmallVectorImpl<uint64_t> &Vals); 342 void writeInstruction(const Instruction &I, unsigned InstID, 343 SmallVectorImpl<unsigned> &Vals); 344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 345 void writeGlobalValueSymbolTable( 346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 347 void writeFunction(const Function &F); 348 void writeBlockInfo(); 349 350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 351 352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 353 354 unsigned getTypeID(Type *T, const Value *V = nullptr); 355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 356 /// 357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 358 /// GlobalObject, but in the bitcode writer we need the pointer element type. 359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 360 }; 361 362 } // namespace dxil 363 } // namespace llvm 364 365 using namespace llvm; 366 using namespace llvm::dxil; 367 368 //////////////////////////////////////////////////////////////////////////////// 369 /// Begin dxil::BitcodeWriter Implementation 370 //////////////////////////////////////////////////////////////////////////////// 371 372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 373 raw_fd_stream *FS) 374 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 375 // Emit the file header. 376 Stream->Emit((unsigned)'B', 8); 377 Stream->Emit((unsigned)'C', 8); 378 Stream->Emit(0x0, 4); 379 Stream->Emit(0xC, 4); 380 Stream->Emit(0xE, 4); 381 Stream->Emit(0xD, 4); 382 } 383 384 dxil::BitcodeWriter::~BitcodeWriter() { } 385 386 /// Write the specified module to the specified output stream. 387 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 388 SmallVector<char, 0> Buffer; 389 Buffer.reserve(256 * 1024); 390 391 // If this is darwin or another generic macho target, reserve space for the 392 // header. 393 Triple TT(M.getTargetTriple()); 394 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 395 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 396 397 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 398 Writer.writeModule(M); 399 400 // Write the generated bitstream to "Out". 401 if (!Buffer.empty()) 402 Out.write((char *)&Buffer.front(), Buffer.size()); 403 } 404 405 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 406 Stream->EnterSubblock(Block, 3); 407 408 auto Abbv = std::make_shared<BitCodeAbbrev>(); 409 Abbv->Add(BitCodeAbbrevOp(Record)); 410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 411 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 412 413 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 414 415 Stream->ExitBlock(); 416 } 417 418 void BitcodeWriter::writeModule(const Module &M) { 419 420 // The Mods vector is used by irsymtab::build, which requires non-const 421 // Modules in case it needs to materialize metadata. But the bitcode writer 422 // requires that the module is materialized, so we can cast to non-const here, 423 // after checking that it is in fact materialized. 424 assert(M.isMaterialized()); 425 Mods.push_back(const_cast<Module *>(&M)); 426 427 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 428 ModuleWriter.write(); 429 } 430 431 //////////////////////////////////////////////////////////////////////////////// 432 /// Begin dxil::BitcodeWriterBase Implementation 433 //////////////////////////////////////////////////////////////////////////////// 434 435 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 436 switch (Opcode) { 437 default: 438 llvm_unreachable("Unknown cast instruction!"); 439 case Instruction::Trunc: 440 return bitc::CAST_TRUNC; 441 case Instruction::ZExt: 442 return bitc::CAST_ZEXT; 443 case Instruction::SExt: 444 return bitc::CAST_SEXT; 445 case Instruction::FPToUI: 446 return bitc::CAST_FPTOUI; 447 case Instruction::FPToSI: 448 return bitc::CAST_FPTOSI; 449 case Instruction::UIToFP: 450 return bitc::CAST_UITOFP; 451 case Instruction::SIToFP: 452 return bitc::CAST_SITOFP; 453 case Instruction::FPTrunc: 454 return bitc::CAST_FPTRUNC; 455 case Instruction::FPExt: 456 return bitc::CAST_FPEXT; 457 case Instruction::PtrToInt: 458 return bitc::CAST_PTRTOINT; 459 case Instruction::IntToPtr: 460 return bitc::CAST_INTTOPTR; 461 case Instruction::BitCast: 462 return bitc::CAST_BITCAST; 463 case Instruction::AddrSpaceCast: 464 return bitc::CAST_ADDRSPACECAST; 465 } 466 } 467 468 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 llvm_unreachable("Unknown binary instruction!"); 472 case Instruction::FNeg: 473 return bitc::UNOP_FNEG; 474 } 475 } 476 477 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 478 switch (Opcode) { 479 default: 480 llvm_unreachable("Unknown binary instruction!"); 481 case Instruction::Add: 482 case Instruction::FAdd: 483 return bitc::BINOP_ADD; 484 case Instruction::Sub: 485 case Instruction::FSub: 486 return bitc::BINOP_SUB; 487 case Instruction::Mul: 488 case Instruction::FMul: 489 return bitc::BINOP_MUL; 490 case Instruction::UDiv: 491 return bitc::BINOP_UDIV; 492 case Instruction::FDiv: 493 case Instruction::SDiv: 494 return bitc::BINOP_SDIV; 495 case Instruction::URem: 496 return bitc::BINOP_UREM; 497 case Instruction::FRem: 498 case Instruction::SRem: 499 return bitc::BINOP_SREM; 500 case Instruction::Shl: 501 return bitc::BINOP_SHL; 502 case Instruction::LShr: 503 return bitc::BINOP_LSHR; 504 case Instruction::AShr: 505 return bitc::BINOP_ASHR; 506 case Instruction::And: 507 return bitc::BINOP_AND; 508 case Instruction::Or: 509 return bitc::BINOP_OR; 510 case Instruction::Xor: 511 return bitc::BINOP_XOR; 512 } 513 } 514 515 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 516 if (!T->isPointerTy() && 517 // For Constant, always check PointerMap to make sure OpaquePointer in 518 // things like constant struct/array works. 519 (!V || !isa<Constant>(V))) 520 return VE.getTypeID(T); 521 auto It = PointerMap.find(V); 522 if (It != PointerMap.end()) 523 return VE.getTypeID(It->second); 524 // For Constant, return T when cannot find in PointerMap. 525 // FIXME: support ConstantPointerNull which could map to more than one 526 // TypedPointerType. 527 // See https://github.com/llvm/llvm-project/issues/57942. 528 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 529 return VE.getTypeID(T); 530 return VE.getTypeID(I8PtrTy); 531 } 532 533 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 534 const GlobalObject *G) { 535 auto It = PointerMap.find(G); 536 if (It != PointerMap.end()) { 537 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 538 return VE.getTypeID(PtrTy->getElementType()); 539 } 540 return VE.getTypeID(T); 541 } 542 543 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 544 switch (Op) { 545 default: 546 llvm_unreachable("Unknown RMW operation!"); 547 case AtomicRMWInst::Xchg: 548 return bitc::RMW_XCHG; 549 case AtomicRMWInst::Add: 550 return bitc::RMW_ADD; 551 case AtomicRMWInst::Sub: 552 return bitc::RMW_SUB; 553 case AtomicRMWInst::And: 554 return bitc::RMW_AND; 555 case AtomicRMWInst::Nand: 556 return bitc::RMW_NAND; 557 case AtomicRMWInst::Or: 558 return bitc::RMW_OR; 559 case AtomicRMWInst::Xor: 560 return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: 562 return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: 564 return bitc::RMW_MIN; 565 case AtomicRMWInst::UMax: 566 return bitc::RMW_UMAX; 567 case AtomicRMWInst::UMin: 568 return bitc::RMW_UMIN; 569 case AtomicRMWInst::FAdd: 570 return bitc::RMW_FADD; 571 case AtomicRMWInst::FSub: 572 return bitc::RMW_FSUB; 573 case AtomicRMWInst::FMax: 574 return bitc::RMW_FMAX; 575 case AtomicRMWInst::FMin: 576 return bitc::RMW_FMIN; 577 } 578 } 579 580 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 581 switch (Ordering) { 582 case AtomicOrdering::NotAtomic: 583 return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: 585 return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: 587 return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: 589 return bitc::ORDERING_ACQUIRE; 590 case AtomicOrdering::Release: 591 return bitc::ORDERING_RELEASE; 592 case AtomicOrdering::AcquireRelease: 593 return bitc::ORDERING_ACQREL; 594 case AtomicOrdering::SequentiallyConsistent: 595 return bitc::ORDERING_SEQCST; 596 } 597 llvm_unreachable("Invalid ordering"); 598 } 599 600 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 601 unsigned Code, StringRef Str, 602 unsigned AbbrevToUse) { 603 SmallVector<unsigned, 64> Vals; 604 605 // Code: [strchar x N] 606 for (char C : Str) { 607 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 608 AbbrevToUse = 0; 609 Vals.push_back(C); 610 } 611 612 // Emit the finished record. 613 Stream.EmitRecord(Code, Vals, AbbrevToUse); 614 } 615 616 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 617 switch (Kind) { 618 case Attribute::Alignment: 619 return bitc::ATTR_KIND_ALIGNMENT; 620 case Attribute::AlwaysInline: 621 return bitc::ATTR_KIND_ALWAYS_INLINE; 622 case Attribute::Builtin: 623 return bitc::ATTR_KIND_BUILTIN; 624 case Attribute::ByVal: 625 return bitc::ATTR_KIND_BY_VAL; 626 case Attribute::Convergent: 627 return bitc::ATTR_KIND_CONVERGENT; 628 case Attribute::InAlloca: 629 return bitc::ATTR_KIND_IN_ALLOCA; 630 case Attribute::Cold: 631 return bitc::ATTR_KIND_COLD; 632 case Attribute::InlineHint: 633 return bitc::ATTR_KIND_INLINE_HINT; 634 case Attribute::InReg: 635 return bitc::ATTR_KIND_IN_REG; 636 case Attribute::JumpTable: 637 return bitc::ATTR_KIND_JUMP_TABLE; 638 case Attribute::MinSize: 639 return bitc::ATTR_KIND_MIN_SIZE; 640 case Attribute::Naked: 641 return bitc::ATTR_KIND_NAKED; 642 case Attribute::Nest: 643 return bitc::ATTR_KIND_NEST; 644 case Attribute::NoAlias: 645 return bitc::ATTR_KIND_NO_ALIAS; 646 case Attribute::NoBuiltin: 647 return bitc::ATTR_KIND_NO_BUILTIN; 648 case Attribute::NoCapture: 649 return bitc::ATTR_KIND_NO_CAPTURE; 650 case Attribute::NoDuplicate: 651 return bitc::ATTR_KIND_NO_DUPLICATE; 652 case Attribute::NoImplicitFloat: 653 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 654 case Attribute::NoInline: 655 return bitc::ATTR_KIND_NO_INLINE; 656 case Attribute::NonLazyBind: 657 return bitc::ATTR_KIND_NON_LAZY_BIND; 658 case Attribute::NonNull: 659 return bitc::ATTR_KIND_NON_NULL; 660 case Attribute::Dereferenceable: 661 return bitc::ATTR_KIND_DEREFERENCEABLE; 662 case Attribute::DereferenceableOrNull: 663 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 664 case Attribute::NoRedZone: 665 return bitc::ATTR_KIND_NO_RED_ZONE; 666 case Attribute::NoReturn: 667 return bitc::ATTR_KIND_NO_RETURN; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::StackAlignment: 685 return bitc::ATTR_KIND_STACK_ALIGNMENT; 686 case Attribute::StackProtect: 687 return bitc::ATTR_KIND_STACK_PROTECT; 688 case Attribute::StackProtectReq: 689 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 690 case Attribute::StackProtectStrong: 691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 692 case Attribute::SafeStack: 693 return bitc::ATTR_KIND_SAFESTACK; 694 case Attribute::StructRet: 695 return bitc::ATTR_KIND_STRUCT_RET; 696 case Attribute::SanitizeAddress: 697 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 698 case Attribute::SanitizeThread: 699 return bitc::ATTR_KIND_SANITIZE_THREAD; 700 case Attribute::SanitizeMemory: 701 return bitc::ATTR_KIND_SANITIZE_MEMORY; 702 case Attribute::UWTable: 703 return bitc::ATTR_KIND_UW_TABLE; 704 case Attribute::ZExt: 705 return bitc::ATTR_KIND_Z_EXT; 706 case Attribute::EndAttrKinds: 707 llvm_unreachable("Can not encode end-attribute kinds marker."); 708 case Attribute::None: 709 llvm_unreachable("Can not encode none-attribute."); 710 case Attribute::EmptyKey: 711 case Attribute::TombstoneKey: 712 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 713 default: 714 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 715 "should be stripped in DXILPrepare"); 716 } 717 718 llvm_unreachable("Trying to encode unknown attribute"); 719 } 720 721 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 722 uint64_t V) { 723 if ((int64_t)V >= 0) 724 Vals.push_back(V << 1); 725 else 726 Vals.push_back((-V << 1) | 1); 727 } 728 729 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 730 const APInt &A) { 731 // We have an arbitrary precision integer value to write whose 732 // bit width is > 64. However, in canonical unsigned integer 733 // format it is likely that the high bits are going to be zero. 734 // So, we only write the number of active words. 