1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMBaseInstrInfo.h" 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMInstPrinter.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "TargetInfo/ARMTargetInfo.h" 17 #include "Utils/ARMBaseInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCInstrInfo.h" 34 #include "llvm/MC/MCParser/MCAsmLexer.h" 35 #include "llvm/MC/MCParser/MCAsmParser.h" 36 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 37 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 38 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 39 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSubtargetInfo.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/SubtargetFeature.h" 46 #include "llvm/MC/TargetRegistry.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstddef> 60 #include <cstdint> 61 #include <iterator> 62 #include <limits> 63 #include <memory> 64 #include <string> 65 #include <utility> 66 #include <vector> 67 68 #define DEBUG_TYPE "asm-parser" 69 70 using namespace llvm; 71 72 namespace llvm { 73 extern const MCInstrDesc ARMInsts[]; 74 } // end namespace llvm 75 76 namespace { 77 78 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 79 80 static cl::opt<ImplicitItModeTy> ImplicitItMode( 81 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 82 cl::desc("Allow conditional instructions outdside of an IT block"), 83 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 84 "Accept in both ISAs, emit implicit ITs in Thumb"), 85 clEnumValN(ImplicitItModeTy::Never, "never", 86 "Warn in ARM, reject in Thumb"), 87 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 88 "Accept in ARM, reject in Thumb"), 89 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 90 "Warn in ARM, emit implicit ITs in Thumb"))); 91 92 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 93 cl::init(false)); 94 95 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 96 97 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 98 // Position==0 means we're not in an IT block at all. Position==1 99 // means we want the first state bit, which is always 0 (Then). 100 // Position==2 means we want the second state bit, stored at bit 3 101 // of Mask, and so on downwards. So (5 - Position) will shift the 102 // right bit down to bit 0, including the always-0 bit at bit 4 for 103 // the mandatory initial Then. 104 return (Mask >> (5 - Position) & 1); 105 } 106 107 class UnwindContext { 108 using Locs = SmallVector<SMLoc, 4>; 109 110 MCAsmParser &Parser; 111 Locs FnStartLocs; 112 Locs CantUnwindLocs; 113 Locs PersonalityLocs; 114 Locs PersonalityIndexLocs; 115 Locs HandlerDataLocs; 116 int FPReg; 117 118 public: 119 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 120 121 bool hasFnStart() const { return !FnStartLocs.empty(); } 122 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 123 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 124 125 bool hasPersonality() const { 126 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 127 } 128 129 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 130 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 131 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 132 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 133 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 134 135 void saveFPReg(int Reg) { FPReg = Reg; } 136 int getFPReg() const { return FPReg; } 137 138 void emitFnStartLocNotes() const { 139 for (const SMLoc &Loc : FnStartLocs) 140 Parser.Note(Loc, ".fnstart was specified here"); 141 } 142 143 void emitCantUnwindLocNotes() const { 144 for (const SMLoc &Loc : CantUnwindLocs) 145 Parser.Note(Loc, ".cantunwind was specified here"); 146 } 147 148 void emitHandlerDataLocNotes() const { 149 for (const SMLoc &Loc : HandlerDataLocs) 150 Parser.Note(Loc, ".handlerdata was specified here"); 151 } 152 153 void emitPersonalityLocNotes() const { 154 for (Locs::const_iterator PI = PersonalityLocs.begin(), 155 PE = PersonalityLocs.end(), 156 PII = PersonalityIndexLocs.begin(), 157 PIE = PersonalityIndexLocs.end(); 158 PI != PE || PII != PIE;) { 159 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 160 Parser.Note(*PI++, ".personality was specified here"); 161 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 162 Parser.Note(*PII++, ".personalityindex was specified here"); 163 else 164 llvm_unreachable(".personality and .personalityindex cannot be " 165 "at the same location"); 166 } 167 } 168 169 void reset() { 170 FnStartLocs = Locs(); 171 CantUnwindLocs = Locs(); 172 PersonalityLocs = Locs(); 173 HandlerDataLocs = Locs(); 174 PersonalityIndexLocs = Locs(); 175 FPReg = ARM::SP; 176 } 177 }; 178 179 // Various sets of ARM instruction mnemonics which are used by the asm parser 180 class ARMMnemonicSets { 181 StringSet<> CDE; 182 StringSet<> CDEWithVPTSuffix; 183 public: 184 ARMMnemonicSets(const MCSubtargetInfo &STI); 185 186 /// Returns true iff a given mnemonic is a CDE instruction 187 bool isCDEInstr(StringRef Mnemonic) { 188 // Quick check before searching the set 189 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 190 return false; 191 return CDE.count(Mnemonic); 192 } 193 194 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 195 /// (possibly with a predication suffix "e" or "t") 196 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 197 if (!Mnemonic.startswith("vcx")) 198 return false; 199 return CDEWithVPTSuffix.count(Mnemonic); 200 } 201 202 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 203 /// (possibly with a condition suffix) 204 bool isITPredicableCDEInstr(StringRef Mnemonic) { 205 if (!Mnemonic.startswith("cx")) 206 return false; 207 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 208 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 209 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 210 } 211 212 /// Return true iff a given mnemonic is an integer CDE instruction with 213 /// dual-register destination 214 bool isCDEDualRegInstr(StringRef Mnemonic) { 215 if (!Mnemonic.startswith("cx")) 216 return false; 217 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 218 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 219 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 220 } 221 }; 222 223 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 224 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 225 "cx2", "cx2a", "cx2d", "cx2da", 226 "cx3", "cx3a", "cx3d", "cx3da", }) 227 CDE.insert(Mnemonic); 228 for (StringRef Mnemonic : 229 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 230 CDE.insert(Mnemonic); 231 CDEWithVPTSuffix.insert(Mnemonic); 232 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 233 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 234 } 235 } 236 237 class ARMAsmParser : public MCTargetAsmParser { 238 const MCRegisterInfo *MRI; 239 UnwindContext UC; 240 ARMMnemonicSets MS; 241 242 ARMTargetStreamer &getTargetStreamer() { 243 assert(getParser().getStreamer().getTargetStreamer() && 244 "do not have a target streamer"); 245 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 246 return static_cast<ARMTargetStreamer &>(TS); 247 } 248 249 // Map of register aliases registers via the .req directive. 250 StringMap<unsigned> RegisterReqs; 251 252 bool NextSymbolIsThumb; 253 254 bool useImplicitITThumb() const { 255 return ImplicitItMode == ImplicitItModeTy::Always || 256 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 257 } 258 259 bool useImplicitITARM() const { 260 return ImplicitItMode == ImplicitItModeTy::Always || 261 ImplicitItMode == ImplicitItModeTy::ARMOnly; 262 } 263 264 struct { 265 ARMCC::CondCodes Cond; // Condition for IT block. 266 unsigned Mask:4; // Condition mask for instructions. 267 // Starting at first 1 (from lsb). 268 // '1' condition as indicated in IT. 269 // '0' inverse of condition (else). 270 // Count of instructions in IT block is 271 // 4 - trailingzeroes(mask) 272 // Note that this does not have the same encoding 273 // as in the IT instruction, which also depends 274 // on the low bit of the condition code. 275 276 unsigned CurPosition; // Current position in parsing of IT 277 // block. In range [0,4], with 0 being the IT 278 // instruction itself. Initialized according to 279 // count of instructions in block. ~0U if no 280 // active IT block. 281 282 bool IsExplicit; // true - The IT instruction was present in the 283 // input, we should not modify it. 284 // false - The IT instruction was added 285 // implicitly, we can extend it if that 286 // would be legal. 287 } ITState; 288 289 SmallVector<MCInst, 4> PendingConditionalInsts; 290 291 void flushPendingInstructions(MCStreamer &Out) override { 292 if (!inImplicitITBlock()) { 293 assert(PendingConditionalInsts.size() == 0); 294 return; 295 } 296 297 // Emit the IT instruction 298 MCInst ITInst; 299 ITInst.setOpcode(ARM::t2IT); 300 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 301 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 302 Out.emitInstruction(ITInst, getSTI()); 303 304 // Emit the conditional instructions 305 assert(PendingConditionalInsts.size() <= 4); 306 for (const MCInst &Inst : PendingConditionalInsts) { 307 Out.emitInstruction(Inst, getSTI()); 308 } 309 PendingConditionalInsts.clear(); 310 311 // Clear the IT state 312 ITState.Mask = 0; 313 ITState.CurPosition = ~0U; 314 } 315 316 bool inITBlock() { return ITState.CurPosition != ~0U; } 317 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 318 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 319 320 bool lastInITBlock() { 321 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 322 } 323 324 void forwardITPosition() { 325 if (!inITBlock()) return; 326 // Move to the next instruction in the IT block, if there is one. If not, 327 // mark the block as done, except for implicit IT blocks, which we leave 328 // open until we find an instruction that can't be added to it. 329 unsigned TZ = countTrailingZeros(ITState.Mask); 330 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 331 ITState.CurPosition = ~0U; // Done with the IT block after this. 332 } 333 334 // Rewind the state of the current IT block, removing the last slot from it. 335 void rewindImplicitITPosition() { 336 assert(inImplicitITBlock()); 337 assert(ITState.CurPosition > 1); 338 ITState.CurPosition--; 339 unsigned TZ = countTrailingZeros(ITState.Mask); 340 unsigned NewMask = 0; 341 NewMask |= ITState.Mask & (0xC << TZ); 342 NewMask |= 0x2 << TZ; 343 ITState.Mask = NewMask; 344 } 345 346 // Rewind the state of the current IT block, removing the last slot from it. 347 // If we were at the first slot, this closes the IT block. 348 void discardImplicitITBlock() { 349 assert(inImplicitITBlock()); 350 assert(ITState.CurPosition == 1); 351 ITState.CurPosition = ~0U; 352 } 353 354 // Return the low-subreg of a given Q register. 355 unsigned getDRegFromQReg(unsigned QReg) const { 356 return MRI->getSubReg(QReg, ARM::dsub_0); 357 } 358 359 // Get the condition code corresponding to the current IT block slot. 360 ARMCC::CondCodes currentITCond() { 361 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 362 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 363 } 364 365 // Invert the condition of the current IT block slot without changing any 366 // other slots in the same block. 367 void invertCurrentITCondition() { 368 if (ITState.CurPosition == 1) { 369 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 370 } else { 371 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 372 } 373 } 374 375 // Returns true if the current IT block is full (all 4 slots used). 376 bool isITBlockFull() { 377 return inITBlock() && (ITState.Mask & 1); 378 } 379 380 // Extend the current implicit IT block to have one more slot with the given 381 // condition code. 382 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 383 assert(inImplicitITBlock()); 384 assert(!isITBlockFull()); 385 assert(Cond == ITState.Cond || 386 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 387 unsigned TZ = countTrailingZeros(ITState.Mask); 388 unsigned NewMask = 0; 389 // Keep any existing condition bits. 390 NewMask |= ITState.Mask & (0xE << TZ); 391 // Insert the new condition bit. 392 NewMask |= (Cond != ITState.Cond) << TZ; 393 // Move the trailing 1 down one bit. 394 NewMask |= 1 << (TZ - 1); 395 ITState.Mask = NewMask; 396 } 397 398 // Create a new implicit IT block with a dummy condition code. 399 void startImplicitITBlock() { 400 assert(!inITBlock()); 401 ITState.Cond = ARMCC::AL; 402 ITState.Mask = 8; 403 ITState.CurPosition = 1; 404 ITState.IsExplicit = false; 405 } 406 407 // Create a new explicit IT block with the given condition and mask. 408 // The mask should be in the format used in ARMOperand and 409 // MCOperand, with a 1 implying 'e', regardless of the low bit of 410 // the condition. 411 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 412 assert(!inITBlock()); 413 ITState.Cond = Cond; 414 ITState.Mask = Mask; 415 ITState.CurPosition = 0; 416 ITState.IsExplicit = true; 417 } 418 419 struct { 420 unsigned Mask : 4; 421 unsigned CurPosition; 422 } VPTState; 423 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 424 void forwardVPTPosition() { 425 if (!inVPTBlock()) return; 426 unsigned TZ = countTrailingZeros(VPTState.Mask); 427 if (++VPTState.CurPosition == 5 - TZ) 428 VPTState.CurPosition = ~0U; 429 } 430 431 void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { 432 return getParser().Note(L, Msg, Range); 433 } 434 435 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { 436 return getParser().Warning(L, Msg, Range); 437 } 438 439 bool Error(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { 440 return getParser().Error(L, Msg, Range); 441 } 442 443 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 444 unsigned ListNo, bool IsARPop = false); 445 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 446 unsigned ListNo); 447 448 int tryParseRegister(); 449 bool tryParseRegisterWithWriteBack(OperandVector &); 450 int tryParseShiftRegister(OperandVector &); 451 bool parseRegisterList(OperandVector &, bool EnforceOrder = true, 452 bool AllowRAAC = false); 453 bool parseMemory(OperandVector &); 454 bool parseOperand(OperandVector &, StringRef Mnemonic); 455 bool parseImmExpr(int64_t &Out); 456 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 457 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 458 unsigned &ShiftAmount); 459 bool parseLiteralValues(unsigned Size, SMLoc L); 460 bool parseDirectiveThumb(SMLoc L); 461 bool parseDirectiveARM(SMLoc L); 462 bool parseDirectiveThumbFunc(SMLoc L); 463 bool parseDirectiveCode(SMLoc L); 464 bool parseDirectiveSyntax(SMLoc L); 465 bool parseDirectiveReq(StringRef Name, SMLoc L); 466 bool parseDirectiveUnreq(SMLoc L); 467 bool parseDirectiveArch(SMLoc L); 468 bool parseDirectiveEabiAttr(SMLoc L); 469 bool parseDirectiveCPU(SMLoc L); 470 bool parseDirectiveFPU(SMLoc L); 471 bool parseDirectiveFnStart(SMLoc L); 472 bool parseDirectiveFnEnd(SMLoc L); 473 bool parseDirectiveCantUnwind(SMLoc L); 474 bool parseDirectivePersonality(SMLoc L); 475 bool parseDirectiveHandlerData(SMLoc L); 476 bool parseDirectiveSetFP(SMLoc L); 477 bool parseDirectivePad(SMLoc L); 478 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 479 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 480 bool parseDirectiveLtorg(SMLoc L); 481 bool parseDirectiveEven(SMLoc L); 482 bool parseDirectivePersonalityIndex(SMLoc L); 483 bool parseDirectiveUnwindRaw(SMLoc L); 484 bool parseDirectiveTLSDescSeq(SMLoc L); 485 bool parseDirectiveMovSP(SMLoc L); 486 bool parseDirectiveObjectArch(SMLoc L); 487 bool parseDirectiveArchExtension(SMLoc L); 488 bool parseDirectiveAlign(SMLoc L); 489 bool parseDirectiveThumbSet(SMLoc L); 490 491 bool parseDirectiveSEHAllocStack(SMLoc L, bool Wide); 492 bool parseDirectiveSEHSaveRegs(SMLoc L, bool Wide); 493 bool parseDirectiveSEHSaveSP(SMLoc L); 494 bool parseDirectiveSEHSaveFRegs(SMLoc L); 495 bool parseDirectiveSEHSaveLR(SMLoc L); 496 bool parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment); 497 bool parseDirectiveSEHNop(SMLoc L, bool Wide); 498 bool parseDirectiveSEHEpilogStart(SMLoc L, bool Condition); 499 bool parseDirectiveSEHEpilogEnd(SMLoc L); 500 bool parseDirectiveSEHCustom(SMLoc L); 501 502 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 503 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 504 unsigned &PredicationCode, 505 unsigned &VPTPredicationCode, bool &CarrySetting, 506 unsigned &ProcessorIMod, StringRef &ITMask); 507 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 508 StringRef FullInst, bool &CanAcceptCarrySet, 509 bool &CanAcceptPredicationCode, 510 bool &CanAcceptVPTPredicationCode); 511 bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); 512 513 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 514 OperandVector &Operands); 515 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 516 517 bool isThumb() const { 518 // FIXME: Can tablegen auto-generate this? 519 return getSTI().getFeatureBits()[ARM::ModeThumb]; 520 } 521 522 bool isThumbOne() const { 523 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 524 } 525 526 bool isThumbTwo() const { 527 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 528 } 529 530 bool hasThumb() const { 531 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 532 } 533 534 bool hasThumb2() const { 535 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 536 } 537 538 bool hasV6Ops() const { 539 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 540 } 541 542 bool hasV6T2Ops() const { 543 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 544 } 545 546 bool hasV6MOps() const { 547 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 548 } 549 550 bool hasV7Ops() const { 551 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 552 } 553 554 bool hasV8Ops() const { 555 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 556 } 557 558 bool hasV8MBaseline() const { 559 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 560 } 561 562 bool hasV8MMainline() const { 563 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 564 } 565 bool hasV8_1MMainline() const { 566 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 567 } 568 bool hasMVE() const { 569 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 570 } 571 bool hasMVEFloat() const { 572 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 573 } 574 bool hasCDE() const { 575 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 576 } 577 bool has8MSecExt() const { 578 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 579 } 580 581 bool hasARM() const { 582 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 583 } 584 585 bool hasDSP() const { 586 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 587 } 588 589 bool hasD32() const { 590 return getSTI().getFeatureBits()[ARM::FeatureD32]; 591 } 592 593 bool hasV8_1aOps() const { 594 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 595 } 596 597 bool hasRAS() const { 598 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 599 } 600 601 void SwitchMode() { 602 MCSubtargetInfo &STI = copySTI(); 603 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 604 setAvailableFeatures(FB); 605 } 606 607 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 608 609 bool isMClass() const { 610 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 611 } 612 613 /// @name Auto-generated Match Functions 614 /// { 615 616 #define GET_ASSEMBLER_HEADER 617 #include "ARMGenAsmMatcher.inc" 618 619 /// } 620 621 OperandMatchResultTy parseITCondCode(OperandVector &); 622 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 623 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 624 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 625 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 626 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 627 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 628 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 629 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 630 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 631 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 632 int High); 633 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 634 return parsePKHImm(O, "lsl", 0, 31); 635 } 636 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 637 return parsePKHImm(O, "asr", 1, 32); 638 } 639 OperandMatchResultTy parseSetEndImm(OperandVector &); 640 OperandMatchResultTy parseShifterImm(OperandVector &); 641 OperandMatchResultTy parseRotImm(OperandVector &); 642 OperandMatchResultTy parseModImm(OperandVector &); 643 OperandMatchResultTy parseBitfield(OperandVector &); 644 OperandMatchResultTy parsePostIdxReg(OperandVector &); 645 OperandMatchResultTy parseAM3Offset(OperandVector &); 646 OperandMatchResultTy parseFPImm(OperandVector &); 647 OperandMatchResultTy parseVectorList(OperandVector &); 648 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 649 SMLoc &EndLoc); 650 651 // Asm Match Converter Methods 652 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 653 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 654 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 655 656 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 657 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 658 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 659 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 660 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 661 bool isITBlockTerminator(MCInst &Inst) const; 662 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 663 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 664 bool Load, bool ARMMode, bool Writeback); 665 666 public: 667 enum ARMMatchResultTy { 668 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 669 Match_RequiresNotITBlock, 670 Match_RequiresV6, 671 Match_RequiresThumb2, 672 Match_RequiresV8, 673 Match_RequiresFlagSetting, 674 #define GET_OPERAND_DIAGNOSTIC_TYPES 675 #include "ARMGenAsmMatcher.inc" 676 677 }; 678 679 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 680 const MCInstrInfo &MII, const MCTargetOptions &Options) 681 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 682 MCAsmParserExtension::Initialize(Parser); 683 684 // Cache the MCRegisterInfo. 685 MRI = getContext().getRegisterInfo(); 686 687 // Initialize the set of available features. 688 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 689 690 // Add build attributes based on the selected target. 691 if (AddBuildAttributes) 692 getTargetStreamer().emitTargetAttributes(STI); 693 694 // Not in an ITBlock to start with. 695 ITState.CurPosition = ~0U; 696 697 VPTState.CurPosition = ~0U; 698 699 NextSymbolIsThumb = false; 700 } 701 702 // Implementation of the MCTargetAsmParser interface: 703 bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc, 704 SMLoc &EndLoc) override; 705 OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 706 SMLoc &EndLoc) override; 707 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 708 SMLoc NameLoc, OperandVector &Operands) override; 709 bool ParseDirective(AsmToken DirectiveID) override; 710 711 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 712 unsigned Kind) override; 713 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 714 715 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 716 OperandVector &Operands, MCStreamer &Out, 717 uint64_t &ErrorInfo, 718 bool MatchingInlineAsm) override; 719 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 720 SmallVectorImpl<NearMissInfo> &NearMisses, 721 bool MatchingInlineAsm, bool &EmitInITBlock, 722 MCStreamer &Out); 723 724 struct NearMissMessage { 725 SMLoc Loc; 726 SmallString<128> Message; 727 }; 728 729 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 730 731 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 732 SmallVectorImpl<NearMissMessage> &NearMissesOut, 733 SMLoc IDLoc, OperandVector &Operands); 734 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 735 OperandVector &Operands); 736 737 void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) override; 738 739 void onLabelParsed(MCSymbol *Symbol) override; 740 }; 741 742 /// ARMOperand - Instances of this class represent a parsed ARM machine 743 /// operand. 744 class ARMOperand : public MCParsedAsmOperand { 745 enum KindTy { 746 k_CondCode, 747 k_VPTPred, 748 k_CCOut, 749 k_ITCondMask, 750 k_CoprocNum, 751 k_CoprocReg, 752 k_CoprocOption, 753 k_Immediate, 754 k_MemBarrierOpt, 755 k_InstSyncBarrierOpt, 756 k_TraceSyncBarrierOpt, 757 k_Memory, 758 k_PostIndexRegister, 759 k_MSRMask, 760 k_BankedReg, 761 k_ProcIFlags, 762 k_VectorIndex, 763 k_Register, 764 k_RegisterList, 765 k_RegisterListWithAPSR, 766 k_DPRRegisterList, 767 k_SPRRegisterList, 768 k_FPSRegisterListWithVPR, 769 k_FPDRegisterListWithVPR, 770 k_VectorList, 771 k_VectorListAllLanes, 772 k_VectorListIndexed, 773 k_ShiftedRegister, 774 k_ShiftedImmediate, 775 k_ShifterImmediate, 776 k_RotateImmediate, 777 k_ModifiedImmediate, 778 k_ConstantPoolImmediate, 779 k_BitfieldDescriptor, 780 k_Token, 781 } Kind; 782 783 SMLoc StartLoc, EndLoc, AlignmentLoc; 784 SmallVector<unsigned, 8> Registers; 785 786 struct CCOp { 787 ARMCC::CondCodes Val; 788 }; 789 790 struct VCCOp { 791 ARMVCC::VPTCodes Val; 792 }; 793 794 struct CopOp { 795 unsigned Val; 796 }; 797 798 struct CoprocOptionOp { 799 unsigned Val; 800 }; 801 802 struct ITMaskOp { 803 unsigned Mask:4; 804 }; 805 806 struct MBOptOp { 807 ARM_MB::MemBOpt Val; 808 }; 809 810 struct ISBOptOp { 811 ARM_ISB::InstSyncBOpt Val; 812 }; 813 814 struct TSBOptOp { 815 ARM_TSB::TraceSyncBOpt Val; 816 }; 817 818 struct IFlagsOp { 819 ARM_PROC::IFlags Val; 820 }; 821 822 struct MMaskOp { 823 unsigned Val; 824 }; 825 826 struct BankedRegOp { 827 unsigned Val; 828 }; 829 830 struct TokOp { 831 const char *Data; 832 unsigned Length; 833 }; 834 835 struct RegOp { 836 unsigned RegNum; 837 }; 838 839 // A vector register list is a sequential list of 1 to 4 registers. 840 struct VectorListOp { 841 unsigned RegNum; 842 unsigned Count; 843 unsigned LaneIndex; 844 bool isDoubleSpaced; 845 }; 846 847 struct VectorIndexOp { 848 unsigned Val; 849 }; 850 851 struct ImmOp { 852 const MCExpr *Val; 853 }; 854 855 /// Combined record for all forms of ARM address expressions. 856 struct MemoryOp { 857 unsigned BaseRegNum; 858 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 859 // was specified. 860 const MCExpr *OffsetImm; // Offset immediate value 861 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 862 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 863 unsigned ShiftImm; // shift for OffsetReg. 864 unsigned Alignment; // 0 = no alignment specified 865 // n = alignment in bytes (2, 4, 8, 16, or 32) 866 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 867 }; 868 869 struct PostIdxRegOp { 870 unsigned RegNum; 871 bool isAdd; 872 ARM_AM::ShiftOpc ShiftTy; 873 unsigned ShiftImm; 874 }; 875 876 struct ShifterImmOp { 877 bool isASR; 878 unsigned Imm; 879 }; 880 881 struct RegShiftedRegOp { 882 ARM_AM::ShiftOpc ShiftTy; 883 unsigned SrcReg; 884 unsigned ShiftReg; 885 unsigned ShiftImm; 886 }; 887 888 struct RegShiftedImmOp { 889 ARM_AM::ShiftOpc ShiftTy; 890 unsigned SrcReg; 891 unsigned ShiftImm; 892 }; 893 894 struct RotImmOp { 895 unsigned Imm; 896 }; 897 898 struct ModImmOp { 899 unsigned Bits; 900 unsigned Rot; 901 }; 902 903 struct BitfieldOp { 904 unsigned LSB; 905 unsigned Width; 906 }; 907 908 union { 909 struct CCOp CC; 910 struct VCCOp VCC; 911 struct CopOp Cop; 912 struct CoprocOptionOp CoprocOption; 913 struct MBOptOp MBOpt; 914 struct ISBOptOp ISBOpt; 915 struct TSBOptOp TSBOpt; 916 struct ITMaskOp ITMask; 917 struct IFlagsOp IFlags; 918 struct MMaskOp MMask; 919 struct BankedRegOp BankedReg; 920 struct TokOp Tok; 921 struct RegOp Reg; 922 struct VectorListOp VectorList; 923 struct VectorIndexOp VectorIndex; 924 struct ImmOp Imm; 925 struct MemoryOp Memory; 926 struct PostIdxRegOp PostIdxReg; 927 struct ShifterImmOp ShifterImm; 928 struct RegShiftedRegOp RegShiftedReg; 929 struct RegShiftedImmOp RegShiftedImm; 930 struct RotImmOp RotImm; 931 struct ModImmOp ModImm; 932 struct BitfieldOp Bitfield; 933 }; 934 935 public: 936 ARMOperand(KindTy K) : Kind(K) {} 937 938 /// getStartLoc - Get the location of the first token of this operand. 939 SMLoc getStartLoc() const override { return StartLoc; } 940 941 /// getEndLoc - Get the location of the last token of this operand. 942 SMLoc getEndLoc() const override { return EndLoc; } 943 944 /// getLocRange - Get the range between the first and last token of this 945 /// operand. 946 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 947 948 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 949 SMLoc getAlignmentLoc() const { 950 assert(Kind == k_Memory && "Invalid access!"); 951 return AlignmentLoc; 952 } 953 954 ARMCC::CondCodes getCondCode() const { 955 assert(Kind == k_CondCode && "Invalid access!"); 956 return CC.Val; 957 } 958 959 ARMVCC::VPTCodes getVPTPred() const { 960 assert(isVPTPred() && "Invalid access!"); 961 return VCC.Val; 962 } 963 964 unsigned getCoproc() const { 965 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 966 return Cop.Val; 967 } 968 969 StringRef getToken() const { 970 assert(Kind == k_Token && "Invalid access!"); 971 return StringRef(Tok.Data, Tok.Length); 972 } 973 974 unsigned getReg() const override { 975 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 976 return Reg.RegNum; 977 } 978 979 const SmallVectorImpl<unsigned> &getRegList() const { 980 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 981 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 982 Kind == k_FPSRegisterListWithVPR || 983 Kind == k_FPDRegisterListWithVPR) && 984 "Invalid access!"); 985 return Registers; 986 } 987 988 const MCExpr *getImm() const { 989 assert(isImm() && "Invalid access!"); 990 return Imm.Val; 991 } 992 993 const MCExpr *getConstantPoolImm() const { 994 assert(isConstantPoolImm() && "Invalid access!"); 995 return Imm.Val; 996 } 997 998 unsigned getVectorIndex() const { 999 assert(Kind == k_VectorIndex && "Invalid access!"); 1000 return VectorIndex.Val; 1001 } 1002 1003 ARM_MB::MemBOpt getMemBarrierOpt() const { 1004 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 1005 return MBOpt.Val; 1006 } 1007 1008 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 1009 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 1010 return ISBOpt.Val; 1011 } 1012 1013 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1014 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1015 return TSBOpt.Val; 1016 } 1017 1018 ARM_PROC::IFlags getProcIFlags() const { 1019 assert(Kind == k_ProcIFlags && "Invalid access!"); 1020 return IFlags.Val; 1021 } 1022 1023 unsigned getMSRMask() const { 1024 assert(Kind == k_MSRMask && "Invalid access!"); 1025 return MMask.Val; 1026 } 1027 1028 unsigned getBankedReg() const { 1029 assert(Kind == k_BankedReg && "Invalid access!"); 1030 return BankedReg.Val; 1031 } 1032 1033 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1034 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1035 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1036 bool isCondCode() const { return Kind == k_CondCode; } 1037 bool isVPTPred() const { return Kind == k_VPTPred; } 1038 bool isCCOut() const { return Kind == k_CCOut; } 1039 bool isITMask() const { return Kind == k_ITCondMask; } 1040 bool isITCondCode() const { return Kind == k_CondCode; } 1041 bool isImm() const override { 1042 return Kind == k_Immediate; 1043 } 1044 1045 bool isARMBranchTarget() const { 1046 if (!isImm()) return false; 1047 1048 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1049 return CE->getValue() % 4 == 0; 1050 return true; 1051 } 1052 1053 1054 bool isThumbBranchTarget() const { 1055 if (!isImm()) return false; 1056 1057 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1058 return CE->getValue() % 2 == 0; 1059 return true; 1060 } 1061 1062 // checks whether this operand is an unsigned offset which fits is a field 1063 // of specified width and scaled by a specific number of bits 1064 template<unsigned width, unsigned scale> 1065 bool isUnsignedOffset() const { 1066 if (!isImm()) return false; 1067 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1068 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1069 int64_t Val = CE->getValue(); 1070 int64_t Align = 1LL << scale; 1071 int64_t Max = Align * ((1LL << width) - 1); 1072 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1073 } 1074 return false; 1075 } 1076 1077 // checks whether this operand is an signed offset which fits is a field 1078 // of specified width and scaled by a specific number of bits 1079 template<unsigned width, unsigned scale> 1080 bool isSignedOffset() const { 1081 if (!isImm()) return false; 1082 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1083 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1084 int64_t Val = CE->getValue(); 1085 int64_t Align = 1LL << scale; 1086 int64_t Max = Align * ((1LL << (width-1)) - 1); 1087 int64_t Min = -Align * (1LL << (width-1)); 1088 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1089 } 1090 return false; 1091 } 1092 1093 // checks whether this operand is an offset suitable for the LE / 1094 // LETP instructions in Arm v8.1M 1095 bool isLEOffset() const { 1096 if (!isImm()) return false; 1097 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1098 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1099 int64_t Val = CE->getValue(); 1100 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1101 } 1102 return false; 1103 } 1104 1105 // checks whether this operand is a memory operand computed as an offset 1106 // applied to PC. the offset may have 8 bits of magnitude and is represented 1107 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1108 // relocable expression... 1109 bool isThumbMemPC() const { 1110 int64_t Val = 0; 1111 if (isImm()) { 1112 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1113 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1114 if (!CE) return false; 1115 Val = CE->getValue(); 1116 } 1117 else if (isGPRMem()) { 1118 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1119 if(Memory.BaseRegNum != ARM::PC) return false; 1120 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 1121 Val = CE->getValue(); 1122 else 1123 return false; 1124 } 1125 else return false; 1126 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1127 } 1128 1129 bool isFPImm() const { 1130 if (!isImm()) return false; 1131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1132 if (!CE) return false; 1133 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1134 return Val != -1; 1135 } 1136 1137 template<int64_t N, int64_t M> 1138 bool isImmediate() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 if (!CE) return false; 1142 int64_t Value = CE->getValue(); 1143 return Value >= N && Value <= M; 1144 } 1145 1146 template<int64_t N, int64_t M> 1147 bool isImmediateS4() const { 1148 if (!isImm()) return false; 1149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1150 if (!CE) return false; 1151 int64_t Value = CE->getValue(); 1152 return ((Value & 3) == 0) && Value >= N && Value <= M; 1153 } 1154 template<int64_t N, int64_t M> 1155 bool isImmediateS2() const { 1156 if (!isImm()) return false; 1157 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1158 if (!CE) return false; 1159 int64_t Value = CE->getValue(); 1160 return ((Value & 1) == 0) && Value >= N && Value <= M; 1161 } 1162 bool isFBits16() const { 1163 return isImmediate<0, 17>(); 1164 } 1165 bool isFBits32() const { 1166 return isImmediate<1, 33>(); 1167 } 1168 bool isImm8s4() const { 1169 return isImmediateS4<-1020, 1020>(); 1170 } 1171 bool isImm7s4() const { 1172 return isImmediateS4<-508, 508>(); 1173 } 1174 bool isImm7Shift0() const { 1175 return isImmediate<-127, 127>(); 1176 } 1177 bool isImm7Shift1() const { 1178 return isImmediateS2<-255, 255>(); 1179 } 1180 bool isImm7Shift2() const { 1181 return isImmediateS4<-511, 511>(); 1182 } 1183 bool isImm7() const { 1184 return isImmediate<-127, 127>(); 1185 } 1186 bool isImm0_1020s4() const { 1187 return isImmediateS4<0, 1020>(); 1188 } 1189 bool isImm0_508s4() const { 1190 return isImmediateS4<0, 508>(); 1191 } 1192 bool isImm0_508s4Neg() const { 1193 if (!isImm()) return false; 1194 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1195 if (!CE) return false; 1196 int64_t Value = -CE->getValue(); 1197 // explicitly exclude zero. we want that to use the normal 0_508 version. 1198 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1199 } 1200 1201 bool isImm0_4095Neg() const { 1202 if (!isImm()) return false; 1203 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1204 if (!CE) return false; 1205 // isImm0_4095Neg is used with 32-bit immediates only. 1206 // 32-bit immediates are zero extended to 64-bit when parsed, 1207 // thus simple -CE->getValue() results in a big negative number, 1208 // not a small positive number as intended 1209 if ((CE->getValue() >> 32) > 0) return false; 1210 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1211 return Value > 0 && Value < 4096; 1212 } 1213 1214 bool isImm0_7() const { 1215 return isImmediate<0, 7>(); 1216 } 1217 1218 bool isImm1_16() const { 1219 return isImmediate<1, 16>(); 1220 } 1221 1222 bool isImm1_32() const { 1223 return isImmediate<1, 32>(); 1224 } 1225 1226 bool isImm8_255() const { 1227 return isImmediate<8, 255>(); 1228 } 1229 1230 bool isImm256_65535Expr() const { 1231 if (!isImm()) return false; 1232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1233 // If it's not a constant expression, it'll generate a fixup and be 1234 // handled later. 1235 if (!CE) return true; 1236 int64_t Value = CE->getValue(); 1237 return Value >= 256 && Value < 65536; 1238 } 1239 1240 bool isImm0_65535Expr() const { 1241 if (!isImm()) return false; 1242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1243 // If it's not a constant expression, it'll generate a fixup and be 1244 // handled later. 1245 if (!CE) return true; 1246 int64_t Value = CE->getValue(); 1247 return Value >= 0 && Value < 65536; 1248 } 1249 1250 bool isImm24bit() const { 1251 return isImmediate<0, 0xffffff + 1>(); 1252 } 1253 1254 bool isImmThumbSR() const { 1255 return isImmediate<1, 33>(); 1256 } 1257 1258 template<int shift> 1259 bool isExpImmValue(uint64_t Value) const { 1260 uint64_t mask = (1 << shift) - 1; 1261 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1262 return false; 1263 return true; 1264 } 1265 1266 template<int shift> 1267 bool isExpImm() const { 1268 if (!isImm()) return false; 1269 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1270 if (!CE) return false; 1271 1272 return isExpImmValue<shift>(CE->getValue()); 1273 } 1274 1275 template<int shift, int size> 1276 bool isInvertedExpImm() const { 1277 if (!isImm()) return false; 1278 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1279 if (!CE) return false; 1280 1281 uint64_t OriginalValue = CE->getValue(); 1282 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1283 return isExpImmValue<shift>(InvertedValue); 1284 } 1285 1286 bool isPKHLSLImm() const { 1287 return isImmediate<0, 32>(); 1288 } 1289 1290 bool isPKHASRImm() const { 1291 return isImmediate<0, 33>(); 1292 } 1293 1294 bool isAdrLabel() const { 1295 // If we have an immediate that's not a constant, treat it as a label 1296 // reference needing a fixup. 1297 if (isImm() && !isa<MCConstantExpr>(getImm())) 1298 return true; 1299 1300 // If it is a constant, it must fit into a modified immediate encoding. 1301 if (!isImm()) return false; 1302 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1303 if (!CE) return false; 1304 int64_t Value = CE->getValue(); 1305 return (ARM_AM::getSOImmVal(Value) != -1 || 1306 ARM_AM::getSOImmVal(-Value) != -1); 1307 } 1308 1309 bool isT2SOImm() const { 1310 // If we have an immediate that's not a constant, treat it as an expression 1311 // needing a fixup. 