735 unsigned NumWords = A.getActiveWords(); 736 const uint64_t *RawData = A.getRawData(); 737 for (unsigned i = 0; i < NumWords; i++) 738 emitSignedInt64(Vals, RawData[i]); 739 } 740 741 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 742 uint64_t Flags = 0; 743 744 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 745 if (OBO->hasNoSignedWrap()) 746 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 747 if (OBO->hasNoUnsignedWrap()) 748 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 749 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 750 if (PEO->isExact()) 751 Flags |= 1 << bitc::PEO_EXACT; 752 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 753 if (FPMO->hasAllowReassoc()) 754 Flags |= bitc::AllowReassoc; 755 if (FPMO->hasNoNaNs()) 756 Flags |= bitc::NoNaNs; 757 if (FPMO->hasNoInfs()) 758 Flags |= bitc::NoInfs; 759 if (FPMO->hasNoSignedZeros()) 760 Flags |= bitc::NoSignedZeros; 761 if (FPMO->hasAllowReciprocal()) 762 Flags |= bitc::AllowReciprocal; 763 if (FPMO->hasAllowContract()) 764 Flags |= bitc::AllowContract; 765 if (FPMO->hasApproxFunc()) 766 Flags |= bitc::ApproxFunc; 767 } 768 769 return Flags; 770 } 771 772 unsigned 773 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 774 switch (Linkage) { 775 case GlobalValue::ExternalLinkage: 776 return 0; 777 case GlobalValue::WeakAnyLinkage: 778 return 16; 779 case GlobalValue::AppendingLinkage: 780 return 2; 781 case GlobalValue::InternalLinkage: 782 return 3; 783 case GlobalValue::LinkOnceAnyLinkage: 784 return 18; 785 case GlobalValue::ExternalWeakLinkage: 786 return 7; 787 case GlobalValue::CommonLinkage: 788 return 8; 789 case GlobalValue::PrivateLinkage: 790 return 9; 791 case GlobalValue::WeakODRLinkage: 792 return 17; 793 case GlobalValue::LinkOnceODRLinkage: 794 return 19; 795 case GlobalValue::AvailableExternallyLinkage: 796 return 12; 797 } 798 llvm_unreachable("Invalid linkage"); 799 } 800 801 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 802 return getEncodedLinkage(GV.getLinkage()); 803 } 804 805 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 806 switch (GV.getVisibility()) { 807 case GlobalValue::DefaultVisibility: 808 return 0; 809 case GlobalValue::HiddenVisibility: 810 return 1; 811 case GlobalValue::ProtectedVisibility: 812 return 2; 813 } 814 llvm_unreachable("Invalid visibility"); 815 } 816 817 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 818 switch (GV.getDLLStorageClass()) { 819 case GlobalValue::DefaultStorageClass: 820 return 0; 821 case GlobalValue::DLLImportStorageClass: 822 return 1; 823 case GlobalValue::DLLExportStorageClass: 824 return 2; 825 } 826 llvm_unreachable("Invalid DLL storage class"); 827 } 828 829 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 830 switch (GV.getThreadLocalMode()) { 831 case GlobalVariable::NotThreadLocal: 832 return 0; 833 case GlobalVariable::GeneralDynamicTLSModel: 834 return 1; 835 case GlobalVariable::LocalDynamicTLSModel: 836 return 2; 837 case GlobalVariable::InitialExecTLSModel: 838 return 3; 839 case GlobalVariable::LocalExecTLSModel: 840 return 4; 841 } 842 llvm_unreachable("Invalid TLS model"); 843 } 844 845 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 846 switch (C.getSelectionKind()) { 847 case Comdat::Any: 848 return bitc::COMDAT_SELECTION_KIND_ANY; 849 case Comdat::ExactMatch: 850 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 851 case Comdat::Largest: 852 return bitc::COMDAT_SELECTION_KIND_LARGEST; 853 case Comdat::NoDeduplicate: 854 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 855 case Comdat::SameSize: 856 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 857 } 858 llvm_unreachable("Invalid selection kind"); 859 } 860 861 //////////////////////////////////////////////////////////////////////////////// 862 /// Begin DXILBitcodeWriter Implementation 863 //////////////////////////////////////////////////////////////////////////////// 864 865 void DXILBitcodeWriter::writeAttributeGroupTable() { 866 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 867 VE.getAttributeGroups(); 868 if (AttrGrps.empty()) 869 return; 870 871 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 872 873 SmallVector<uint64_t, 64> Record; 874 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 875 unsigned AttrListIndex = Pair.first; 876 AttributeSet AS = Pair.second; 877 Record.push_back(VE.getAttributeGroupID(Pair)); 878 Record.push_back(AttrListIndex); 879 880 for (Attribute Attr : AS) { 881 if (Attr.isEnumAttribute()) { 882 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 883 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 884 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 885 Record.push_back(0); 886 Record.push_back(Val); 887 } else if (Attr.isIntAttribute()) { 888 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { 889 MemoryEffects ME = Attr.getMemoryEffects(); 890 if (ME.doesNotAccessMemory()) { 891 Record.push_back(0); 892 Record.push_back(bitc::ATTR_KIND_READ_NONE); 893 } else { 894 if (ME.onlyReadsMemory()) { 895 Record.push_back(0); 896 Record.push_back(bitc::ATTR_KIND_READ_ONLY); 897 } 898 if (ME.onlyAccessesArgPointees()) { 899 Record.push_back(0); 900 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); 901 } 902 } 903 } else { 904 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 905 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 906 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 907 Record.push_back(1); 908 Record.push_back(Val); 909 Record.push_back(Attr.getValueAsInt()); 910 } 911 } else { 912 StringRef Kind = Attr.getKindAsString(); 913 StringRef Val = Attr.getValueAsString(); 914 915 Record.push_back(Val.empty() ? 3 : 4); 916 Record.append(Kind.begin(), Kind.end()); 917 Record.push_back(0); 918 if (!Val.empty()) { 919 Record.append(Val.begin(), Val.end()); 920 Record.push_back(0); 921 } 922 } 923 } 924 925 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 926 Record.clear(); 927 } 928 929 Stream.ExitBlock(); 930 } 931 932 void DXILBitcodeWriter::writeAttributeTable() { 933 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 934 if (Attrs.empty()) 935 return; 936 937 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 938 939 SmallVector<uint64_t, 64> Record; 940 for (AttributeList AL : Attrs) { 941 for (unsigned i : AL.indexes()) { 942 AttributeSet AS = AL.getAttributes(i); 943 if (AS.hasAttributes()) 944 Record.push_back(VE.getAttributeGroupID({i, AS})); 945 } 946 947 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 948 Record.clear(); 949 } 950 951 Stream.ExitBlock(); 952 } 953 954 /// WriteTypeTable - Write out the type table for a module. 955 void DXILBitcodeWriter::writeTypeTable() { 956 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 957 958 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 959 SmallVector<uint64_t, 64> TypeVals; 960 961 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 962 963 // Abbrev for TYPE_CODE_POINTER. 964 auto Abbv = std::make_shared<BitCodeAbbrev>(); 965 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 967 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 968 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 969 970 // Abbrev for TYPE_CODE_FUNCTION. 971 Abbv = std::make_shared<BitCodeAbbrev>(); 972 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 976 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 977 978 // Abbrev for TYPE_CODE_STRUCT_ANON. 979 Abbv = std::make_shared<BitCodeAbbrev>(); 980 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 984 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 985 986 // Abbrev for TYPE_CODE_STRUCT_NAME. 987 Abbv = std::make_shared<BitCodeAbbrev>(); 988 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 991 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 992 993 // Abbrev for TYPE_CODE_STRUCT_NAMED. 994 Abbv = std::make_shared<BitCodeAbbrev>(); 995 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 999 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1000 1001 // Abbrev for TYPE_CODE_ARRAY. 1002 Abbv = std::make_shared<BitCodeAbbrev>(); 1003 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1006 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1007 1008 // Emit an entry count so the reader can reserve space. 