1312 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1313 // We want to avoid matching :upper16: and :lower16: as we want these 1314 // expressions to match in isImm0_65535Expr() 1315 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1316 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1317 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1318 } 1319 if (!isImm()) return false; 1320 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1321 if (!CE) return false; 1322 int64_t Value = CE->getValue(); 1323 return ARM_AM::getT2SOImmVal(Value) != -1; 1324 } 1325 1326 bool isT2SOImmNot() const { 1327 if (!isImm()) return false; 1328 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1329 if (!CE) return false; 1330 int64_t Value = CE->getValue(); 1331 return ARM_AM::getT2SOImmVal(Value) == -1 && 1332 ARM_AM::getT2SOImmVal(~Value) != -1; 1333 } 1334 1335 bool isT2SOImmNeg() const { 1336 if (!isImm()) return false; 1337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1338 if (!CE) return false; 1339 int64_t Value = CE->getValue(); 1340 // Only use this when not representable as a plain so_imm. 1341 return ARM_AM::getT2SOImmVal(Value) == -1 && 1342 ARM_AM::getT2SOImmVal(-Value) != -1; 1343 } 1344 1345 bool isSetEndImm() const { 1346 if (!isImm()) return false; 1347 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1348 if (!CE) return false; 1349 int64_t Value = CE->getValue(); 1350 return Value == 1 || Value == 0; 1351 } 1352 1353 bool isReg() const override { return Kind == k_Register; } 1354 bool isRegList() const { return Kind == k_RegisterList; } 1355 bool isRegListWithAPSR() const { 1356 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1357 } 1358 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1359 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1360 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1361 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1362 bool isToken() const override { return Kind == k_Token; } 1363 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1364 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1365 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1366 bool isMem() const override { 1367 return isGPRMem() || isMVEMem(); 1368 } 1369 bool isMVEMem() const { 1370 if (Kind != k_Memory) 1371 return false; 1372 if (Memory.BaseRegNum && 1373 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1374 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1375 return false; 1376 if (Memory.OffsetRegNum && 1377 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1378 Memory.OffsetRegNum)) 1379 return false; 1380 return true; 1381 } 1382 bool isGPRMem() const { 1383 if (Kind != k_Memory) 1384 return false; 1385 if (Memory.BaseRegNum && 1386 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1387 return false; 1388 if (Memory.OffsetRegNum && 1389 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1390 return false; 1391 return true; 1392 } 1393 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1394 bool isRegShiftedReg() const { 1395 return Kind == k_ShiftedRegister && 1396 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1397 RegShiftedReg.SrcReg) && 1398 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1399 RegShiftedReg.ShiftReg); 1400 } 1401 bool isRegShiftedImm() const { 1402 return Kind == k_ShiftedImmediate && 1403 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1404 RegShiftedImm.SrcReg); 1405 } 1406 bool isRotImm() const { return Kind == k_RotateImmediate; } 1407 1408 template<unsigned Min, unsigned Max> 1409 bool isPowerTwoInRange() const { 1410 if (!isImm()) return false; 1411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1412 if (!CE) return false; 1413 int64_t Value = CE->getValue(); 1414 return Value > 0 && llvm::popcount((uint64_t)Value) == 1 && Value >= Min && 1415 Value <= Max; 1416 } 1417 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1418 1419 bool isModImmNot() const { 1420 if (!isImm()) return false; 1421 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1422 if (!CE) return false; 1423 int64_t Value = CE->getValue(); 1424 return ARM_AM::getSOImmVal(~Value) != -1; 1425 } 1426 1427 bool isModImmNeg() const { 1428 if (!isImm()) return false; 1429 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1430 if (!CE) return false; 1431 int64_t Value = CE->getValue(); 1432 return ARM_AM::getSOImmVal(Value) == -1 && 1433 ARM_AM::getSOImmVal(-Value) != -1; 1434 } 1435 1436 bool isThumbModImmNeg1_7() const { 1437 if (!isImm()) return false; 1438 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1439 if (!CE) return false; 1440 int32_t Value = -(int32_t)CE->getValue(); 1441 return 0 < Value && Value < 8; 1442 } 1443 1444 bool isThumbModImmNeg8_255() const { 1445 if (!isImm()) return false; 1446 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1447 if (!CE) return false; 1448 int32_t Value = -(int32_t)CE->getValue(); 1449 return 7 < Value && Value < 256; 1450 } 1451 1452 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1453 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1454 bool isPostIdxRegShifted() const { 1455 return Kind == k_PostIndexRegister && 1456 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1457 } 1458 bool isPostIdxReg() const { 1459 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1460 } 1461 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1462 if (!isGPRMem()) 1463 return false; 1464 // No offset of any kind. 1465 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1466 (alignOK || Memory.Alignment == Alignment); 1467 } 1468 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1469 if (!isGPRMem()) 1470 return false; 1471 1472 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1473 Memory.BaseRegNum)) 1474 return false; 1475 1476 // No offset of any kind. 1477 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1478 (alignOK || Memory.Alignment == Alignment); 1479 } 1480 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1481 if (!isGPRMem()) 1482 return false; 1483 1484 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1485 Memory.BaseRegNum)) 1486 return false; 1487 1488 // No offset of any kind. 1489 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1490 (alignOK || Memory.Alignment == Alignment); 1491 } 1492 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1493 if (!isGPRMem()) 1494 return false; 1495 1496 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1497 Memory.BaseRegNum)) 1498 return false; 1499 1500 // No offset of any kind. 1501 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1502 (alignOK || Memory.Alignment == Alignment); 1503 } 1504 bool isMemPCRelImm12() const { 1505 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1506 return false; 1507 // Base register must be PC. 1508 if (Memory.BaseRegNum != ARM::PC) 1509 return false; 1510 // Immediate offset in range [-4095, 4095]. 1511 if (!Memory.OffsetImm) return true; 1512 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1513 int64_t Val = CE->getValue(); 1514 return (Val > -4096 && Val < 4096) || 1515 (Val == std::numeric_limits<int32_t>::min()); 1516 } 1517 return false; 1518 } 1519 1520 bool isAlignedMemory() const { 1521 return isMemNoOffset(true); 1522 } 1523 1524 bool isAlignedMemoryNone() const { 1525 return isMemNoOffset(false, 0); 1526 } 1527 1528 bool isDupAlignedMemoryNone() const { 1529 return isMemNoOffset(false, 0); 1530 } 1531 1532 bool isAlignedMemory16() const { 1533 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1534 return true; 1535 return isMemNoOffset(false, 0); 1536 } 1537 1538 bool isDupAlignedMemory16() const { 1539 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1540 return true; 1541 return isMemNoOffset(false, 0); 1542 } 1543 1544 bool isAlignedMemory32() const { 1545 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1546 return true; 1547 return isMemNoOffset(false, 0); 1548 } 1549 1550 bool isDupAlignedMemory32() const { 1551 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1552 return true; 1553 return isMemNoOffset(false, 0); 1554 } 1555 1556 bool isAlignedMemory64() const { 1557 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1558 return true; 1559 return isMemNoOffset(false, 0); 1560 } 1561 1562 bool isDupAlignedMemory64() const { 1563 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1564 return true; 1565 return isMemNoOffset(false, 0); 1566 } 1567 1568 bool isAlignedMemory64or128() const { 1569 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1570 return true; 1571 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1572 return true; 1573 return isMemNoOffset(false, 0); 1574 } 1575 1576 bool isDupAlignedMemory64or128() const { 1577 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1578 return true; 1579 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1580 return true; 1581 return isMemNoOffset(false, 0); 1582 } 1583 1584 bool isAlignedMemory64or128or256() const { 1585 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1586 return true; 1587 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1588 return true; 1589 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1590 return true; 1591 return isMemNoOffset(false, 0); 1592 } 1593 1594 bool isAddrMode2() const { 1595 if (!isGPRMem() || Memory.Alignment != 0) return false; 1596 // Check for register offset. 1597 if (Memory.OffsetRegNum) return true; 1598 // Immediate offset in range [-4095, 4095]. 1599 if (!Memory.OffsetImm) return true; 1600 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1601 int64_t Val = CE->getValue(); 1602 return Val > -4096 && Val < 4096; 1603 } 1604 return false; 1605 } 1606 1607 bool isAM2OffsetImm() const { 1608 if (!isImm()) return false; 1609 // Immediate offset in range [-4095, 4095]. 1610 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1611 if (!CE) return false; 1612 int64_t Val = CE->getValue(); 1613 return (Val == std::numeric_limits<int32_t>::min()) || 1614 (Val > -4096 && Val < 4096); 1615 } 1616 1617 bool isAddrMode3() const { 1618 // If we have an immediate that's not a constant, treat it as a label 1619 // reference needing a fixup. If it is a constant, it's something else 1620 // and we reject it. 1621 if (isImm() && !isa<MCConstantExpr>(getImm())) 1622 return true; 1623 if (!isGPRMem() || Memory.Alignment != 0) return false; 1624 // No shifts are legal for AM3. 1625 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1626 // Check for register offset. 1627 if (Memory.OffsetRegNum) return true; 1628 // Immediate offset in range [-255, 255]. 1629 if (!Memory.OffsetImm) return true; 1630 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1631 int64_t Val = CE->getValue(); 1632 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and 1633 // we have to check for this too. 1634 return (Val > -256 && Val < 256) || 1635 Val == std::numeric_limits<int32_t>::min(); 1636 } 1637 return false; 1638 } 1639 1640 bool isAM3Offset() const { 1641 if (isPostIdxReg()) 1642 return true; 1643 if (!isImm()) 1644 return false; 1645 // Immediate offset in range [-255, 255]. 1646 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1647 if (!CE) return false; 1648 int64_t Val = CE->getValue(); 1649 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1650 return (Val > -256 && Val < 256) || 1651 Val == std::numeric_limits<int32_t>::min(); 1652 } 1653 1654 bool isAddrMode5() const { 1655 // If we have an immediate that's not a constant, treat it as a label 1656 // reference needing a fixup. If it is a constant, it's something else 1657 // and we reject it. 1658 if (isImm() && !isa<MCConstantExpr>(getImm())) 1659 return true; 1660 if (!isGPRMem() || Memory.Alignment != 0) return false; 1661 // Check for register offset. 1662 if (Memory.OffsetRegNum) return false; 1663 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1664 if (!Memory.OffsetImm) return true; 1665 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1666 int64_t Val = CE->getValue(); 1667 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1668 Val == std::numeric_limits<int32_t>::min(); 1669 } 1670 return false; 1671 } 1672 1673 bool isAddrMode5FP16() const { 1674 // If we have an immediate that's not a constant, treat it as a label 1675 // reference needing a fixup. If it is a constant, it's something else 1676 // and we reject it. 1677 if (isImm() && !isa<MCConstantExpr>(getImm())) 1678 return true; 1679 if (!isGPRMem() || Memory.Alignment != 0) return false; 1680 // Check for register offset. 1681 if (Memory.OffsetRegNum) return false; 1682 // Immediate offset in range [-510, 510] and a multiple of 2. 1683 if (!Memory.OffsetImm) return true; 1684 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1685 int64_t Val = CE->getValue(); 1686 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1687 Val == std::numeric_limits<int32_t>::min(); 1688 } 1689 return false; 1690 } 1691 1692 bool isMemTBB() const { 1693 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1694 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1695 return false; 1696 return true; 1697 } 1698 1699 bool isMemTBH() const { 1700 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1701 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1702 Memory.Alignment != 0 ) 1703 return false; 1704 return true; 1705 } 1706 1707 bool isMemRegOffset() const { 1708 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1709 return false; 1710 return true; 1711 } 1712 1713 bool isT2MemRegOffset() const { 1714 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1715 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1716 return false; 1717 // Only lsl #{0, 1, 2, 3} allowed. 1718 if (Memory.ShiftType == ARM_AM::no_shift) 1719 return true; 1720 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1721 return false; 1722 return true; 1723 } 1724 1725 bool isMemThumbRR() const { 1726 // Thumb reg+reg addressing is simple. Just two registers, a base and 1727 // an offset. No shifts, negations or any other complicating factors. 1728 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1729 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1730 return false; 1731 return isARMLowRegister(Memory.BaseRegNum) && 1732 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1733 } 1734 1735 bool isMemThumbRIs4() const { 1736 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1737 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1738 return false; 1739 // Immediate offset, multiple of 4 in range [0, 124]. 1740 if (!Memory.OffsetImm) return true; 1741 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1742 int64_t Val = CE->getValue(); 1743 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1744 } 1745 return false; 1746 } 1747 1748 bool isMemThumbRIs2() const { 1749 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1750 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1751 return false; 1752 // Immediate offset, multiple of 4 in range [0, 62]. 1753 if (!Memory.OffsetImm) return true; 1754 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1755 int64_t Val = CE->getValue(); 1756 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1757 } 1758 return false; 1759 } 1760 1761 bool isMemThumbRIs1() const { 1762 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1763 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1764 return false; 1765 // Immediate offset in range [0, 31]. 1766 if (!Memory.OffsetImm) return true; 1767 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1768 int64_t Val = CE->getValue(); 1769 return Val >= 0 && Val <= 31; 1770 } 1771 return false; 1772 } 1773 1774 bool isMemThumbSPI() const { 1775 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1776 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1777 return false; 1778 // Immediate offset, multiple of 4 in range [0, 1020]. 1779 if (!Memory.OffsetImm) return true; 1780 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1781 int64_t Val = CE->getValue(); 1782 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1783 } 1784 return false; 1785 } 1786 1787 bool isMemImm8s4Offset() const { 1788 // If we have an immediate that's not a constant, treat it as a label 1789 // reference needing a fixup. If it is a constant, it's something else 1790 // and we reject it. 1791 if (isImm() && !isa<MCConstantExpr>(getImm())) 1792 return true; 1793 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1794 return false; 1795 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1796 if (!Memory.OffsetImm) return true; 1797 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1798 int64_t Val = CE->getValue(); 1799 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1800 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1801 Val == std::numeric_limits<int32_t>::min(); 1802 } 1803 return false; 1804 } 1805 1806 bool isMemImm7s4Offset() const { 1807 // If we have an immediate that's not a constant, treat it as a label 1808 // reference needing a fixup. If it is a constant, it's something else 1809 // and we reject it. 1810 if (isImm() && !isa<MCConstantExpr>(getImm())) 1811 return true; 1812 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1813 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1814 Memory.BaseRegNum)) 1815 return false; 1816 // Immediate offset a multiple of 4 in range [-508, 508]. 1817 if (!Memory.OffsetImm) return true; 1818 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1819 int64_t Val = CE->getValue(); 1820 // Special case, #-0 is INT32_MIN. 1821 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1822 } 1823 return false; 1824 } 1825 1826 bool isMemImm0_1020s4Offset() const { 1827 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1828 return false; 1829 // Immediate offset a multiple of 4 in range [0, 1020]. 1830 if (!Memory.OffsetImm) return true; 1831 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1832 int64_t Val = CE->getValue(); 1833 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1834 } 1835 return false; 1836 } 1837 1838 bool isMemImm8Offset() const { 1839 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1840 return false; 1841 // Base reg of PC isn't allowed for these encodings. 1842 if (Memory.BaseRegNum == ARM::PC) return false; 1843 // Immediate offset in range [-255, 255]. 1844 if (!Memory.OffsetImm) return true; 1845 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1846 int64_t Val = CE->getValue(); 1847 return (Val == std::numeric_limits<int32_t>::min()) || 1848 (Val > -256 && Val < 256); 1849 } 1850 return false; 1851 } 1852 1853 template<unsigned Bits, unsigned RegClassID> 1854 bool isMemImm7ShiftedOffset() const { 1855 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1856 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1857 return false; 1858 1859 // Expect an immediate offset equal to an element of the range 1860 // [-127, 127], shifted left by Bits. 1861 1862 if (!Memory.OffsetImm) return true; 1863 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1864 int64_t Val = CE->getValue(); 1865 1866 // INT32_MIN is a special-case value (indicating the encoding with 1867 // zero offset and the subtract bit set) 1868 if (Val == INT32_MIN) 1869 return true; 1870 1871 unsigned Divisor = 1U << Bits; 1872 1873 // Check that the low bits are zero 1874 if (Val % Divisor != 0) 1875 return false; 1876 1877 // Check that the remaining offset is within range. 1878 Val /= Divisor; 1879 return (Val >= -127 && Val <= 127); 1880 } 1881 return false; 1882 } 1883 1884 template <int shift> bool isMemRegRQOffset() const { 1885 if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0) 1886 return false; 1887 1888 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1889 Memory.BaseRegNum)) 1890 return false; 1891 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1892 Memory.OffsetRegNum)) 1893 return false; 1894 1895 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1896 return false; 1897 1898 if (shift > 0 && 1899 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1900 return false; 1901 1902 return true; 1903 } 1904 1905 template <int shift> bool isMemRegQOffset() const { 1906 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1907 return false; 1908 1909 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1910 Memory.BaseRegNum)) 1911 return false; 1912 1913 if (!Memory.OffsetImm) 1914 return true; 1915 static_assert(shift < 56, 1916 "Such that we dont shift by a value higher than 62"); 1917 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1918 int64_t Val = CE->getValue(); 1919 1920 // The value must be a multiple of (1 << shift) 1921 if ((Val & ((1U << shift) - 1)) != 0) 1922 return false; 1923 1924 // And be in the right range, depending on the amount that it is shifted 1925 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1926 // separately. 1927 int64_t Range = (1U << (7 + shift)) - 1; 1928 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1929 } 1930 return false; 1931 } 1932 1933 bool isMemPosImm8Offset() const { 1934 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1935 return false; 1936 // Immediate offset in range [0, 255]. 1937 if (!Memory.OffsetImm) return true; 1938 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1939 int64_t Val = CE->getValue(); 1940 return Val >= 0 && Val < 256; 1941 } 1942 return false; 1943 } 1944 1945 bool isMemNegImm8Offset() const { 1946 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1947 return false; 1948 // Base reg of PC isn't allowed for these encodings. 1949 if (Memory.BaseRegNum == ARM::PC) return false; 1950 // Immediate offset in range [-255, -1]. 1951 if (!Memory.OffsetImm) return false; 1952 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1953 int64_t Val = CE->getValue(); 1954 return (Val == std::numeric_limits<int32_t>::min()) || 1955 (Val > -256 && Val < 0); 1956 } 1957 return false; 1958 } 1959 1960 bool isMemUImm12Offset() const { 1961 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1962 return false; 1963 // Immediate offset in range [0, 4095]. 1964 if (!Memory.OffsetImm) return true; 1965 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1966 int64_t Val = CE->getValue(); 1967 return (Val >= 0 && Val < 4096); 1968 } 1969 return false; 1970 } 1971 1972 bool isMemImm12Offset() const { 1973 // If we have an immediate that's not a constant, treat it as a label 1974 // reference needing a fixup. If it is a constant, it's something else 1975 // and we reject it. 1976 1977 if (isImm() && !isa<MCConstantExpr>(getImm())) 1978 return true; 1979 1980 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1981 return false; 1982 // Immediate offset in range [-4095, 4095]. 1983 if (!Memory.OffsetImm) return true; 1984 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1985 int64_t Val = CE->getValue(); 1986 return (Val > -4096 && Val < 4096) || 1987 (Val == std::numeric_limits<int32_t>::min()); 1988 } 1989 // If we have an immediate that's not a constant, treat it as a 1990 // symbolic expression needing a fixup. 1991 return true; 1992 } 1993 1994 bool isConstPoolAsmImm() const { 1995 // Delay processing of Constant Pool Immediate, this will turn into 1996 // a constant. Match no other operand 1997 return (isConstantPoolImm()); 1998 } 1999 2000 bool isPostIdxImm8() const { 2001 if (!isImm()) return false; 2002 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2003 if (!CE) return false; 2004 int64_t Val = CE->getValue(); 2005 return (Val > -256 && Val < 256) || 2006 (Val == std::numeric_limits<int32_t>::min()); 2007 } 2008 2009 bool isPostIdxImm8s4() const { 2010 if (!isImm()) return false; 2011 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2012 if (!CE) return false; 2013 int64_t Val = CE->getValue(); 2014 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 2015 (Val == std::numeric_limits<int32_t>::min()); 2016 } 2017 2018 bool isMSRMask() const { return Kind == k_MSRMask; } 2019 bool isBankedReg() const { return Kind == k_BankedReg; } 2020 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 2021 2022 // NEON operands. 2023 bool isSingleSpacedVectorList() const { 2024 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 2025 } 2026 2027 bool isDoubleSpacedVectorList() const { 2028 return Kind == k_VectorList && VectorList.isDoubleSpaced; 2029 } 2030 2031 bool isVecListOneD() const { 2032 if (!isSingleSpacedVectorList()) return false; 2033 return VectorList.Count == 1; 2034 } 2035 2036 bool isVecListTwoMQ() const { 2037 return isSingleSpacedVectorList() && VectorList.Count == 2 && 2038 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2039 VectorList.RegNum); 2040 } 2041 2042 bool isVecListDPair() const { 2043 if (!isSingleSpacedVectorList()) return false; 2044 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2045 .contains(VectorList.RegNum)); 2046 } 2047 2048 bool isVecListThreeD() const { 2049 if (!isSingleSpacedVectorList()) return false; 2050 return VectorList.Count == 3; 2051 } 2052 2053 bool isVecListFourD() const { 2054 if (!isSingleSpacedVectorList()) return false; 2055 return VectorList.Count == 4; 2056 } 2057 2058 bool isVecListDPairSpaced() const { 2059 if (Kind != k_VectorList) return false; 2060 if (isSingleSpacedVectorList()) return false; 2061 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 2062 .contains(VectorList.RegNum)); 2063 } 2064 2065 bool isVecListThreeQ() const { 2066 if (!isDoubleSpacedVectorList()) return false; 2067 return VectorList.Count == 3; 2068 } 2069 2070 bool isVecListFourQ() const { 2071 if (!isDoubleSpacedVectorList()) return false; 2072 return VectorList.Count == 4; 2073 } 2074 2075 bool isVecListFourMQ() const { 2076 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2077 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2078 VectorList.RegNum); 2079 } 2080 2081 bool isSingleSpacedVectorAllLanes() const { 2082 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2083 } 2084 2085 bool isDoubleSpacedVectorAllLanes() const { 2086 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2087 } 2088 2089 bool isVecListOneDAllLanes() const { 2090 if (!isSingleSpacedVectorAllLanes()) return false; 2091 return VectorList.Count == 1; 2092 } 2093 2094 bool isVecListDPairAllLanes() const { 2095 if (!isSingleSpacedVectorAllLanes()) return false; 2096 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2097 .contains(VectorList.RegNum)); 2098 } 2099 2100 bool isVecListDPairSpacedAllLanes() const { 2101 if (!isDoubleSpacedVectorAllLanes()) return false; 2102 return VectorList.Count == 2; 2103 } 2104 2105 bool isVecListThreeDAllLanes() const { 2106 if (!isSingleSpacedVectorAllLanes()) return false; 2107 return VectorList.Count == 3; 2108 } 2109 2110 bool isVecListThreeQAllLanes() const { 2111 if (!isDoubleSpacedVectorAllLanes()) return false; 2112 return VectorList.Count == 3; 2113 } 2114 2115 bool isVecListFourDAllLanes() const { 2116 if (!isSingleSpacedVectorAllLanes()) return false; 2117 return VectorList.Count == 4; 2118 } 2119 2120 bool isVecListFourQAllLanes() const { 2121 if (!isDoubleSpacedVectorAllLanes()) return false; 2122 return VectorList.Count == 4; 2123 } 2124 2125 bool isSingleSpacedVectorIndexed() const { 2126 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2127 } 2128 2129 bool isDoubleSpacedVectorIndexed() const { 2130 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2131 } 2132 2133 bool isVecListOneDByteIndexed() const { 2134 if (!isSingleSpacedVectorIndexed()) return false; 2135 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2136 } 2137 2138 bool isVecListOneDHWordIndexed() const { 2139 if (!isSingleSpacedVectorIndexed()) return false; 2140 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2141 } 2142 2143 bool isVecListOneDWordIndexed() const { 2144 if (!isSingleSpacedVectorIndexed()) return false; 2145 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2146 } 2147 2148 bool isVecListTwoDByteIndexed() const { 2149 if (!isSingleSpacedVectorIndexed()) return false; 2150 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2151 } 2152 2153 bool isVecListTwoDHWordIndexed() const { 2154 if (!isSingleSpacedVectorIndexed()) return false; 2155 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2156 } 2157 2158 bool isVecListTwoQWordIndexed() const { 2159 if (!isDoubleSpacedVectorIndexed()) return false; 2160 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2161 } 2162 2163 bool isVecListTwoQHWordIndexed() const { 2164 if (!isDoubleSpacedVectorIndexed()) return false; 2165 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2166 } 2167 2168 bool isVecListTwoDWordIndexed() const { 2169 if (!isSingleSpacedVectorIndexed()) return false; 2170 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2171 } 2172 2173 bool isVecListThreeDByteIndexed() const { 2174 if (!isSingleSpacedVectorIndexed()) return false; 2175 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2176 } 2177 2178 bool isVecListThreeDHWordIndexed() const { 2179 if (!isSingleSpacedVectorIndexed()) return false; 2180 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2181 } 2182 2183 bool isVecListThreeQWordIndexed() const { 2184 if (!isDoubleSpacedVectorIndexed()) return false; 2185 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2186 } 2187 2188 bool isVecListThreeQHWordIndexed() const { 2189 if (!isDoubleSpacedVectorIndexed()) return false; 2190 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2191 } 2192 2193 bool isVecListThreeDWordIndexed() const { 2194 if (!isSingleSpacedVectorIndexed()) return false; 2195 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2196 } 2197 2198 bool isVecListFourDByteIndexed() const { 2199 if (!isSingleSpacedVectorIndexed()) return false; 2200 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2201 } 2202 2203 bool isVecListFourDHWordIndexed() const { 2204 if (!isSingleSpacedVectorIndexed()) return false; 2205 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2206 } 2207 2208 bool isVecListFourQWordIndexed() const { 2209 if (!isDoubleSpacedVectorIndexed()) return false; 2210 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2211 } 2212 2213 bool isVecListFourQHWordIndexed() const { 2214 if (!isDoubleSpacedVectorIndexed()) return false; 2215 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2216 } 2217 2218 bool isVecListFourDWordIndexed() const { 2219 if (!isSingleSpacedVectorIndexed()) return false; 2220 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2221 } 2222 2223 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2224 2225 template <unsigned NumLanes> 2226 bool isVectorIndexInRange() const { 2227 if (Kind != k_VectorIndex) return false; 2228 return VectorIndex.Val < NumLanes; 2229 } 2230 2231 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2232 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2233 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2234 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2235 2236 template<int PermittedValue, int OtherPermittedValue> 2237 bool isMVEPairVectorIndex() const { 2238 if (Kind != k_VectorIndex) return false; 2239 return VectorIndex.Val == PermittedValue || 2240 VectorIndex.Val == OtherPermittedValue; 2241 } 2242 2243 bool isNEONi8splat() const { 2244 if (!isImm()) return false; 2245 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2246 // Must be a constant. 2247 if (!CE) return false; 2248 int64_t Value = CE->getValue(); 2249 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2250 // value. 2251 return Value >= 0 && Value < 256; 2252 } 2253 2254 bool isNEONi16splat() const { 2255 if (isNEONByteReplicate(2)) 2256 return false; // Leave that for bytes replication and forbid by default. 2257 if (!isImm()) 2258 return false; 2259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2260 // Must be a constant. 2261 if (!CE) return false; 2262 unsigned Value = CE->getValue(); 2263 return ARM_AM::isNEONi16splat(Value); 2264 } 2265 2266 bool isNEONi16splatNot() const { 2267 if (!isImm()) 2268 return false; 2269 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2270 // Must be a constant. 2271 if (!CE) return false; 2272 unsigned Value = CE->getValue(); 2273 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2274 } 2275 2276 bool isNEONi32splat() const { 2277 if (isNEONByteReplicate(4)) 2278 return false; // Leave that for bytes replication and forbid by default. 2279 if (!isImm()) 2280 return false; 2281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2282 // Must be a constant. 2283 if (!CE) return false; 2284 unsigned Value = CE->getValue(); 2285 return ARM_AM::isNEONi32splat(Value); 2286 } 2287 2288 bool isNEONi32splatNot() const { 2289 if (!isImm()) 2290 return false; 2291 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2292 // Must be a constant. 2293 if (!CE) return false; 2294 unsigned Value = CE->getValue(); 2295 return ARM_AM::isNEONi32splat(~Value); 2296 } 2297 2298 static bool isValidNEONi32vmovImm(int64_t Value) { 2299 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2300 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2301 return ((Value & 0xffffffffffffff00) == 0) || 2302 ((Value & 0xffffffffffff00ff) == 0) || 2303 ((Value & 0xffffffffff00ffff) == 0) || 2304 ((Value & 0xffffffff00ffffff) == 0) || 2305 ((Value & 0xffffffffffff00ff) == 0xff) || 2306 ((Value & 0xffffffffff00ffff) == 0xffff); 2307 } 2308 2309 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2310 assert((Width == 8 || Width == 16 || Width == 32) && 2311 "Invalid element width"); 2312 assert(NumElems * Width <= 64 && "Invalid result width"); 2313 2314 if (!isImm()) 2315 return false; 2316 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2317 // Must be a constant. 2318 if (!CE) 2319 return false; 2320 int64_t Value = CE->getValue(); 2321 if (!Value) 2322 return false; // Don't bother with zero. 2323 if (Inv) 2324 Value = ~Value; 2325 2326 uint64_t Mask = (1ull << Width) - 1; 2327 uint64_t Elem = Value & Mask; 2328 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2329 return false; 2330 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2331 return false; 2332 2333 for (unsigned i = 1; i < NumElems; ++i) { 2334 Value >>= Width; 2335 if ((Value & Mask) != Elem) 2336 return false; 2337 } 2338 return true; 2339 } 2340 2341 bool isNEONByteReplicate(unsigned NumBytes) const { 2342 return isNEONReplicate(8, NumBytes, false); 2343 } 2344 2345 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2346 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2347 "Invalid source width"); 2348 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2349 "Invalid destination width"); 2350 assert(FromW < ToW && "ToW is not less than FromW"); 2351 } 2352 2353 template<unsigned FromW, unsigned ToW> 2354 bool isNEONmovReplicate() const { 2355 checkNeonReplicateArgs(FromW, ToW); 2356 if (ToW == 64 && isNEONi64splat()) 2357 return false; 2358 return isNEONReplicate(FromW, ToW / FromW, false); 2359 } 2360 2361 template<unsigned FromW, unsigned ToW> 2362 bool isNEONinvReplicate() const { 2363 checkNeonReplicateArgs(FromW, ToW); 2364 return isNEONReplicate(FromW, ToW / FromW, true); 2365 } 2366 2367 bool isNEONi32vmov() const { 2368 if (isNEONByteReplicate(4)) 2369 return false; // Let it to be classified as byte-replicate case. 2370 if (!isImm()) 2371 return false; 2372 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2373 // Must be a constant. 2374 if (!CE) 2375 return false; 2376 return isValidNEONi32vmovImm(CE->getValue()); 2377 } 2378 2379 bool isNEONi32vmovNeg() const { 2380 if (!isImm()) return false; 2381 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2382 // Must be a constant. 2383 if (!CE) return false; 2384 return isValidNEONi32vmovImm(~CE->getValue()); 2385 } 2386 2387 bool isNEONi64splat() const { 2388 if (!isImm()) return false; 2389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2390 // Must be a constant. 2391 if (!CE) return false; 2392 uint64_t Value = CE->getValue(); 2393 // i64 value with each byte being either 0 or 0xff. 2394 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2395 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2396 return true; 2397 } 2398 2399 template<int64_t Angle, int64_t Remainder> 2400 bool isComplexRotation() const { 2401 if (!isImm()) return false; 2402 2403 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2404 if (!CE) return false; 2405 uint64_t Value = CE->getValue(); 2406 2407 return (Value % Angle == Remainder && Value <= 270); 2408 } 2409 2410 bool isMVELongShift() const { 2411 if (!isImm()) return false; 2412 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2413 // Must be a constant. 2414 if (!CE) return false; 2415 uint64_t Value = CE->getValue(); 2416 return Value >= 1 && Value <= 32; 2417 } 2418 2419 bool isMveSaturateOp() const { 2420 if (!isImm()) return false; 2421 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2422 if (!CE) return false; 2423 uint64_t Value = CE->getValue(); 2424 return Value == 48 || Value == 64; 2425 } 2426 2427 bool isITCondCodeNoAL() const { 2428 if (!isITCondCode()) return false; 2429 ARMCC::CondCodes CC = getCondCode(); 2430 return CC != ARMCC::AL; 2431 } 2432 2433 bool isITCondCodeRestrictedI() const { 2434 if (!isITCondCode()) 2435 return false; 2436 ARMCC::CondCodes CC = getCondCode(); 2437 return CC == ARMCC::EQ || CC == ARMCC::NE; 2438 } 2439 2440 bool isITCondCodeRestrictedS() const { 2441 if (!isITCondCode()) 2442 return false; 2443 ARMCC::CondCodes CC = getCondCode(); 2444 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2445 CC == ARMCC::GE; 2446 } 2447 2448 bool isITCondCodeRestrictedU() const { 2449 if (!isITCondCode()) 2450 return false; 2451 ARMCC::CondCodes CC = getCondCode(); 2452 return CC == ARMCC::HS || CC == ARMCC::HI; 2453 } 2454 2455 bool isITCondCodeRestrictedFP() const { 2456 if (!isITCondCode()) 2457 return false; 2458 ARMCC::CondCodes CC = getCondCode(); 2459 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2460 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2461 } 2462 2463 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2464 // Add as immediates when possible. Null MCExpr = 0. 