1009 TypeVals.push_back(TypeList.size()); 1010 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1011 TypeVals.clear(); 1012 1013 // Loop over all of the types, emitting each in turn. 1014 for (Type *T : TypeList) { 1015 int AbbrevToUse = 0; 1016 unsigned Code = 0; 1017 1018 switch (T->getTypeID()) { 1019 case Type::BFloatTyID: 1020 case Type::X86_AMXTyID: 1021 case Type::TokenTyID: 1022 case Type::TargetExtTyID: 1023 llvm_unreachable("These should never be used!!!"); 1024 break; 1025 case Type::VoidTyID: 1026 Code = bitc::TYPE_CODE_VOID; 1027 break; 1028 case Type::HalfTyID: 1029 Code = bitc::TYPE_CODE_HALF; 1030 break; 1031 case Type::FloatTyID: 1032 Code = bitc::TYPE_CODE_FLOAT; 1033 break; 1034 case Type::DoubleTyID: 1035 Code = bitc::TYPE_CODE_DOUBLE; 1036 break; 1037 case Type::X86_FP80TyID: 1038 Code = bitc::TYPE_CODE_X86_FP80; 1039 break; 1040 case Type::FP128TyID: 1041 Code = bitc::TYPE_CODE_FP128; 1042 break; 1043 case Type::PPC_FP128TyID: 1044 Code = bitc::TYPE_CODE_PPC_FP128; 1045 break; 1046 case Type::LabelTyID: 1047 Code = bitc::TYPE_CODE_LABEL; 1048 break; 1049 case Type::MetadataTyID: 1050 Code = bitc::TYPE_CODE_METADATA; 1051 break; 1052 case Type::X86_MMXTyID: 1053 Code = bitc::TYPE_CODE_X86_MMX; 1054 break; 1055 case Type::IntegerTyID: 1056 // INTEGER: [width] 1057 Code = bitc::TYPE_CODE_INTEGER; 1058 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1059 break; 1060 case Type::TypedPointerTyID: { 1061 TypedPointerType *PTy = cast<TypedPointerType>(T); 1062 // POINTER: [pointee type, address space] 1063 Code = bitc::TYPE_CODE_POINTER; 1064 TypeVals.push_back(getTypeID(PTy->getElementType())); 1065 unsigned AddressSpace = PTy->getAddressSpace(); 1066 TypeVals.push_back(AddressSpace); 1067 if (AddressSpace == 0) 1068 AbbrevToUse = PtrAbbrev; 1069 break; 1070 } 1071 case Type::PointerTyID: { 1072 // POINTER: [pointee type, address space] 1073 // Emitting an empty struct type for the pointer's type allows this to be 1074 // order-independent. Non-struct types must be emitted in bitcode before 1075 // they can be referenced. 1076 TypeVals.push_back(false); 1077 Code = bitc::TYPE_CODE_OPAQUE; 1078 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1079 "dxilOpaquePtrReservedName", StructNameAbbrev); 1080 break; 1081 } 1082 case Type::FunctionTyID: { 1083 FunctionType *FT = cast<FunctionType>(T); 1084 // FUNCTION: [isvararg, retty, paramty x N] 1085 Code = bitc::TYPE_CODE_FUNCTION; 1086 TypeVals.push_back(FT->isVarArg()); 1087 TypeVals.push_back(getTypeID(FT->getReturnType())); 1088 for (Type *PTy : FT->params()) 1089 TypeVals.push_back(getTypeID(PTy)); 1090 AbbrevToUse = FunctionAbbrev; 1091 break; 1092 } 1093 case Type::StructTyID: { 1094 StructType *ST = cast<StructType>(T); 1095 // STRUCT: [ispacked, eltty x N] 1096 TypeVals.push_back(ST->isPacked()); 1097 // Output all of the element types. 1098 for (Type *ElTy : ST->elements()) 1099 TypeVals.push_back(getTypeID(ElTy)); 1100 1101 if (ST->isLiteral()) { 1102 Code = bitc::TYPE_CODE_STRUCT_ANON; 1103 AbbrevToUse = StructAnonAbbrev; 1104 } else { 1105 if (ST->isOpaque()) { 1106 Code = bitc::TYPE_CODE_OPAQUE; 1107 } else { 1108 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1109 AbbrevToUse = StructNamedAbbrev; 1110 } 1111 1112 // Emit the name if it is present. 1113 if (!ST->getName().empty()) 1114 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1115 StructNameAbbrev); 1116 } 1117 break; 1118 } 1119 case Type::ArrayTyID: { 1120 ArrayType *AT = cast<ArrayType>(T); 1121 // ARRAY: [numelts, eltty] 1122 Code = bitc::TYPE_CODE_ARRAY; 1123 TypeVals.push_back(AT->getNumElements()); 1124 TypeVals.push_back(getTypeID(AT->getElementType())); 1125 AbbrevToUse = ArrayAbbrev; 1126 break; 1127 } 1128 case Type::FixedVectorTyID: 1129 case Type::ScalableVectorTyID: { 1130 VectorType *VT = cast<VectorType>(T); 1131 // VECTOR [numelts, eltty] 1132 Code = bitc::TYPE_CODE_VECTOR; 1133 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1134 TypeVals.push_back(getTypeID(VT->getElementType())); 1135 break; 1136 } 1137 } 1138 1139 // Emit the finished record. 1140 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1141 TypeVals.clear(); 1142 } 1143 1144 Stream.ExitBlock(); 1145 } 1146 1147 void DXILBitcodeWriter::writeComdats() { 1148 SmallVector<uint16_t, 64> Vals; 1149 for (const Comdat *C : VE.getComdats()) { 1150 // COMDAT: [selection_kind, name] 1151 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1152 size_t Size = C->getName().size(); 1153 assert(isUInt<16>(Size)); 1154 Vals.push_back(Size); 1155 for (char Chr : C->getName()) 1156 Vals.push_back((unsigned char)Chr); 1157 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1158 Vals.clear(); 1159 } 1160 } 1161 1162 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1163 1164 /// Emit top-level description of module, including target triple, inline asm, 1165 /// descriptors for global variables, and function prototype info. 1166 /// Returns the bit offset to backpatch with the location of the real VST. 1167 void DXILBitcodeWriter::writeModuleInfo() { 1168 // Emit various pieces of data attached to a module. 1169 if (!M.getTargetTriple().empty()) 1170 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1171 0 /*TODO*/); 1172 const std::string &DL = M.getDataLayoutStr(); 1173 if (!DL.empty()) 1174 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1175 if (!M.getModuleInlineAsm().empty()) 1176 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1177 0 /*TODO*/); 1178 1179 // Emit information about sections and GC, computing how many there are. Also 1180 // compute the maximum alignment value. 1181 std::map<std::string, unsigned> SectionMap; 1182 std::map<std::string, unsigned> GCMap; 1183 MaybeAlign MaxAlignment; 1184 unsigned MaxGlobalType = 0; 1185 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1186 if (A) 1187 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1188 }; 1189 for (const GlobalVariable &GV : M.globals()) { 1190 UpdateMaxAlignment(GV.getAlign()); 1191 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1192 // Global Variable types. 1193 MaxGlobalType = std::max( 1194 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1195 if (GV.hasSection()) { 1196 // Give section names unique ID's. 1197 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1198 if (!Entry) { 1199 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1200 GV.getSection(), 0 /*TODO*/); 1201 Entry = SectionMap.size(); 1202 } 1203 } 1204 } 1205 for (const Function &F : M) { 1206 UpdateMaxAlignment(F.getAlign()); 1207 if (F.hasSection()) { 1208 // Give section names unique ID's. 1209 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1210 if (!Entry) { 1211 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1212 0 /*TODO*/); 1213 Entry = SectionMap.size(); 1214 } 1215 } 1216 if (F.hasGC()) { 1217 // Same for GC names. 1218 unsigned &Entry = GCMap[F.getGC()]; 1219 if (!Entry) { 1220 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1221 0 /*TODO*/); 1222 Entry = GCMap.size(); 1223 } 1224 } 1225 } 1226 1227 // Emit abbrev for globals, now that we know # sections and max alignment. 1228 unsigned SimpleGVarAbbrev = 0; 1229 if (!M.global_empty()) { 1230 // Add an abbrev for common globals with no visibility or thread 1231 // localness. 1232 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1233 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1235 Log2_32_Ceil(MaxGlobalType + 1))); 1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1237 //| explicitType << 1 1238 //| constant 1239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1241 if (!MaxAlignment) // Alignment. 1242 Abbv->Add(BitCodeAbbrevOp(0)); 1243 else { 1244 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1246 Log2_32_Ceil(MaxEncAlignment + 1))); 1247 } 1248 if (SectionMap.empty()) // Section. 1249 Abbv->Add(BitCodeAbbrevOp(0)); 1250 else 1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1252 Log2_32_Ceil(SectionMap.size() + 1))); 1253 // Don't bother emitting vis + thread local. 1254 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1255 } 1256 1257 // Emit the global variable information. 1258 SmallVector<unsigned, 64> Vals; 1259 for (const GlobalVariable &GV : M.globals()) { 1260 unsigned AbbrevToUse = 0; 1261 1262 // GLOBALVAR: [type, isconst, initid, 1263 // linkage, alignment, section, visibility, threadlocal, 1264 // unnamed_addr, externally_initialized, dllstorageclass, 1265 // comdat] 1266 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1267 Vals.push_back( 1268 GV.getType()->getAddressSpace() << 2 | 2 | 1269 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1270 // unsigned int and bool 1271 Vals.push_back( 1272 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1273 Vals.push_back(getEncodedLinkage(GV)); 1274 Vals.push_back(getEncodedAlign(GV.getAlign())); 1275 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1276 : 0); 1277 if (GV.isThreadLocal() || 1278 GV.getVisibility() != GlobalValue::DefaultVisibility || 1279 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1280 GV.isExternallyInitialized() || 1281 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1282 GV.hasComdat()) { 1283 Vals.push_back(getEncodedVisibility(GV)); 1284 Vals.push_back(getEncodedThreadLocalMode(GV)); 1285 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1286 Vals.push_back(GV.isExternallyInitialized()); 1287 Vals.push_back(getEncodedDLLStorageClass(GV)); 1288 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1289 } else { 1290 AbbrevToUse = SimpleGVarAbbrev; 1291 } 1292 1293 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1294 Vals.clear(); 1295 } 1296 1297 // Emit the function proto information. 1298 for (const Function &F : M) { 1299 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1300 // section, visibility, gc, unnamed_addr, prologuedata, 1301 // dllstorageclass, comdat, prefixdata, personalityfn] 1302 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1303 Vals.push_back(F.getCallingConv()); 1304 Vals.push_back(F.isDeclaration()); 1305 Vals.push_back(getEncodedLinkage(F)); 1306 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1307 Vals.push_back(getEncodedAlign(F.getAlign())); 1308 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1309 : 0); 1310 Vals.push_back(getEncodedVisibility(F)); 1311 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1312 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1313 Vals.push_back( 1314 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1315 Vals.push_back(getEncodedDLLStorageClass(F)); 1316 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1317 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1318 : 0); 1319 Vals.push_back( 1320 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1321 1322 unsigned AbbrevToUse = 0; 1323 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1324 Vals.clear(); 1325 } 1326 1327 // Emit the alias information. 1328 for (const GlobalAlias &A : M.aliases()) { 1329 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1330 Vals.push_back(getTypeID(A.getValueType(), &A)); 1331 Vals.push_back(VE.getValueID(A.getAliasee())); 1332 Vals.push_back(getEncodedLinkage(A)); 1333 Vals.push_back(getEncodedVisibility(A)); 1334 Vals.push_back(getEncodedDLLStorageClass(A)); 1335 Vals.push_back(getEncodedThreadLocalMode(A)); 1336 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1337 unsigned AbbrevToUse = 0; 1338 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1339 Vals.clear(); 1340 } 1341 } 1342 1343 void DXILBitcodeWriter::writeValueAsMetadata( 1344 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1345 // Mimic an MDNode with a value as one operand. 