2465 if (!Expr) 2466 Inst.addOperand(MCOperand::createImm(0)); 2467 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2468 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2469 else 2470 Inst.addOperand(MCOperand::createExpr(Expr)); 2471 } 2472 2473 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2474 assert(N == 1 && "Invalid number of operands!"); 2475 addExpr(Inst, getImm()); 2476 } 2477 2478 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 addExpr(Inst, getImm()); 2481 } 2482 2483 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2484 assert(N == 2 && "Invalid number of operands!"); 2485 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2486 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2487 Inst.addOperand(MCOperand::createReg(RegNum)); 2488 } 2489 2490 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2491 assert(N == 3 && "Invalid number of operands!"); 2492 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2493 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2494 Inst.addOperand(MCOperand::createReg(RegNum)); 2495 Inst.addOperand(MCOperand::createReg(0)); 2496 } 2497 2498 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2499 assert(N == 4 && "Invalid number of operands!"); 2500 addVPTPredNOperands(Inst, N-1); 2501 unsigned RegNum; 2502 if (getVPTPred() == ARMVCC::None) { 2503 RegNum = 0; 2504 } else { 2505 unsigned NextOpIndex = Inst.getNumOperands(); 2506 const MCInstrDesc &MCID = 2507 ARMInsts[ARM::INSTRUCTION_LIST_END - 1 - Inst.getOpcode()]; 2508 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2509 assert(TiedOp >= 0 && 2510 "Inactive register in vpred_r is not tied to an output!"); 2511 RegNum = Inst.getOperand(TiedOp).getReg(); 2512 } 2513 Inst.addOperand(MCOperand::createReg(RegNum)); 2514 } 2515 2516 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 1 && "Invalid number of operands!"); 2518 Inst.addOperand(MCOperand::createImm(getCoproc())); 2519 } 2520 2521 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2522 assert(N == 1 && "Invalid number of operands!"); 2523 Inst.addOperand(MCOperand::createImm(getCoproc())); 2524 } 2525 2526 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2527 assert(N == 1 && "Invalid number of operands!"); 2528 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2529 } 2530 2531 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2532 assert(N == 1 && "Invalid number of operands!"); 2533 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2534 } 2535 2536 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2537 assert(N == 1 && "Invalid number of operands!"); 2538 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2539 } 2540 2541 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2542 assert(N == 1 && "Invalid number of operands!"); 2543 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2544 } 2545 2546 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2547 assert(N == 1 && "Invalid number of operands!"); 2548 Inst.addOperand(MCOperand::createReg(getReg())); 2549 } 2550 2551 void addRegOperands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 Inst.addOperand(MCOperand::createReg(getReg())); 2554 } 2555 2556 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2557 assert(N == 3 && "Invalid number of operands!"); 2558 assert(isRegShiftedReg() && 2559 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2560 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2561 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2562 Inst.addOperand(MCOperand::createImm( 2563 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2564 } 2565 2566 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2567 assert(N == 2 && "Invalid number of operands!"); 2568 assert(isRegShiftedImm() && 2569 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2570 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2571 // Shift of #32 is encoded as 0 where permitted 2572 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2573 Inst.addOperand(MCOperand::createImm( 2574 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2575 } 2576 2577 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2578 assert(N == 1 && "Invalid number of operands!"); 2579 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2580 ShifterImm.Imm)); 2581 } 2582 2583 void addRegListOperands(MCInst &Inst, unsigned N) const { 2584 assert(N == 1 && "Invalid number of operands!"); 2585 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2586 for (unsigned Reg : RegList) 2587 Inst.addOperand(MCOperand::createReg(Reg)); 2588 } 2589 2590 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2591 assert(N == 1 && "Invalid number of operands!"); 2592 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2593 for (unsigned Reg : RegList) 2594 Inst.addOperand(MCOperand::createReg(Reg)); 2595 } 2596 2597 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2598 addRegListOperands(Inst, N); 2599 } 2600 2601 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2602 addRegListOperands(Inst, N); 2603 } 2604 2605 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2606 addRegListOperands(Inst, N); 2607 } 2608 2609 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2610 addRegListOperands(Inst, N); 2611 } 2612 2613 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2614 assert(N == 1 && "Invalid number of operands!"); 2615 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2616 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2617 } 2618 2619 void addModImmOperands(MCInst &Inst, unsigned N) const { 2620 assert(N == 1 && "Invalid number of operands!"); 2621 2622 // Support for fixups (MCFixup) 2623 if (isImm()) 2624 return addImmOperands(Inst, N); 2625 2626 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2627 } 2628 2629 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2630 assert(N == 1 && "Invalid number of operands!"); 2631 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2632 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2633 Inst.addOperand(MCOperand::createImm(Enc)); 2634 } 2635 2636 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2637 assert(N == 1 && "Invalid number of operands!"); 2638 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2639 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2640 Inst.addOperand(MCOperand::createImm(Enc)); 2641 } 2642 2643 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2644 assert(N == 1 && "Invalid number of operands!"); 2645 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2646 uint32_t Val = -CE->getValue(); 2647 Inst.addOperand(MCOperand::createImm(Val)); 2648 } 2649 2650 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2651 assert(N == 1 && "Invalid number of operands!"); 2652 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2653 uint32_t Val = -CE->getValue(); 2654 Inst.addOperand(MCOperand::createImm(Val)); 2655 } 2656 2657 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // Munge the lsb/width into a bitfield mask. 2660 unsigned lsb = Bitfield.LSB; 2661 unsigned width = Bitfield.Width; 2662 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2663 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2664 (32 - (lsb + width))); 2665 Inst.addOperand(MCOperand::createImm(Mask)); 2666 } 2667 2668 void addImmOperands(MCInst &Inst, unsigned N) const { 2669 assert(N == 1 && "Invalid number of operands!"); 2670 addExpr(Inst, getImm()); 2671 } 2672 2673 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2674 assert(N == 1 && "Invalid number of operands!"); 2675 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2676 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2677 } 2678 2679 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2680 assert(N == 1 && "Invalid number of operands!"); 2681 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2682 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2683 } 2684 2685 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2686 assert(N == 1 && "Invalid number of operands!"); 2687 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2688 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2689 Inst.addOperand(MCOperand::createImm(Val)); 2690 } 2691 2692 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2693 assert(N == 1 && "Invalid number of operands!"); 2694 // FIXME: We really want to scale the value here, but the LDRD/STRD 2695 // instruction don't encode operands that way yet. 2696 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2697 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2698 } 2699 2700 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2701 assert(N == 1 && "Invalid number of operands!"); 2702 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2703 // instruction don't encode operands that way yet. 2704 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2705 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2706 } 2707 2708 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2709 assert(N == 1 && "Invalid number of operands!"); 2710 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2711 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2712 } 2713 2714 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2715 assert(N == 1 && "Invalid number of operands!"); 2716 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2717 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2718 } 2719 2720 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2721 assert(N == 1 && "Invalid number of operands!"); 2722 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2723 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2724 } 2725 2726 void addImm7Operands(MCInst &Inst, unsigned N) const { 2727 assert(N == 1 && "Invalid number of operands!"); 2728 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2729 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2730 } 2731 2732 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2733 assert(N == 1 && "Invalid number of operands!"); 2734 // The immediate is scaled by four in the encoding and is stored 2735 // in the MCInst as such. Lop off the low two bits here. 2736 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2737 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2738 } 2739 2740 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2741 assert(N == 1 && "Invalid number of operands!"); 2742 // The immediate is scaled by four in the encoding and is stored 2743 // in the MCInst as such. Lop off the low two bits here. 2744 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2745 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2746 } 2747 2748 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2749 assert(N == 1 && "Invalid number of operands!"); 2750 // The immediate is scaled by four in the encoding and is stored 2751 // in the MCInst as such. Lop off the low two bits here. 2752 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2753 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2754 } 2755 2756 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2757 assert(N == 1 && "Invalid number of operands!"); 2758 // The constant encodes as the immediate-1, and we store in the instruction 2759 // the bits as encoded, so subtract off one here. 2760 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2761 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2762 } 2763 2764 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2765 assert(N == 1 && "Invalid number of operands!"); 2766 // The constant encodes as the immediate-1, and we store in the instruction 2767 // the bits as encoded, so subtract off one here. 2768 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2769 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2770 } 2771 2772 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2773 assert(N == 1 && "Invalid number of operands!"); 2774 // The constant encodes as the immediate, except for 32, which encodes as 2775 // zero. 2776 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2777 unsigned Imm = CE->getValue(); 2778 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2779 } 2780 2781 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2782 assert(N == 1 && "Invalid number of operands!"); 2783 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2784 // the instruction as well. 2785 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2786 int Val = CE->getValue(); 2787 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2788 } 2789 2790 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2791 assert(N == 1 && "Invalid number of operands!"); 2792 // The operand is actually a t2_so_imm, but we have its bitwise 2793 // negation in the assembly source, so twiddle it here. 2794 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2795 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2796 } 2797 2798 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2799 assert(N == 1 && "Invalid number of operands!"); 2800 // The operand is actually a t2_so_imm, but we have its 2801 // negation in the assembly source, so twiddle it here. 2802 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2803 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2804 } 2805 2806 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2807 assert(N == 1 && "Invalid number of operands!"); 2808 // The operand is actually an imm0_4095, but we have its 2809 // negation in the assembly source, so twiddle it here. 2810 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2811 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2812 } 2813 2814 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2815 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2816 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2817 return; 2818 } 2819 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2820 Inst.addOperand(MCOperand::createExpr(SR)); 2821 } 2822 2823 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2824 assert(N == 1 && "Invalid number of operands!"); 2825 if (isImm()) { 2826 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2827 if (CE) { 2828 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2829 return; 2830 } 2831 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2832 Inst.addOperand(MCOperand::createExpr(SR)); 2833 return; 2834 } 2835 2836 assert(isGPRMem() && "Unknown value type!"); 2837 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2838 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2839 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2840 else 2841 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2842 } 2843 2844 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2845 assert(N == 1 && "Invalid number of operands!"); 2846 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2847 } 2848 2849 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2850 assert(N == 1 && "Invalid number of operands!"); 2851 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2852 } 2853 2854 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2855 assert(N == 1 && "Invalid number of operands!"); 2856 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2857 } 2858 2859 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2860 assert(N == 1 && "Invalid number of operands!"); 2861 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2862 } 2863 2864 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2865 assert(N == 1 && "Invalid number of operands!"); 2866 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2867 } 2868 2869 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2870 assert(N == 1 && "Invalid number of operands!"); 2871 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2872 } 2873 2874 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2875 assert(N == 1 && "Invalid number of operands!"); 2876 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2877 } 2878 2879 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2880 assert(N == 1 && "Invalid number of operands!"); 2881 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2882 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2883 else 2884 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2885 } 2886 2887 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2888 assert(N == 1 && "Invalid number of operands!"); 2889 assert(isImm() && "Not an immediate!"); 2890 2891 // If we have an immediate that's not a constant, treat it as a label 2892 // reference needing a fixup. 2893 if (!isa<MCConstantExpr>(getImm())) { 2894 Inst.addOperand(MCOperand::createExpr(getImm())); 2895 return; 2896 } 2897 2898 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2899 int Val = CE->getValue(); 2900 Inst.addOperand(MCOperand::createImm(Val)); 2901 } 2902 2903 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2904 assert(N == 2 && "Invalid number of operands!"); 2905 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2906 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2907 } 2908 2909 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2910 addAlignedMemoryOperands(Inst, N); 2911 } 2912 2913 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2914 addAlignedMemoryOperands(Inst, N); 2915 } 2916 2917 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2918 addAlignedMemoryOperands(Inst, N); 2919 } 2920 2921 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2922 addAlignedMemoryOperands(Inst, N); 2923 } 2924 2925 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2926 addAlignedMemoryOperands(Inst, N); 2927 } 2928 2929 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2930 addAlignedMemoryOperands(Inst, N); 2931 } 2932 2933 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2934 addAlignedMemoryOperands(Inst, N); 2935 } 2936 2937 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2938 addAlignedMemoryOperands(Inst, N); 2939 } 2940 2941 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2942 addAlignedMemoryOperands(Inst, N); 2943 } 2944 2945 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2946 addAlignedMemoryOperands(Inst, N); 2947 } 2948 2949 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2950 addAlignedMemoryOperands(Inst, N); 2951 } 2952 2953 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2954 assert(N == 3 && "Invalid number of operands!"); 2955 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2956 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2957 if (!Memory.OffsetRegNum) { 2958 if (!Memory.OffsetImm) 2959 Inst.addOperand(MCOperand::createImm(0)); 2960 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 2961 int32_t Val = CE->getValue(); 2962 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2963 // Special case for #-0 2964 if (Val == std::numeric_limits<int32_t>::min()) 2965 Val = 0; 2966 if (Val < 0) 2967 Val = -Val; 2968 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2969 Inst.addOperand(MCOperand::createImm(Val)); 2970 } else 2971 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2972 } else { 2973 // For register offset, we encode the shift type and negation flag 2974 // here. 2975 int32_t Val = 2976 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2977 Memory.ShiftImm, Memory.ShiftType); 2978 Inst.addOperand(MCOperand::createImm(Val)); 2979 } 2980 } 2981 2982 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2983 assert(N == 2 && "Invalid number of operands!"); 2984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2985 assert(CE && "non-constant AM2OffsetImm operand!"); 2986 int32_t Val = CE->getValue(); 2987 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2988 // Special case for #-0 2989 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2990 if (Val < 0) Val = -Val; 2991 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2992 Inst.addOperand(MCOperand::createReg(0)); 2993 Inst.addOperand(MCOperand::createImm(Val)); 2994 } 2995 2996 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2997 assert(N == 3 && "Invalid number of operands!"); 2998 // If we have an immediate that's not a constant, treat it as a label 2999 // reference needing a fixup. If it is a constant, it's something else 3000 // and we reject it. 3001 if (isImm()) { 3002 Inst.addOperand(MCOperand::createExpr(getImm())); 3003 Inst.addOperand(MCOperand::createReg(0)); 3004 Inst.addOperand(MCOperand::createImm(0)); 3005 return; 3006 } 3007 3008 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3009 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3010 if (!Memory.OffsetRegNum) { 3011 if (!Memory.OffsetImm) 3012 Inst.addOperand(MCOperand::createImm(0)); 3013 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3014 int32_t Val = CE->getValue(); 3015 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3016 // Special case for #-0 3017 if (Val == std::numeric_limits<int32_t>::min()) 3018 Val = 0; 3019 if (Val < 0) 3020 Val = -Val; 3021 Val = ARM_AM::getAM3Opc(AddSub, Val); 3022 Inst.addOperand(MCOperand::createImm(Val)); 3023 } else 3024 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3025 } else { 3026 // For register offset, we encode the shift type and negation flag 3027 // here. 3028 int32_t Val = 3029 ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 3030 Inst.addOperand(MCOperand::createImm(Val)); 3031 } 3032 } 3033 3034 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 3035 assert(N == 2 && "Invalid number of operands!"); 3036 if (Kind == k_PostIndexRegister) { 3037 int32_t Val = 3038 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 3039 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3040 Inst.addOperand(MCOperand::createImm(Val)); 3041 return; 3042 } 3043 3044 // Constant offset. 3045 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 3046 int32_t Val = CE->getValue(); 3047 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3048 // Special case for #-0 3049 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 3050 if (Val < 0) Val = -Val; 3051 Val = ARM_AM::getAM3Opc(AddSub, Val); 3052 Inst.addOperand(MCOperand::createReg(0)); 3053 Inst.addOperand(MCOperand::createImm(Val)); 3054 } 3055 3056 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 3057 assert(N == 2 && "Invalid number of operands!"); 3058 // If we have an immediate that's not a constant, treat it as a label 3059 // reference needing a fixup. If it is a constant, it's something else 3060 // and we reject it. 3061 if (isImm()) { 3062 Inst.addOperand(MCOperand::createExpr(getImm())); 3063 Inst.addOperand(MCOperand::createImm(0)); 3064 return; 3065 } 3066 3067 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3068 if (!Memory.OffsetImm) 3069 Inst.addOperand(MCOperand::createImm(0)); 3070 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3071 // The lower two bits are always zero and as such are not encoded. 3072 int32_t Val = CE->getValue() / 4; 3073 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3074 // Special case for #-0 3075 if (Val == std::numeric_limits<int32_t>::min()) 3076 Val = 0; 3077 if (Val < 0) 3078 Val = -Val; 3079 Val = ARM_AM::getAM5Opc(AddSub, Val); 3080 Inst.addOperand(MCOperand::createImm(Val)); 3081 } else 3082 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3083 } 3084 3085 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 3086 assert(N == 2 && "Invalid number of operands!"); 3087 // If we have an immediate that's not a constant, treat it as a label 3088 // reference needing a fixup. If it is a constant, it's something else 3089 // and we reject it. 3090 if (isImm()) { 3091 Inst.addOperand(MCOperand::createExpr(getImm())); 3092 Inst.addOperand(MCOperand::createImm(0)); 3093 return; 3094 } 3095 3096 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3097 // The lower bit is always zero and as such is not encoded. 3098 if (!Memory.OffsetImm) 3099 Inst.addOperand(MCOperand::createImm(0)); 3100 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3101 int32_t Val = CE->getValue() / 2; 3102 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3103 // Special case for #-0 3104 if (Val == std::numeric_limits<int32_t>::min()) 3105 Val = 0; 3106 if (Val < 0) 3107 Val = -Val; 3108 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 3109 Inst.addOperand(MCOperand::createImm(Val)); 3110 } else 3111 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3112 } 3113 3114 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3115 assert(N == 2 && "Invalid number of operands!"); 3116 // If we have an immediate that's not a constant, treat it as a label 3117 // reference needing a fixup. If it is a constant, it's something else 3118 // and we reject it. 3119 if (isImm()) { 3120 Inst.addOperand(MCOperand::createExpr(getImm())); 3121 Inst.addOperand(MCOperand::createImm(0)); 3122 return; 3123 } 3124 3125 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3126 addExpr(Inst, Memory.OffsetImm); 3127 } 3128 3129 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3130 assert(N == 2 && "Invalid number of operands!"); 3131 // If we have an immediate that's not a constant, treat it as a label 3132 // reference needing a fixup. If it is a constant, it's something else 3133 // and we reject it. 3134 if (isImm()) { 3135 Inst.addOperand(MCOperand::createExpr(getImm())); 3136 Inst.addOperand(MCOperand::createImm(0)); 3137 return; 3138 } 3139 3140 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3141 addExpr(Inst, Memory.OffsetImm); 3142 } 3143 3144 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3145 assert(N == 2 && "Invalid number of operands!"); 3146 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3147 if (!Memory.OffsetImm) 3148 Inst.addOperand(MCOperand::createImm(0)); 3149 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3150 // The lower two bits are always zero and as such are not encoded. 3151 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3152 else 3153 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3154 } 3155 3156 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3157 assert(N == 2 && "Invalid number of operands!"); 3158 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3159 addExpr(Inst, Memory.OffsetImm); 3160 } 3161 3162 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3163 assert(N == 2 && "Invalid number of operands!"); 3164 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3165 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3166 } 3167 3168 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3169 assert(N == 2 && "Invalid number of operands!"); 3170 // If this is an immediate, it's a label reference. 3171 if (isImm()) { 3172 addExpr(Inst, getImm()); 3173 Inst.addOperand(MCOperand::createImm(0)); 3174 return; 3175 } 3176 3177 // Otherwise, it's a normal memory reg+offset. 3178 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3179 addExpr(Inst, Memory.OffsetImm); 3180 } 3181 3182 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3183 assert(N == 2 && "Invalid number of operands!"); 3184 // If this is an immediate, it's a label reference. 3185 if (isImm()) { 3186 addExpr(Inst, getImm()); 3187 Inst.addOperand(MCOperand::createImm(0)); 3188 return; 3189 } 3190 3191 // Otherwise, it's a normal memory reg+offset. 3192 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3193 addExpr(Inst, Memory.OffsetImm); 3194 } 3195 3196 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3197 assert(N == 1 && "Invalid number of operands!"); 3198 // This is container for the immediate that we will create the constant 3199 // pool from 3200 addExpr(Inst, getConstantPoolImm()); 3201 } 3202 3203 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3204 assert(N == 2 && "Invalid number of operands!"); 3205 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3206 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3207 } 3208 3209 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3210 assert(N == 2 && "Invalid number of operands!"); 3211 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3212 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3213 } 3214 3215 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3216 assert(N == 3 && "Invalid number of operands!"); 3217 unsigned Val = 3218 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3219 Memory.ShiftImm, Memory.ShiftType); 3220 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3221 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3222 Inst.addOperand(MCOperand::createImm(Val)); 3223 } 3224 3225 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3226 assert(N == 3 && "Invalid number of operands!"); 3227 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3228 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3229 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3230 } 3231 3232 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3233 assert(N == 2 && "Invalid number of operands!"); 3234 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3235 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3236 } 3237 3238 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3239 assert(N == 2 && "Invalid number of operands!"); 3240 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3241 if (!Memory.OffsetImm) 3242 Inst.addOperand(MCOperand::createImm(0)); 3243 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3244 // The lower two bits are always zero and as such are not encoded. 3245 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3246 else 3247 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3248 } 3249 3250 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3251 assert(N == 2 && "Invalid number of operands!"); 3252 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3253 if (!Memory.OffsetImm) 3254 Inst.addOperand(MCOperand::createImm(0)); 3255 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3256 Inst.addOperand(MCOperand::createImm(CE->getValue() / 2)); 3257 else 3258 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3259 } 3260 3261 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3262 assert(N == 2 && "Invalid number of operands!"); 3263 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3264 addExpr(Inst, Memory.OffsetImm); 3265 } 3266 3267 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3268 assert(N == 2 && "Invalid number of operands!"); 3269 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3270 if (!Memory.OffsetImm) 3271 Inst.addOperand(MCOperand::createImm(0)); 3272 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3273 // The lower two bits are always zero and as such are not encoded. 3274 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3275 else 3276 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3277 } 3278 3279 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3280 assert(N == 1 && "Invalid number of operands!"); 3281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3282 assert(CE && "non-constant post-idx-imm8 operand!"); 3283 int Imm = CE->getValue(); 3284 bool isAdd = Imm >= 0; 3285 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3286 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3287 Inst.addOperand(MCOperand::createImm(Imm)); 3288 } 3289 3290 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3291 assert(N == 1 && "Invalid number of operands!"); 3292 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3293 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3294 int Imm = CE->getValue(); 3295 bool isAdd = Imm >= 0; 3296 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3297 // Immediate is scaled by 4. 3298 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3299 Inst.addOperand(MCOperand::createImm(Imm)); 3300 } 3301 3302 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3303 assert(N == 2 && "Invalid number of operands!"); 3304 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3305 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3306 } 3307 3308 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3309 assert(N == 2 && "Invalid number of operands!"); 3310 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3311 // The sign, shift type, and shift amount are encoded in a single operand 3312 // using the AM2 encoding helpers. 3313 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3314 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3315 PostIdxReg.ShiftTy); 3316 Inst.addOperand(MCOperand::createImm(Imm)); 3317 } 3318 3319 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3320 assert(N == 1 && "Invalid number of operands!"); 3321 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3322 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3323 } 3324 3325 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3326 assert(N == 1 && "Invalid number of operands!"); 3327 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3328 } 3329 3330 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3331 assert(N == 1 && "Invalid number of operands!"); 3332 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3333 } 3334 3335 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3336 assert(N == 1 && "Invalid number of operands!"); 3337 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3338 } 3339 3340 void addVecListOperands(MCInst &Inst, unsigned N) const { 3341 assert(N == 1 && "Invalid number of operands!"); 3342 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3343 } 3344 3345 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3346 assert(N == 1 && "Invalid number of operands!"); 3347 3348 // When we come here, the VectorList field will identify a range 3349 // of q-registers by its base register and length, and it will 3350 // have already been error-checked to be the expected length of 3351 // range and contain only q-regs in the range q0-q7. So we can 3352 // count on the base register being in the range q0-q6 (for 2 3353 // regs) or q0-q4 (for 4) 3354 // 3355 // The MVE instructions taking a register range of this kind will 3356 // need an operand in the MQQPR or MQQQQPR class, representing the 3357 // entire range as a unit. So we must translate into that class, 3358 // by finding the index of the base register in the MQPR reg 3359 // class, and returning the super-register at the corresponding 3360 // index in the target class. 3361 3362 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3363 const MCRegisterClass *RC_out = 3364 (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID] 3365 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID]; 3366 3367 unsigned I, E = RC_out->getNumRegs(); 3368 for (I = 0; I < E; I++) 3369 if (RC_in->getRegister(I) == VectorList.RegNum) 3370 break; 3371 assert(I < E && "Invalid vector list start register!"); 3372 3373 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3374 } 3375 3376 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3377 assert(N == 2 && "Invalid number of operands!"); 3378 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3379 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3380 } 3381 3382 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3383 assert(N == 1 && "Invalid number of operands!"); 3384 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3385 } 3386 3387 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3388 assert(N == 1 && "Invalid number of operands!"); 3389 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3390 } 3391 3392 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3393 assert(N == 1 && "Invalid number of operands!"); 3394 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3395 } 3396 3397 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3398 assert(N == 1 && "Invalid number of operands!"); 3399 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3400 } 3401 3402 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3403 assert(N == 1 && "Invalid number of operands!"); 3404 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3405 } 3406 3407 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3408 assert(N == 1 && "Invalid number of operands!"); 3409 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3410 } 3411 3412 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3413 assert(N == 1 && "Invalid number of operands!"); 3414 // The immediate encodes the type of constant as well as the value. 3415 // Mask in that this is an i8 splat. 3416 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3417 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3418 } 3419 3420 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3421 assert(N == 1 && "Invalid number of operands!"); 3422 // The immediate encodes the type of constant as well as the value. 3423 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3424 unsigned Value = CE->getValue(); 3425 Value = ARM_AM::encodeNEONi16splat(Value); 3426 Inst.addOperand(MCOperand::createImm(Value)); 3427 } 3428 3429 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3430 assert(N == 1 && "Invalid number of operands!"); 3431 // The immediate encodes the type of constant as well as the value. 3432 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3433 unsigned Value = CE->getValue(); 3434 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3435 Inst.addOperand(MCOperand::createImm(Value)); 3436 } 3437 3438 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3439 assert(N == 1 && "Invalid number of operands!"); 3440 // The immediate encodes the type of constant as well as the value. 3441 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3442 unsigned Value = CE->getValue(); 3443 Value = ARM_AM::encodeNEONi32splat(Value); 3444 Inst.addOperand(MCOperand::createImm(Value)); 3445 } 3446 3447 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3448 assert(N == 1 && "Invalid number of operands!"); 3449 // The immediate encodes the type of constant as well as the value. 3450 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3451 unsigned Value = CE->getValue(); 3452 Value = ARM_AM::encodeNEONi32splat(~Value); 3453 Inst.addOperand(MCOperand::createImm(Value)); 3454 } 3455 3456 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3457 // The immediate encodes the type of constant as well as the value. 3458 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3459 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3460 Inst.getOpcode() == ARM::VMOVv16i8) && 3461 "All instructions that wants to replicate non-zero byte " 3462 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3463 unsigned Value = CE->getValue(); 3464 if (Inv) 3465 Value = ~Value; 3466 unsigned B = Value & 0xff; 3467 B |= 0xe00; // cmode = 0b1110 3468 Inst.addOperand(MCOperand::createImm(B)); 3469 } 3470 3471 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3472 assert(N == 1 && "Invalid number of operands!"); 3473 addNEONi8ReplicateOperands(Inst, true); 3474 } 3475 3476 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3477 if (Value >= 256 && Value <= 0xffff) 3478 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3479 else if (Value > 0xffff && Value <= 0xffffff) 3480 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3481 else if (Value > 0xffffff) 3482 Value = (Value >> 24) | 0x600; 3483 return Value; 3484 } 3485 3486 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3487 assert(N == 1 && "Invalid number of operands!"); 3488 // The immediate encodes the type of constant as well as the value. 3489 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3490 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3491 Inst.addOperand(MCOperand::createImm(Value)); 3492 } 3493 3494 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3495 assert(N == 1 && "Invalid number of operands!"); 3496 addNEONi8ReplicateOperands(Inst, false); 3497 } 3498 3499 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3500 assert(N == 1 && "Invalid number of operands!"); 3501 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3502 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3503 Inst.getOpcode() == ARM::VMOVv8i16 || 3504 Inst.getOpcode() == ARM::VMVNv4i16 || 3505 Inst.getOpcode() == ARM::VMVNv8i16) && 3506 "All instructions that want to replicate non-zero half-word " 3507 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3508 uint64_t Value = CE->getValue(); 3509 unsigned Elem = Value & 0xffff; 3510 if (Elem >= 256) 3511 Elem = (Elem >> 8) | 0x200; 3512 Inst.addOperand(MCOperand::createImm(Elem)); 3513 } 3514 3515 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3516 assert(N == 1 && "Invalid number of operands!"); 3517 // The immediate encodes the type of constant as well as the value. 3518 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3519 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3520 Inst.addOperand(MCOperand::createImm(Value)); 3521 } 3522 3523 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3524 assert(N == 1 && "Invalid number of operands!"); 3525 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3526 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3527 Inst.getOpcode() == ARM::VMOVv4i32 || 3528 Inst.getOpcode() == ARM::VMVNv2i32 || 3529 Inst.getOpcode() == ARM::VMVNv4i32) && 3530 "All instructions that want to replicate non-zero word " 3531 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3532 uint64_t Value = CE->getValue(); 3533 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3534 Inst.addOperand(MCOperand::createImm(Elem)); 3535 } 3536 3537 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3538 assert(N == 1 && "Invalid number of operands!"); 3539 // The immediate encodes the type of constant as well as the value. 