1346 Value *V = MD->getValue(); 1347 Type *Ty = V->getType(); 1348 if (Function *F = dyn_cast<Function>(V)) 1349 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1350 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1351 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1352 Record.push_back(getTypeID(Ty)); 1353 Record.push_back(VE.getValueID(V)); 1354 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1355 Record.clear(); 1356 } 1357 1358 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1359 SmallVectorImpl<uint64_t> &Record, 1360 unsigned Abbrev) { 1361 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1362 Metadata *MD = N->getOperand(i); 1363 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1364 "Unexpected function-local metadata"); 1365 Record.push_back(VE.getMetadataOrNullID(MD)); 1366 } 1367 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1368 : bitc::METADATA_NODE, 1369 Record, Abbrev); 1370 Record.clear(); 1371 } 1372 1373 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1374 SmallVectorImpl<uint64_t> &Record, 1375 unsigned &Abbrev) { 1376 if (!Abbrev) 1377 Abbrev = createDILocationAbbrev(); 1378 Record.push_back(N->isDistinct()); 1379 Record.push_back(N->getLine()); 1380 Record.push_back(N->getColumn()); 1381 Record.push_back(VE.getMetadataID(N->getScope())); 1382 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1383 1384 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1385 Record.clear(); 1386 } 1387 1388 static uint64_t rotateSign(APInt Val) { 1389 int64_t I = Val.getSExtValue(); 1390 uint64_t U = I; 1391 return I < 0 ? ~(U << 1) : U << 1; 1392 } 1393 1394 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1395 SmallVectorImpl<uint64_t> &Record, 1396 unsigned Abbrev) { 1397 Record.push_back(N->isDistinct()); 1398 1399 // TODO: Do we need to handle DIExpression here? What about cases where Count 1400 // isn't specified but UpperBound and such are? 1401 ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>(); 1402 assert(Count && "Count is missing or not ConstantInt"); 1403 Record.push_back(Count->getValue().getSExtValue()); 1404 1405 // TODO: Similarly, DIExpression is allowed here now 1406 DISubrange::BoundType LowerBound = N->getLowerBound(); 1407 assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) && 1408 "Lower bound provided but not ConstantInt"); 1409 Record.push_back( 1410 LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0); 1411 1412 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1413 Record.clear(); 1414 } 1415 1416 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1417 SmallVectorImpl<uint64_t> &Record, 1418 unsigned Abbrev) { 1419 Record.push_back(N->isDistinct()); 1420 Record.push_back(rotateSign(N->getValue())); 1421 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1422 1423 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1424 Record.clear(); 1425 } 1426 1427 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1428 SmallVectorImpl<uint64_t> &Record, 1429 unsigned Abbrev) { 1430 Record.push_back(N->isDistinct()); 1431 Record.push_back(N->getTag()); 1432 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1433 Record.push_back(N->getSizeInBits()); 1434 Record.push_back(N->getAlignInBits()); 1435 Record.push_back(N->getEncoding()); 1436 1437 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1438 Record.clear(); 1439 } 1440 1441 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1442 SmallVectorImpl<uint64_t> &Record, 1443 unsigned Abbrev) { 1444 Record.push_back(N->isDistinct()); 1445 Record.push_back(N->getTag()); 1446 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1447 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1448 Record.push_back(N->getLine()); 1449 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1450 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1451 Record.push_back(N->getSizeInBits()); 1452 Record.push_back(N->getAlignInBits()); 1453 Record.push_back(N->getOffsetInBits()); 1454 Record.push_back(N->getFlags()); 1455 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1456 1457 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1458 Record.clear(); 1459 } 1460 1461 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1462 SmallVectorImpl<uint64_t> &Record, 1463 unsigned Abbrev) { 1464 Record.push_back(N->isDistinct()); 1465 Record.push_back(N->getTag()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1468 Record.push_back(N->getLine()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1470 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1471 Record.push_back(N->getSizeInBits()); 1472 Record.push_back(N->getAlignInBits()); 1473 Record.push_back(N->getOffsetInBits()); 1474 Record.push_back(N->getFlags()); 1475 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1476 Record.push_back(N->getRuntimeLang()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1479 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1480 1481 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1482 Record.clear(); 1483 } 1484 1485 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1486 SmallVectorImpl<uint64_t> &Record, 1487 unsigned Abbrev) { 1488 Record.push_back(N->isDistinct()); 1489 Record.push_back(N->getFlags()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1491 1492 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1493 Record.clear(); 1494 } 1495 1496 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1497 SmallVectorImpl<uint64_t> &Record, 1498 unsigned Abbrev) { 1499 Record.push_back(N->isDistinct()); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1501 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1502 1503 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1504 Record.clear(); 1505 } 1506 1507 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned Abbrev) { 1510 Record.push_back(N->isDistinct()); 1511 Record.push_back(N->getSourceLanguage()); 1512 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1514 Record.push_back(N->isOptimized()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1516 Record.push_back(N->getRuntimeVersion()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1518 Record.push_back(N->getEmissionKind()); 1519 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1520 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1521 Record.push_back(/* subprograms */ 0); 1522 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1523 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1524 Record.push_back(N->getDWOId()); 1525 1526 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 Record.push_back(N->isDistinct()); 1534 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1536 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1538 Record.push_back(N->getLine()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1540 Record.push_back(N->isLocalToUnit()); 1541 Record.push_back(N->isDefinition()); 1542 Record.push_back(N->getScopeLine()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1544 Record.push_back(N->getVirtuality()); 1545 Record.push_back(N->getVirtualIndex()); 1546 Record.push_back(N->getFlags()); 1547 Record.push_back(N->isOptimized()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1549 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1550 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1551 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1552 1553 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1554 Record.clear(); 1555 } 1556 1557 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1558 SmallVectorImpl<uint64_t> &Record, 1559 unsigned Abbrev) { 1560 Record.push_back(N->isDistinct()); 1561 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1563 Record.push_back(N->getLine()); 1564 Record.push_back(N->getColumn()); 1565 1566 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1567 Record.clear(); 1568 } 1569 1570 void DXILBitcodeWriter::writeDILexicalBlockFile( 1571 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1572 unsigned Abbrev) { 1573 Record.push_back(N->isDistinct()); 1574 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1575 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1576 Record.push_back(N->getDiscriminator()); 1577 1578 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1583 SmallVectorImpl<uint64_t> &Record, 1584 unsigned Abbrev) { 1585 Record.push_back(N->isDistinct()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1589 Record.push_back(/* line number */ 0); 1590 1591 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1596 SmallVectorImpl<uint64_t> &Record, 1597 unsigned Abbrev) { 1598 Record.push_back(N->isDistinct()); 1599 for (auto &I : N->operands()) 1600 Record.push_back(VE.getMetadataOrNullID(I)); 1601 1602 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1607 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1608 unsigned Abbrev) { 1609 Record.push_back(N->isDistinct()); 1610 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1612 1613 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1614 Record.clear(); 1615 } 1616 1617 void DXILBitcodeWriter::writeDITemplateValueParameter( 1618 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 Record.push_back(N->isDistinct()); 1621 Record.push_back(N->getTag()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1625 1626 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1631 SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct()); 1634 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1638 Record.push_back(N->getLine()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1640 Record.push_back(N->isLocalToUnit()); 1641 Record.push_back(N->isDefinition()); 1642 Record.push_back(/* N->getRawVariable() */ 0); 1643 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1644 1645 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 Record.push_back(N->getTag()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1657 Record.push_back(N->getLine()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1659 Record.push_back(N->getArg()); 1660 Record.push_back(N->getFlags()); 1661 1662 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1667 SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 Record.reserve(N->getElements().size() + 1); 1670 1671 Record.push_back(N->isDistinct()); 1672 Record.append(N->elements_begin(), N->elements_end()); 1673 1674 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1679 SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 llvm_unreachable("DXIL does not support objc!!!"); 1682 } 1683 1684 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 Record.push_back(N->isDistinct()); 1688 Record.push_back(N->getTag()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1691 Record.push_back(N->getLine()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1693 1694 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1699 // Abbrev for METADATA_LOCATION. 1700 // 1701 // Assume the column is usually under 128, and always output the inlined-at 1702 // location (it's never more expensive than building an array size 1). 1703 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1704 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1710 return Stream.EmitAbbrev(std::move(Abbv)); 1711 } 1712 1713 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1714 // Abbrev for METADATA_GENERIC_DEBUG. 1715 // 1716 // Assume the column is usually under 128, and always output the inlined-at 1717 // location (it's never more expensive than building an array size 1). 1718 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1719 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1726 return Stream.EmitAbbrev(std::move(Abbv)); 1727 } 1728 1729 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1730 SmallVectorImpl<uint64_t> &Record, 1731 std::vector<unsigned> *MDAbbrevs, 1732 std::vector<uint64_t> *IndexPos) { 1733 if (MDs.empty()) 1734 return; 1735 1736 // Initialize MDNode abbreviations. 1737 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1738 #include "llvm/IR/Metadata.def" 1739 1740 for (const Metadata *MD : MDs) { 1741 if (IndexPos) 1742 IndexPos->push_back(Stream.GetCurrentBitNo()); 1743 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1744 assert(N->isResolved() && "Expected forward references to be resolved"); 1745 1746 switch (N->getMetadataID()) { 1747 default: 1748 llvm_unreachable("Invalid MDNode subclass"); 1749 #define HANDLE_MDNODE_LEAF(CLASS) \ 1750 case Metadata::CLASS##Kind: \ 1751 if (MDAbbrevs) \ 1752 write##CLASS(cast<CLASS>(N), Record, \ 1753 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1754 else \ 1755 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1756 continue; 1757 #include "llvm/IR/Metadata.def" 1758 } 1759 } 1760 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1761 } 1762 } 1763 1764 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1766 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1769 return Stream.EmitAbbrev(std::move(Abbv)); 1770 } 1771 1772 void DXILBitcodeWriter::writeMetadataStrings( 1773 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1774 if (Strings.empty()) 1775 return; 1776 1777 unsigned MDSAbbrev = createMetadataStringsAbbrev(); 1778 1779 for (const Metadata *MD : Strings) { 1780 const MDString *MDS = cast<MDString>(MD); 1781 // Code: [strchar x N] 1782 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1783 1784 // Emit the finished record. 1785 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev); 1786 Record.clear(); 1787 } 1788 } 1789 1790 void DXILBitcodeWriter::writeModuleMetadata() { 1791 if (!VE.hasMDs() && M.named_metadata_empty()) 1792 return; 1793 1794 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1795 1796 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1797 // block and load any metadata. 1798 std::vector<unsigned> MDAbbrevs; 1799 1800 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1801 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1802 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1803 createGenericDINodeAbbrev(); 1804 1805 unsigned NameAbbrev = 0; 1806 if (!M.named_metadata_empty()) { 1807 // Abbrev for METADATA_NAME. 1808 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1809 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1812 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1813 } 1814 1815 SmallVector<uint64_t, 64> Record; 1816 writeMetadataStrings(VE.getMDStrings(), Record); 1817 1818 std::vector<uint64_t> IndexPos; 1819 IndexPos.reserve(VE.getNonMDStrings().size()); 1820 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1821 1822 // Write named metadata. 1823 for (const NamedMDNode &NMD : M.named_metadata()) { 1824 // Write name. 1825 StringRef Str = NMD.getName(); 1826 Record.append(Str.bytes_begin(), Str.bytes_end()); 1827 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1828 Record.clear(); 1829 1830 // Write named metadata operands. 1831 for (const MDNode *N : NMD.operands()) 1832 Record.push_back(VE.getMetadataID(N)); 1833 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1834 Record.clear(); 1835 } 1836 1837 Stream.ExitBlock(); 1838 } 1839 1840 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1841 if (!VE.hasMDs()) 1842 return; 1843 1844 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1845 SmallVector<uint64_t, 64> Record; 1846 writeMetadataStrings(VE.getMDStrings(), Record); 1847 writeMetadataRecords(VE.getNonMDStrings(), Record); 1848 Stream.ExitBlock(); 1849 } 1850 1851 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1852 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1853 1854 SmallVector<uint64_t, 64> Record; 1855 1856 // Write metadata attachments 1857 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1858 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1859 F.getAllMetadata(MDs); 1860 if (!MDs.empty()) { 1861 for (const auto &I : MDs) { 1862 Record.push_back(I.first); 1863 Record.push_back(VE.getMetadataID(I.second)); 1864 } 1865 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1866 Record.clear(); 1867 } 1868 1869 for (const BasicBlock &BB : F) 1870 for (const Instruction &I : BB) { 1871 MDs.clear(); 1872 I.getAllMetadataOtherThanDebugLoc(MDs); 1873 1874 // If no metadata, ignore instruction. 1875 if (MDs.empty()) 1876 continue; 1877 1878 Record.push_back(VE.getInstructionID(&I)); 1879 1880 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1881 Record.push_back(MDs[i].first); 1882 Record.push_back(VE.getMetadataID(MDs[i].second)); 1883 } 1884 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1885 Record.clear(); 1886 } 1887 1888 Stream.ExitBlock(); 1889 } 1890 1891 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1892 SmallVector<uint64_t, 64> Record; 1893 1894 // Write metadata kinds 1895 // METADATA_KIND - [n x [id, name]] 1896 SmallVector<StringRef, 8> Names; 1897 M.getMDKindNames(Names); 1898 1899 if (Names.empty()) 1900 return; 1901 1902 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1903 1904 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1905 Record.push_back(MDKindID); 1906 StringRef KName = Names[MDKindID]; 1907 Record.append(KName.begin(), KName.end()); 1908 1909 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1910 Record.clear(); 1911 } 1912 1913 Stream.ExitBlock(); 1914 } 1915 1916 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1917 bool isGlobal) { 1918 if (FirstVal == LastVal) 1919 return; 1920 1921 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1922 1923 unsigned AggregateAbbrev = 0; 1924 unsigned String8Abbrev = 0; 1925 unsigned CString7Abbrev = 0; 1926 unsigned CString6Abbrev = 0; 1927 // If this is a constant pool for the module, emit module-specific abbrevs. 1928 if (isGlobal) { 1929 // Abbrev for CST_CODE_AGGREGATE. 1930 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1931 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1933 Abbv->Add( 1934 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1935 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1936 1937 // Abbrev for CST_CODE_STRING. 1938 Abbv = std::make_shared<BitCodeAbbrev>(); 1939 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1942 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1943 // Abbrev for CST_CODE_CSTRING. 1944 Abbv = std::make_shared<BitCodeAbbrev>(); 1945 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1948 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1949 // Abbrev for CST_CODE_CSTRING. 1950 Abbv = std::make_shared<BitCodeAbbrev>(); 1951 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1954 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1955 } 1956 1957 SmallVector<uint64_t, 64> Record; 1958 1959 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1960 Type *LastTy = nullptr; 1961 for (unsigned i = FirstVal; i != LastVal; ++i) { 1962 const Value *V = Vals[i].first; 1963 // If we need to switch types, do so now. 1964 if (V->getType() != LastTy) { 1965 LastTy = V->getType(); 1966 Record.push_back(getTypeID(LastTy, V)); 1967 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1968 CONSTANTS_SETTYPE_ABBREV); 1969 Record.clear(); 1970 } 1971 1972 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1973 Record.push_back(unsigned(IA->hasSideEffects()) | 1974 unsigned(IA->isAlignStack()) << 1 | 1975 unsigned(IA->getDialect() & 1) << 2); 1976 1977 // Add the asm string. 1978 const std::string &AsmStr = IA->getAsmString(); 1979 Record.push_back(AsmStr.size()); 1980 Record.append(AsmStr.begin(), AsmStr.end()); 1981 1982 // Add the constraint string. 1983 const std::string &ConstraintStr = IA->getConstraintString(); 1984 Record.push_back(ConstraintStr.size()); 1985 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1986 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1987 Record.clear(); 1988 continue; 1989 } 1990 const Constant *C = cast<Constant>(V); 1991 unsigned Code = -1U; 1992 unsigned AbbrevToUse = 0; 1993 if (C->isNullValue()) { 1994 Code = bitc::CST_CODE_NULL; 1995 } else if (isa<UndefValue>(C)) { 1996 Code = bitc::CST_CODE_UNDEF; 1997 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1998 if (IV->getBitWidth() <= 64) { 1999 uint64_t V = IV->getSExtValue(); 2000 emitSignedInt64(Record, V); 2001 Code = bitc::CST_CODE_INTEGER; 2002 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2003 } else { // Wide integers, > 64 bits in size. 2004 // We have an arbitrary precision integer value to write whose 2005 // bit width is > 64. However, in canonical unsigned integer 2006 // format it is likely that the high bits are going to be zero. 2007 // So, we only write the number of active words. 2008 unsigned NWords = IV->getValue().getActiveWords(); 2009 const uint64_t *RawWords = IV->getValue().getRawData(); 2010 for (unsigned i = 0; i != NWords; ++i) { 2011 emitSignedInt64(Record, RawWords[i]); 2012 } 2013 Code = bitc::CST_CODE_WIDE_INTEGER; 2014 } 2015 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2016 Code = bitc::CST_CODE_FLOAT; 2017 Type *Ty = CFP->getType(); 2018 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2019 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2020 } else if (Ty->isX86_FP80Ty()) { 2021 // api needed to prevent premature destruction 2022 // bits are not in the same order as a normal i80 APInt, compensate. 2023 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2024 const uint64_t *p = api.getRawData(); 2025 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2026 Record.push_back(p[0] & 0xffffLL); 2027 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2028 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2029 const uint64_t *p = api.getRawData(); 2030 Record.push_back(p[0]); 2031 Record.push_back(p[1]); 2032 } else { 2033 assert(0 && "Unknown FP type!"); 2034 } 2035 } else if (isa<ConstantDataSequential>(C) && 2036 cast<ConstantDataSequential>(C)->isString()) { 2037 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2038 // Emit constant strings specially. 