3540 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3541 uint64_t Value = CE->getValue(); 3542 unsigned Imm = 0; 3543 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3544 Imm |= (Value & 1) << i; 3545 } 3546 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3547 } 3548 3549 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3550 assert(N == 1 && "Invalid number of operands!"); 3551 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3552 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3553 } 3554 3555 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3556 assert(N == 1 && "Invalid number of operands!"); 3557 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3558 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3559 } 3560 3561 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3562 assert(N == 1 && "Invalid number of operands!"); 3563 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3564 unsigned Imm = CE->getValue(); 3565 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3566 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3567 } 3568 3569 void print(raw_ostream &OS) const override; 3570 3571 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3572 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3573 Op->ITMask.Mask = Mask; 3574 Op->StartLoc = S; 3575 Op->EndLoc = S; 3576 return Op; 3577 } 3578 3579 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3580 SMLoc S) { 3581 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3582 Op->CC.Val = CC; 3583 Op->StartLoc = S; 3584 Op->EndLoc = S; 3585 return Op; 3586 } 3587 3588 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3589 SMLoc S) { 3590 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3591 Op->VCC.Val = CC; 3592 Op->StartLoc = S; 3593 Op->EndLoc = S; 3594 return Op; 3595 } 3596 3597 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3598 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3599 Op->Cop.Val = CopVal; 3600 Op->StartLoc = S; 3601 Op->EndLoc = S; 3602 return Op; 3603 } 3604 3605 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3606 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3607 Op->Cop.Val = CopVal; 3608 Op->StartLoc = S; 3609 Op->EndLoc = S; 3610 return Op; 3611 } 3612 3613 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3614 SMLoc E) { 3615 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3616 Op->Cop.Val = Val; 3617 Op->StartLoc = S; 3618 Op->EndLoc = E; 3619 return Op; 3620 } 3621 3622 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3623 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3624 Op->Reg.RegNum = RegNum; 3625 Op->StartLoc = S; 3626 Op->EndLoc = S; 3627 return Op; 3628 } 3629 3630 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3631 auto Op = std::make_unique<ARMOperand>(k_Token); 3632 Op->Tok.Data = Str.data(); 3633 Op->Tok.Length = Str.size(); 3634 Op->StartLoc = S; 3635 Op->EndLoc = S; 3636 return Op; 3637 } 3638 3639 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3640 SMLoc E) { 3641 auto Op = std::make_unique<ARMOperand>(k_Register); 3642 Op->Reg.RegNum = RegNum; 3643 Op->StartLoc = S; 3644 Op->EndLoc = E; 3645 return Op; 3646 } 3647 3648 static std::unique_ptr<ARMOperand> 3649 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3650 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3651 SMLoc E) { 3652 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3653 Op->RegShiftedReg.ShiftTy = ShTy; 3654 Op->RegShiftedReg.SrcReg = SrcReg; 3655 Op->RegShiftedReg.ShiftReg = ShiftReg; 3656 Op->RegShiftedReg.ShiftImm = ShiftImm; 3657 Op->StartLoc = S; 3658 Op->EndLoc = E; 3659 return Op; 3660 } 3661 3662 static std::unique_ptr<ARMOperand> 3663 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3664 unsigned ShiftImm, SMLoc S, SMLoc E) { 3665 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3666 Op->RegShiftedImm.ShiftTy = ShTy; 3667 Op->RegShiftedImm.SrcReg = SrcReg; 3668 Op->RegShiftedImm.ShiftImm = ShiftImm; 3669 Op->StartLoc = S; 3670 Op->EndLoc = E; 3671 return Op; 3672 } 3673 3674 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3675 SMLoc S, SMLoc E) { 3676 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3677 Op->ShifterImm.isASR = isASR; 3678 Op->ShifterImm.Imm = Imm; 3679 Op->StartLoc = S; 3680 Op->EndLoc = E; 3681 return Op; 3682 } 3683 3684 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3685 SMLoc E) { 3686 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3687 Op->RotImm.Imm = Imm; 3688 Op->StartLoc = S; 3689 Op->EndLoc = E; 3690 return Op; 3691 } 3692 3693 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3694 SMLoc S, SMLoc E) { 3695 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3696 Op->ModImm.Bits = Bits; 3697 Op->ModImm.Rot = Rot; 3698 Op->StartLoc = S; 3699 Op->EndLoc = E; 3700 return Op; 3701 } 3702 3703 static std::unique_ptr<ARMOperand> 3704 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3705 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3706 Op->Imm.Val = Val; 3707 Op->StartLoc = S; 3708 Op->EndLoc = E; 3709 return Op; 3710 } 3711 3712 static std::unique_ptr<ARMOperand> 3713 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3714 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3715 Op->Bitfield.LSB = LSB; 3716 Op->Bitfield.Width = Width; 3717 Op->StartLoc = S; 3718 Op->EndLoc = E; 3719 return Op; 3720 } 3721 3722 static std::unique_ptr<ARMOperand> 3723 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3724 SMLoc StartLoc, SMLoc EndLoc) { 3725 assert(Regs.size() > 0 && "RegList contains no registers?"); 3726 KindTy Kind = k_RegisterList; 3727 3728 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3729 Regs.front().second)) { 3730 if (Regs.back().second == ARM::VPR) 3731 Kind = k_FPDRegisterListWithVPR; 3732 else 3733 Kind = k_DPRRegisterList; 3734 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3735 Regs.front().second)) { 3736 if (Regs.back().second == ARM::VPR) 3737 Kind = k_FPSRegisterListWithVPR; 3738 else 3739 Kind = k_SPRRegisterList; 3740 } 3741 3742 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3743 Kind = k_RegisterListWithAPSR; 3744 3745 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); 3746 3747 auto Op = std::make_unique<ARMOperand>(Kind); 3748 for (const auto &P : Regs) 3749 Op->Registers.push_back(P.second); 3750 3751 Op->StartLoc = StartLoc; 3752 Op->EndLoc = EndLoc; 3753 return Op; 3754 } 3755 3756 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3757 unsigned Count, 3758 bool isDoubleSpaced, 3759 SMLoc S, SMLoc E) { 3760 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3761 Op->VectorList.RegNum = RegNum; 3762 Op->VectorList.Count = Count; 3763 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3764 Op->StartLoc = S; 3765 Op->EndLoc = E; 3766 return Op; 3767 } 3768 3769 static std::unique_ptr<ARMOperand> 3770 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3771 SMLoc S, SMLoc E) { 3772 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3773 Op->VectorList.RegNum = RegNum; 3774 Op->VectorList.Count = Count; 3775 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3776 Op->StartLoc = S; 3777 Op->EndLoc = E; 3778 return Op; 3779 } 3780 3781 static std::unique_ptr<ARMOperand> 3782 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3783 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3784 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3785 Op->VectorList.RegNum = RegNum; 3786 Op->VectorList.Count = Count; 3787 Op->VectorList.LaneIndex = Index; 3788 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3789 Op->StartLoc = S; 3790 Op->EndLoc = E; 3791 return Op; 3792 } 3793 3794 static std::unique_ptr<ARMOperand> 3795 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3796 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3797 Op->VectorIndex.Val = Idx; 3798 Op->StartLoc = S; 3799 Op->EndLoc = E; 3800 return Op; 3801 } 3802 3803 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3804 SMLoc E) { 3805 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3806 Op->Imm.Val = Val; 3807 Op->StartLoc = S; 3808 Op->EndLoc = E; 3809 return Op; 3810 } 3811 3812 static std::unique_ptr<ARMOperand> 3813 CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum, 3814 ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, 3815 bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3816 auto Op = std::make_unique<ARMOperand>(k_Memory); 3817 Op->Memory.BaseRegNum = BaseRegNum; 3818 Op->Memory.OffsetImm = OffsetImm; 3819 Op->Memory.OffsetRegNum = OffsetRegNum; 3820 Op->Memory.ShiftType = ShiftType; 3821 Op->Memory.ShiftImm = ShiftImm; 3822 Op->Memory.Alignment = Alignment; 3823 Op->Memory.isNegative = isNegative; 3824 Op->StartLoc = S; 3825 Op->EndLoc = E; 3826 Op->AlignmentLoc = AlignmentLoc; 3827 return Op; 3828 } 3829 3830 static std::unique_ptr<ARMOperand> 3831 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3832 unsigned ShiftImm, SMLoc S, SMLoc E) { 3833 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3834 Op->PostIdxReg.RegNum = RegNum; 3835 Op->PostIdxReg.isAdd = isAdd; 3836 Op->PostIdxReg.ShiftTy = ShiftTy; 3837 Op->PostIdxReg.ShiftImm = ShiftImm; 3838 Op->StartLoc = S; 3839 Op->EndLoc = E; 3840 return Op; 3841 } 3842 3843 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3844 SMLoc S) { 3845 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3846 Op->MBOpt.Val = Opt; 3847 Op->StartLoc = S; 3848 Op->EndLoc = S; 3849 return Op; 3850 } 3851 3852 static std::unique_ptr<ARMOperand> 3853 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3854 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3855 Op->ISBOpt.Val = Opt; 3856 Op->StartLoc = S; 3857 Op->EndLoc = S; 3858 return Op; 3859 } 3860 3861 static std::unique_ptr<ARMOperand> 3862 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3863 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3864 Op->TSBOpt.Val = Opt; 3865 Op->StartLoc = S; 3866 Op->EndLoc = S; 3867 return Op; 3868 } 3869 3870 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3871 SMLoc S) { 3872 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3873 Op->IFlags.Val = IFlags; 3874 Op->StartLoc = S; 3875 Op->EndLoc = S; 3876 return Op; 3877 } 3878 3879 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3880 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3881 Op->MMask.Val = MMask; 3882 Op->StartLoc = S; 3883 Op->EndLoc = S; 3884 return Op; 3885 } 3886 3887 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3888 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3889 Op->BankedReg.Val = Reg; 3890 Op->StartLoc = S; 3891 Op->EndLoc = S; 3892 return Op; 3893 } 3894 }; 3895 3896 } // end anonymous namespace. 3897 3898 void ARMOperand::print(raw_ostream &OS) const { 3899 auto RegName = [](MCRegister Reg) { 3900 if (Reg) 3901 return ARMInstPrinter::getRegisterName(Reg); 3902 else 3903 return "noreg"; 3904 }; 3905 3906 switch (Kind) { 3907 case k_CondCode: 3908 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3909 break; 3910 case k_VPTPred: 3911 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3912 break; 3913 case k_CCOut: 3914 OS << "<ccout " << RegName(getReg()) << ">"; 3915 break; 3916 case k_ITCondMask: { 3917 static const char *const MaskStr[] = { 3918 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3919 "(tt)", "(ttet)", "(tte)", "(ttee)", 3920 "(t)", "(tett)", "(tet)", "(tete)", 3921 "(te)", "(teet)", "(tee)", "(teee)", 3922 }; 3923 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3924 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3925 break; 3926 } 3927 case k_CoprocNum: 3928 OS << "<coprocessor number: " << getCoproc() << ">"; 3929 break; 3930 case k_CoprocReg: 3931 OS << "<coprocessor register: " << getCoproc() << ">"; 3932 break; 3933 case k_CoprocOption: 3934 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3935 break; 3936 case k_MSRMask: 3937 OS << "<mask: " << getMSRMask() << ">"; 3938 break; 3939 case k_BankedReg: 3940 OS << "<banked reg: " << getBankedReg() << ">"; 3941 break; 3942 case k_Immediate: 3943 OS << *getImm(); 3944 break; 3945 case k_MemBarrierOpt: 3946 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3947 break; 3948 case k_InstSyncBarrierOpt: 3949 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3950 break; 3951 case k_TraceSyncBarrierOpt: 3952 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3953 break; 3954 case k_Memory: 3955 OS << "<memory"; 3956 if (Memory.BaseRegNum) 3957 OS << " base:" << RegName(Memory.BaseRegNum); 3958 if (Memory.OffsetImm) 3959 OS << " offset-imm:" << *Memory.OffsetImm; 3960 if (Memory.OffsetRegNum) 3961 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3962 << RegName(Memory.OffsetRegNum); 3963 if (Memory.ShiftType != ARM_AM::no_shift) { 3964 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3965 OS << " shift-imm:" << Memory.ShiftImm; 3966 } 3967 if (Memory.Alignment) 3968 OS << " alignment:" << Memory.Alignment; 3969 OS << ">"; 3970 break; 3971 case k_PostIndexRegister: 3972 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3973 << RegName(PostIdxReg.RegNum); 3974 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3975 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3976 << PostIdxReg.ShiftImm; 3977 OS << ">"; 3978 break; 3979 case k_ProcIFlags: { 3980 OS << "<ARM_PROC::"; 3981 unsigned IFlags = getProcIFlags(); 3982 for (int i=2; i >= 0; --i) 3983 if (IFlags & (1 << i)) 3984 OS << ARM_PROC::IFlagsToString(1 << i); 3985 OS << ">"; 3986 break; 3987 } 3988 case k_Register: 3989 OS << "<register " << RegName(getReg()) << ">"; 3990 break; 3991 case k_ShifterImmediate: 3992 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3993 << " #" << ShifterImm.Imm << ">"; 3994 break; 3995 case k_ShiftedRegister: 3996 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3997 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3998 << RegName(RegShiftedReg.ShiftReg) << ">"; 3999 break; 4000 case k_ShiftedImmediate: 4001 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 4002 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 4003 << RegShiftedImm.ShiftImm << ">"; 4004 break; 4005 case k_RotateImmediate: 4006 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 4007 break; 4008 case k_ModifiedImmediate: 4009 OS << "<mod_imm #" << ModImm.Bits << ", #" 4010 << ModImm.Rot << ")>"; 4011 break; 4012 case k_ConstantPoolImmediate: 4013 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 4014 break; 4015 case k_BitfieldDescriptor: 4016 OS << "<bitfield " << "lsb: " << Bitfield.LSB 4017 << ", width: " << Bitfield.Width << ">"; 4018 break; 4019 case k_RegisterList: 4020 case k_RegisterListWithAPSR: 4021 case k_DPRRegisterList: 4022 case k_SPRRegisterList: 4023 case k_FPSRegisterListWithVPR: 4024 case k_FPDRegisterListWithVPR: { 4025 OS << "<register_list "; 4026 4027 const SmallVectorImpl<unsigned> &RegList = getRegList(); 4028 for (SmallVectorImpl<unsigned>::const_iterator 4029 I = RegList.begin(), E = RegList.end(); I != E; ) { 4030 OS << RegName(*I); 4031 if (++I < E) OS << ", "; 4032 } 4033 4034 OS << ">"; 4035 break; 4036 } 4037 case k_VectorList: 4038 OS << "<vector_list " << VectorList.Count << " * " 4039 << RegName(VectorList.RegNum) << ">"; 4040 break; 4041 case k_VectorListAllLanes: 4042 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 4043 << RegName(VectorList.RegNum) << ">"; 4044 break; 4045 case k_VectorListIndexed: 4046 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 4047 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 4048 break; 4049 case k_Token: 4050 OS << "'" << getToken() << "'"; 4051 break; 4052 case k_VectorIndex: 4053 OS << "<vectorindex " << getVectorIndex() << ">"; 4054 break; 4055 } 4056 } 4057 4058 /// @name Auto-generated Match Functions 4059 /// { 4060 4061 static unsigned MatchRegisterName(StringRef Name); 4062 4063 /// } 4064 4065 bool ARMAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc, 4066 SMLoc &EndLoc) { 4067 const AsmToken &Tok = getParser().getTok(); 4068 StartLoc = Tok.getLoc(); 4069 EndLoc = Tok.getEndLoc(); 4070 RegNo = tryParseRegister(); 4071 4072 return (RegNo == (unsigned)-1); 4073 } 4074 4075 OperandMatchResultTy ARMAsmParser::tryParseRegister(MCRegister &RegNo, 4076 SMLoc &StartLoc, 4077 SMLoc &EndLoc) { 4078 if (parseRegister(RegNo, StartLoc, EndLoc)) 4079 return MatchOperand_NoMatch; 4080 return MatchOperand_Success; 4081 } 4082 4083 /// Try to parse a register name. The token must be an Identifier when called, 4084 /// and if it is a register name the token is eaten and the register number is 4085 /// returned. Otherwise return -1. 4086 int ARMAsmParser::tryParseRegister() { 4087 MCAsmParser &Parser = getParser(); 4088 const AsmToken &Tok = Parser.getTok(); 4089 if (Tok.isNot(AsmToken::Identifier)) return -1; 4090 4091 std::string lowerCase = Tok.getString().lower(); 4092 unsigned RegNum = MatchRegisterName(lowerCase); 4093 if (!RegNum) { 4094 RegNum = StringSwitch<unsigned>(lowerCase) 4095 .Case("r13", ARM::SP) 4096 .Case("r14", ARM::LR) 4097 .Case("r15", ARM::PC) 4098 .Case("ip", ARM::R12) 4099 // Additional register name aliases for 'gas' compatibility. 4100 .Case("a1", ARM::R0) 4101 .Case("a2", ARM::R1) 4102 .Case("a3", ARM::R2) 4103 .Case("a4", ARM::R3) 4104 .Case("v1", ARM::R4) 4105 .Case("v2", ARM::R5) 4106 .Case("v3", ARM::R6) 4107 .Case("v4", ARM::R7) 4108 .Case("v5", ARM::R8) 4109 .Case("v6", ARM::R9) 4110 .Case("v7", ARM::R10) 4111 .Case("v8", ARM::R11) 4112 .Case("sb", ARM::R9) 4113 .Case("sl", ARM::R10) 4114 .Case("fp", ARM::R11) 4115 .Default(0); 4116 } 4117 if (!RegNum) { 4118 // Check for aliases registered via .req. Canonicalize to lower case. 4119 // That's more consistent since register names are case insensitive, and 4120 // it's how the original entry was passed in from MC/MCParser/AsmParser. 4121 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 4122 // If no match, return failure. 4123 if (Entry == RegisterReqs.end()) 4124 return -1; 4125 Parser.Lex(); // Eat identifier token. 4126 return Entry->getValue(); 4127 } 4128 4129 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4130 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4131 return -1; 4132 4133 Parser.Lex(); // Eat identifier token. 4134 4135 return RegNum; 4136 } 4137 4138 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4139 // If a recoverable error occurs, return 1. If an irrecoverable error 4140 // occurs, return -1. An irrecoverable error is one where tokens have been 4141 // consumed in the process of trying to parse the shifter (i.e., when it is 4142 // indeed a shifter operand, but malformed). 4143 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4144 MCAsmParser &Parser = getParser(); 4145 SMLoc S = Parser.getTok().getLoc(); 4146 const AsmToken &Tok = Parser.getTok(); 4147 if (Tok.isNot(AsmToken::Identifier)) 4148 return -1; 4149 4150 std::string lowerCase = Tok.getString().lower(); 4151 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4152 .Case("asl", ARM_AM::lsl) 4153 .Case("lsl", ARM_AM::lsl) 4154 .Case("lsr", ARM_AM::lsr) 4155 .Case("asr", ARM_AM::asr) 4156 .Case("ror", ARM_AM::ror) 4157 .Case("rrx", ARM_AM::rrx) 4158 .Default(ARM_AM::no_shift); 4159 4160 if (ShiftTy == ARM_AM::no_shift) 4161 return 1; 4162 4163 Parser.Lex(); // Eat the operator. 4164 4165 // The source register for the shift has already been added to the 4166 // operand list, so we need to pop it off and combine it into the shifted 4167 // register operand instead. 4168 std::unique_ptr<ARMOperand> PrevOp( 4169 (ARMOperand *)Operands.pop_back_val().release()); 4170 if (!PrevOp->isReg()) 4171 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4172 int SrcReg = PrevOp->getReg(); 4173 4174 SMLoc EndLoc; 4175 int64_t Imm = 0; 4176 int ShiftReg = 0; 4177 if (ShiftTy == ARM_AM::rrx) { 4178 // RRX Doesn't have an explicit shift amount. The encoder expects 4179 // the shift register to be the same as the source register. Seems odd, 4180 // but OK. 4181 ShiftReg = SrcReg; 4182 } else { 4183 // Figure out if this is shifted by a constant or a register (for non-RRX). 4184 if (Parser.getTok().is(AsmToken::Hash) || 4185 Parser.getTok().is(AsmToken::Dollar)) { 4186 Parser.Lex(); // Eat hash. 4187 SMLoc ImmLoc = Parser.getTok().getLoc(); 4188 const MCExpr *ShiftExpr = nullptr; 4189 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4190 Error(ImmLoc, "invalid immediate shift value"); 4191 return -1; 4192 } 4193 // The expression must be evaluatable as an immediate. 4194 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4195 if (!CE) { 4196 Error(ImmLoc, "invalid immediate shift value"); 4197 return -1; 4198 } 4199 // Range check the immediate. 4200 // lsl, ror: 0 <= imm <= 31 4201 // lsr, asr: 0 <= imm <= 32 4202 Imm = CE->getValue(); 4203 if (Imm < 0 || 4204 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4205 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4206 Error(ImmLoc, "immediate shift value out of range"); 4207 return -1; 4208 } 4209 // shift by zero is a nop. Always send it through as lsl. 4210 // ('as' compatibility) 4211 if (Imm == 0) 4212 ShiftTy = ARM_AM::lsl; 4213 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4214 SMLoc L = Parser.getTok().getLoc(); 4215 EndLoc = Parser.getTok().getEndLoc(); 4216 ShiftReg = tryParseRegister(); 4217 if (ShiftReg == -1) { 4218 Error(L, "expected immediate or register in shift operand"); 4219 return -1; 4220 } 4221 } else { 4222 Error(Parser.getTok().getLoc(), 4223 "expected immediate or register in shift operand"); 4224 return -1; 4225 } 4226 } 4227 4228 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4229 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4230 ShiftReg, Imm, 4231 S, EndLoc)); 4232 else 4233 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4234 S, EndLoc)); 4235 4236 return 0; 4237 } 4238 4239 /// Try to parse a register name. The token must be an Identifier when called. 4240 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4241 /// if there is a "writeback". 'true' if it's not a register. 4242 /// 4243 /// TODO this is likely to change to allow different register types and or to 4244 /// parse for a specific register type. 4245 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4246 MCAsmParser &Parser = getParser(); 4247 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4248 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4249 int RegNo = tryParseRegister(); 4250 if (RegNo == -1) 4251 return true; 4252 4253 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4254 4255 const AsmToken &ExclaimTok = Parser.getTok(); 4256 if (ExclaimTok.is(AsmToken::Exclaim)) { 4257 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4258 ExclaimTok.getLoc())); 4259 Parser.Lex(); // Eat exclaim token 4260 return false; 4261 } 4262 4263 // Also check for an index operand. This is only legal for vector registers, 4264 // but that'll get caught OK in operand matching, so we don't need to 4265 // explicitly filter everything else out here. 4266 if (Parser.getTok().is(AsmToken::LBrac)) { 4267 SMLoc SIdx = Parser.getTok().getLoc(); 4268 Parser.Lex(); // Eat left bracket token. 4269 4270 const MCExpr *ImmVal; 4271 if (getParser().parseExpression(ImmVal)) 4272 return true; 4273 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4274 if (!MCE) 4275 return TokError("immediate value expected for vector index"); 4276 4277 if (Parser.getTok().isNot(AsmToken::RBrac)) 4278 return Error(Parser.getTok().getLoc(), "']' expected"); 4279 4280 SMLoc E = Parser.getTok().getEndLoc(); 4281 Parser.Lex(); // Eat right bracket token. 4282 4283 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4284 SIdx, E, 4285 getContext())); 4286 } 4287 4288 return false; 4289 } 4290 4291 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4292 /// instruction with a symbolic operand name. 4293 /// We accept "crN" syntax for GAS compatibility. 4294 /// <operand-name> ::= <prefix><number> 4295 /// If CoprocOp is 'c', then: 4296 /// <prefix> ::= c | cr 4297 /// If CoprocOp is 'p', then : 4298 /// <prefix> ::= p 4299 /// <number> ::= integer in range [0, 15] 4300 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4301 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4302 // but efficient. 4303 if (Name.size() < 2 || Name[0] != CoprocOp) 4304 return -1; 4305 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4306 4307 switch (Name.size()) { 4308 default: return -1; 4309 case 1: 4310 switch (Name[0]) { 4311 default: return -1; 4312 case '0': return 0; 4313 case '1': return 1; 4314 case '2': return 2; 4315 case '3': return 3; 4316 case '4': return 4; 4317 case '5': return 5; 4318 case '6': return 6; 4319 case '7': return 7; 4320 case '8': return 8; 4321 case '9': return 9; 4322 } 4323 case 2: 4324 if (Name[0] != '1') 4325 return -1; 4326 switch (Name[1]) { 4327 default: return -1; 4328 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4329 // However, old cores (v5/v6) did use them in that way. 4330 case '0': return 10; 4331 case '1': return 11; 4332 case '2': return 12; 4333 case '3': return 13; 4334 case '4': return 14; 4335 case '5': return 15; 4336 } 4337 } 4338 } 4339 4340 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4341 OperandMatchResultTy 4342 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4343 MCAsmParser &Parser = getParser(); 4344 SMLoc S = Parser.getTok().getLoc(); 4345 const AsmToken &Tok = Parser.getTok(); 4346 if (!Tok.is(AsmToken::Identifier)) 4347 return MatchOperand_NoMatch; 4348 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4349 if (CC == ~0U) 4350 return MatchOperand_NoMatch; 4351 Parser.Lex(); // Eat the token. 4352 4353 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4354 4355 return MatchOperand_Success; 4356 } 4357 4358 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4359 /// token must be an Identifier when called, and if it is a coprocessor 4360 /// number, the token is eaten and the operand is added to the operand list. 4361 OperandMatchResultTy 4362 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4363 MCAsmParser &Parser = getParser(); 4364 SMLoc S = Parser.getTok().getLoc(); 4365 const AsmToken &Tok = Parser.getTok(); 4366 if (Tok.isNot(AsmToken::Identifier)) 4367 return MatchOperand_NoMatch; 4368 4369 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4370 if (Num == -1) 4371 return MatchOperand_NoMatch; 4372 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4373 return MatchOperand_NoMatch; 4374 4375 Parser.Lex(); // Eat identifier token. 4376 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4377 return MatchOperand_Success; 4378 } 4379 4380 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4381 /// token must be an Identifier when called, and if it is a coprocessor 4382 /// number, the token is eaten and the operand is added to the operand list. 4383 OperandMatchResultTy 4384 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4385 MCAsmParser &Parser = getParser(); 4386 SMLoc S = Parser.getTok().getLoc(); 4387 const AsmToken &Tok = Parser.getTok(); 4388 if (Tok.isNot(AsmToken::Identifier)) 4389 return MatchOperand_NoMatch; 4390 4391 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4392 if (Reg == -1) 4393 return MatchOperand_NoMatch; 4394 4395 Parser.Lex(); // Eat identifier token. 4396 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4397 return MatchOperand_Success; 4398 } 4399 4400 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4401 /// coproc_option : '{' imm0_255 '}' 4402 OperandMatchResultTy 4403 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4404 MCAsmParser &Parser = getParser(); 4405 SMLoc S = Parser.getTok().getLoc(); 4406 4407 // If this isn't a '{', this isn't a coprocessor immediate operand. 4408 if (Parser.getTok().isNot(AsmToken::LCurly)) 4409 return MatchOperand_NoMatch; 4410 Parser.Lex(); // Eat the '{' 4411 4412 const MCExpr *Expr; 4413 SMLoc Loc = Parser.getTok().getLoc(); 4414 if (getParser().parseExpression(Expr)) { 4415 Error(Loc, "illegal expression"); 4416 return MatchOperand_ParseFail; 4417 } 4418 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4419 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4420 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4421 return MatchOperand_ParseFail; 4422 } 4423 int Val = CE->getValue(); 4424 4425 // Check for and consume the closing '}' 4426 if (Parser.getTok().isNot(AsmToken::RCurly)) 4427 return MatchOperand_ParseFail; 4428 SMLoc E = Parser.getTok().getEndLoc(); 4429 Parser.Lex(); // Eat the '}' 4430 4431 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4432 return MatchOperand_Success; 4433 } 4434 4435 // For register list parsing, we need to map from raw GPR register numbering 4436 // to the enumeration values. The enumeration values aren't sorted by 4437 // register number due to our using "sp", "lr" and "pc" as canonical names. 4438 static unsigned getNextRegister(unsigned Reg) { 4439 // If this is a GPR, we need to do it manually, otherwise we can rely 4440 // on the sort ordering of the enumeration since the other reg-classes 4441 // are sane. 4442 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4443 return Reg + 1; 4444 switch(Reg) { 4445 default: llvm_unreachable("Invalid GPR number!"); 4446 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4447 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4448 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4449 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4450 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4451 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4452 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4453 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4454 } 4455 } 4456 4457 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4458 // success, or false, if duplicate encoding found. 4459 static bool 4460 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4461 unsigned Enc, unsigned Reg) { 4462 Regs.emplace_back(Enc, Reg); 4463 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4464 if (J->first == Enc) { 4465 Regs.erase(J.base()); 4466 return false; 4467 } 4468 if (J->first < Enc) 4469 break; 4470 std::swap(*I, *J); 4471 } 4472 return true; 4473 } 4474 4475 /// Parse a register list. 4476 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder, 4477 bool AllowRAAC) { 4478 MCAsmParser &Parser = getParser(); 4479 if (Parser.getTok().isNot(AsmToken::LCurly)) 4480 return TokError("Token is not a Left Curly Brace"); 4481 SMLoc S = Parser.getTok().getLoc(); 4482 Parser.Lex(); // Eat '{' token. 4483 SMLoc RegLoc = Parser.getTok().getLoc(); 4484 4485 // Check the first register in the list to see what register class 4486 // this is a list of. 4487 int Reg = tryParseRegister(); 4488 if (Reg == -1) 4489 return Error(RegLoc, "register expected"); 4490 if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) 4491 return Error(RegLoc, "pseudo-register not allowed"); 4492 // The reglist instructions have at most 16 registers, so reserve 4493 // space for that many. 4494 int EReg = 0; 4495 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4496 4497 // Allow Q regs and just interpret them as the two D sub-registers. 4498 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4499 Reg = getDRegFromQReg(Reg); 4500 EReg = MRI->getEncodingValue(Reg); 4501 Registers.emplace_back(EReg, Reg); 4502 ++Reg; 4503 } 4504 const MCRegisterClass *RC; 4505 if (Reg == ARM::RA_AUTH_CODE || 4506 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4507 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4508 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4509 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4510 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4511 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4512 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4513 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4514 else 4515 return Error(RegLoc, "invalid register in register list"); 4516 4517 // Store the register. 4518 EReg = MRI->getEncodingValue(Reg); 4519 Registers.emplace_back(EReg, Reg); 4520 4521 // This starts immediately after the first register token in the list, 4522 // so we can see either a comma or a minus (range separator) as a legal 4523 // next token. 4524 while (Parser.getTok().is(AsmToken::Comma) || 4525 Parser.getTok().is(AsmToken::Minus)) { 4526 if (Parser.getTok().is(AsmToken::Minus)) { 4527 if (Reg == ARM::RA_AUTH_CODE) 4528 return Error(RegLoc, "pseudo-register not allowed"); 4529 Parser.Lex(); // Eat the minus. 4530 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4531 int EndReg = tryParseRegister(); 4532 if (EndReg == -1) 4533 return Error(AfterMinusLoc, "register expected"); 4534 if (EndReg == ARM::RA_AUTH_CODE) 4535 return Error(AfterMinusLoc, "pseudo-register not allowed"); 4536 // Allow Q regs and just interpret them as the two D sub-registers. 4537 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4538 EndReg = getDRegFromQReg(EndReg) + 1; 4539 // If the register is the same as the start reg, there's nothing 4540 // more to do. 4541 if (Reg == EndReg) 4542 continue; 4543 // The register must be in the same register class as the first. 4544 if (!RC->contains(Reg)) 4545 return Error(AfterMinusLoc, "invalid register in register list"); 4546 // Ranges must go from low to high. 4547 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4548 return Error(AfterMinusLoc, "bad range in register list"); 4549 4550 // Add all the registers in the range to the register list. 4551 while (Reg != EndReg) { 4552 Reg = getNextRegister(Reg); 4553 EReg = MRI->getEncodingValue(Reg); 4554 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4555 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4556 ARMInstPrinter::getRegisterName(Reg) + 4557 ") in register list"); 4558 } 4559 } 4560 continue; 4561 } 4562 Parser.Lex(); // Eat the comma. 4563 RegLoc = Parser.getTok().getLoc(); 4564 int OldReg = Reg; 4565 const AsmToken RegTok = Parser.getTok(); 4566 Reg = tryParseRegister(); 4567 if (Reg == -1) 4568 return Error(RegLoc, "register expected"); 4569 if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) 4570 return Error(RegLoc, "pseudo-register not allowed"); 4571 // Allow Q regs and just interpret them as the two D sub-registers. 4572 bool isQReg = false; 4573 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4574 Reg = getDRegFromQReg(Reg); 4575 isQReg = true; 4576 } 4577 if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) && 4578 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4579 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4580 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4581 // subset of GPRRegClassId except it contains APSR as well. 4582 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4583 } 4584 if (Reg == ARM::VPR && 4585 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4586 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4587 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4588 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4589 EReg = MRI->getEncodingValue(Reg); 4590 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4591 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4592 ") in register list"); 4593 } 4594 continue; 4595 } 4596 // The register must be in the same register class as the first. 4597 if ((Reg == ARM::RA_AUTH_CODE && 4598 RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) || 4599 (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg))) 4600 return Error(RegLoc, "invalid register in register list"); 4601 // In most cases, the list must be monotonically increasing. An 4602 // exception is CLRM, which is order-independent anyway, so 4603 // there's no potential for confusion if you write clrm {r2,r1} 4604 // instead of clrm {r1,r2}. 4605 if (EnforceOrder && 4606 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4607 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4608 Warning(RegLoc, "register list not in ascending order"); 4609 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4610 return Error(RegLoc, "register list not in ascending order"); 4611 } 4612 // VFP register lists must also be contiguous. 4613 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4614 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4615 Reg != OldReg + 1) 4616 return Error(RegLoc, "non-contiguous register range"); 4617 EReg = MRI->getEncodingValue(Reg); 4618 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4619 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4620 ") in register list"); 4621 } 4622 if (isQReg) { 4623 EReg = MRI->getEncodingValue(++Reg); 4624 Registers.emplace_back(EReg, Reg); 4625 } 4626 } 4627 4628 if (Parser.getTok().isNot(AsmToken::RCurly)) 4629 return Error(Parser.getTok().getLoc(), "'}' expected"); 4630 SMLoc E = Parser.getTok().getEndLoc(); 4631 Parser.Lex(); // Eat '}' token. 4632 4633 // Push the register list operand. 4634 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4635 4636 // The ARM system instruction variants for LDM/STM have a '^' token here. 4637 if (Parser.getTok().is(AsmToken::Caret)) { 4638 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4639 Parser.Lex(); // Eat '^' token. 4640 } 4641 4642 return false; 4643 } 4644 4645 // Helper function to parse the lane index for vector lists. 4646 OperandMatchResultTy ARMAsmParser:: 4647 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4648 MCAsmParser &Parser = getParser(); 4649 Index = 0; // Always return a defined index value. 4650 if (Parser.getTok().is(AsmToken::LBrac)) { 4651 Parser.Lex(); // Eat the '['. 4652 if (Parser.getTok().is(AsmToken::RBrac)) { 4653 // "Dn[]" is the 'all lanes' syntax. 4654 LaneKind = AllLanes; 4655 EndLoc = Parser.getTok().getEndLoc(); 4656 Parser.Lex(); // Eat the ']'. 4657 return MatchOperand_Success; 4658 } 4659 4660 // There's an optional '#' token here. Normally there wouldn't be, but 4661 // inline assemble puts one in, and it's friendly to accept that. 4662 if (Parser.getTok().is(AsmToken::Hash)) 4663 Parser.Lex(); // Eat '#' or '$'. 4664 4665 const MCExpr *LaneIndex; 4666 SMLoc Loc = Parser.getTok().getLoc(); 4667 if (getParser().parseExpression(LaneIndex)) { 4668 Error(Loc, "illegal expression"); 4669 return MatchOperand_ParseFail; 4670 } 4671 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4672 if (!CE) { 4673 Error(Loc, "lane index must be empty or an integer"); 4674 return MatchOperand_ParseFail; 4675 } 4676 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4677 Error(Parser.getTok().getLoc(), "']' expected"); 4678 return MatchOperand_ParseFail; 4679 } 4680 EndLoc = Parser.getTok().getEndLoc(); 4681 Parser.Lex(); // Eat the ']'. 4682 int64_t Val = CE->getValue(); 4683 4684 // FIXME: Make this range check context sensitive for .8, .16, .32. 4685 if (Val < 0 || Val > 7) { 4686 Error(Parser.getTok().getLoc(), "lane index out of range"); 4687 return MatchOperand_ParseFail; 4688 } 4689 Index = Val; 4690 LaneKind = IndexedLane; 4691 return MatchOperand_Success; 4692 } 4693 LaneKind = NoLanes; 4694 return MatchOperand_Success; 4695 } 4696 4697 // parse a vector register list 4698 OperandMatchResultTy 4699 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4700 MCAsmParser &Parser = getParser(); 4701 VectorLaneTy LaneKind; 4702 unsigned LaneIndex; 4703 SMLoc S = Parser.getTok().getLoc(); 4704 // As an extension (to match gas), support a plain D register or Q register 4705 // (without encosing curly braces) as a single or double entry list, 4706 // respectively. 4707 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4708 SMLoc E = Parser.getTok().getEndLoc(); 4709 int Reg = tryParseRegister(); 4710 if (Reg == -1) 4711 return MatchOperand_NoMatch; 4712 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4713 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4714 if (Res != MatchOperand_Success) 4715 return Res; 4716 switch (LaneKind) { 4717 case NoLanes: 4718 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4719 break; 4720 case AllLanes: 4721 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4722 S, E)); 4723 break; 4724 case IndexedLane: 4725 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4726 LaneIndex, 4727 false, S, E)); 4728 break; 4729 } 4730 return MatchOperand_Success; 4731 } 4732 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4733 Reg = getDRegFromQReg(Reg); 4734 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4735 if (Res != MatchOperand_Success) 4736 return Res; 4737 switch (LaneKind) { 4738 case NoLanes: 4739 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4740 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4741 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4742 break; 4743 case AllLanes: 4744 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4745 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4746 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4747 S, E)); 4748 break; 4749 case IndexedLane: 4750 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4751 LaneIndex, 4752 false, S, E)); 4753 break; 4754 } 4755 return MatchOperand_Success; 4756 } 4757 Error(S, "vector register expected"); 4758 return MatchOperand_ParseFail; 4759 } 4760 4761 if (Parser.getTok().isNot(AsmToken::LCurly)) 4762 return MatchOperand_NoMatch; 4763 4764 Parser.Lex(); // Eat '{' token. 4765 SMLoc RegLoc = Parser.getTok().getLoc(); 4766 4767 int Reg = tryParseRegister(); 4768 if (Reg == -1) { 4769 Error(RegLoc, "register expected"); 4770 return MatchOperand_ParseFail; 4771 } 4772 unsigned Count = 1; 4773 int Spacing = 0; 4774 unsigned FirstReg = Reg; 4775 4776 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4777 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4778 return MatchOperand_ParseFail; 4779 } 4780 // The list is of D registers, but we also allow Q regs and just interpret 4781 // them as the two D sub-registers. 4782 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4783 FirstReg = Reg = getDRegFromQReg(Reg); 4784 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4785 // it's ambiguous with four-register single spaced. 4786 ++Reg; 4787 ++Count; 4788 } 4789 4790 SMLoc E; 4791 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4792 return MatchOperand_ParseFail; 4793 4794 while (Parser.getTok().is(AsmToken::Comma) || 4795 Parser.getTok().is(AsmToken::Minus)) { 4796 if (Parser.getTok().is(AsmToken::Minus)) { 4797 if (!Spacing) 4798 Spacing = 1; // Register range implies a single spaced list. 4799 else if (Spacing == 2) { 4800 Error(Parser.getTok().getLoc(), 4801 "sequential registers in double spaced list"); 4802 return MatchOperand_ParseFail; 4803 } 4804 Parser.Lex(); // Eat the minus. 4805 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4806 int EndReg = tryParseRegister(); 4807 if (EndReg == -1) { 4808 Error(AfterMinusLoc, "register expected"); 4809 return MatchOperand_ParseFail; 4810 } 4811 // Allow Q regs and just interpret them as the two D sub-registers. 4812 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4813 EndReg = getDRegFromQReg(EndReg) + 1; 4814 // If the register is the same as the start reg, there's nothing 4815 // more to do. 4816 if (Reg == EndReg) 4817 continue; 4818 // The register must be in the same register class as the first. 4819 if ((hasMVE() && 4820 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4821 (!hasMVE() && 4822 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4823 Error(AfterMinusLoc, "invalid register in register list"); 4824 return MatchOperand_ParseFail; 4825 } 4826 // Ranges must go from low to high. 4827 if (Reg > EndReg) { 4828 Error(AfterMinusLoc, "bad range in register list"); 4829 return MatchOperand_ParseFail; 4830 } 4831 // Parse the lane specifier if present. 4832 VectorLaneTy NextLaneKind; 4833 unsigned NextLaneIndex; 4834 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4835 MatchOperand_Success) 4836 return MatchOperand_ParseFail; 4837 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4838 Error(AfterMinusLoc, "mismatched lane index in register list"); 4839 return MatchOperand_ParseFail; 4840 } 4841 4842 // Add all the registers in the range to the register list. 4843 Count += EndReg - Reg; 4844 Reg = EndReg; 4845 continue; 4846 } 4847 Parser.Lex(); // Eat the comma. 4848 RegLoc = Parser.getTok().getLoc(); 4849 int OldReg = Reg; 4850 Reg = tryParseRegister(); 4851 if (Reg == -1) { 4852 Error(RegLoc, "register expected"); 4853 return MatchOperand_ParseFail; 4854 } 4855 4856 if (hasMVE()) { 4857 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4858 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4859 return MatchOperand_ParseFail; 4860 } 4861 Spacing = 1; 4862 } 4863 // vector register lists must be contiguous. 4864 // It's OK to use the enumeration values directly here rather, as the 4865 // VFP register classes have the enum sorted properly. 4866 // 4867 // The list is of D registers, but we also allow Q regs and just interpret 4868 // them as the two D sub-registers. 4869 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4870 if (!Spacing) 4871 Spacing = 1; // Register range implies a single spaced list. 4872 else if (Spacing == 2) { 4873 Error(RegLoc, 4874 "invalid register in double-spaced list (must be 'D' register')"); 4875 return MatchOperand_ParseFail; 4876 } 4877 Reg = getDRegFromQReg(Reg); 4878 if (Reg != OldReg + 1) { 4879 Error(RegLoc, "non-contiguous register range"); 4880 return MatchOperand_ParseFail; 4881 } 4882 ++Reg; 4883 Count += 2; 4884 // Parse the lane specifier if present. 4885 VectorLaneTy NextLaneKind; 4886 unsigned NextLaneIndex; 4887 SMLoc LaneLoc = Parser.getTok().getLoc(); 4888 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4889 MatchOperand_Success) 4890 return MatchOperand_ParseFail; 4891 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4892 Error(LaneLoc, "mismatched lane index in register list"); 4893 return MatchOperand_ParseFail; 4894 } 4895 continue; 4896 } 4897 // Normal D register. 4898 // Figure out the register spacing (single or double) of the list if 4899 // we don't know it already. 4900 if (!Spacing) 4901 Spacing = 1 + (Reg == OldReg + 2); 4902 4903 // Just check that it's contiguous and keep going. 4904 if (Reg != OldReg + Spacing) { 4905 Error(RegLoc, "non-contiguous register range"); 4906 return MatchOperand_ParseFail; 4907 } 4908 ++Count; 4909 // Parse the lane specifier if present. 4910 VectorLaneTy NextLaneKind; 4911 unsigned NextLaneIndex; 4912 SMLoc EndLoc = Parser.getTok().getLoc(); 4913 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4914 return MatchOperand_ParseFail; 4915 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4916 Error(EndLoc, "mismatched lane index in register list"); 4917 return MatchOperand_ParseFail; 4918 } 4919 } 4920 4921 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4922 Error(Parser.getTok().getLoc(), "'}' expected"); 4923 return MatchOperand_ParseFail; 4924 } 4925 E = Parser.getTok().getEndLoc(); 4926 Parser.Lex(); // Eat '}' token. 4927 4928 switch (LaneKind) { 4929 case NoLanes: 4930 case AllLanes: { 4931 // Two-register operands have been converted to the 4932 // composite register classes. 4933 if (Count == 2 && !hasMVE()) { 4934 const MCRegisterClass *RC = (Spacing == 1) ? 4935 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4936 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4937 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4938 } 4939 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4940 ARMOperand::CreateVectorListAllLanes); 4941 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4942 break; 4943 } 4944 case IndexedLane: 4945 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4946 LaneIndex, 4947 (Spacing == 2), 4948 S, E)); 4949 break; 4950 } 4951 return MatchOperand_Success; 4952 } 4953 4954 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4955 OperandMatchResultTy 4956 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4957 MCAsmParser &Parser = getParser(); 4958 SMLoc S = Parser.getTok().getLoc(); 4959 const AsmToken &Tok = Parser.getTok(); 4960 unsigned Opt; 4961 4962 if (Tok.is(AsmToken::Identifier)) { 4963 StringRef OptStr = Tok.getString(); 4964 4965 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4966 .Case("sy", ARM_MB::SY) 4967 .Case("st", ARM_MB::ST) 4968 .Case("ld", ARM_MB::LD) 4969 .Case("sh", ARM_MB::ISH) 4970 .Case("ish", ARM_MB::ISH) 4971 .Case("shst", ARM_MB::ISHST) 4972 .Case("ishst", ARM_MB::ISHST) 4973 .Case("ishld", ARM_MB::ISHLD) 4974 .Case("nsh", ARM_MB::NSH) 4975 .Case("un", ARM_MB::NSH) 4976 .Case("nshst", ARM_MB::NSHST) 4977 .Case("nshld", ARM_MB::NSHLD) 4978 .Case("unst", ARM_MB::NSHST) 4979 .Case("osh", ARM_MB::OSH) 4980 .Case("oshst", ARM_MB::OSHST) 4981 .Case("oshld", ARM_MB::OSHLD) 4982 .Default(~0U); 4983 4984 // ishld, oshld, nshld and ld are only available from ARMv8. 4985 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4986 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4987 Opt = ~0U; 4988 4989 if (Opt == ~0U) 4990 return MatchOperand_NoMatch; 4991 4992 Parser.Lex(); // Eat identifier token. 4993 } else if (Tok.is(AsmToken::Hash) || 4994 Tok.is(AsmToken::Dollar) || 4995 Tok.is(AsmToken::Integer)) { 4996 if (Parser.getTok().isNot(AsmToken::Integer)) 4997 Parser.Lex(); // Eat '#' or '$'. 4998 SMLoc Loc = Parser.getTok().getLoc(); 4999 5000 const MCExpr *MemBarrierID; 5001 if (getParser().parseExpression(MemBarrierID)) { 5002 Error(Loc, "illegal expression"); 5003 return MatchOperand_ParseFail; 5004 } 5005 5006 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 5007 if (!CE) { 5008 Error(Loc, "constant expression expected"); 5009 return MatchOperand_ParseFail; 5010 } 5011 5012 int Val = CE->getValue(); 5013 if (Val & ~0xf) { 5014 Error(Loc, "immediate value out of range"); 5015 return MatchOperand_ParseFail; 5016 } 5017 5018 Opt = ARM_MB::RESERVED_0 + Val; 5019 } else 5020 return MatchOperand_ParseFail; 5021 5022 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 5023 return MatchOperand_Success; 5024 } 5025 5026 OperandMatchResultTy 5027 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 5028 MCAsmParser &Parser = getParser(); 5029 SMLoc S = Parser.getTok().getLoc(); 5030 const AsmToken &Tok = Parser.getTok(); 5031 5032 if (Tok.isNot(AsmToken::Identifier)) 5033 return MatchOperand_NoMatch; 5034 5035 if (!Tok.getString().equals_insensitive("csync")) 5036 return MatchOperand_NoMatch; 5037 5038 Parser.Lex(); // Eat identifier token. 5039 5040 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 5041 return MatchOperand_Success; 5042 } 5043 5044 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 5045 OperandMatchResultTy 5046 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 5047 MCAsmParser &Parser = getParser(); 5048 SMLoc S = Parser.getTok().getLoc(); 5049 const AsmToken &Tok = Parser.getTok(); 5050 unsigned Opt; 5051 5052 if (Tok.is(AsmToken::Identifier)) { 5053 StringRef OptStr = Tok.getString(); 5054 5055 if (OptStr.equals_insensitive("sy")) 5056 Opt = ARM_ISB::SY; 5057 else 5058 return MatchOperand_NoMatch; 5059 5060 Parser.Lex(); // Eat identifier token. 5061 } else if (Tok.is(AsmToken::Hash) || 5062 Tok.is(AsmToken::Dollar) || 5063 Tok.is(AsmToken::Integer)) { 5064 if (Parser.getTok().isNot(AsmToken::Integer)) 5065 Parser.Lex(); // Eat '#' or '$'. 5066 SMLoc Loc = Parser.getTok().getLoc(); 5067 5068 const MCExpr *ISBarrierID; 5069 if (getParser().parseExpression(ISBarrierID)) { 5070 Error(Loc, "illegal expression"); 5071 return MatchOperand_ParseFail; 5072 } 5073 5074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 5075 if (!CE) { 5076 Error(Loc, "constant expression expected"); 5077 return MatchOperand_ParseFail; 5078 } 5079 5080 int Val = CE->getValue(); 5081 if (Val & ~0xf) { 5082 Error(Loc, "immediate value out of range"); 5083 return MatchOperand_ParseFail; 5084 } 5085 5086 Opt = ARM_ISB::RESERVED_0 + Val; 5087 } else 5088 return MatchOperand_ParseFail; 5089 5090 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 5091 (ARM_ISB::InstSyncBOpt)Opt, S)); 5092 return MatchOperand_Success; 5093 } 5094 5095 5096 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 5097 OperandMatchResultTy 5098 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 5099 MCAsmParser &Parser = getParser(); 5100 SMLoc S = Parser.getTok().getLoc(); 5101 const AsmToken &Tok = Parser.getTok(); 5102 if (!Tok.is(AsmToken::Identifier)) 5103 return MatchOperand_NoMatch; 5104 StringRef IFlagsStr = Tok.getString(); 5105 5106 // An iflags string of "none" is interpreted to mean that none of the AIF 5107 // bits are set. Not a terribly useful instruction, but a valid encoding. 5108 unsigned IFlags = 0; 5109 if (IFlagsStr != "none") { 5110 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 5111 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 5112 .Case("a", ARM_PROC::A) 5113 .Case("i", ARM_PROC::I) 5114 .Case("f", ARM_PROC::F) 5115 .Default(~0U); 5116 5117 // If some specific iflag is already set, it means that some letter is 5118 // present more than once, this is not acceptable. 5119 if (Flag == ~0U || (IFlags & Flag)) 5120 return MatchOperand_NoMatch; 5121 5122 IFlags |= Flag; 5123 } 5124 } 5125 5126 Parser.Lex(); // Eat identifier token. 5127 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 5128 return MatchOperand_Success; 5129 } 5130 5131 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 5132 OperandMatchResultTy 5133 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5134 MCAsmParser &Parser = getParser(); 5135 SMLoc S = Parser.getTok().getLoc(); 5136 const AsmToken &Tok = Parser.getTok(); 5137 5138 if (Tok.is(AsmToken::Integer)) { 5139 int64_t Val = Tok.getIntVal(); 5140 if (Val > 255 || Val < 0) { 5141 return MatchOperand_NoMatch; 5142 } 5143 unsigned SYSmvalue = Val & 0xFF; 5144 Parser.Lex(); 5145 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5146 return MatchOperand_Success; 5147 } 5148 5149 if (!Tok.is(AsmToken::Identifier)) 5150 return MatchOperand_NoMatch; 5151 StringRef Mask = Tok.getString(); 5152 5153 if (isMClass()) { 5154 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5155 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5156 return MatchOperand_NoMatch; 5157 5158 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5159 5160 Parser.Lex(); // Eat identifier token. 5161 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5162 return MatchOperand_Success; 5163 } 5164 5165 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5166 size_t Start = 0, Next = Mask.find('_'); 5167 StringRef Flags = ""; 5168 std::string SpecReg = Mask.slice(Start, Next).lower(); 5169 if (Next != StringRef::npos) 5170 Flags = Mask.slice(Next+1, Mask.size()); 5171 5172 // FlagsVal contains the complete mask: 5173 // 3-0: Mask 5174 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5175 unsigned FlagsVal = 0; 5176 5177 if (SpecReg == "apsr") { 5178 FlagsVal = StringSwitch<unsigned>(Flags) 5179 .Case("nzcvq", 0x8) // same as CPSR_f 5180 .Case("g", 0x4) // same as CPSR_s 5181 .Case("nzcvqg", 0xc) // same as CPSR_fs 5182 .Default(~0U); 5183 5184 if (FlagsVal == ~0U) { 5185 if (!Flags.empty()) 5186 return MatchOperand_NoMatch; 5187 else 5188 FlagsVal = 8; // No flag 5189 } 5190 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5191 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5192 if (Flags == "all" || Flags == "") 5193 Flags = "fc"; 5194 for (int i = 0, e = Flags.size(); i != e; ++i) { 5195 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5196 .Case("c", 1) 5197 .Case("x", 2) 5198 .Case("s", 4) 5199 .Case("f", 8) 5200 .Default(~0U); 5201 5202 // If some specific flag is already set, it means that some letter is 5203 // present more than once, this is not acceptable. 5204 if (Flag == ~0U || (FlagsVal & Flag)) 5205 return MatchOperand_NoMatch; 5206 FlagsVal |= Flag; 5207 } 5208 } else // No match for special register. 5209 return MatchOperand_NoMatch; 5210 5211 // Special register without flags is NOT equivalent to "fc" flags. 5212 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5213 // two lines would enable gas compatibility at the expense of breaking 5214 // round-tripping. 5215 // 5216 // if (!FlagsVal) 5217 // FlagsVal = 0x9; 5218 5219 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5220 if (SpecReg == "spsr") 5221 FlagsVal |= 16; 5222 5223 Parser.Lex(); // Eat identifier token. 5224 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5225 return MatchOperand_Success; 5226 } 5227 5228 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5229 /// use in the MRS/MSR instructions added to support virtualization. 5230 OperandMatchResultTy 5231 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5232 MCAsmParser &Parser = getParser(); 5233 SMLoc S = Parser.getTok().getLoc(); 5234 const AsmToken &Tok = Parser.getTok(); 5235 if (!Tok.is(AsmToken::Identifier)) 5236 return MatchOperand_NoMatch; 5237 StringRef RegName = Tok.getString(); 5238 5239 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5240 if (!TheReg) 5241 return MatchOperand_NoMatch; 5242 unsigned Encoding = TheReg->Encoding; 5243 5244 Parser.Lex(); // Eat identifier token. 5245 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5246 return MatchOperand_Success; 5247 } 5248 5249 OperandMatchResultTy 5250 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5251 int High) { 5252 MCAsmParser &Parser = getParser(); 5253 const AsmToken &Tok = Parser.getTok(); 5254 if (Tok.isNot(AsmToken::Identifier)) { 5255 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5256 return MatchOperand_ParseFail; 5257 } 5258 StringRef ShiftName = Tok.getString(); 5259 std::string LowerOp = Op.lower(); 5260 std::string UpperOp = Op.upper(); 5261 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5262 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5263 return MatchOperand_ParseFail; 5264 } 5265 Parser.Lex(); // Eat shift type token. 5266 5267 // There must be a '#' and a shift amount. 5268 if (Parser.getTok().isNot(AsmToken::Hash) && 5269 Parser.getTok().isNot(AsmToken::Dollar)) { 5270 Error(Parser.getTok().getLoc(), "'#' expected"); 5271 return MatchOperand_ParseFail; 5272 } 5273 Parser.Lex(); // Eat hash token. 5274 5275 const MCExpr *ShiftAmount; 5276 SMLoc Loc = Parser.getTok().getLoc(); 5277 SMLoc EndLoc; 5278 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5279 Error(Loc, "illegal expression"); 5280 return MatchOperand_ParseFail; 5281 } 5282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5283 if (!CE) { 5284 Error(Loc, "constant expression expected"); 5285 return MatchOperand_ParseFail; 5286 } 5287 int Val = CE->getValue(); 5288 if (Val < Low || Val > High) { 5289 Error(Loc, "immediate value out of range"); 5290 return MatchOperand_ParseFail; 5291 } 5292 5293 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5294 5295 return MatchOperand_Success; 5296 } 5297 5298 OperandMatchResultTy 5299 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5300 MCAsmParser &Parser = getParser(); 5301 const AsmToken &Tok = Parser.getTok(); 5302 SMLoc S = Tok.getLoc(); 5303 if (Tok.isNot(AsmToken::Identifier)) { 5304 Error(S, "'be' or 'le' operand expected"); 5305 return MatchOperand_ParseFail; 5306 } 5307 int Val = StringSwitch<int>(Tok.getString().lower()) 5308 .Case("be", 1) 5309 .Case("le", 0) 5310 .Default(-1); 5311 Parser.Lex(); // Eat the token. 5312 5313 if (Val == -1) { 5314 Error(S, "'be' or 'le' operand expected"); 5315 return MatchOperand_ParseFail; 5316 } 5317 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5318 getContext()), 5319 S, Tok.getEndLoc())); 5320 return MatchOperand_Success; 5321 } 5322 5323 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5324 /// instructions. Legal values are: 5325 /// lsl #n 'n' in [0,31] 5326 /// asr #n 'n' in [1,32] 5327 /// n == 32 encoded as n == 0. 5328 OperandMatchResultTy 5329 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5330 MCAsmParser &Parser = getParser(); 5331 const AsmToken &Tok = Parser.getTok(); 5332 SMLoc S = Tok.getLoc(); 5333 if (Tok.isNot(AsmToken::Identifier)) { 5334 Error(S, "shift operator 'asr' or 'lsl' expected"); 5335 return MatchOperand_ParseFail; 5336 } 5337 StringRef ShiftName = Tok.getString(); 5338 bool isASR; 5339 if (ShiftName == "lsl" || ShiftName == "LSL") 5340 isASR = false; 5341 else if (ShiftName == "asr" || ShiftName == "ASR") 5342 isASR = true; 5343 else { 5344 Error(S, "shift operator 'asr' or 'lsl' expected"); 5345 return MatchOperand_ParseFail; 5346 } 5347 Parser.Lex(); // Eat the operator. 5348 5349 // A '#' and a shift amount. 5350 if (Parser.getTok().isNot(AsmToken::Hash) && 5351 Parser.getTok().isNot(AsmToken::Dollar)) { 5352 Error(Parser.getTok().getLoc(), "'#' expected"); 5353 return MatchOperand_ParseFail; 5354 } 5355 Parser.Lex(); // Eat hash token. 5356 SMLoc ExLoc = Parser.getTok().getLoc(); 5357 5358 const MCExpr *ShiftAmount; 5359 SMLoc EndLoc; 5360 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5361 Error(ExLoc, "malformed shift expression"); 5362 return MatchOperand_ParseFail; 5363 } 5364 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5365 if (!CE) { 5366 Error(ExLoc, "shift amount must be an immediate"); 5367 return MatchOperand_ParseFail; 5368 } 5369 5370 int64_t Val = CE->getValue(); 5371 if (isASR) { 5372 // Shift amount must be in [1,32] 5373 if (Val < 1 || Val > 32) { 5374 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5375 return MatchOperand_ParseFail; 5376 } 5377 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5378 if (isThumb() && Val == 32) { 5379 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5380 return MatchOperand_ParseFail; 5381 } 5382 if (Val == 32) Val = 0; 5383 } else { 5384 // Shift amount must be in [1,32] 5385 if (Val < 0 || Val > 31) { 5386 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5387 return MatchOperand_ParseFail; 5388 } 5389 } 5390 5391 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5392 5393 return MatchOperand_Success; 5394 } 5395 5396 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5397 /// of instructions. Legal values are: 5398 /// ror #n 'n' in {0, 8, 16, 24} 5399 OperandMatchResultTy 5400 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5401 MCAsmParser &Parser = getParser(); 5402 const AsmToken &Tok = Parser.getTok(); 5403 SMLoc S = Tok.getLoc(); 5404 if (Tok.isNot(AsmToken::Identifier)) 5405 return MatchOperand_NoMatch; 5406 StringRef ShiftName = Tok.getString(); 5407 if (ShiftName != "ror" && ShiftName != "ROR") 5408 return MatchOperand_NoMatch; 5409 Parser.Lex(); // Eat the operator. 5410 5411 // A '#' and a rotate amount. 5412 if (Parser.getTok().isNot(AsmToken::Hash) && 5413 Parser.getTok().isNot(AsmToken::Dollar)) { 5414 Error(Parser.getTok().getLoc(), "'#' expected"); 5415 return MatchOperand_ParseFail; 5416 } 5417 Parser.Lex(); // Eat hash token. 5418 SMLoc ExLoc = Parser.getTok().getLoc(); 5419 5420 const MCExpr *ShiftAmount; 5421 SMLoc EndLoc; 5422 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5423 Error(ExLoc, "malformed rotate expression"); 5424 return MatchOperand_ParseFail; 5425 } 5426 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5427 if (!CE) { 5428 Error(ExLoc, "rotate amount must be an immediate"); 5429 return MatchOperand_ParseFail; 5430 } 5431 5432 int64_t Val = CE->getValue(); 5433 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5434 // normally, zero is represented in asm by omitting the rotate operand 5435 // entirely. 5436 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5437 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5438 return MatchOperand_ParseFail; 5439 } 5440 5441 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5442 5443 return MatchOperand_Success; 5444 } 5445 5446 OperandMatchResultTy 5447 ARMAsmParser::parseModImm(OperandVector &Operands) { 5448 MCAsmParser &Parser = getParser(); 5449 MCAsmLexer &Lexer = getLexer(); 5450 int64_t Imm1, Imm2; 5451 5452 SMLoc S = Parser.getTok().getLoc(); 5453 5454 // 1) A mod_imm operand can appear in the place of a register name: 5455 // add r0, #mod_imm 5456 // add r0, r0, #mod_imm 5457 // to correctly handle the latter, we bail out as soon as we see an 5458 // identifier. 5459 // 5460 // 2) Similarly, we do not want to parse into complex operands: 5461 // mov r0, #mod_imm 5462 // mov r0, :lower16:(_foo) 5463 if (Parser.getTok().is(AsmToken::Identifier) || 5464 Parser.getTok().is(AsmToken::Colon)) 5465 return MatchOperand_NoMatch; 5466 5467 // Hash (dollar) is optional as per the ARMARM 5468 if (Parser.getTok().is(AsmToken::Hash) || 5469 Parser.getTok().is(AsmToken::Dollar)) { 5470 // Avoid parsing into complex operands (#:) 5471 if (Lexer.peekTok().is(AsmToken::Colon)) 5472 return MatchOperand_NoMatch; 5473 5474 // Eat the hash (dollar) 5475 Parser.Lex(); 5476 } 5477 5478 SMLoc Sx1, Ex1; 5479 Sx1 = Parser.getTok().getLoc(); 5480 const MCExpr *Imm1Exp; 5481 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5482 Error(Sx1, "malformed expression"); 5483 return MatchOperand_ParseFail; 5484 } 5485 5486 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5487 5488 if (CE) { 5489 // Immediate must fit within 32-bits 5490 Imm1 = CE->getValue(); 5491 int Enc = ARM_AM::getSOImmVal(Imm1); 5492 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5493 // We have a match! 5494 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5495 (Enc & 0xF00) >> 7, 5496 Sx1, Ex1)); 5497 return MatchOperand_Success; 5498 } 5499 5500 // We have parsed an immediate which is not for us, fallback to a plain 5501 // immediate. This can happen for instruction aliases. For an example, 5502 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5503 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5504 // instruction with a mod_imm operand. The alias is defined such that the 5505 // parser method is shared, that's why we have to do this here. 5506 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5507 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5508 return MatchOperand_Success; 5509 } 5510 } else { 5511 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5512 // MCFixup). Fallback to a plain immediate. 5513 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5514 return MatchOperand_Success; 5515 } 5516 5517 // From this point onward, we expect the input to be a (#bits, #rot) pair 5518 if (Parser.getTok().isNot(AsmToken::Comma)) { 5519 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5520 return MatchOperand_ParseFail; 5521 } 5522 5523 if (Imm1 & ~0xFF) { 5524 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5525 return MatchOperand_ParseFail; 5526 } 5527 5528 // Eat the comma 5529 Parser.Lex(); 5530 5531 // Repeat for #rot 5532 SMLoc Sx2, Ex2; 5533 Sx2 = Parser.getTok().getLoc(); 5534 5535 // Eat the optional hash (dollar) 5536 if (Parser.getTok().is(AsmToken::Hash) || 5537 Parser.getTok().is(AsmToken::Dollar)) 5538 Parser.Lex(); 5539 5540 const MCExpr *Imm2Exp; 5541 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5542 Error(Sx2, "malformed expression"); 5543 return MatchOperand_ParseFail; 5544 } 5545 5546 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5547 5548 if (CE) { 5549 Imm2 = CE->getValue(); 5550 if (!(Imm2 & ~0x1E)) { 5551 // We have a match! 5552 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5553 return MatchOperand_Success; 5554 } 5555 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5556 return MatchOperand_ParseFail; 5557 } else { 5558 Error(Sx2, "constant expression expected"); 5559 return MatchOperand_ParseFail; 5560 } 5561 } 5562 5563 OperandMatchResultTy 5564 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5565 MCAsmParser &Parser = getParser(); 5566 SMLoc S = Parser.getTok().getLoc(); 5567 // The bitfield descriptor is really two operands, the LSB and the width. 5568 if (Parser.getTok().isNot(AsmToken::Hash) && 5569 Parser.getTok().isNot(AsmToken::Dollar)) { 5570 Error(Parser.getTok().getLoc(), "'#' expected"); 5571 return MatchOperand_ParseFail; 5572 } 5573 Parser.Lex(); // Eat hash token. 5574 5575 const MCExpr *LSBExpr; 5576 SMLoc E = Parser.getTok().getLoc(); 5577 if (getParser().parseExpression(LSBExpr)) { 5578 Error(E, "malformed immediate expression"); 5579 return MatchOperand_ParseFail; 5580 } 5581 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5582 if (!CE) { 5583 Error(E, "'lsb' operand must be an immediate"); 5584 return MatchOperand_ParseFail; 5585 } 5586 5587 int64_t LSB = CE->getValue(); 5588 // The LSB must be in the range [0,31] 5589 if (LSB < 0 || LSB > 31) { 5590 Error(E, "'lsb' operand must be in the range [0,31]"); 5591 return MatchOperand_ParseFail; 5592 } 5593 E = Parser.getTok().getLoc(); 5594 5595 // Expect another immediate operand. 5596 if (Parser.getTok().isNot(AsmToken::Comma)) { 5597 Error(Parser.getTok().getLoc(), "too few operands"); 5598 return MatchOperand_ParseFail; 5599 } 5600 Parser.Lex(); // Eat hash token. 5601 if (Parser.getTok().isNot(AsmToken::Hash) && 5602 Parser.getTok().isNot(AsmToken::Dollar)) { 5603 Error(Parser.getTok().getLoc(), "'#' expected"); 5604 return MatchOperand_ParseFail; 5605 } 5606 Parser.Lex(); // Eat hash token. 5607 5608 const MCExpr *WidthExpr; 5609 SMLoc EndLoc; 5610 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5611 Error(E, "malformed immediate expression"); 5612 return MatchOperand_ParseFail; 5613 } 5614 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5615 if (!CE) { 5616 Error(E, "'width' operand must be an immediate"); 5617 return MatchOperand_ParseFail; 5618 } 5619 5620 int64_t Width = CE->getValue(); 5621 // The LSB must be in the range [1,32-lsb] 5622 if (Width < 1 || Width > 32 - LSB) { 5623 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5624 return MatchOperand_ParseFail; 5625 } 5626 5627 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5628 5629 return MatchOperand_Success; 5630 } 5631 5632 OperandMatchResultTy 5633 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5634 // Check for a post-index addressing register operand. Specifically: 5635 // postidx_reg := '+' register {, shift} 5636 // | '-' register {, shift} 5637 // | register {, shift} 5638 5639 // This method must return MatchOperand_NoMatch without consuming any tokens 5640 // in the case where there is no match, as other alternatives take other 5641 // parse methods. 5642 MCAsmParser &Parser = getParser(); 5643 AsmToken Tok = Parser.getTok(); 5644 SMLoc S = Tok.getLoc(); 5645 bool haveEaten = false; 5646 bool isAdd = true; 5647 if (Tok.is(AsmToken::Plus)) { 5648 Parser.Lex(); // Eat the '+' token. 5649 haveEaten = true; 5650 } else if (Tok.is(AsmToken::Minus)) { 5651 Parser.Lex(); // Eat the '-' token. 5652 isAdd = false; 5653 haveEaten = true; 5654 } 5655 5656 SMLoc E = Parser.getTok().getEndLoc(); 5657 int Reg = tryParseRegister(); 5658 if (Reg == -1) { 5659 if (!haveEaten) 5660 return MatchOperand_NoMatch; 5661 Error(Parser.getTok().getLoc(), "register expected"); 5662 return MatchOperand_ParseFail; 5663 } 5664 5665 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5666 unsigned ShiftImm = 0; 5667 if (Parser.getTok().is(AsmToken::Comma)) { 5668 Parser.Lex(); // Eat the ','. 5669 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5670 return MatchOperand_ParseFail; 5671 5672 // FIXME: Only approximates end...may include intervening whitespace. 5673 E = Parser.getTok().getLoc(); 5674 } 5675 5676 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5677 ShiftImm, S, E)); 5678 5679 return MatchOperand_Success; 5680 } 5681 5682 OperandMatchResultTy 5683 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5684 // Check for a post-index addressing register operand. Specifically: 5685 // am3offset := '+' register 5686 // | '-' register 5687 // | register 5688 // | # imm 5689 // | # + imm 5690 // | # - imm 5691 5692 // This method must return MatchOperand_NoMatch without consuming any tokens 5693 // in the case where there is no match, as other alternatives take other 5694 // parse methods. 5695 MCAsmParser &Parser = getParser(); 5696 AsmToken Tok = Parser.getTok(); 5697 SMLoc S = Tok.getLoc(); 5698 5699 // Do immediates first, as we always parse those if we have a '#'. 5700 if (Parser.getTok().is(AsmToken::Hash) || 5701 Parser.getTok().is(AsmToken::Dollar)) { 5702 Parser.Lex(); // Eat '#' or '$'. 5703 // Explicitly look for a '-', as we need to encode negative zero 5704 // differently. 5705 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5706 const MCExpr *Offset; 5707 SMLoc E; 5708 if (getParser().parseExpression(Offset, E)) 5709 return MatchOperand_ParseFail; 5710 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5711 if (!CE) { 5712 Error(S, "constant expression expected"); 5713 return MatchOperand_ParseFail; 5714 } 5715 // Negative zero is encoded as the flag value 5716 // std::numeric_limits<int32_t>::min(). 5717 int32_t Val = CE->getValue(); 5718 if (isNegative && Val == 0) 5719 Val = std::numeric_limits<int32_t>::min(); 5720 5721 Operands.push_back( 5722 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5723 5724 return MatchOperand_Success; 5725 } 5726 5727 bool haveEaten = false; 5728 bool isAdd = true; 5729 if (Tok.is(AsmToken::Plus)) { 5730 Parser.Lex(); // Eat the '+' token. 5731 haveEaten = true; 5732 } else if (Tok.is(AsmToken::Minus)) { 5733 Parser.Lex(); // Eat the '-' token. 5734 isAdd = false; 5735 haveEaten = true; 5736 } 5737 5738 Tok = Parser.getTok(); 5739 int Reg = tryParseRegister(); 5740 if (Reg == -1) { 5741 if (!haveEaten) 5742 return MatchOperand_NoMatch; 5743 Error(Tok.getLoc(), "register expected"); 5744 return MatchOperand_ParseFail; 5745 } 5746 5747 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5748 0, S, Tok.getEndLoc())); 5749 5750 return MatchOperand_Success; 5751 } 5752 5753 /// Convert parsed operands to MCInst. Needed here because this instruction 5754 /// only has two register operands, but multiplication is commutative so 5755 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5756 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5757 const OperandVector &Operands) { 5758 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5759 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5760 // If we have a three-operand form, make sure to set Rn to be the operand 5761 // that isn't the same as Rd. 5762 unsigned RegOp = 4; 5763 if (Operands.size() == 6 && 5764 ((ARMOperand &)*Operands[4]).getReg() == 5765 ((ARMOperand &)*Operands[3]).getReg()) 5766 RegOp = 5; 5767 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5768 Inst.addOperand(Inst.getOperand(0)); 5769 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5770 } 5771 5772 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5773 const OperandVector &Operands) { 5774 int CondOp = -1, ImmOp = -1; 5775 switch(Inst.getOpcode()) { 5776 case ARM::tB: 5777 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5778 5779 case ARM::t2B: 5780 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5781 5782 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5783 } 5784 // first decide whether or not the branch should be conditional 5785 // by looking at it's location relative to an IT block 5786 if(inITBlock()) { 5787 // inside an IT block we cannot have any conditional branches. any 5788 // such instructions needs to be converted to unconditional form 5789 switch(Inst.getOpcode()) { 5790 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5791 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5792 } 5793 } else { 5794 // outside IT blocks we can only have unconditional branches with AL 5795 // condition code or conditional branches with non-AL condition code 5796 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5797 switch(Inst.getOpcode()) { 5798 case ARM::tB: 5799 case ARM::tBcc: 5800 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5801 break; 5802 case ARM::t2B: 5803 case ARM::t2Bcc: 5804 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5805 break; 5806 } 5807 } 5808 5809 // now decide on encoding size based on branch target range 5810 switch(Inst.getOpcode()) { 5811 // classify tB as either t2B or t1B based on range of immediate operand 5812 case ARM::tB: { 5813 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5814 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5815 Inst.setOpcode(ARM::t2B); 5816 break; 5817 } 5818 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5819 case ARM::tBcc: { 5820 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5821 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5822 Inst.setOpcode(ARM::t2Bcc); 5823 break; 5824 } 5825 } 5826 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5827 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5828 } 5829 5830 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5831 MCInst &Inst, const OperandVector &Operands) { 5832 5833 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5834 assert(Operands.size() == 8); 5835 5836 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5837 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5838 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5839 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5840 // skip second copy of Qd in Operands[6] 5841 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5842 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5843 } 5844 5845 /// Parse an ARM memory expression, return false if successful else return true 5846 /// or an error. The first token must be a '[' when called. 5847 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5848 MCAsmParser &Parser = getParser(); 5849 SMLoc S, E; 5850 if (Parser.getTok().isNot(AsmToken::LBrac)) 5851 return TokError("Token is not a Left Bracket"); 5852 S = Parser.getTok().getLoc(); 5853 Parser.Lex(); // Eat left bracket token. 5854 5855 const AsmToken &BaseRegTok = Parser.getTok(); 5856 int BaseRegNum = tryParseRegister(); 5857 if (BaseRegNum == -1) 5858 return Error(BaseRegTok.getLoc(), "register expected"); 5859 5860 // The next token must either be a comma, a colon or a closing bracket. 5861 const AsmToken &Tok = Parser.getTok(); 5862 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5863 !Tok.is(AsmToken::RBrac)) 5864 return Error(Tok.getLoc(), "malformed memory operand"); 5865 5866 if (Tok.is(AsmToken::RBrac)) { 5867 E = Tok.getEndLoc(); 5868 Parser.Lex(); // Eat right bracket token. 5869 5870 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5871 ARM_AM::no_shift, 0, 0, false, 5872 S, E)); 5873 5874 // If there's a pre-indexing writeback marker, '!', just add it as a token 5875 // operand. It's rather odd, but syntactically valid. 5876 if (Parser.getTok().is(AsmToken::Exclaim)) { 5877 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5878 Parser.Lex(); // Eat the '!'. 5879 } 5880 5881 return false; 5882 } 5883 5884 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5885 "Lost colon or comma in memory operand?!"); 5886 if (Tok.is(AsmToken::Comma)) { 5887 Parser.Lex(); // Eat the comma. 5888 } 5889 5890 // If we have a ':', it's an alignment specifier. 5891 if (Parser.getTok().is(AsmToken::Colon)) { 5892 Parser.Lex(); // Eat the ':'. 5893 E = Parser.getTok().getLoc(); 5894 SMLoc AlignmentLoc = Tok.getLoc(); 5895 5896 const MCExpr *Expr; 5897 if (getParser().parseExpression(Expr)) 5898 return true; 5899 5900 // The expression has to be a constant. Memory references with relocations 5901 // don't come through here, as they use the <label> forms of the relevant 5902 // instructions. 5903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5904 if (!CE) 5905 return Error (E, "constant expression expected"); 5906 5907 unsigned Align = 0; 5908 switch (CE->getValue()) { 5909 default: 5910 return Error(E, 5911 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5912 case 16: Align = 2; break; 5913 case 32: Align = 4; break; 5914 case 64: Align = 8; break; 5915 case 128: Align = 16; break; 5916 case 256: Align = 32; break; 5917 } 5918 5919 // Now we should have the closing ']' 5920 if (Parser.getTok().isNot(AsmToken::RBrac)) 5921 return Error(Parser.getTok().getLoc(), "']' expected"); 5922 E = Parser.getTok().getEndLoc(); 5923 Parser.Lex(); // Eat right bracket token. 5924 5925 // Don't worry about range checking the value here. That's handled by 5926 // the is*() predicates. 5927 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5928 ARM_AM::no_shift, 0, Align, 5929 false, S, E, AlignmentLoc)); 5930 5931 // If there's a pre-indexing writeback marker, '!', just add it as a token 5932 // operand. 5933 if (Parser.getTok().is(AsmToken::Exclaim)) { 5934 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5935 Parser.Lex(); // Eat the '!'. 5936 } 5937 5938 return false; 5939 } 5940 5941 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5942 // register offset. Be friendly and also accept a plain integer or expression 5943 // (without a leading hash) for gas compatibility. 5944 if (Parser.getTok().is(AsmToken::Hash) || 5945 Parser.getTok().is(AsmToken::Dollar) || 5946 Parser.getTok().is(AsmToken::LParen) || 5947 Parser.getTok().is(AsmToken::Integer)) { 5948 if (Parser.getTok().is(AsmToken::Hash) || 5949 Parser.getTok().is(AsmToken::Dollar)) 5950 Parser.Lex(); // Eat '#' or '$' 5951 E = Parser.getTok().getLoc(); 5952 5953 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5954 const MCExpr *Offset, *AdjustedOffset; 5955 if (getParser().parseExpression(Offset)) 5956 return true; 5957 5958 if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) { 5959 // If the constant was #-0, represent it as 5960 // std::numeric_limits<int32_t>::min(). 