2039 unsigned NumElts = Str->getNumElements(); 2040 // If this is a null-terminated string, use the denser CSTRING encoding. 2041 if (Str->isCString()) { 2042 Code = bitc::CST_CODE_CSTRING; 2043 --NumElts; // Don't encode the null, which isn't allowed by char6. 2044 } else { 2045 Code = bitc::CST_CODE_STRING; 2046 AbbrevToUse = String8Abbrev; 2047 } 2048 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2049 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2050 for (unsigned i = 0; i != NumElts; ++i) { 2051 unsigned char V = Str->getElementAsInteger(i); 2052 Record.push_back(V); 2053 isCStr7 &= (V & 128) == 0; 2054 if (isCStrChar6) 2055 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2056 } 2057 2058 if (isCStrChar6) 2059 AbbrevToUse = CString6Abbrev; 2060 else if (isCStr7) 2061 AbbrevToUse = CString7Abbrev; 2062 } else if (const ConstantDataSequential *CDS = 2063 dyn_cast<ConstantDataSequential>(C)) { 2064 Code = bitc::CST_CODE_DATA; 2065 Type *EltTy = CDS->getElementType(); 2066 if (isa<IntegerType>(EltTy)) { 2067 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2068 Record.push_back(CDS->getElementAsInteger(i)); 2069 } else if (EltTy->isFloatTy()) { 2070 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2071 union { 2072 float F; 2073 uint32_t I; 2074 }; 2075 F = CDS->getElementAsFloat(i); 2076 Record.push_back(I); 2077 } 2078 } else { 2079 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2080 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2081 union { 2082 double F; 2083 uint64_t I; 2084 }; 2085 F = CDS->getElementAsDouble(i); 2086 Record.push_back(I); 2087 } 2088 } 2089 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2090 isa<ConstantVector>(C)) { 2091 Code = bitc::CST_CODE_AGGREGATE; 2092 for (const Value *Op : C->operands()) 2093 Record.push_back(VE.getValueID(Op)); 2094 AbbrevToUse = AggregateAbbrev; 2095 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2096 switch (CE->getOpcode()) { 2097 default: 2098 if (Instruction::isCast(CE->getOpcode())) { 2099 Code = bitc::CST_CODE_CE_CAST; 2100 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2101 Record.push_back( 2102 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2103 Record.push_back(VE.getValueID(C->getOperand(0))); 2104 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2105 } else { 2106 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2107 Code = bitc::CST_CODE_CE_BINOP; 2108 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2109 Record.push_back(VE.getValueID(C->getOperand(0))); 2110 Record.push_back(VE.getValueID(C->getOperand(1))); 2111 uint64_t Flags = getOptimizationFlags(CE); 2112 if (Flags != 0) 2113 Record.push_back(Flags); 2114 } 2115 break; 2116 case Instruction::GetElementPtr: { 2117 Code = bitc::CST_CODE_CE_GEP; 2118 const auto *GO = cast<GEPOperator>(C); 2119 if (GO->isInBounds()) 2120 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2121 Record.push_back(getTypeID(GO->getSourceElementType())); 2122 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2123 Record.push_back( 2124 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2125 Record.push_back(VE.getValueID(C->getOperand(i))); 2126 } 2127 break; 2128 } 2129 case Instruction::Select: 2130 Code = bitc::CST_CODE_CE_SELECT; 2131 Record.push_back(VE.getValueID(C->getOperand(0))); 2132 Record.push_back(VE.getValueID(C->getOperand(1))); 2133 Record.push_back(VE.getValueID(C->getOperand(2))); 2134 break; 2135 case Instruction::ExtractElement: 2136 Code = bitc::CST_CODE_CE_EXTRACTELT; 2137 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2138 Record.push_back(VE.getValueID(C->getOperand(0))); 2139 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2140 Record.push_back(VE.getValueID(C->getOperand(1))); 2141 break; 2142 case Instruction::InsertElement: 2143 Code = bitc::CST_CODE_CE_INSERTELT; 2144 Record.push_back(VE.getValueID(C->getOperand(0))); 2145 Record.push_back(VE.getValueID(C->getOperand(1))); 2146 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2147 Record.push_back(VE.getValueID(C->getOperand(2))); 2148 break; 2149 case Instruction::ShuffleVector: 2150 // If the return type and argument types are the same, this is a 2151 // standard shufflevector instruction. If the types are different, 2152 // then the shuffle is widening or truncating the input vectors, and 2153 // the argument type must also be encoded. 2154 if (C->getType() == C->getOperand(0)->getType()) { 2155 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2156 } else { 2157 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2158 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2159 } 2160 Record.push_back(VE.getValueID(C->getOperand(0))); 2161 Record.push_back(VE.getValueID(C->getOperand(1))); 2162 Record.push_back(VE.getValueID(C->getOperand(2))); 2163 break; 2164 case Instruction::ICmp: 2165 case Instruction::FCmp: 2166 Code = bitc::CST_CODE_CE_CMP; 2167 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2168 Record.push_back(VE.getValueID(C->getOperand(0))); 2169 Record.push_back(VE.getValueID(C->getOperand(1))); 2170 Record.push_back(CE->getPredicate()); 2171 break; 2172 } 2173 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2174 Code = bitc::CST_CODE_BLOCKADDRESS; 2175 Record.push_back(getTypeID(BA->getFunction()->getType())); 2176 Record.push_back(VE.getValueID(BA->getFunction())); 2177 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2178 } else { 2179 #ifndef NDEBUG 2180 C->dump(); 2181 #endif 2182 llvm_unreachable("Unknown constant!"); 2183 } 2184 Stream.EmitRecord(Code, Record, AbbrevToUse); 2185 Record.clear(); 2186 } 2187 2188 Stream.ExitBlock(); 2189 } 2190 2191 void DXILBitcodeWriter::writeModuleConstants() { 2192 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2193 2194 // Find the first constant to emit, which is the first non-globalvalue value. 2195 // We know globalvalues have been emitted by WriteModuleInfo. 2196 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2197 if (!isa<GlobalValue>(Vals[i].first)) { 2198 writeConstants(i, Vals.size(), true); 2199 return; 2200 } 2201 } 2202 } 2203 2204 /// pushValueAndType - The file has to encode both the value and type id for 2205 /// many values, because we need to know what type to create for forward 2206 /// references. However, most operands are not forward references, so this type 2207 /// field is not needed. 2208 /// 2209 /// This function adds V's value ID to Vals. If the value ID is higher than the 2210 /// instruction ID, then it is a forward reference, and it also includes the 2211 /// type ID. The value ID that is written is encoded relative to the InstID. 2212 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2213 SmallVectorImpl<unsigned> &Vals) { 2214 unsigned ValID = VE.getValueID(V); 2215 // Make encoding relative to the InstID. 2216 Vals.push_back(InstID - ValID); 2217 if (ValID >= InstID) { 2218 Vals.push_back(getTypeID(V->getType(), V)); 2219 return true; 2220 } 2221 return false; 2222 } 2223 2224 /// pushValue - Like pushValueAndType, but where the type of the value is 2225 /// omitted (perhaps it was already encoded in an earlier operand). 2226 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2227 SmallVectorImpl<unsigned> &Vals) { 2228 unsigned ValID = VE.getValueID(V); 2229 Vals.push_back(InstID - ValID); 2230 } 2231 2232 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2233 SmallVectorImpl<uint64_t> &Vals) { 2234 unsigned ValID = VE.getValueID(V); 2235 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2236 emitSignedInt64(Vals, diff); 2237 } 2238 2239 /// WriteInstruction - Emit an instruction 2240 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2241 SmallVectorImpl<unsigned> &Vals) { 2242 unsigned Code = 0; 2243 unsigned AbbrevToUse = 0; 2244 VE.setInstructionID(&I); 2245 switch (I.getOpcode()) { 2246 default: 2247 if (Instruction::isCast(I.getOpcode())) { 2248 Code = bitc::FUNC_CODE_INST_CAST; 2249 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2250 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2251 Vals.push_back(getTypeID(I.getType(), &I)); 2252 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2253 } else { 2254 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2255 Code = bitc::FUNC_CODE_INST_BINOP; 2256 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2257 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2258 pushValue(I.getOperand(1), InstID, Vals); 2259 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2260 uint64_t Flags = getOptimizationFlags(&I); 2261 if (Flags != 0) { 2262 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2263 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2264 Vals.push_back(Flags); 2265 } 2266 } 2267 break; 2268 2269 case Instruction::GetElementPtr: { 2270 Code = bitc::FUNC_CODE_INST_GEP; 2271 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2272 auto &GEPInst = cast<GetElementPtrInst>(I); 2273 Vals.push_back(GEPInst.isInBounds()); 2274 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2275 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2276 pushValueAndType(I.getOperand(i), InstID, Vals); 2277 break; 2278 } 2279 case Instruction::ExtractValue: { 2280 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2281 pushValueAndType(I.getOperand(0), InstID, Vals); 2282 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2283 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2284 break; 2285 } 2286 case Instruction::InsertValue: { 2287 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2288 pushValueAndType(I.getOperand(0), InstID, Vals); 2289 pushValueAndType(I.getOperand(1), InstID, Vals); 2290 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2291 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2292 break; 2293 } 2294 case Instruction::Select: 2295 Code = bitc::FUNC_CODE_INST_VSELECT; 2296 pushValueAndType(I.getOperand(1), InstID, Vals); 2297 pushValue(I.getOperand(2), InstID, Vals); 2298 pushValueAndType(I.getOperand(0), InstID, Vals); 2299 break; 2300 case Instruction::ExtractElement: 2301 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2302 pushValueAndType(I.getOperand(0), InstID, Vals); 2303 pushValueAndType(I.getOperand(1), InstID, Vals); 2304 break; 2305 case Instruction::InsertElement: 2306 Code = bitc::FUNC_CODE_INST_INSERTELT; 2307 pushValueAndType(I.getOperand(0), InstID, Vals); 2308 pushValue(I.getOperand(1), InstID, Vals); 2309 pushValueAndType(I.getOperand(2), InstID, Vals); 2310 break; 2311 case Instruction::ShuffleVector: 2312 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2313 pushValueAndType(I.getOperand(0), InstID, Vals); 2314 pushValue(I.getOperand(1), InstID, Vals); 2315 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2316 Vals); 2317 break; 2318 case Instruction::ICmp: 2319 case Instruction::FCmp: { 2320 // compare returning Int1Ty or vector of Int1Ty 2321 Code = bitc::FUNC_CODE_INST_CMP2; 2322 pushValueAndType(I.getOperand(0), InstID, Vals); 2323 pushValue(I.getOperand(1), InstID, Vals); 2324 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2325 uint64_t Flags = getOptimizationFlags(&I); 2326 if (Flags != 0) 2327 Vals.push_back(Flags); 2328 break; 2329 } 2330 2331 case Instruction::Ret: { 2332 Code = bitc::FUNC_CODE_INST_RET; 2333 unsigned NumOperands = I.getNumOperands(); 2334 if (NumOperands == 0) 2335 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2336 else if (NumOperands == 1) { 2337 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2338 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2339 } else { 2340 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2341 pushValueAndType(I.getOperand(i), InstID, Vals); 2342 } 2343 } break; 2344 case Instruction::Br: { 2345 Code = bitc::FUNC_CODE_INST_BR; 2346 const BranchInst &II = cast<BranchInst>(I); 2347 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2348 if (II.isConditional()) { 2349 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2350 pushValue(II.getCondition(), InstID, Vals); 2351 } 2352 } break; 2353 case Instruction::Switch: { 2354 Code = bitc::FUNC_CODE_INST_SWITCH; 2355 const SwitchInst &SI = cast<SwitchInst>(I); 2356 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2357 pushValue(SI.getCondition(), InstID, Vals); 2358 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2359 for (auto Case : SI.cases()) { 2360 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2361 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2362 } 2363 } break; 2364 case Instruction::IndirectBr: 2365 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2366 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2367 // Encode the address operand as relative, but not the basic blocks. 2368 pushValue(I.getOperand(0), InstID, Vals); 2369 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2370 Vals.push_back(VE.getValueID(I.getOperand(i))); 2371 break; 2372 2373 case Instruction::Invoke: { 2374 const InvokeInst *II = cast<InvokeInst>(&I); 2375 const Value *Callee = II->getCalledOperand(); 2376 FunctionType *FTy = II->getFunctionType(); 2377 Code = bitc::FUNC_CODE_INST_INVOKE; 2378 2379 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2380 Vals.push_back(II->getCallingConv() | 1 << 13); 2381 Vals.push_back(VE.getValueID(II->getNormalDest())); 2382 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2383 Vals.push_back(getTypeID(FTy)); 2384 pushValueAndType(Callee, InstID, Vals); 2385 2386 // Emit value #'s for the fixed parameters. 2387 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2388 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2389 2390 // Emit type/value pairs for varargs params. 2391 if (FTy->isVarArg()) { 2392 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2393 ++i) 2394 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2395 } 2396 break; 2397 } 2398 case Instruction::Resume: 2399 Code = bitc::FUNC_CODE_INST_RESUME; 2400 pushValueAndType(I.getOperand(0), InstID, Vals); 2401 break; 2402 case Instruction::Unreachable: 2403 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2404 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2405 break; 2406 2407 case Instruction::PHI: { 2408 const PHINode &PN = cast<PHINode>(I); 2409 Code = bitc::FUNC_CODE_INST_PHI; 2410 // With the newer instruction encoding, forward references could give 2411 // negative valued IDs. This is most common for PHIs, so we use 2412 // signed VBRs. 2413 SmallVector<uint64_t, 128> Vals64; 2414 Vals64.push_back(getTypeID(PN.getType())); 2415 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2416 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2417 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2418 } 2419 // Emit a Vals64 vector and exit. 2420 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2421 Vals64.clear(); 2422 return; 2423 } 2424 2425 case Instruction::LandingPad: { 2426 const LandingPadInst &LP = cast<LandingPadInst>(I); 2427 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2428 Vals.push_back(getTypeID(LP.getType())); 2429 Vals.push_back(LP.isCleanup()); 2430 Vals.push_back(LP.getNumClauses()); 2431 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2432 if (LP.isCatch(I)) 2433 Vals.push_back(LandingPadInst::Catch); 2434 else 2435 Vals.push_back(LandingPadInst::Filter); 2436 pushValueAndType(LP.getClause(I), InstID, Vals); 2437 } 2438 break; 2439 } 2440 2441 case Instruction::Alloca: { 2442 Code = bitc::FUNC_CODE_INST_ALLOCA; 2443 const AllocaInst &AI = cast<AllocaInst>(I); 2444 Vals.push_back(getTypeID(AI.getAllocatedType())); 2445 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2446 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2447 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2448 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2449 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2450 AlignRecord |= 1 << 6; 2451 Vals.push_back(AlignRecord); 2452 break; 2453 } 2454 2455 case Instruction::Load: 2456 if (cast<LoadInst>(I).isAtomic()) { 2457 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2458 pushValueAndType(I.getOperand(0), InstID, Vals); 2459 } else { 2460 Code = bitc::FUNC_CODE_INST_LOAD; 2461 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2462 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2463 } 2464 Vals.push_back(getTypeID(I.getType())); 2465 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2466 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2467 if (cast<LoadInst>(I).isAtomic()) { 2468 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2469 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2470 } 2471 break; 2472 case Instruction::Store: 2473 if (cast<StoreInst>(I).isAtomic()) 2474 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2475 else 2476 Code = bitc::FUNC_CODE_INST_STORE; 2477 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2478 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2479 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2480 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2481 if (cast<StoreInst>(I).isAtomic()) { 2482 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2483 Vals.push_back( 2484 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2485 } 2486 break; 2487 case Instruction::AtomicCmpXchg: 2488 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2489 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2490 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2491 pushValue(I.getOperand(2), InstID, Vals); // newval. 2492 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2493 Vals.push_back( 2494 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2495 Vals.push_back( 2496 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2497 Vals.push_back( 2498 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2499 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2500 break; 2501 case Instruction::AtomicRMW: 2502 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2503 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2504 pushValue(I.getOperand(1), InstID, Vals); // val. 2505 Vals.push_back( 2506 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2507 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2508 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2509 Vals.push_back( 2510 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2511 break; 2512 case Instruction::Fence: 2513 Code = bitc::FUNC_CODE_INST_FENCE; 2514 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2515 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2516 break; 2517 case Instruction::Call: { 2518 const CallInst &CI = cast<CallInst>(I); 2519 FunctionType *FTy = CI.getFunctionType(); 2520 2521 Code = bitc::FUNC_CODE_INST_CALL; 2522 2523 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2524 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2525 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2526 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2527 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2528 2529 // Emit value #'s for the fixed parameters. 2530 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2531 // Check for labels (can happen with asm labels). 2532 if (FTy->getParamType(i)->isLabelTy()) 2533 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2534 else 2535 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2536 } 2537 2538 // Emit type/value pairs for varargs params. 2539 if (FTy->isVarArg()) { 2540 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2541 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2542 } 2543 break; 2544 } 2545 case Instruction::VAArg: 2546 Code = bitc::FUNC_CODE_INST_VAARG; 2547 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2548 pushValue(I.getOperand(0), InstID, Vals); // valist. 2549 Vals.push_back(getTypeID(I.getType())); // restype. 2550 break; 2551 } 2552 2553 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2554 Vals.clear(); 2555 } 2556 2557 // Emit names for globals/functions etc. 2558 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2559 const ValueSymbolTable &VST) { 2560 if (VST.empty()) 2561 return; 2562 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2563 2564 SmallVector<unsigned, 64> NameVals; 2565 2566 // HLSL Change 2567 // Read the named values from a sorted list instead of the original list 2568 // to ensure the binary is the same no matter what values ever existed. 2569 SmallVector<const ValueName *, 16> SortedTable; 2570 2571 for (auto &VI : VST) { 2572 SortedTable.push_back(VI.second->getValueName()); 2573 } 2574 // The keys are unique, so there shouldn't be stability issues. 2575 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2576 return A->first() < B->first(); 2577 }); 2578 2579 for (const ValueName *SI : SortedTable) { 2580 auto &Name = *SI; 2581 2582 // Figure out the encoding to use for the name. 2583 bool is7Bit = true; 2584 bool isChar6 = true; 2585 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2586 C != E; ++C) { 2587 if (isChar6) 2588 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2589 if ((unsigned char)*C & 128) { 2590 is7Bit = false; 2591 break; // don't bother scanning the rest. 2592 } 2593 } 2594 2595 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2596 2597 // VST_ENTRY: [valueid, namechar x N] 2598 // VST_BBENTRY: [bbid, namechar x N] 2599 unsigned Code; 2600 if (isa<BasicBlock>(SI->getValue())) { 2601 Code = bitc::VST_CODE_BBENTRY; 2602 if (isChar6) 2603 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2604 } else { 2605 Code = bitc::VST_CODE_ENTRY; 2606 if (isChar6) 2607 AbbrevToUse = VST_ENTRY_6_ABBREV; 2608 else if (is7Bit) 2609 AbbrevToUse = VST_ENTRY_7_ABBREV; 2610 } 2611 2612 NameVals.push_back(VE.getValueID(SI->getValue())); 2613 for (const char *P = Name.getKeyData(), 2614 *E = Name.getKeyData() + Name.getKeyLength(); 2615 P != E; ++P) 2616 NameVals.push_back((unsigned char)*P); 2617 2618 // Emit the finished record. 