5961 int32_t Val = CE->getValue(); 5962 if (isNegative && Val == 0) 5963 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5964 getContext()); 5965 // Don't worry about range checking the value here. That's handled by 5966 // the is*() predicates. 5967 AdjustedOffset = CE; 5968 } else 5969 AdjustedOffset = Offset; 5970 Operands.push_back(ARMOperand::CreateMem( 5971 BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E)); 5972 5973 // Now we should have the closing ']' 5974 if (Parser.getTok().isNot(AsmToken::RBrac)) 5975 return Error(Parser.getTok().getLoc(), "']' expected"); 5976 E = Parser.getTok().getEndLoc(); 5977 Parser.Lex(); // Eat right bracket token. 5978 5979 // If there's a pre-indexing writeback marker, '!', just add it as a token 5980 // operand. 5981 if (Parser.getTok().is(AsmToken::Exclaim)) { 5982 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5983 Parser.Lex(); // Eat the '!'. 5984 } 5985 5986 return false; 5987 } 5988 5989 // The register offset is optionally preceded by a '+' or '-' 5990 bool isNegative = false; 5991 if (Parser.getTok().is(AsmToken::Minus)) { 5992 isNegative = true; 5993 Parser.Lex(); // Eat the '-'. 5994 } else if (Parser.getTok().is(AsmToken::Plus)) { 5995 // Nothing to do. 5996 Parser.Lex(); // Eat the '+'. 5997 } 5998 5999 E = Parser.getTok().getLoc(); 6000 int OffsetRegNum = tryParseRegister(); 6001 if (OffsetRegNum == -1) 6002 return Error(E, "register expected"); 6003 6004 // If there's a shift operator, handle it. 6005 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 6006 unsigned ShiftImm = 0; 6007 if (Parser.getTok().is(AsmToken::Comma)) { 6008 Parser.Lex(); // Eat the ','. 6009 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 6010 return true; 6011 } 6012 6013 // Now we should have the closing ']' 6014 if (Parser.getTok().isNot(AsmToken::RBrac)) 6015 return Error(Parser.getTok().getLoc(), "']' expected"); 6016 E = Parser.getTok().getEndLoc(); 6017 Parser.Lex(); // Eat right bracket token. 6018 6019 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 6020 ShiftType, ShiftImm, 0, isNegative, 6021 S, E)); 6022 6023 // If there's a pre-indexing writeback marker, '!', just add it as a token 6024 // operand. 6025 if (Parser.getTok().is(AsmToken::Exclaim)) { 6026 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 6027 Parser.Lex(); // Eat the '!'. 6028 } 6029 6030 return false; 6031 } 6032 6033 /// parseMemRegOffsetShift - one of these two: 6034 /// ( lsl | lsr | asr | ror ) , # shift_amount 6035 /// rrx 6036 /// return true if it parses a shift otherwise it returns false. 6037 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 6038 unsigned &Amount) { 6039 MCAsmParser &Parser = getParser(); 6040 SMLoc Loc = Parser.getTok().getLoc(); 6041 const AsmToken &Tok = Parser.getTok(); 6042 if (Tok.isNot(AsmToken::Identifier)) 6043 return Error(Loc, "illegal shift operator"); 6044 StringRef ShiftName = Tok.getString(); 6045 if (ShiftName == "lsl" || ShiftName == "LSL" || 6046 ShiftName == "asl" || ShiftName == "ASL") 6047 St = ARM_AM::lsl; 6048 else if (ShiftName == "lsr" || ShiftName == "LSR") 6049 St = ARM_AM::lsr; 6050 else if (ShiftName == "asr" || ShiftName == "ASR") 6051 St = ARM_AM::asr; 6052 else if (ShiftName == "ror" || ShiftName == "ROR") 6053 St = ARM_AM::ror; 6054 else if (ShiftName == "rrx" || ShiftName == "RRX") 6055 St = ARM_AM::rrx; 6056 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 6057 St = ARM_AM::uxtw; 6058 else 6059 return Error(Loc, "illegal shift operator"); 6060 Parser.Lex(); // Eat shift type token. 6061 6062 // rrx stands alone. 6063 Amount = 0; 6064 if (St != ARM_AM::rrx) { 6065 Loc = Parser.getTok().getLoc(); 6066 // A '#' and a shift amount. 6067 const AsmToken &HashTok = Parser.getTok(); 6068 if (HashTok.isNot(AsmToken::Hash) && 6069 HashTok.isNot(AsmToken::Dollar)) 6070 return Error(HashTok.getLoc(), "'#' expected"); 6071 Parser.Lex(); // Eat hash token. 6072 6073 const MCExpr *Expr; 6074 if (getParser().parseExpression(Expr)) 6075 return true; 6076 // Range check the immediate. 6077 // lsl, ror: 0 <= imm <= 31 6078 // lsr, asr: 0 <= imm <= 32 6079 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 6080 if (!CE) 6081 return Error(Loc, "shift amount must be an immediate"); 6082 int64_t Imm = CE->getValue(); 6083 if (Imm < 0 || 6084 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 6085 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 6086 return Error(Loc, "immediate shift value out of range"); 6087 // If <ShiftTy> #0, turn it into a no_shift. 6088 if (Imm == 0) 6089 St = ARM_AM::lsl; 6090 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 6091 if (Imm == 32) 6092 Imm = 0; 6093 Amount = Imm; 6094 } 6095 6096 return false; 6097 } 6098 6099 /// parseFPImm - A floating point immediate expression operand. 6100 OperandMatchResultTy 6101 ARMAsmParser::parseFPImm(OperandVector &Operands) { 6102 MCAsmParser &Parser = getParser(); 6103 // Anything that can accept a floating point constant as an operand 6104 // needs to go through here, as the regular parseExpression is 6105 // integer only. 6106 // 6107 // This routine still creates a generic Immediate operand, containing 6108 // a bitcast of the 64-bit floating point value. The various operands 6109 // that accept floats can check whether the value is valid for them 6110 // via the standard is*() predicates. 6111 6112 SMLoc S = Parser.getTok().getLoc(); 6113 6114 if (Parser.getTok().isNot(AsmToken::Hash) && 6115 Parser.getTok().isNot(AsmToken::Dollar)) 6116 return MatchOperand_NoMatch; 6117 6118 // Disambiguate the VMOV forms that can accept an FP immediate. 6119 // vmov.f32 <sreg>, #imm 6120 // vmov.f64 <dreg>, #imm 6121 // vmov.f32 <dreg>, #imm @ vector f32x2 6122 // vmov.f32 <qreg>, #imm @ vector f32x4 6123 // 6124 // There are also the NEON VMOV instructions which expect an 6125 // integer constant. Make sure we don't try to parse an FPImm 6126 // for these: 6127 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6128 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6129 bool isVmovf = TyOp.isToken() && 6130 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6131 TyOp.getToken() == ".f16"); 6132 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6133 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6134 Mnemonic.getToken() == "fconsts"); 6135 if (!(isVmovf || isFconst)) 6136 return MatchOperand_NoMatch; 6137 6138 Parser.Lex(); // Eat '#' or '$'. 6139 6140 // Handle negation, as that still comes through as a separate token. 6141 bool isNegative = false; 6142 if (Parser.getTok().is(AsmToken::Minus)) { 6143 isNegative = true; 6144 Parser.Lex(); 6145 } 6146 const AsmToken &Tok = Parser.getTok(); 6147 SMLoc Loc = Tok.getLoc(); 6148 if (Tok.is(AsmToken::Real) && isVmovf) { 6149 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6150 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6151 // If we had a '-' in front, toggle the sign bit. 6152 IntVal ^= (uint64_t)isNegative << 31; 6153 Parser.Lex(); // Eat the token. 6154 Operands.push_back(ARMOperand::CreateImm( 6155 MCConstantExpr::create(IntVal, getContext()), 6156 S, Parser.getTok().getLoc())); 6157 return MatchOperand_Success; 6158 } 6159 // Also handle plain integers. Instructions which allow floating point 6160 // immediates also allow a raw encoded 8-bit value. 6161 if (Tok.is(AsmToken::Integer) && isFconst) { 6162 int64_t Val = Tok.getIntVal(); 6163 Parser.Lex(); // Eat the token. 6164 if (Val > 255 || Val < 0) { 6165 Error(Loc, "encoded floating point value out of range"); 6166 return MatchOperand_ParseFail; 6167 } 6168 float RealVal = ARM_AM::getFPImmFloat(Val); 6169 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6170 6171 Operands.push_back(ARMOperand::CreateImm( 6172 MCConstantExpr::create(Val, getContext()), S, 6173 Parser.getTok().getLoc())); 6174 return MatchOperand_Success; 6175 } 6176 6177 Error(Loc, "invalid floating point immediate"); 6178 return MatchOperand_ParseFail; 6179 } 6180 6181 /// Parse a arm instruction operand. For now this parses the operand regardless 6182 /// of the mnemonic. 6183 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6184 MCAsmParser &Parser = getParser(); 6185 SMLoc S, E; 6186 6187 // Check if the current operand has a custom associated parser, if so, try to 6188 // custom parse the operand, or fallback to the general approach. 6189 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6190 if (ResTy == MatchOperand_Success) 6191 return false; 6192 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6193 // there was a match, but an error occurred, in which case, just return that 6194 // the operand parsing failed. 6195 if (ResTy == MatchOperand_ParseFail) 6196 return true; 6197 6198 switch (getLexer().getKind()) { 6199 default: 6200 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6201 return true; 6202 case AsmToken::Identifier: { 6203 // If we've seen a branch mnemonic, the next operand must be a label. This 6204 // is true even if the label is a register name. So "br r1" means branch to 6205 // label "r1". 6206 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6207 if (!ExpectLabel) { 6208 if (!tryParseRegisterWithWriteBack(Operands)) 6209 return false; 6210 int Res = tryParseShiftRegister(Operands); 6211 if (Res == 0) // success 6212 return false; 6213 else if (Res == -1) // irrecoverable error 6214 return true; 6215 // If this is VMRS, check for the apsr_nzcv operand. 6216 if (Mnemonic == "vmrs" && 6217 Parser.getTok().getString().equals_insensitive("apsr_nzcv")) { 6218 S = Parser.getTok().getLoc(); 6219 Parser.Lex(); 6220 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6221 return false; 6222 } 6223 } 6224 6225 // Fall though for the Identifier case that is not a register or a 6226 // special name. 6227 [[fallthrough]]; 6228 } 6229 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6230 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6231 case AsmToken::String: // quoted label names. 6232 case AsmToken::Dot: { // . as a branch target 6233 // This was not a register so parse other operands that start with an 6234 // identifier (like labels) as expressions and create them as immediates. 6235 const MCExpr *IdVal; 6236 S = Parser.getTok().getLoc(); 6237 if (getParser().parseExpression(IdVal)) 6238 return true; 6239 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6240 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6241 return false; 6242 } 6243 case AsmToken::LBrac: 6244 return parseMemory(Operands); 6245 case AsmToken::LCurly: 6246 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6247 case AsmToken::Dollar: 6248 case AsmToken::Hash: { 6249 // #42 -> immediate 6250 // $ 42 -> immediate 6251 // $foo -> symbol name 6252 // $42 -> symbol name 6253 S = Parser.getTok().getLoc(); 6254 6255 // Favor the interpretation of $-prefixed operands as symbol names. 6256 // Cases where immediates are explicitly expected are handled by their 6257 // specific ParseMethod implementations. 6258 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6259 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6260 (AdjacentToken.is(AsmToken::Identifier) || 6261 AdjacentToken.is(AsmToken::Integer)); 6262 if (!ExpectIdentifier) { 6263 // Token is not part of identifier. Drop leading $ or # before parsing 6264 // expression. 6265 Parser.Lex(); 6266 } 6267 6268 if (Parser.getTok().isNot(AsmToken::Colon)) { 6269 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6270 const MCExpr *ImmVal; 6271 if (getParser().parseExpression(ImmVal)) 6272 return true; 6273 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6274 if (CE) { 6275 int32_t Val = CE->getValue(); 6276 if (IsNegative && Val == 0) 6277 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6278 getContext()); 6279 } 6280 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6281 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6282 6283 // There can be a trailing '!' on operands that we want as a separate 6284 // '!' Token operand. Handle that here. For example, the compatibility 6285 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6286 if (Parser.getTok().is(AsmToken::Exclaim)) { 6287 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6288 Parser.getTok().getLoc())); 6289 Parser.Lex(); // Eat exclaim token 6290 } 6291 return false; 6292 } 6293 // w/ a ':' after the '#', it's just like a plain ':'. 6294 [[fallthrough]]; 6295 } 6296 case AsmToken::Colon: { 6297 S = Parser.getTok().getLoc(); 6298 // ":lower16:" and ":upper16:" expression prefixes 6299 // FIXME: Check it's an expression prefix, 6300 // e.g. (FOO - :lower16:BAR) isn't legal. 6301 ARMMCExpr::VariantKind RefKind; 6302 if (parsePrefix(RefKind)) 6303 return true; 6304 6305 const MCExpr *SubExprVal; 6306 if (getParser().parseExpression(SubExprVal)) 6307 return true; 6308 6309 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6310 getContext()); 6311 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6312 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6313 return false; 6314 } 6315 case AsmToken::Equal: { 6316 S = Parser.getTok().getLoc(); 6317 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6318 return Error(S, "unexpected token in operand"); 6319 Parser.Lex(); // Eat '=' 6320 const MCExpr *SubExprVal; 6321 if (getParser().parseExpression(SubExprVal)) 6322 return true; 6323 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6324 6325 // execute-only: we assume that assembly programmers know what they are 6326 // doing and allow literal pool creation here 6327 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6328 return false; 6329 } 6330 } 6331 } 6332 6333 bool ARMAsmParser::parseImmExpr(int64_t &Out) { 6334 const MCExpr *Expr = nullptr; 6335 SMLoc L = getParser().getTok().getLoc(); 6336 if (check(getParser().parseExpression(Expr), L, "expected expression")) 6337 return true; 6338 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 6339 if (check(!Value, L, "expected constant expression")) 6340 return true; 6341 Out = Value->getValue(); 6342 return false; 6343 } 6344 6345 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6346 // :lower16: and :upper16:. 6347 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6348 MCAsmParser &Parser = getParser(); 6349 RefKind = ARMMCExpr::VK_ARM_None; 6350 6351 // consume an optional '#' (GNU compatibility) 6352 if (getLexer().is(AsmToken::Hash)) 6353 Parser.Lex(); 6354 6355 // :lower16: and :upper16: modifiers 6356 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6357 Parser.Lex(); // Eat ':' 6358 6359 if (getLexer().isNot(AsmToken::Identifier)) { 6360 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6361 return true; 6362 } 6363 6364 enum { 6365 COFF = (1 << MCContext::IsCOFF), 6366 ELF = (1 << MCContext::IsELF), 6367 MACHO = (1 << MCContext::IsMachO), 6368 WASM = (1 << MCContext::IsWasm), 6369 }; 6370 static const struct PrefixEntry { 6371 const char *Spelling; 6372 ARMMCExpr::VariantKind VariantKind; 6373 uint8_t SupportedFormats; 6374 } PrefixEntries[] = { 6375 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6376 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6377 }; 6378 6379 StringRef IDVal = Parser.getTok().getIdentifier(); 6380 6381 const auto &Prefix = 6382 llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) { 6383 return PE.Spelling == IDVal; 6384 }); 6385 if (Prefix == std::end(PrefixEntries)) { 6386 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6387 return true; 6388 } 6389 6390 uint8_t CurrentFormat; 6391 switch (getContext().getObjectFileType()) { 6392 case MCContext::IsMachO: 6393 CurrentFormat = MACHO; 6394 break; 6395 case MCContext::IsELF: 6396 CurrentFormat = ELF; 6397 break; 6398 case MCContext::IsCOFF: 6399 CurrentFormat = COFF; 6400 break; 6401 case MCContext::IsWasm: 6402 CurrentFormat = WASM; 6403 break; 6404 case MCContext::IsGOFF: 6405 case MCContext::IsSPIRV: 6406 case MCContext::IsXCOFF: 6407 case MCContext::IsDXContainer: 6408 llvm_unreachable("unexpected object format"); 6409 break; 6410 } 6411 6412 if (~Prefix->SupportedFormats & CurrentFormat) { 6413 Error(Parser.getTok().getLoc(), 6414 "cannot represent relocation in the current file format"); 6415 return true; 6416 } 6417 6418 RefKind = Prefix->VariantKind; 6419 Parser.Lex(); 6420 6421 if (getLexer().isNot(AsmToken::Colon)) { 6422 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6423 return true; 6424 } 6425 Parser.Lex(); // Eat the last ':' 6426 6427 return false; 6428 } 6429 6430 /// Given a mnemonic, split out possible predication code and carry 6431 /// setting letters to form a canonical mnemonic and flags. 6432 // 6433 // FIXME: Would be nice to autogen this. 6434 // FIXME: This is a bit of a maze of special cases. 6435 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6436 StringRef ExtraToken, 6437 unsigned &PredicationCode, 6438 unsigned &VPTPredicationCode, 6439 bool &CarrySetting, 6440 unsigned &ProcessorIMod, 6441 StringRef &ITMask) { 6442 PredicationCode = ARMCC::AL; 6443 VPTPredicationCode = ARMVCC::None; 6444 CarrySetting = false; 6445 ProcessorIMod = 0; 6446 6447 // Ignore some mnemonics we know aren't predicated forms. 6448 // 6449 // FIXME: Would be nice to autogen this. 6450 if ((Mnemonic == "movs" && isThumb()) || 6451 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6452 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6453 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6454 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6455 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6456 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6457 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6458 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6459 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6460 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6461 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6462 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6463 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6464 Mnemonic == "bxns" || Mnemonic == "blxns" || 6465 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6466 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6467 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6468 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6469 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6470 Mnemonic == "csel" || Mnemonic == "csinc" || 6471 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6472 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6473 Mnemonic == "csetm" || 6474 Mnemonic == "aut" || Mnemonic == "pac" || Mnemonic == "pacbti" || 6475 Mnemonic == "bti") 6476 return Mnemonic; 6477 6478 // First, split out any predication code. Ignore mnemonics we know aren't 6479 // predicated but do have a carry-set and so weren't caught above. 6480 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6481 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6482 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6483 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6484 !(hasMVE() && 6485 (Mnemonic == "vmine" || 6486 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6487 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6488 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6489 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6490 Mnemonic == "vmule" || Mnemonic == "vmult" || 6491 Mnemonic == "vrintne" || 6492 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6493 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6494 Mnemonic.startswith("vq")))) { 6495 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6496 if (CC != ~0U) { 6497 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6498 PredicationCode = CC; 6499 } 6500 } 6501 6502 // Next, determine if we have a carry setting bit. We explicitly ignore all 6503 // the instructions we know end in 's'. 6504 if (Mnemonic.endswith("s") && 6505 !(Mnemonic == "cps" || Mnemonic == "mls" || 6506 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6507 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6508 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6509 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6510 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6511 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6512 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6513 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6514 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6515 Mnemonic == "vmlas" || 6516 (Mnemonic == "movs" && isThumb()))) { 6517 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6518 CarrySetting = true; 6519 } 6520 6521 // The "cps" instruction can have a interrupt mode operand which is glued into 6522 // the mnemonic. Check if this is the case, split it and parse the imod op 6523 if (Mnemonic.startswith("cps")) { 6524 // Split out any imod code. 6525 unsigned IMod = 6526 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6527 .Case("ie", ARM_PROC::IE) 6528 .Case("id", ARM_PROC::ID) 6529 .Default(~0U); 6530 if (IMod != ~0U) { 6531 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6532 ProcessorIMod = IMod; 6533 } 6534 } 6535 6536 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6537 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6538 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6539 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6540 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6541 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6542 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6543 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6544 if (CC != ~0U) { 6545 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6546 VPTPredicationCode = CC; 6547 } 6548 return Mnemonic; 6549 } 6550 6551 // The "it" instruction has the condition mask on the end of the mnemonic. 6552 if (Mnemonic.startswith("it")) { 6553 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6554 Mnemonic = Mnemonic.slice(0, 2); 6555 } 6556 6557 if (Mnemonic.startswith("vpst")) { 6558 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6559 Mnemonic = Mnemonic.slice(0, 4); 6560 } 6561 else if (Mnemonic.startswith("vpt")) { 6562 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6563 Mnemonic = Mnemonic.slice(0, 3); 6564 } 6565 6566 return Mnemonic; 6567 } 6568 6569 /// Given a canonical mnemonic, determine if the instruction ever allows 6570 /// inclusion of carry set or predication code operands. 6571 // 6572 // FIXME: It would be nice to autogen this. 6573 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6574 StringRef ExtraToken, 6575 StringRef FullInst, 6576 bool &CanAcceptCarrySet, 6577 bool &CanAcceptPredicationCode, 6578 bool &CanAcceptVPTPredicationCode) { 6579 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6580 6581 CanAcceptCarrySet = 6582 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6583 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6584 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6585 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6586 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6587 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6588 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6589 (!isThumb() && 6590 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6591 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6592 6593 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6594 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6595 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6596 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6597 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6598 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6599 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6600 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6601 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6602 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6603 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6604 Mnemonic == "vmovx" || Mnemonic == "vins" || 6605 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6606 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6607 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6608 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6609 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6610 Mnemonic == "sb" || Mnemonic == "ssbb" || 6611 Mnemonic == "pssbb" || Mnemonic == "vsmmla" || 6612 Mnemonic == "vummla" || Mnemonic == "vusmmla" || 6613 Mnemonic == "vusdot" || Mnemonic == "vsudot" || 6614 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6615 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6616 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6617 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6618 Mnemonic == "cset" || Mnemonic == "csetm" || 6619 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6620 !MS.isITPredicableCDEInstr(Mnemonic)) || 6621 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6622 Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" || 6623 Mnemonic == "bti" || 6624 (hasMVE() && 6625 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6626 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6627 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6628 Mnemonic.startswith("letp")))) { 6629 // These mnemonics are never predicable 6630 CanAcceptPredicationCode = false; 6631 } else if (!isThumb()) { 6632 // Some instructions are only predicable in Thumb mode 6633 CanAcceptPredicationCode = 6634 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6635 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6636 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6637 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6638 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6639 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6640 Mnemonic != "tsb" && 6641 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6642 } else if (isThumbOne()) { 6643 if (hasV6MOps()) 6644 CanAcceptPredicationCode = Mnemonic != "movs"; 6645 else 6646 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6647 } else 6648 CanAcceptPredicationCode = true; 6649 } 6650 6651 // Some Thumb instructions have two operand forms that are not 6652 // available as three operand, convert to two operand form if possible. 6653 // 6654 // FIXME: We would really like to be able to tablegen'erate this. 6655 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6656 bool CarrySetting, 6657 OperandVector &Operands) { 6658 if (Operands.size() != 6) 6659 return; 6660 6661 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6662 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6663 if (!Op3.isReg() || !Op4.isReg()) 6664 return; 6665 6666 auto Op3Reg = Op3.getReg(); 6667 auto Op4Reg = Op4.getReg(); 6668 6669 // For most Thumb2 cases we just generate the 3 operand form and reduce 6670 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6671 // won't accept SP or PC so we do the transformation here taking care 6672 // with immediate range in the 'add sp, sp #imm' case. 6673 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6674 if (isThumbTwo()) { 6675 if (Mnemonic != "add") 6676 return; 6677 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6678 (Op5.isReg() && Op5.getReg() == ARM::PC); 6679 if (!TryTransform) { 6680 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6681 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6682 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6683 Op5.isImm() && !Op5.isImm0_508s4()); 6684 } 6685 if (!TryTransform) 6686 return; 6687 } else if (!isThumbOne()) 6688 return; 6689 6690 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6691 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6692 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6693 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6694 return; 6695 6696 // If first 2 operands of a 3 operand instruction are the same 6697 // then transform to 2 operand version of the same instruction 6698 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6699 bool Transform = Op3Reg == Op4Reg; 6700 6701 // For communtative operations, we might be able to transform if we swap 6702 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6703 // as tADDrsp. 6704 const ARMOperand *LastOp = &Op5; 6705 bool Swap = false; 6706 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6707 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6708 Mnemonic == "and" || Mnemonic == "eor" || 6709 Mnemonic == "adc" || Mnemonic == "orr")) { 6710 Swap = true; 6711 LastOp = &Op4; 6712 Transform = true; 6713 } 6714 6715 // If both registers are the same then remove one of them from 6716 // the operand list, with certain exceptions. 6717 if (Transform) { 6718 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6719 // 2 operand forms don't exist. 6720 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6721 LastOp->isReg()) 6722 Transform = false; 6723 6724 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6725 // 3-bits because the ARMARM says not to. 6726 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6727 Transform = false; 6728 } 6729 6730 if (Transform) { 6731 if (Swap) 6732 std::swap(Op4, Op5); 6733 Operands.erase(Operands.begin() + 3); 6734 } 6735 } 6736 6737 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6738 OperandVector &Operands) { 6739 // FIXME: This is all horribly hacky. We really need a better way to deal 6740 // with optional operands like this in the matcher table. 6741 6742 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6743 // another does not. Specifically, the MOVW instruction does not. So we 6744 // special case it here and remove the defaulted (non-setting) cc_out 6745 // operand if that's the instruction we're trying to match. 6746 // 6747 // We do this as post-processing of the explicit operands rather than just 6748 // conditionally adding the cc_out in the first place because we need 6749 // to check the type of the parsed immediate operand. 6750 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6751 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6752 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6753 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6754 return true; 6755 6756 // Register-register 'add' for thumb does not have a cc_out operand 6757 // when there are only two register operands. 6758 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6759 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6760 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6761 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6762 return true; 6763 // Register-register 'add' for thumb does not have a cc_out operand 6764 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6765 // have to check the immediate range here since Thumb2 has a variant 6766 // that can handle a different range and has a cc_out operand. 6767 if (((isThumb() && Mnemonic == "add") || 6768 (isThumbTwo() && Mnemonic == "sub")) && 6769 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6770 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6771 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6772 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6773 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6774 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6775 return true; 6776 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6777 // imm0_4095 variant. That's the least-preferred variant when 6778 // selecting via the generic "add" mnemonic, so to know that we 6779 // should remove the cc_out operand, we have to explicitly check that 6780 // it's not one of the other variants. Ugh. 6781 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6782 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6783 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6784 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6785 // Nest conditions rather than one big 'if' statement for readability. 6786 // 6787 // If both registers are low, we're in an IT block, and the immediate is 6788 // in range, we should use encoding T1 instead, which has a cc_out. 6789 if (inITBlock() && 6790 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6791 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6792 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6793 return false; 6794 // Check against T3. If the second register is the PC, this is an 6795 // alternate form of ADR, which uses encoding T4, so check for that too. 6796 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6797 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6798 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6799 return false; 6800 6801 // Otherwise, we use encoding T4, which does not have a cc_out 6802 // operand. 6803 return true; 6804 } 6805 6806 // The thumb2 multiply instruction doesn't have a CCOut register, so 6807 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6808 // use the 16-bit encoding or not. 6809 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6810 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6811 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6812 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6813 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6814 // If the registers aren't low regs, the destination reg isn't the 6815 // same as one of the source regs, or the cc_out operand is zero 6816 // outside of an IT block, we have to use the 32-bit encoding, so 6817 // remove the cc_out operand. 6818 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6819 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6820 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6821 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6822 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6823 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6824 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6825 return true; 6826 6827 // Also check the 'mul' syntax variant that doesn't specify an explicit 6828 // destination register. 6829 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6830 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6831 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6832 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6833 // If the registers aren't low regs or the cc_out operand is zero 6834 // outside of an IT block, we have to use the 32-bit encoding, so 6835 // remove the cc_out operand. 6836 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6837 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6838 !inITBlock())) 6839 return true; 6840 6841 // Register-register 'add/sub' for thumb does not have a cc_out operand 6842 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6843 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6844 // right, this will result in better diagnostics (which operand is off) 6845 // anyway. 6846 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6847 (Operands.size() == 5 || Operands.size() == 6) && 6848 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6849 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6850 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6851 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6852 (Operands.size() == 6 && 6853 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6854 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6855 return (!(isThumbTwo() && 6856 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6857 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6858 } 6859 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6860 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6861 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6862 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6863 (Operands.size() == 5) && 6864 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6865 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6866 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6867 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6868 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6869 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6870 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6871 return false; // add.w / sub.w 6872 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6873 const int64_t Value = CE->getValue(); 6874 // Thumb1 imm8 sub / add 6875 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6876 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6877 return false; 6878 return true; // Thumb2 T4 addw / subw 6879 } 6880 } 6881 return false; 6882 } 6883 6884 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6885 OperandVector &Operands) { 6886 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6887 unsigned RegIdx = 3; 6888 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6889 Mnemonic == "vrintr") && 6890 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6891 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6892 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6893 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6894 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6895 RegIdx = 4; 6896 6897 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6898 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6899 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6900 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6901 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6902 return true; 6903 } 6904 return false; 6905 } 6906 6907 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6908 OperandVector &Operands) { 6909 if (!hasMVE() || Operands.size() < 3) 6910 return true; 6911 6912 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6913 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6914 return true; 6915 6916 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6917 return false; 6918 6919 if (Mnemonic.startswith("vmov") && 6920 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6921 Mnemonic.startswith("vmovx"))) { 6922 for (auto &Operand : Operands) { 6923 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6924 ((*Operand).isReg() && 6925 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6926 (*Operand).getReg()) || 6927 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6928 (*Operand).getReg())))) { 6929 return true; 6930 } 6931 } 6932 return false; 6933 } else { 6934 for (auto &Operand : Operands) { 6935 // We check the larger class QPR instead of just the legal class 6936 // MQPR, to more accurately report errors when using Q registers 6937 // outside of the allowed range. 6938 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6939 (Operand->isReg() && 6940 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6941 Operand->getReg())))) 6942 return false; 6943 } 6944 return true; 6945 } 6946 } 6947 6948 static bool isDataTypeToken(StringRef Tok) { 6949 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6950 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6951 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6952 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6953 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6954 Tok == ".f" || Tok == ".d"; 6955 } 6956 6957 // FIXME: This bit should probably be handled via an explicit match class 6958 // in the .td files that matches the suffix instead of having it be 6959 // a literal string token the way it is now. 6960 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6961 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6962 } 6963 6964 static void applyMnemonicAliases(StringRef &Mnemonic, 6965 const FeatureBitset &Features, 6966 unsigned VariantID); 6967 6968 // The GNU assembler has aliases of ldrd and strd with the second register 6969 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6970 // 6971 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6972 // the assembly parser could then generate confusing diagnostics refering to 6973 // it. If we do find anything that prevents us from doing the transformation we 6974 // bail out, and let the assembly parser report an error on the instruction as 6975 // it is written. 6976 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6977 OperandVector &Operands) { 6978 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6979 return; 6980 if (Operands.size() < 4) 6981 return; 6982 6983 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6984 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6985 6986 if (!Op2.isReg()) 6987 return; 6988 if (!Op3.isGPRMem()) 6989 return; 6990 6991 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6992 if (!GPR.contains(Op2.getReg())) 6993 return; 6994 6995 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6996 if (!isThumb() && (RtEncoding & 1)) { 6997 // In ARM mode, the registers must be from an aligned pair, this 6998 // restriction does not apply in Thumb mode. 6999 return; 7000 } 7001 if (Op2.getReg() == ARM::PC) 7002 return; 7003 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 7004 if (!PairedReg || PairedReg == ARM::PC || 7005 (PairedReg == ARM::SP && !hasV8Ops())) 7006 return; 7007 7008 Operands.insert( 7009 Operands.begin() + 3, 7010 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 7011 } 7012 7013 // Dual-register instruction have the following syntax: 7014 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 7015 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 7016 // operand. If the conversion fails an error is diagnosed, and the function 7017 // returns true. 7018 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 7019 OperandVector &Operands) { 7020 assert(MS.isCDEDualRegInstr(Mnemonic)); 7021 bool isPredicable = 7022 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 7023 size_t NumPredOps = isPredicable ? 1 : 0; 7024 7025 if (Operands.size() <= 3 + NumPredOps) 7026 return false; 7027 7028 StringRef Op2Diag( 7029 "operand must be an even-numbered register in the range [r0, r10]"); 7030 7031 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 7032 if (!Op2.isReg()) 7033 return Error(Op2.getStartLoc(), Op2Diag); 7034 7035 unsigned RNext; 7036 unsigned RPair; 7037 switch (Op2.getReg()) { 7038 default: 7039 return Error(Op2.getStartLoc(), Op2Diag); 7040 case ARM::R0: 7041 RNext = ARM::R1; 7042 RPair = ARM::R0_R1; 7043 break; 7044 case ARM::R2: 7045 RNext = ARM::R3; 7046 RPair = ARM::R2_R3; 7047 break; 7048 case ARM::R4: 7049 RNext = ARM::R5; 7050 RPair = ARM::R4_R5; 7051 break; 7052 case ARM::R6: 7053 RNext = ARM::R7; 7054 RPair = ARM::R6_R7; 7055 break; 7056 case ARM::R8: 7057 RNext = ARM::R9; 7058 RPair = ARM::R8_R9; 7059 break; 7060 case ARM::R10: 7061 RNext = ARM::R11; 7062 RPair = ARM::R10_R11; 7063 break; 7064 } 7065 7066 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 7067 if (!Op3.isReg() || Op3.getReg() != RNext) 7068 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 7069 7070 Operands.erase(Operands.begin() + 3 + NumPredOps); 7071 Operands[2 + NumPredOps] = 7072 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 7073 return false; 7074 } 7075 7076 /// Parse an arm instruction mnemonic followed by its operands. 7077 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 7078 SMLoc NameLoc, OperandVector &Operands) { 7079 MCAsmParser &Parser = getParser(); 7080 7081 // Apply mnemonic aliases before doing anything else, as the destination 7082 // mnemonic may include suffices and we want to handle them normally. 7083 // The generic tblgen'erated code does this later, at the start of 7084 // MatchInstructionImpl(), but that's too late for aliases that include 7085 // any sort of suffix. 7086 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 7087 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 7088 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 7089 7090 // First check for the ARM-specific .req directive. 7091 if (Parser.getTok().is(AsmToken::Identifier) && 7092 Parser.getTok().getIdentifier().lower() == ".req") { 7093 parseDirectiveReq(Name, NameLoc); 7094 // We always return 'error' for this, as we're done with this 7095 // statement and don't need to match the 'instruction." 7096 return true; 7097 } 7098 7099 // Create the leading tokens for the mnemonic, split by '.' characters. 7100 size_t Start = 0, Next = Name.find('.'); 7101 StringRef Mnemonic = Name.slice(Start, Next); 7102 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 7103 7104 // Split out the predication code and carry setting flag from the mnemonic. 7105 unsigned PredicationCode; 7106 unsigned VPTPredicationCode; 7107 unsigned ProcessorIMod; 7108 bool CarrySetting; 7109 StringRef ITMask; 7110 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 7111 CarrySetting, ProcessorIMod, ITMask); 7112 7113 // In Thumb1, only the branch (B) instruction can be predicated. 7114 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 7115 return Error(NameLoc, "conditional execution not supported in Thumb1"); 7116 } 7117 7118 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 7119 7120 // Handle the mask for IT and VPT instructions. In ARMOperand and 7121 // MCOperand, this is stored in a format independent of the 7122 // condition code: the lowest set bit indicates the end of the 7123 // encoding, and above that, a 1 bit indicates 'else', and an 0 7124 // indicates 'then'. E.g. 7125 // IT -> 1000 7126 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 7127 // ITxy -> xy10 (e.g. ITET -> 1010) 7128 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 7129 // Note: See the ARM::PredBlockMask enum in 7130 // /lib/Target/ARM/Utils/ARMBaseInfo.h 7131 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 7132 Mnemonic.startswith("vpst")) { 7133 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 7134 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 7135 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 7136 if (ITMask.size() > 3) { 7137 if (Mnemonic == "it") 7138 return Error(Loc, "too many conditions on IT instruction"); 7139 return Error(Loc, "too many conditions on VPT instruction"); 7140 } 7141 unsigned Mask = 8; 7142 for (char Pos : llvm::reverse(ITMask)) { 7143 if (Pos != 't' && Pos != 'e') { 7144 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 7145 } 7146 Mask >>= 1; 7147 if (Pos == 'e') 7148 Mask |= 8; 7149 } 7150 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7151 } 7152 7153 // FIXME: This is all a pretty gross hack. We should automatically handle 7154 // optional operands like this via tblgen. 7155 7156 // Next, add the CCOut and ConditionCode operands, if needed. 7157 // 7158 // For mnemonics which can ever incorporate a carry setting bit or predication 7159 // code, our matching model involves us always generating CCOut and 7160 // ConditionCode operands to match the mnemonic "as written" and then we let 7161 // the matcher deal with finding the right instruction or generating an 7162 // appropriate error. 7163 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7164 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7165 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7166 7167 // If we had a carry-set on an instruction that can't do that, issue an 7168 // error. 7169 if (!CanAcceptCarrySet && CarrySetting) { 7170 return Error(NameLoc, "instruction '" + Mnemonic + 7171 "' can not set flags, but 's' suffix specified"); 7172 } 7173 // If we had a predication code on an instruction that can't do that, issue an 7174 // error. 7175 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7176 return Error(NameLoc, "instruction '" + Mnemonic + 7177 "' is not predicable, but condition code specified"); 7178 } 7179 7180 // If we had a VPT predication code on an instruction that can't do that, issue an 7181 // error. 7182 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7183 return Error(NameLoc, "instruction '" + Mnemonic + 7184 "' is not VPT predicable, but VPT code T/E is specified"); 7185 } 7186 7187 // Add the carry setting operand, if necessary. 7188 if (CanAcceptCarrySet) { 7189 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7190 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7191 Loc)); 7192 } 7193 7194 // Add the predication code operand, if necessary. 7195 if (CanAcceptPredicationCode) { 7196 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7197 CarrySetting); 7198 Operands.push_back(ARMOperand::CreateCondCode( 7199 ARMCC::CondCodes(PredicationCode), Loc)); 7200 } 7201 7202 // Add the VPT predication code operand, if necessary. 7203 // FIXME: We don't add them for the instructions filtered below as these can 7204 // have custom operands which need special parsing. This parsing requires 7205 // the operand to be in the same place in the OperandVector as their 7206 // definition in tblgen. Since these instructions may also have the 7207 // scalar predication operand we do not add the vector one and leave until 7208 // now to fix it up. 7209 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7210 !Mnemonic.startswith("vcmp") && 7211 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7212 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7213 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7214 CarrySetting); 7215 Operands.push_back(ARMOperand::CreateVPTPred( 7216 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7217 } 7218 7219 // Add the processor imod operand, if necessary. 7220 if (ProcessorIMod) { 7221 Operands.push_back(ARMOperand::CreateImm( 7222 MCConstantExpr::create(ProcessorIMod, getContext()), 7223 NameLoc, NameLoc)); 7224 } else if (Mnemonic == "cps" && isMClass()) { 7225 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7226 } 7227 7228 // Add the remaining tokens in the mnemonic. 7229 while (Next != StringRef::npos) { 7230 Start = Next; 7231 Next = Name.find('.', Start + 1); 7232 ExtraToken = Name.slice(Start, Next); 7233 7234 // Some NEON instructions have an optional datatype suffix that is 7235 // completely ignored. Check for that. 7236 if (isDataTypeToken(ExtraToken) && 7237 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7238 continue; 7239 7240 // For for ARM mode generate an error if the .n qualifier is used. 7241 if (ExtraToken == ".n" && !isThumb()) { 7242 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7243 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7244 "arm mode"); 7245 } 7246 7247 // The .n qualifier is always discarded as that is what the tables 7248 // and matcher expect. In ARM mode the .w qualifier has no effect, 7249 // so discard it to avoid errors that can be caused by the matcher. 7250 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7251 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7252 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7253 } 7254 } 7255 7256 // Read the remaining operands. 7257 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7258 // Read the first operand. 7259 if (parseOperand(Operands, Mnemonic)) { 7260 return true; 7261 } 7262 7263 while (parseOptionalToken(AsmToken::Comma)) { 7264 // Parse and remember the operand. 7265 if (parseOperand(Operands, Mnemonic)) { 7266 return true; 7267 } 7268 } 7269 } 7270 7271 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7272 return true; 7273 7274 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7275 7276 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7277 // Dual-register instructions use even-odd register pairs as their 7278 // destination operand, in assembly such pair is spelled as two 7279 // consecutive registers, without any special syntax. ConvertDualRegOperand 7280 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7281 // It returns true, if an error message has been emitted. If the function 7282 // returns false, the function either succeeded or an error (e.g. missing 7283 // operand) will be diagnosed elsewhere. 7284 if (MS.isCDEDualRegInstr(Mnemonic)) { 7285 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7286 if (GotError) 7287 return GotError; 7288 } 7289 } 7290 7291 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7292 // do and don't have a cc_out optional-def operand. With some spot-checks 7293 // of the operand list, we can figure out which variant we're trying to 7294 // parse and adjust accordingly before actually matching. We shouldn't ever 7295 // try to remove a cc_out operand that was explicitly set on the 7296 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7297 // table driven matcher doesn't fit well with the ARM instruction set. 7298 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7299 Operands.erase(Operands.begin() + 1); 7300 7301 // Some instructions have the same mnemonic, but don't always 7302 // have a predicate. Distinguish them here and delete the 7303 // appropriate predicate if needed. This could be either the scalar 7304 // predication code or the vector predication code. 7305 if (PredicationCode == ARMCC::AL && 7306 shouldOmitPredicateOperand(Mnemonic, Operands)) 7307 Operands.erase(Operands.begin() + 1); 7308 7309 7310 if (hasMVE()) { 7311 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7312 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7313 // Very nasty hack to deal with the vector predicated variant of vmovlt 7314 // the scalar predicated vmov with condition 'lt'. We can not tell them 7315 // apart until we have parsed their operands. 7316 Operands.erase(Operands.begin() + 1); 7317 Operands.erase(Operands.begin()); 7318 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7319 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7320 Mnemonic.size() - 1 + CarrySetting); 7321 Operands.insert(Operands.begin(), 7322 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7323 Operands.insert(Operands.begin(), 7324 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7325 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7326 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7327 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7328 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7329 // can only distinguish between the two after we have parsed their 7330 // operands. 7331 Operands.erase(Operands.begin() + 1); 7332 Operands.erase(Operands.begin()); 7333 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7334 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7335 Mnemonic.size() - 1 + CarrySetting); 7336 Operands.insert(Operands.begin(), 7337 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7338 Operands.insert(Operands.begin(), 7339 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7340 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7341 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7342 // Another hack, this time to distinguish between scalar predicated vmul 7343 // with 'lt' predication code and the vector instruction vmullt with 7344 // vector predication code "none" 7345 Operands.erase(Operands.begin() + 1); 7346 Operands.erase(Operands.begin()); 7347 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7348 Operands.insert(Operands.begin(), 7349 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7350 } 7351 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7352 // predication code, since these may contain operands that require 7353 // special parsing. So now we have to see if they require vector 7354 // predication and replace the scalar one with the vector predication 7355 // operand if that is the case. 7356 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7357 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7358 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7359 !Mnemonic.startswith("vcvtm"))) { 7360 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7361 // We could not split the vector predicate off vcvt because it might 7362 // have been the scalar vcvtt instruction. Now we know its a vector 7363 // instruction, we still need to check whether its the vector 7364 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7365 // distinguish the two based on the suffixes, if it is any of 7366 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7367 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7368 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7369 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7370 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7371 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7372 Operands.erase(Operands.begin()); 7373 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7374 VPTPredicationCode = ARMVCC::Then; 7375 7376 Mnemonic = Mnemonic.substr(0, 4); 7377 Operands.insert(Operands.begin(), 7378 ARMOperand::CreateToken(Mnemonic, MLoc)); 7379 } 7380 } 7381 Operands.erase(Operands.begin() + 1); 7382 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7383 Mnemonic.size() + CarrySetting); 7384 Operands.insert(Operands.begin() + 1, 7385 ARMOperand::CreateVPTPred( 7386 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7387 } 7388 } else if (CanAcceptVPTPredicationCode) { 7389 // For all other instructions, make sure only one of the two 7390 // predication operands is left behind, depending on whether we should 7391 // use the vector predication. 7392 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7393 if (CanAcceptPredicationCode) 7394 Operands.erase(Operands.begin() + 2); 7395 else 7396 Operands.erase(Operands.begin() + 1); 7397 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7398 Operands.erase(Operands.begin() + 1); 7399 } 7400 } 7401 } 7402 7403 if (VPTPredicationCode != ARMVCC::None) { 7404 bool usedVPTPredicationCode = false; 7405 for (unsigned I = 1; I < Operands.size(); ++I) 7406 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7407 usedVPTPredicationCode = true; 7408 if (!usedVPTPredicationCode) { 7409 // If we have a VPT predication code and we haven't just turned it 7410 // into an operand, then it was a mistake for splitMnemonic to 7411 // separate it from the rest of the mnemonic in the first place, 7412 // and this may lead to wrong disassembly (e.g. scalar floating 7413 // point VCMPE is actually a different instruction from VCMP, so 7414 // we mustn't treat them the same). In that situation, glue it 7415 // back on. 7416 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7417 Operands.erase(Operands.begin()); 7418 Operands.insert(Operands.begin(), 7419 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7420 } 7421 } 7422 7423 // ARM mode 'blx' need special handling, as the register operand version 7424 // is predicable, but the label operand version is not. So, we can't rely 7425 // on the Mnemonic based checking to correctly figure out when to put 7426 // a k_CondCode operand in the list. If we're trying to match the label 7427 // version, remove the k_CondCode operand here. 7428 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7429 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7430 Operands.erase(Operands.begin() + 1); 7431 7432 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7433 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7434 // a single GPRPair reg operand is used in the .td file to replace the two 7435 // GPRs. However, when parsing from asm, the two GRPs cannot be 7436 // automatically 7437 // expressed as a GPRPair, so we have to manually merge them. 7438 // FIXME: We would really like to be able to tablegen'erate this. 7439 if (!isThumb() && Operands.size() > 4 && 7440 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7441 Mnemonic == "stlexd")) { 7442 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7443 unsigned Idx = isLoad ? 2 : 3; 7444 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7445 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7446 7447 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7448 // Adjust only if Op1 and Op2 are GPRs. 7449 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7450 MRC.contains(Op2.getReg())) { 7451 unsigned Reg1 = Op1.getReg(); 7452 unsigned Reg2 = Op2.getReg(); 7453 unsigned Rt = MRI->getEncodingValue(Reg1); 7454 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7455 7456 // Rt2 must be Rt + 1 and Rt must be even. 7457 if (Rt + 1 != Rt2 || (Rt & 1)) { 7458 return Error(Op2.getStartLoc(), 7459 isLoad ? "destination operands must be sequential" 7460 : "source operands must be sequential"); 7461 } 7462 unsigned NewReg = MRI->getMatchingSuperReg( 7463 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7464 Operands[Idx] = 7465 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7466 Operands.erase(Operands.begin() + Idx + 1); 7467 } 7468 } 7469 7470 // GNU Assembler extension (compatibility). 7471 fixupGNULDRDAlias(Mnemonic, Operands); 7472 7473 // FIXME: As said above, this is all a pretty gross hack. This instruction 7474 // does not fit with other "subs" and tblgen. 7475 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7476 // so the Mnemonic is the original name "subs" and delete the predicate 7477 // operand so it will match the table entry. 7478 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7479 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7480 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7481 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7482 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7483 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7484 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7485 Operands.erase(Operands.begin() + 1); 7486 } 7487 return false; 7488 } 7489 7490 // Validate context-sensitive operand constraints. 7491 7492 // return 'true' if register list contains non-low GPR registers, 7493 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7494 // 'containsReg' to true. 7495 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7496 unsigned Reg, unsigned HiReg, 7497 bool &containsReg) { 7498 containsReg = false; 7499 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7500 unsigned OpReg = Inst.getOperand(i).getReg(); 7501 if (OpReg == Reg) 7502 containsReg = true; 7503 // Anything other than a low register isn't legal here. 7504 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7505 return true; 7506 } 7507 return false; 7508 } 7509 7510 // Check if the specified regisgter is in the register list of the inst, 7511 // starting at the indicated operand number. 7512 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7513 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7514 unsigned OpReg = Inst.getOperand(i).getReg(); 7515 if (OpReg == Reg) 7516 return true; 7517 } 7518 return false; 7519 } 7520 7521 // Return true if instruction has the interesting property of being 7522 // allowed in IT blocks, but not being predicable. 7523 static bool instIsBreakpoint(const MCInst &Inst) { 7524 return Inst.getOpcode() == ARM::tBKPT || 7525 Inst.getOpcode() == ARM::BKPT || 7526 Inst.getOpcode() == ARM::tHLT || 7527 Inst.getOpcode() == ARM::HLT; 7528 } 7529 7530 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7531 const OperandVector &Operands, 7532 unsigned ListNo, bool IsARPop) { 7533 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7534 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7535 7536 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7537 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7538 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7539 7540 if (!IsARPop && ListContainsSP) 7541 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7542 "SP may not be in the register list"); 7543 else if (ListContainsPC && ListContainsLR) 7544 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7545 "PC and LR may not be in the register list simultaneously"); 7546 return false; 7547 } 7548 7549 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7550 const OperandVector &Operands, 7551 unsigned ListNo) { 7552 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7553 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7554 7555 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7556 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7557 7558 if (ListContainsSP && ListContainsPC) 7559 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7560 "SP and PC may not be in the register list"); 7561 else if (ListContainsSP) 7562 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7563 "SP may not be in the register list"); 7564 else if (ListContainsPC) 7565 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7566 "PC may not be in the register list"); 7567 return false; 7568 } 7569 7570 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7571 const OperandVector &Operands, 7572 bool Load, bool ARMMode, bool Writeback) { 7573 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7574 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7575 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7576 7577 if (ARMMode) { 7578 // Rt can't be R14. 7579 if (Rt == 14) 7580 return Error(Operands[3]->getStartLoc(), 7581 "Rt can't be R14"); 7582 7583 // Rt must be even-numbered. 7584 if ((Rt & 1) == 1) 7585 return Error(Operands[3]->getStartLoc(), 7586 "Rt must be even-numbered"); 7587 7588 // Rt2 must be Rt + 1. 7589 if (Rt2 != Rt + 1) { 7590 if (Load) 7591 return Error(Operands[3]->getStartLoc(), 7592 "destination operands must be sequential"); 7593 else 7594 return Error(Operands[3]->getStartLoc(), 7595 "source operands must be sequential"); 7596 } 7597 7598 // FIXME: Diagnose m == 15 7599 // FIXME: Diagnose ldrd with m == t || m == t2. 7600 } 7601 7602 if (!ARMMode && Load) { 7603 if (Rt2 == Rt) 7604 return Error(Operands[3]->getStartLoc(), 7605 "destination operands can't be identical"); 7606 } 7607 7608 if (Writeback) { 7609 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7610 7611 if (Rn == Rt || Rn == Rt2) { 7612 if (Load) 7613 return Error(Operands[3]->getStartLoc(), 7614 "base register needs to be different from destination " 7615 "registers"); 7616 else 7617 return Error(Operands[3]->getStartLoc(), 7618 "source register and base register can't be identical"); 7619 } 7620 7621 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7622 // (Except the immediate form of ldrd?) 7623 } 7624 7625 return false; 7626 } 7627 7628 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7629 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7630 if (ARM::isVpred(MCID.operands()[i].OperandType)) 7631 return i; 7632 } 7633 return -1; 7634 } 7635 7636 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7637 return findFirstVectorPredOperandIdx(MCID) != -1; 7638 } 7639 7640 // FIXME: We would really like to be able to tablegen'erate this. 7641 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7642 const OperandVector &Operands) { 7643 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7644 SMLoc Loc = Operands[0]->getStartLoc(); 7645 7646 // Check the IT block state first. 7647 // NOTE: BKPT and HLT instructions have the interesting property of being 7648 // allowed in IT blocks, but not being predicable. They just always execute. 7649 if (inITBlock() && !instIsBreakpoint(Inst)) { 7650 // The instruction must be predicable. 7651 if (!MCID.isPredicable()) 7652 return Error(Loc, "instructions in IT block must be predicable"); 7653 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7654 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7655 if (Cond != currentITCond()) { 7656 // Find the condition code Operand to get its SMLoc information. 7657 SMLoc CondLoc; 7658 for (unsigned I = 1; I < Operands.size(); ++I) 7659 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7660 CondLoc = Operands[I]->getStartLoc(); 7661 return Error(CondLoc, "incorrect condition in IT block; got '" + 7662 StringRef(ARMCondCodeToString(Cond)) + 7663 "', but expected '" + 7664 ARMCondCodeToString(currentITCond()) + "'"); 7665 } 7666 // Check for non-'al' condition codes outside of the IT block. 7667 } else if (isThumbTwo() && MCID.isPredicable() && 7668 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7669 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7670 Inst.getOpcode() != ARM::t2Bcc && 7671 Inst.getOpcode() != ARM::t2BFic) { 7672 return Error(Loc, "predicated instructions must be in IT block"); 7673 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7674 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7675 ARMCC::AL) { 7676 return Warning(Loc, "predicated instructions should be in IT block"); 7677 } else if (!MCID.isPredicable()) { 7678 // Check the instruction doesn't have a predicate operand anyway 7679 // that it's not allowed to use. Sometimes this happens in order 7680 // to keep instructions the same shape even though one cannot 7681 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7682 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7683 if (MCID.operands()[i].isPredicate()) { 7684 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7685 return Error(Loc, "instruction is not predicable"); 7686 break; 7687 } 7688 } 7689 } 7690 7691 // PC-setting instructions in an IT block, but not the last instruction of 7692 // the block, are UNPREDICTABLE. 7693 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7694 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7695 } 7696 7697 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7698 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7699 if (!isVectorPredicable(MCID)) 7700 return Error(Loc, "instruction in VPT block must be predicable"); 7701 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7702 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7703 if (Pred != VPTPred) { 7704 SMLoc PredLoc; 7705 for (unsigned I = 1; I < Operands.size(); ++I) 7706 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7707 PredLoc = Operands[I]->getStartLoc(); 7708 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7709 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7710 "', but expected '" + 7711 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7712 } 7713 } 7714 else if (isVectorPredicable(MCID) && 7715 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7716 ARMVCC::None) 7717 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7718 7719 const unsigned Opcode = Inst.getOpcode(); 7720 switch (Opcode) { 7721 case ARM::t2IT: { 7722 // Encoding is unpredictable if it ever results in a notional 'NV' 7723 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7724 // predicate with an "else" mask bit. 7725 unsigned Cond = Inst.getOperand(0).getImm(); 7726 unsigned Mask = Inst.getOperand(1).getImm(); 7727 7728 // Conditions only allowing a 't' are those with no set bit except 7729 // the lowest-order one that indicates the end of the sequence. In 7730 // other words, powers of 2. 7731 if (Cond == ARMCC::AL && llvm::popcount(Mask) != 1) 7732 return Error(Loc, "unpredictable IT predicate sequence"); 7733 break; 7734 } 7735 case ARM::LDRD: 7736 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7737 /*Writeback*/false)) 7738 return true; 7739 break; 7740 case ARM::LDRD_PRE: 7741 case ARM::LDRD_POST: 7742 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7743 /*Writeback*/true)) 7744 return true; 7745 break; 7746 case ARM::t2LDRDi8: 7747 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7748 /*Writeback*/false)) 7749 return true; 7750 break; 7751 case ARM::t2LDRD_PRE: 7752 case ARM::t2LDRD_POST: 7753 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7754 /*Writeback*/true)) 7755 return true; 7756 break; 7757 case ARM::t2BXJ: { 7758 const unsigned RmReg = Inst.getOperand(0).getReg(); 7759 // Rm = SP is no longer unpredictable in v8-A 7760 if (RmReg == ARM::SP && !hasV8Ops()) 7761 return Error(Operands[2]->getStartLoc(), 7762 "r13 (SP) is an unpredictable operand to BXJ"); 7763 return false; 7764 } 7765 case ARM::STRD: 7766 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7767 /*Writeback*/false)) 7768 return true; 7769 break; 7770 case ARM::STRD_PRE: 7771 case ARM::STRD_POST: 7772 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7773 /*Writeback*/true)) 7774 return true; 7775 break; 7776 case ARM::t2STRD_PRE: 7777 case ARM::t2STRD_POST: 7778 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7779 /*Writeback*/true)) 7780 return true; 7781 break; 7782 case ARM::STR_PRE_IMM: 7783 case ARM::STR_PRE_REG: 7784 case ARM::t2STR_PRE: 7785 case ARM::STR_POST_IMM: 7786 case ARM::STR_POST_REG: 7787 case ARM::t2STR_POST: 7788 case ARM::STRH_PRE: 7789 case ARM::t2STRH_PRE: 7790 case ARM::STRH_POST: 7791 case ARM::t2STRH_POST: 7792 case ARM::STRB_PRE_IMM: 7793 case ARM::STRB_PRE_REG: 7794 case ARM::t2STRB_PRE: 7795 case ARM::STRB_POST_IMM: 7796 case ARM::STRB_POST_REG: 7797 case ARM::t2STRB_POST: { 7798 // Rt must be different from Rn. 7799 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7800 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7801 7802 if (Rt == Rn) 7803 return Error(Operands[3]->getStartLoc(), 7804 "source register and base register can't be identical"); 7805 return false; 7806 } 7807 case ARM::t2LDR_PRE_imm: 7808 case ARM::t2LDR_POST_imm: 7809 case ARM::t2STR_PRE_imm: 7810 case ARM::t2STR_POST_imm: { 7811 // Rt must be different from Rn. 7812 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7813 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7814 7815 if (Rt == Rn) 7816 return Error(Operands[3]->getStartLoc(), 7817 "destination register and base register can't be identical"); 7818 if (Inst.getOpcode() == ARM::t2LDR_POST_imm || 7819 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7820 int Imm = Inst.getOperand(2).getImm(); 7821 if (Imm > 255 || Imm < -255) 7822 return Error(Operands[5]->getStartLoc(), 7823 "operand must be in range [-255, 255]"); 7824 } 7825 if (Inst.getOpcode() == ARM::t2STR_PRE_imm || 7826 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7827 if (Inst.getOperand(0).getReg() == ARM::PC) { 7828 return Error(Operands[3]->getStartLoc(), 7829 "operand must be a register in range [r0, r14]"); 7830 } 7831 } 7832 return false; 7833 } 7834 case ARM::LDR_PRE_IMM: 7835 case ARM::LDR_PRE_REG: 7836 case ARM::t2LDR_PRE: 7837 case ARM::LDR_POST_IMM: 7838 case ARM::LDR_POST_REG: 7839 case ARM::t2LDR_POST: 7840 case ARM::LDRH_PRE: 7841 case ARM::t2LDRH_PRE: 7842 case ARM::LDRH_POST: 7843 case ARM::t2LDRH_POST: 7844 case ARM::LDRSH_PRE: 7845 case ARM::t2LDRSH_PRE: 7846 case ARM::LDRSH_POST: 7847 case ARM::t2LDRSH_POST: 7848 case ARM::LDRB_PRE_IMM: 7849 case ARM::LDRB_PRE_REG: 7850 case ARM::t2LDRB_PRE: 7851 case ARM::LDRB_POST_IMM: 7852 case ARM::LDRB_POST_REG: 7853 case ARM::t2LDRB_POST: 7854 case ARM::LDRSB_PRE: 7855 case ARM::t2LDRSB_PRE: 7856 case ARM::LDRSB_POST: 7857 case ARM::t2LDRSB_POST: { 7858 // Rt must be different from Rn. 7859 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7860 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7861 7862 if (Rt == Rn) 7863 return Error(Operands[3]->getStartLoc(), 7864 "destination register and base register can't be identical"); 7865 return false; 7866 } 7867 7868 case ARM::MVE_VLDRBU8_rq: 7869 case ARM::MVE_VLDRBU16_rq: 7870 case ARM::MVE_VLDRBS16_rq: 7871 case ARM::MVE_VLDRBU32_rq: 7872 case ARM::MVE_VLDRBS32_rq: 7873 case ARM::MVE_VLDRHU16_rq: 7874 case ARM::MVE_VLDRHU16_rq_u: 7875 case ARM::MVE_VLDRHU32_rq: 7876 case ARM::MVE_VLDRHU32_rq_u: 7877 case ARM::MVE_VLDRHS32_rq: 7878 case ARM::MVE_VLDRHS32_rq_u: 7879 case ARM::MVE_VLDRWU32_rq: 7880 case ARM::MVE_VLDRWU32_rq_u: 7881 case ARM::MVE_VLDRDU64_rq: 7882 case ARM::MVE_VLDRDU64_rq_u: 7883 case ARM::MVE_VLDRWU32_qi: 7884 case ARM::MVE_VLDRWU32_qi_pre: 7885 case ARM::MVE_VLDRDU64_qi: 7886 case ARM::MVE_VLDRDU64_qi_pre: { 7887 // Qd must be different from Qm. 7888 unsigned QdIdx = 0, QmIdx = 2; 7889 bool QmIsPointer = false; 7890 switch (Opcode) { 7891 case ARM::MVE_VLDRWU32_qi: 7892 case ARM::MVE_VLDRDU64_qi: 7893 QmIdx = 1; 7894 QmIsPointer = true; 7895 break; 7896 case ARM::MVE_VLDRWU32_qi_pre: 7897 case ARM::MVE_VLDRDU64_qi_pre: 7898 QdIdx = 1; 7899 QmIsPointer = true; 7900 break; 7901 } 7902 7903 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7904 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7905 7906 if (Qd == Qm) { 7907 return Error(Operands[3]->getStartLoc(), 7908 Twine("destination vector register and vector ") + 7909 (QmIsPointer ? "pointer" : "offset") + 7910 " register can't be identical"); 7911 } 7912 return false; 7913 } 7914 7915 case ARM::SBFX: 7916 case ARM::t2SBFX: 7917 case ARM::UBFX: 7918 case ARM::t2UBFX: { 7919 // Width must be in range [1, 32-lsb]. 7920 unsigned LSB = Inst.getOperand(2).getImm(); 7921 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7922 if (Widthm1 >= 32 - LSB) 7923 return Error(Operands[5]->getStartLoc(), 7924 "bitfield width must be in range [1,32-lsb]"); 7925 return false; 7926 } 7927 // Notionally handles ARM::tLDMIA_UPD too. 7928 case ARM::tLDMIA: { 7929 // If we're parsing Thumb2, the .w variant is available and handles 7930 // most cases that are normally illegal for a Thumb1 LDM instruction. 7931 // We'll make the transformation in processInstruction() if necessary. 7932 // 7933 // Thumb LDM instructions are writeback iff the base register is not 7934 // in the register list. 7935 unsigned Rn = Inst.getOperand(0).getReg(); 7936 bool HasWritebackToken = 7937 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7938 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7939 bool ListContainsBase; 7940 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7941 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7942 "registers must be in range r0-r7"); 7943 // If we should have writeback, then there should be a '!' token. 7944 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7945 return Error(Operands[2]->getStartLoc(), 7946 "writeback operator '!' expected"); 7947 // If we should not have writeback, there must not be a '!'. This is 7948 // true even for the 32-bit wide encodings. 7949 if (ListContainsBase && HasWritebackToken) 7950 return Error(Operands[3]->getStartLoc(), 7951 "writeback operator '!' not allowed when base register " 7952 "in register list"); 7953 7954 if (validatetLDMRegList(Inst, Operands, 3)) 7955 return true; 7956 break; 7957 } 7958 case ARM::LDMIA_UPD: 7959 case ARM::LDMDB_UPD: 7960 case ARM::LDMIB_UPD: 7961 case ARM::LDMDA_UPD: 7962 // ARM variants loading and updating the same register are only officially 7963 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7964 if (!hasV7Ops()) 7965 break; 7966 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7967 return Error(Operands.back()->getStartLoc(), 7968 "writeback register not allowed in register list"); 7969 break; 7970 case ARM::t2LDMIA: 7971 case ARM::t2LDMDB: 7972 if (validatetLDMRegList(Inst, Operands, 3)) 7973 return true; 7974 break; 7975 case ARM::t2STMIA: 7976 case ARM::t2STMDB: 7977 if (validatetSTMRegList(Inst, Operands, 3)) 7978 return true; 7979 break; 7980 case ARM::t2LDMIA_UPD: 7981 case ARM::t2LDMDB_UPD: 7982 case ARM::t2STMIA_UPD: 7983 case ARM::t2STMDB_UPD: 7984 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7985 return Error(Operands.back()->getStartLoc(), 7986 "writeback register not allowed in register list"); 7987 7988 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7989 if (validatetLDMRegList(Inst, Operands, 3)) 7990 return true; 7991 } else { 7992 if (validatetSTMRegList(Inst, Operands, 3)) 7993 return true; 7994 } 7995 break; 7996 7997 case ARM::sysLDMIA_UPD: 7998 case ARM::sysLDMDA_UPD: 7999 case ARM::sysLDMDB_UPD: 8000 case ARM::sysLDMIB_UPD: 8001 if (!listContainsReg(Inst, 3, ARM::PC)) 8002 return Error(Operands[4]->getStartLoc(), 8003 "writeback register only allowed on system LDM " 8004 "if PC in register-list"); 8005 break; 8006 case ARM::sysSTMIA_UPD: 8007 case ARM::sysSTMDA_UPD: 8008 case ARM::sysSTMDB_UPD: 8009 case ARM::sysSTMIB_UPD: 8010 return Error(Operands[2]->getStartLoc(), 8011 "system STM cannot have writeback register"); 8012 case ARM::tMUL: 8013 // The second source operand must be the same register as the destination 8014 // operand. 8015 // 8016 // In this case, we must directly check the parsed operands because the 8017 // cvtThumbMultiply() function is written in such a way that it guarantees 8018 // this first statement is always true for the new Inst. Essentially, the 8019 // destination is unconditionally copied into the second source operand 8020 // without checking to see if it matches what we actually parsed. 