2619 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2620 NameVals.clear(); 2621 } 2622 Stream.ExitBlock(); 2623 } 2624 2625 /// Emit a function body to the module stream. 2626 void DXILBitcodeWriter::writeFunction(const Function &F) { 2627 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2628 VE.incorporateFunction(F); 2629 2630 SmallVector<unsigned, 64> Vals; 2631 2632 // Emit the number of basic blocks, so the reader can create them ahead of 2633 // time. 2634 Vals.push_back(VE.getBasicBlocks().size()); 2635 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2636 Vals.clear(); 2637 2638 // If there are function-local constants, emit them now. 2639 unsigned CstStart, CstEnd; 2640 VE.getFunctionConstantRange(CstStart, CstEnd); 2641 writeConstants(CstStart, CstEnd, false); 2642 2643 // If there is function-local metadata, emit it now. 2644 writeFunctionMetadata(F); 2645 2646 // Keep a running idea of what the instruction ID is. 2647 unsigned InstID = CstEnd; 2648 2649 bool NeedsMetadataAttachment = F.hasMetadata(); 2650 2651 DILocation *LastDL = nullptr; 2652 2653 // Finally, emit all the instructions, in order. 2654 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2655 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2656 ++I) { 2657 writeInstruction(*I, InstID, Vals); 2658 2659 if (!I->getType()->isVoidTy()) 2660 ++InstID; 2661 2662 // If the instruction has metadata, write a metadata attachment later. 2663 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2664 2665 // If the instruction has a debug location, emit it. 2666 DILocation *DL = I->getDebugLoc(); 2667 if (!DL) 2668 continue; 2669 2670 if (DL == LastDL) { 2671 // Just repeat the same debug loc as last time. 2672 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2673 continue; 2674 } 2675 2676 Vals.push_back(DL->getLine()); 2677 Vals.push_back(DL->getColumn()); 2678 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2679 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2680 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2681 Vals.clear(); 2682 2683 LastDL = DL; 2684 } 2685 2686 // Emit names for all the instructions etc. 2687 if (auto *Symtab = F.getValueSymbolTable()) 2688 writeFunctionLevelValueSymbolTable(*Symtab); 2689 2690 if (NeedsMetadataAttachment) 2691 writeFunctionMetadataAttachment(F); 2692 2693 VE.purgeFunction(); 2694 Stream.ExitBlock(); 2695 } 2696 2697 // Emit blockinfo, which defines the standard abbreviations etc. 2698 void DXILBitcodeWriter::writeBlockInfo() { 2699 // We only want to emit block info records for blocks that have multiple 2700 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2701 // Other blocks can define their abbrevs inline. 2702 Stream.EnterBlockInfoBlock(); 2703 2704 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2705 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2710 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2711 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2712 assert(false && "Unexpected abbrev ordering!"); 2713 } 2714 2715 { // 7-bit fixed width VST_ENTRY strings. 2716 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2717 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2721 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2722 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2723 assert(false && "Unexpected abbrev ordering!"); 2724 } 2725 { // 6-bit char6 VST_ENTRY strings. 2726 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2727 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2731 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2732 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2733 assert(false && "Unexpected abbrev ordering!"); 2734 } 2735 { // 6-bit char6 VST_BBENTRY strings. 2736 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2737 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2741 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2742 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2743 assert(false && "Unexpected abbrev ordering!"); 2744 } 2745 2746 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2747 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2748 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2750 VE.computeBitsRequiredForTypeIndicies())); 2751 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2752 CONSTANTS_SETTYPE_ABBREV) 2753 assert(false && "Unexpected abbrev ordering!"); 2754 } 2755 2756 { // INTEGER abbrev for CONSTANTS_BLOCK. 2757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2758 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2760 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2761 CONSTANTS_INTEGER_ABBREV) 2762 assert(false && "Unexpected abbrev ordering!"); 2763 } 2764 2765 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2767 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2770 VE.computeBitsRequiredForTypeIndicies())); 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2772 2773 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2774 CONSTANTS_CE_CAST_Abbrev) 2775 assert(false && "Unexpected abbrev ordering!"); 2776 } 2777 { // NULL abbrev for CONSTANTS_BLOCK. 2778 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2779 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2780 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2781 CONSTANTS_NULL_Abbrev) 2782 assert(false && "Unexpected abbrev ordering!"); 2783 } 2784 2785 // FIXME: This should only use space for first class types! 2786 2787 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2788 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2789 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2792 VE.computeBitsRequiredForTypeIndicies())); 2793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2795 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2796 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2797 assert(false && "Unexpected abbrev ordering!"); 2798 } 2799 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2800 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2801 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2805 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2806 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2807 assert(false && "Unexpected abbrev ordering!"); 2808 } 2809 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2810 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2811 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2816 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2817 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2818 assert(false && "Unexpected abbrev ordering!"); 2819 } 2820 { // INST_CAST abbrev for FUNCTION_BLOCK. 2821 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2822 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2825 VE.computeBitsRequiredForTypeIndicies())); 2826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2827 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2828 (unsigned)FUNCTION_INST_CAST_ABBREV) 2829 assert(false && "Unexpected abbrev ordering!"); 2830 } 2831 2832 { // INST_RET abbrev for FUNCTION_BLOCK. 2833 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2834 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2835 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2836 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2837 assert(false && "Unexpected abbrev ordering!"); 2838 } 2839 { // INST_RET abbrev for FUNCTION_BLOCK. 2840 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2841 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2843 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2844 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2845 assert(false && "Unexpected abbrev ordering!"); 2846 } 2847 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2848 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2849 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2850 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2851 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2852 assert(false && "Unexpected abbrev ordering!"); 2853 } 2854 { 2855 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2856 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2859 Log2_32_Ceil(VE.getTypes().size() + 1))); 2860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2862 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2863 (unsigned)FUNCTION_INST_GEP_ABBREV) 2864 assert(false && "Unexpected abbrev ordering!"); 2865 } 2866 2867 Stream.ExitBlock(); 2868 } 2869 2870 void DXILBitcodeWriter::writeModuleVersion() { 2871 // VERSION: [version#] 2872 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2873 } 2874 2875 /// WriteModule - Emit the specified module to the bitstream. 2876 void DXILBitcodeWriter::write() { 2877 // The identification block is new since llvm-3.7, but the old bitcode reader 2878 // will skip it. 2879 // writeIdentificationBlock(Stream); 2880 2881 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2882 2883 // It is redundant to fully-specify this here, but nice to make it explicit 2884 // so that it is clear the DXIL module version is different. 2885 DXILBitcodeWriter::writeModuleVersion(); 2886 2887 // Emit blockinfo, which defines the standard abbreviations etc. 2888 writeBlockInfo(); 2889 2890 // Emit information about attribute groups. 2891 writeAttributeGroupTable(); 2892 2893 // Emit information about parameter attributes. 2894 writeAttributeTable(); 2895 2896 // Emit information describing all of the types in the module. 2897 writeTypeTable(); 2898 2899 writeComdats(); 2900 2901 // Emit top-level description of module, including target triple, inline asm, 2902 // descriptors for global variables, and function prototype info. 2903 writeModuleInfo(); 2904 2905 // Emit constants. 2906 writeModuleConstants(); 2907 2908 // Emit metadata. 2909 writeModuleMetadataKinds(); 2910 2911 // Emit metadata. 2912 writeModuleMetadata(); 2913 2914 // Emit names for globals/functions etc. 2915 // DXIL uses the same format for module-level value symbol table as for the 2916 // function level table. 2917 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2918 2919 // Emit function bodies. 2920 for (const Function &F : M) 2921 if (!F.isDeclaration()) 2922 writeFunction(F); 2923 2924 Stream.ExitBlock(); 2925 } 2926