8021 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 8022 ((ARMOperand &)*Operands[5]).getReg()) && 8023 (((ARMOperand &)*Operands[3]).getReg() != 8024 ((ARMOperand &)*Operands[4]).getReg())) { 8025 return Error(Operands[3]->getStartLoc(), 8026 "destination register must match source register"); 8027 } 8028 break; 8029 8030 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 8031 // so only issue a diagnostic for thumb1. The instructions will be 8032 // switched to the t2 encodings in processInstruction() if necessary. 8033 case ARM::tPOP: { 8034 bool ListContainsBase; 8035 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 8036 !isThumbTwo()) 8037 return Error(Operands[2]->getStartLoc(), 8038 "registers must be in range r0-r7 or pc"); 8039 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 8040 return true; 8041 break; 8042 } 8043 case ARM::tPUSH: { 8044 bool ListContainsBase; 8045 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 8046 !isThumbTwo()) 8047 return Error(Operands[2]->getStartLoc(), 8048 "registers must be in range r0-r7 or lr"); 8049 if (validatetSTMRegList(Inst, Operands, 2)) 8050 return true; 8051 break; 8052 } 8053 case ARM::tSTMIA_UPD: { 8054 bool ListContainsBase, InvalidLowList; 8055 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 8056 0, ListContainsBase); 8057 if (InvalidLowList && !isThumbTwo()) 8058 return Error(Operands[4]->getStartLoc(), 8059 "registers must be in range r0-r7"); 8060 8061 // This would be converted to a 32-bit stm, but that's not valid if the 8062 // writeback register is in the list. 8063 if (InvalidLowList && ListContainsBase) 8064 return Error(Operands[4]->getStartLoc(), 8065 "writeback operator '!' not allowed when base register " 8066 "in register list"); 8067 8068 if (validatetSTMRegList(Inst, Operands, 4)) 8069 return true; 8070 break; 8071 } 8072 case ARM::tADDrSP: 8073 // If the non-SP source operand and the destination operand are not the 8074 // same, we need thumb2 (for the wide encoding), or we have an error. 8075 if (!isThumbTwo() && 8076 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8077 return Error(Operands[4]->getStartLoc(), 8078 "source register must be the same as destination"); 8079 } 8080 break; 8081 8082 case ARM::t2ADDrr: 8083 case ARM::t2ADDrs: 8084 case ARM::t2SUBrr: 8085 case ARM::t2SUBrs: 8086 if (Inst.getOperand(0).getReg() == ARM::SP && 8087 Inst.getOperand(1).getReg() != ARM::SP) 8088 return Error(Operands[4]->getStartLoc(), 8089 "source register must be sp if destination is sp"); 8090 break; 8091 8092 // Final range checking for Thumb unconditional branch instructions. 8093 case ARM::tB: 8094 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 8095 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8096 break; 8097 case ARM::t2B: { 8098 int op = (Operands[2]->isImm()) ? 2 : 3; 8099 ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]); 8100 // Delay the checks of symbolic expressions until they are resolved. 8101 if (!isa<MCBinaryExpr>(Operand.getImm()) && 8102 !Operand.isSignedOffset<24, 1>()) 8103 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 8104 break; 8105 } 8106 // Final range checking for Thumb conditional branch instructions. 8107 case ARM::tBcc: 8108 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 8109 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8110 break; 8111 case ARM::t2Bcc: { 8112 int Op = (Operands[2]->isImm()) ? 2 : 3; 8113 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 8114 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 8115 break; 8116 } 8117 case ARM::tCBZ: 8118 case ARM::tCBNZ: { 8119 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 8120 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8121 break; 8122 } 8123 case ARM::MOVi16: 8124 case ARM::MOVTi16: 8125 case ARM::t2MOVi16: 8126 case ARM::t2MOVTi16: 8127 { 8128 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 8129 // especially when we turn it into a movw and the expression <symbol> does 8130 // not have a :lower16: or :upper16 as part of the expression. We don't 8131 // want the behavior of silently truncating, which can be unexpected and 8132 // lead to bugs that are difficult to find since this is an easy mistake 8133 // to make. 8134 int i = (Operands[3]->isImm()) ? 3 : 4; 8135 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 8136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 8137 if (CE) break; 8138 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 8139 if (!E) break; 8140 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 8141 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 8142 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 8143 return Error( 8144 Op.getStartLoc(), 8145 "immediate expression for mov requires :lower16: or :upper16"); 8146 break; 8147 } 8148 case ARM::HINT: 8149 case ARM::t2HINT: { 8150 unsigned Imm8 = Inst.getOperand(0).getImm(); 8151 unsigned Pred = Inst.getOperand(1).getImm(); 8152 // ESB is not predicable (pred must be AL). Without the RAS extension, this 8153 // behaves as any other unallocated hint. 8154 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 8155 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 8156 "predicable, but condition " 8157 "code specified"); 8158 if (Imm8 == 0x14 && Pred != ARMCC::AL) 8159 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 8160 "predicable, but condition " 8161 "code specified"); 8162 break; 8163 } 8164 case ARM::t2BFi: 8165 case ARM::t2BFr: 8166 case ARM::t2BFLi: 8167 case ARM::t2BFLr: { 8168 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 8169 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8170 return Error(Operands[2]->getStartLoc(), 8171 "branch location out of range or not a multiple of 2"); 8172 8173 if (Opcode == ARM::t2BFi) { 8174 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 8175 return Error(Operands[3]->getStartLoc(), 8176 "branch target out of range or not a multiple of 2"); 8177 } else if (Opcode == ARM::t2BFLi) { 8178 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8179 return Error(Operands[3]->getStartLoc(), 8180 "branch target out of range or not a multiple of 2"); 8181 } 8182 break; 8183 } 8184 case ARM::t2BFic: { 8185 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8186 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8187 return Error(Operands[1]->getStartLoc(), 8188 "branch location out of range or not a multiple of 2"); 8189 8190 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8191 return Error(Operands[2]->getStartLoc(), 8192 "branch target out of range or not a multiple of 2"); 8193 8194 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8195 "branch location and else branch target should either both be " 8196 "immediates or both labels"); 8197 8198 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8199 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8200 if (Diff != 4 && Diff != 2) 8201 return Error( 8202 Operands[3]->getStartLoc(), 8203 "else branch target must be 2 or 4 greater than the branch location"); 8204 } 8205 break; 8206 } 8207 case ARM::t2CLRM: { 8208 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8209 if (Inst.getOperand(i).isReg() && 8210 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8211 Inst.getOperand(i).getReg())) { 8212 return Error(Operands[2]->getStartLoc(), 8213 "invalid register in register list. Valid registers are " 8214 "r0-r12, lr/r14 and APSR."); 8215 } 8216 } 8217 break; 8218 } 8219 case ARM::DSB: 8220 case ARM::t2DSB: { 8221 8222 if (Inst.getNumOperands() < 2) 8223 break; 8224 8225 unsigned Option = Inst.getOperand(0).getImm(); 8226 unsigned Pred = Inst.getOperand(1).getImm(); 8227 8228 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8229 if (Option == 0 && Pred != ARMCC::AL) 8230 return Error(Operands[1]->getStartLoc(), 8231 "instruction 'ssbb' is not predicable, but condition code " 8232 "specified"); 8233 if (Option == 4 && Pred != ARMCC::AL) 8234 return Error(Operands[1]->getStartLoc(), 8235 "instruction 'pssbb' is not predicable, but condition code " 8236 "specified"); 8237 break; 8238 } 8239 case ARM::VMOVRRS: { 8240 // Source registers must be sequential. 8241 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8242 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8243 if (Sm1 != Sm + 1) 8244 return Error(Operands[5]->getStartLoc(), 8245 "source operands must be sequential"); 8246 break; 8247 } 8248 case ARM::VMOVSRR: { 8249 // Destination registers must be sequential. 8250 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8251 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8252 if (Sm1 != Sm + 1) 8253 return Error(Operands[3]->getStartLoc(), 8254 "destination operands must be sequential"); 8255 break; 8256 } 8257 case ARM::VLDMDIA: 8258 case ARM::VSTMDIA: { 8259 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8260 auto &RegList = Op.getRegList(); 8261 if (RegList.size() < 1 || RegList.size() > 16) 8262 return Error(Operands[3]->getStartLoc(), 8263 "list of registers must be at least 1 and at most 16"); 8264 break; 8265 } 8266 case ARM::MVE_VQDMULLs32bh: 8267 case ARM::MVE_VQDMULLs32th: 8268 case ARM::MVE_VCMULf32: 8269 case ARM::MVE_VMULLBs32: 8270 case ARM::MVE_VMULLTs32: 8271 case ARM::MVE_VMULLBu32: 8272 case ARM::MVE_VMULLTu32: { 8273 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8274 return Error (Operands[3]->getStartLoc(), 8275 "Qd register and Qn register can't be identical"); 8276 } 8277 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8278 return Error (Operands[3]->getStartLoc(), 8279 "Qd register and Qm register can't be identical"); 8280 } 8281 break; 8282 } 8283 case ARM::MVE_VREV64_8: 8284 case ARM::MVE_VREV64_16: 8285 case ARM::MVE_VREV64_32: 8286 case ARM::MVE_VQDMULL_qr_s32bh: 8287 case ARM::MVE_VQDMULL_qr_s32th: { 8288 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8289 return Error (Operands[3]->getStartLoc(), 8290 "Qd register and Qn register can't be identical"); 8291 } 8292 break; 8293 } 8294 case ARM::MVE_VCADDi32: 8295 case ARM::MVE_VCADDf32: 8296 case ARM::MVE_VHCADDs32: { 8297 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8298 return Error (Operands[3]->getStartLoc(), 8299 "Qd register and Qm register can't be identical"); 8300 } 8301 break; 8302 } 8303 case ARM::MVE_VMOV_rr_q: { 8304 if (Operands[4]->getReg() != Operands[6]->getReg()) 8305 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8306 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8307 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8308 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8309 break; 8310 } 8311 case ARM::MVE_VMOV_q_rr: { 8312 if (Operands[2]->getReg() != Operands[4]->getReg()) 8313 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8314 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8315 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8316 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8317 break; 8318 } 8319 case ARM::UMAAL: 8320 case ARM::UMLAL: 8321 case ARM::UMULL: 8322 case ARM::t2UMAAL: 8323 case ARM::t2UMLAL: 8324 case ARM::t2UMULL: 8325 case ARM::SMLAL: 8326 case ARM::SMLALBB: 8327 case ARM::SMLALBT: 8328 case ARM::SMLALD: 8329 case ARM::SMLALDX: 8330 case ARM::SMLALTB: 8331 case ARM::SMLALTT: 8332 case ARM::SMLSLD: 8333 case ARM::SMLSLDX: 8334 case ARM::SMULL: 8335 case ARM::t2SMLAL: 8336 case ARM::t2SMLALBB: 8337 case ARM::t2SMLALBT: 8338 case ARM::t2SMLALD: 8339 case ARM::t2SMLALDX: 8340 case ARM::t2SMLALTB: 8341 case ARM::t2SMLALTT: 8342 case ARM::t2SMLSLD: 8343 case ARM::t2SMLSLDX: 8344 case ARM::t2SMULL: { 8345 unsigned RdHi = Inst.getOperand(0).getReg(); 8346 unsigned RdLo = Inst.getOperand(1).getReg(); 8347 if(RdHi == RdLo) { 8348 return Error(Loc, 8349 "unpredictable instruction, RdHi and RdLo must be different"); 8350 } 8351 break; 8352 } 8353 8354 case ARM::CDE_CX1: 8355 case ARM::CDE_CX1A: 8356 case ARM::CDE_CX1D: 8357 case ARM::CDE_CX1DA: 8358 case ARM::CDE_CX2: 8359 case ARM::CDE_CX2A: 8360 case ARM::CDE_CX2D: 8361 case ARM::CDE_CX2DA: 8362 case ARM::CDE_CX3: 8363 case ARM::CDE_CX3A: 8364 case ARM::CDE_CX3D: 8365 case ARM::CDE_CX3DA: 8366 case ARM::CDE_VCX1_vec: 8367 case ARM::CDE_VCX1_fpsp: 8368 case ARM::CDE_VCX1_fpdp: 8369 case ARM::CDE_VCX1A_vec: 8370 case ARM::CDE_VCX1A_fpsp: 8371 case ARM::CDE_VCX1A_fpdp: 8372 case ARM::CDE_VCX2_vec: 8373 case ARM::CDE_VCX2_fpsp: 8374 case ARM::CDE_VCX2_fpdp: 8375 case ARM::CDE_VCX2A_vec: 8376 case ARM::CDE_VCX2A_fpsp: 8377 case ARM::CDE_VCX2A_fpdp: 8378 case ARM::CDE_VCX3_vec: 8379 case ARM::CDE_VCX3_fpsp: 8380 case ARM::CDE_VCX3_fpdp: 8381 case ARM::CDE_VCX3A_vec: 8382 case ARM::CDE_VCX3A_fpsp: 8383 case ARM::CDE_VCX3A_fpdp: { 8384 assert(Inst.getOperand(1).isImm() && 8385 "CDE operand 1 must be a coprocessor ID"); 8386 int64_t Coproc = Inst.getOperand(1).getImm(); 8387 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8388 return Error(Operands[1]->getStartLoc(), 8389 "coprocessor must be configured as CDE"); 8390 else if (Coproc >= 8) 8391 return Error(Operands[1]->getStartLoc(), 8392 "coprocessor must be in the range [p0, p7]"); 8393 break; 8394 } 8395 8396 case ARM::t2CDP: 8397 case ARM::t2CDP2: 8398 case ARM::t2LDC2L_OFFSET: 8399 case ARM::t2LDC2L_OPTION: 8400 case ARM::t2LDC2L_POST: 8401 case ARM::t2LDC2L_PRE: 8402 case ARM::t2LDC2_OFFSET: 8403 case ARM::t2LDC2_OPTION: 8404 case ARM::t2LDC2_POST: 8405 case ARM::t2LDC2_PRE: 8406 case ARM::t2LDCL_OFFSET: 8407 case ARM::t2LDCL_OPTION: 8408 case ARM::t2LDCL_POST: 8409 case ARM::t2LDCL_PRE: 8410 case ARM::t2LDC_OFFSET: 8411 case ARM::t2LDC_OPTION: 8412 case ARM::t2LDC_POST: 8413 case ARM::t2LDC_PRE: 8414 case ARM::t2MCR: 8415 case ARM::t2MCR2: 8416 case ARM::t2MCRR: 8417 case ARM::t2MCRR2: 8418 case ARM::t2MRC: 8419 case ARM::t2MRC2: 8420 case ARM::t2MRRC: 8421 case ARM::t2MRRC2: 8422 case ARM::t2STC2L_OFFSET: 8423 case ARM::t2STC2L_OPTION: 8424 case ARM::t2STC2L_POST: 8425 case ARM::t2STC2L_PRE: 8426 case ARM::t2STC2_OFFSET: 8427 case ARM::t2STC2_OPTION: 8428 case ARM::t2STC2_POST: 8429 case ARM::t2STC2_PRE: 8430 case ARM::t2STCL_OFFSET: 8431 case ARM::t2STCL_OPTION: 8432 case ARM::t2STCL_POST: 8433 case ARM::t2STCL_PRE: 8434 case ARM::t2STC_OFFSET: 8435 case ARM::t2STC_OPTION: 8436 case ARM::t2STC_POST: 8437 case ARM::t2STC_PRE: { 8438 unsigned Opcode = Inst.getOpcode(); 8439 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8440 // CopInd is the index of the coprocessor operand. 8441 size_t CopInd = 0; 8442 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8443 CopInd = 2; 8444 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8445 CopInd = 1; 8446 assert(Inst.getOperand(CopInd).isImm() && 8447 "Operand must be a coprocessor ID"); 8448 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8449 // Operands[2] is the coprocessor operand at syntactic level 8450 if (ARM::isCDECoproc(Coproc, *STI)) 8451 return Error(Operands[2]->getStartLoc(), 8452 "coprocessor must be configured as GCP"); 8453 break; 8454 } 8455 } 8456 8457 return false; 8458 } 8459 8460 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8461 switch(Opc) { 8462 default: llvm_unreachable("unexpected opcode!"); 8463 // VST1LN 8464 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8465 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8466 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8467 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8468 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8469 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8470 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8471 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8472 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8473 8474 // VST2LN 8475 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8476 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8477 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8478 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8479 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8480 8481 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8482 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8483 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8484 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8485 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8486 8487 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8488 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8489 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8490 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8491 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8492 8493 // VST3LN 8494 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8495 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8496 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8497 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8498 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8499 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8500 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8501 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8502 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8503 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8504 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8505 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8506 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8507 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8508 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8509 8510 // VST3 8511 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8512 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8513 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8514 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8515 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8516 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8517 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8518 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8519 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8520 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8521 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8522 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8523 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8524 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8525 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8526 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8527 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8528 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8529 8530 // VST4LN 8531 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8532 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8533 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8534 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8535 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8536 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8537 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8538 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8539 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8540 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8541 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8542 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8543 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8544 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8545 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8546 8547 // VST4 8548 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8549 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8550 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8551 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8552 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8553 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8554 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8555 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8556 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8557 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8558 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8559 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8560 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8561 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8562 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8563 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8564 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8565 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8566 } 8567 } 8568 8569 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8570 switch(Opc) { 8571 default: llvm_unreachable("unexpected opcode!"); 8572 // VLD1LN 8573 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8574 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8575 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8576 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8577 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8578 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8579 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8580 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8581 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8582 8583 // VLD2LN 8584 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8585 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8586 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8587 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8588 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8589 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8590 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8591 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8592 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8593 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8594 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8595 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8596 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8597 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8598 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8599 8600 // VLD3DUP 8601 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8602 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8603 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8604 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8605 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8606 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8607 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8608 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8609 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8610 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8611 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8612 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8613 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8614 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8615 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8616 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8617 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8618 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8619 8620 // VLD3LN 8621 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8622 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8623 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8624 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8625 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8626 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8627 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8628 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8629 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8630 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8631 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8632 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8633 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8634 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8635 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8636 8637 // VLD3 8638 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8639 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8640 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8641 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8642 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8643 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8644 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8645 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8646 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8647 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8648 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8649 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8650 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8651 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8652 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8653 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8654 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8655 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8656 8657 // VLD4LN 8658 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8659 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8660 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8661 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8662 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8663 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8664 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8665 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8666 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8667 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8668 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8669 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8670 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8671 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8672 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8673 8674 // VLD4DUP 8675 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8676 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8677 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8678 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8679 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8680 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8681 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8682 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8683 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8684 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8685 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8686 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8687 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8688 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8689 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8690 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8691 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8692 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8693 8694 // VLD4 8695 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8696 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8697 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8698 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8699 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8700 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8701 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8702 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8703 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8704 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8705 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8706 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8707 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8708 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8709 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8710 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8711 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8712 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8713 } 8714 } 8715 8716 bool ARMAsmParser::processInstruction(MCInst &Inst, 8717 const OperandVector &Operands, 8718 MCStreamer &Out) { 8719 // Check if we have the wide qualifier, because if it's present we 8720 // must avoid selecting a 16-bit thumb instruction. 8721 bool HasWideQualifier = false; 8722 for (auto &Op : Operands) { 8723 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8724 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8725 HasWideQualifier = true; 8726 break; 8727 } 8728 } 8729 8730 switch (Inst.getOpcode()) { 8731 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8732 case ARM::LDRT_POST: 8733 case ARM::LDRBT_POST: { 8734 const unsigned Opcode = 8735 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8736 : ARM::LDRBT_POST_IMM; 8737 MCInst TmpInst; 8738 TmpInst.setOpcode(Opcode); 8739 TmpInst.addOperand(Inst.getOperand(0)); 8740 TmpInst.addOperand(Inst.getOperand(1)); 8741 TmpInst.addOperand(Inst.getOperand(1)); 8742 TmpInst.addOperand(MCOperand::createReg(0)); 8743 TmpInst.addOperand(MCOperand::createImm(0)); 8744 TmpInst.addOperand(Inst.getOperand(2)); 8745 TmpInst.addOperand(Inst.getOperand(3)); 8746 Inst = TmpInst; 8747 return true; 8748 } 8749 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8750 case ARM::LDRSBTii: 8751 case ARM::LDRHTii: 8752 case ARM::LDRSHTii: { 8753 MCInst TmpInst; 8754 8755 if (Inst.getOpcode() == ARM::LDRSBTii) 8756 TmpInst.setOpcode(ARM::LDRSBTi); 8757 else if (Inst.getOpcode() == ARM::LDRHTii) 8758 TmpInst.setOpcode(ARM::LDRHTi); 8759 else if (Inst.getOpcode() == ARM::LDRSHTii) 8760 TmpInst.setOpcode(ARM::LDRSHTi); 8761 TmpInst.addOperand(Inst.getOperand(0)); 8762 TmpInst.addOperand(Inst.getOperand(1)); 8763 TmpInst.addOperand(Inst.getOperand(1)); 8764 TmpInst.addOperand(MCOperand::createImm(256)); 8765 TmpInst.addOperand(Inst.getOperand(2)); 8766 Inst = TmpInst; 8767 return true; 8768 } 8769 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8770 case ARM::STRT_POST: 8771 case ARM::STRBT_POST: { 8772 const unsigned Opcode = 8773 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8774 : ARM::STRBT_POST_IMM; 8775 MCInst TmpInst; 8776 TmpInst.setOpcode(Opcode); 8777 TmpInst.addOperand(Inst.getOperand(1)); 8778 TmpInst.addOperand(Inst.getOperand(0)); 8779 TmpInst.addOperand(Inst.getOperand(1)); 8780 TmpInst.addOperand(MCOperand::createReg(0)); 8781 TmpInst.addOperand(MCOperand::createImm(0)); 8782 TmpInst.addOperand(Inst.getOperand(2)); 8783 TmpInst.addOperand(Inst.getOperand(3)); 8784 Inst = TmpInst; 8785 return true; 8786 } 8787 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8788 case ARM::ADDri: { 8789 if (Inst.getOperand(1).getReg() != ARM::PC || 8790 Inst.getOperand(5).getReg() != 0 || 8791 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8792 return false; 8793 MCInst TmpInst; 8794 TmpInst.setOpcode(ARM::ADR); 8795 TmpInst.addOperand(Inst.getOperand(0)); 8796 if (Inst.getOperand(2).isImm()) { 8797 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8798 // before passing it to the ADR instruction. 8799 unsigned Enc = Inst.getOperand(2).getImm(); 8800 TmpInst.addOperand(MCOperand::createImm( 8801 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8802 } else { 8803 // Turn PC-relative expression into absolute expression. 8804 // Reading PC provides the start of the current instruction + 8 and 8805 // the transform to adr is biased by that. 8806 MCSymbol *Dot = getContext().createTempSymbol(); 8807 Out.emitLabel(Dot); 8808 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8809 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8810 MCSymbolRefExpr::VK_None, 8811 getContext()); 8812 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8813 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8814 getContext()); 8815 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8816 getContext()); 8817 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8818 } 8819 TmpInst.addOperand(Inst.getOperand(3)); 8820 TmpInst.addOperand(Inst.getOperand(4)); 8821 Inst = TmpInst; 8822 return true; 8823 } 8824 // Aliases for imm syntax of LDR instructions. 8825 case ARM::t2LDR_PRE_imm: 8826 case ARM::t2LDR_POST_imm: { 8827 MCInst TmpInst; 8828 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE 8829 : ARM::t2LDR_POST); 8830 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8831 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8832 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8833 TmpInst.addOperand(Inst.getOperand(2)); // imm 8834 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8835 Inst = TmpInst; 8836 return true; 8837 } 8838 // Aliases for imm syntax of STR instructions. 8839 case ARM::t2STR_PRE_imm: 8840 case ARM::t2STR_POST_imm: { 8841 MCInst TmpInst; 8842 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE 8843 : ARM::t2STR_POST); 8844 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8845 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8846 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8847 TmpInst.addOperand(Inst.getOperand(2)); // imm 8848 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8849 Inst = TmpInst; 8850 return true; 8851 } 8852 // Aliases for alternate PC+imm syntax of LDR instructions. 8853 case ARM::t2LDRpcrel: 8854 // Select the narrow version if the immediate will fit. 8855 if (Inst.getOperand(1).getImm() > 0 && 8856 Inst.getOperand(1).getImm() <= 0xff && 8857 !HasWideQualifier) 8858 Inst.setOpcode(ARM::tLDRpci); 8859 else 8860 Inst.setOpcode(ARM::t2LDRpci); 8861 return true; 8862 case ARM::t2LDRBpcrel: 8863 Inst.setOpcode(ARM::t2LDRBpci); 8864 return true; 8865 case ARM::t2LDRHpcrel: 8866 Inst.setOpcode(ARM::t2LDRHpci); 8867 return true; 8868 case ARM::t2LDRSBpcrel: 8869 Inst.setOpcode(ARM::t2LDRSBpci); 8870 return true; 8871 case ARM::t2LDRSHpcrel: 8872 Inst.setOpcode(ARM::t2LDRSHpci); 8873 return true; 8874 case ARM::LDRConstPool: 8875 case ARM::tLDRConstPool: 8876 case ARM::t2LDRConstPool: { 8877 // Pseudo instruction ldr rt, =immediate is converted to a 8878 // MOV rt, immediate if immediate is known and representable 8879 // otherwise we create a constant pool entry that we load from. 8880 MCInst TmpInst; 8881 if (Inst.getOpcode() == ARM::LDRConstPool) 8882 TmpInst.setOpcode(ARM::LDRi12); 8883 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8884 TmpInst.setOpcode(ARM::tLDRpci); 8885 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8886 TmpInst.setOpcode(ARM::t2LDRpci); 8887 const ARMOperand &PoolOperand = 8888 (HasWideQualifier ? 8889 static_cast<ARMOperand &>(*Operands[4]) : 8890 static_cast<ARMOperand &>(*Operands[3])); 8891 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8892 // If SubExprVal is a constant we may be able to use a MOV 8893 if (isa<MCConstantExpr>(SubExprVal) && 8894 Inst.getOperand(0).getReg() != ARM::PC && 8895 Inst.getOperand(0).getReg() != ARM::SP) { 8896 int64_t Value = 8897 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8898 bool UseMov = true; 8899 bool MovHasS = true; 8900 if (Inst.getOpcode() == ARM::LDRConstPool) { 8901 // ARM Constant 8902 if (ARM_AM::getSOImmVal(Value) != -1) { 8903 Value = ARM_AM::getSOImmVal(Value); 8904 TmpInst.setOpcode(ARM::MOVi); 8905 } 8906 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8907 Value = ARM_AM::getSOImmVal(~Value); 8908 TmpInst.setOpcode(ARM::MVNi); 8909 } 8910 else if (hasV6T2Ops() && 8911 Value >=0 && Value < 65536) { 8912 TmpInst.setOpcode(ARM::MOVi16); 8913 MovHasS = false; 8914 } 8915 else 8916 UseMov = false; 8917 } 8918 else { 8919 // Thumb/Thumb2 Constant 8920 if (hasThumb2() && 8921 ARM_AM::getT2SOImmVal(Value) != -1) 8922 TmpInst.setOpcode(ARM::t2MOVi); 8923 else if (hasThumb2() && 8924 ARM_AM::getT2SOImmVal(~Value) != -1) { 8925 TmpInst.setOpcode(ARM::t2MVNi); 8926 Value = ~Value; 8927 } 8928 else if (hasV8MBaseline() && 8929 Value >=0 && Value < 65536) { 8930 TmpInst.setOpcode(ARM::t2MOVi16); 8931 MovHasS = false; 8932 } 8933 else 8934 UseMov = false; 8935 } 8936 if (UseMov) { 8937 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8938 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8939 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8940 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8941 if (MovHasS) 8942 TmpInst.addOperand(MCOperand::createReg(0)); // S 8943 Inst = TmpInst; 8944 return true; 8945 } 8946 } 8947 // No opportunity to use MOV/MVN create constant pool 8948 const MCExpr *CPLoc = 8949 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8950 PoolOperand.getStartLoc()); 8951 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8952 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8953 if (TmpInst.getOpcode() == ARM::LDRi12) 8954 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8955 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8956 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8957 Inst = TmpInst; 8958 return true; 8959 } 8960 // Handle NEON VST complex aliases. 8961 case ARM::VST1LNdWB_register_Asm_8: 8962 case ARM::VST1LNdWB_register_Asm_16: 8963 case ARM::VST1LNdWB_register_Asm_32: { 8964 MCInst TmpInst; 8965 // Shuffle the operands around so the lane index operand is in the 8966 // right place. 8967 unsigned Spacing; 8968 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8969 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8970 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8971 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8972 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8973 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8974 TmpInst.addOperand(Inst.getOperand(1)); // lane 8975 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8976 TmpInst.addOperand(Inst.getOperand(6)); 8977 Inst = TmpInst; 8978 return true; 8979 } 8980 8981 case ARM::VST2LNdWB_register_Asm_8: 8982 case ARM::VST2LNdWB_register_Asm_16: 8983 case ARM::VST2LNdWB_register_Asm_32: 8984 case ARM::VST2LNqWB_register_Asm_16: 8985 case ARM::VST2LNqWB_register_Asm_32: { 8986 MCInst TmpInst; 8987 // Shuffle the operands around so the lane index operand is in the 8988 // right place. 8989 unsigned Spacing; 8990 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8991 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8992 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8993 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8994 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8995 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8996 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8997 Spacing)); 8998 TmpInst.addOperand(Inst.getOperand(1)); // lane 8999 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9000 TmpInst.addOperand(Inst.getOperand(6)); 9001 Inst = TmpInst; 9002 return true; 9003 } 9004 9005 case ARM::VST3LNdWB_register_Asm_8: 9006 case ARM::VST3LNdWB_register_Asm_16: 9007 case ARM::VST3LNdWB_register_Asm_32: 9008 case ARM::VST3LNqWB_register_Asm_16: 9009 case ARM::VST3LNqWB_register_Asm_32: { 9010 MCInst TmpInst; 9011 // Shuffle the operands around so the lane index operand is in the 9012 // right place. 9013 unsigned Spacing; 9014 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9015 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9016 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9017 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9018 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9019 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9020 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9021 Spacing)); 9022 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9023 Spacing * 2)); 9024 TmpInst.addOperand(Inst.getOperand(1)); // lane 9025 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9026 TmpInst.addOperand(Inst.getOperand(6)); 9027 Inst = TmpInst; 9028 return true; 9029 } 9030 9031 case ARM::VST4LNdWB_register_Asm_8: 9032 case ARM::VST4LNdWB_register_Asm_16: 9033 case ARM::VST4LNdWB_register_Asm_32: 9034 case ARM::VST4LNqWB_register_Asm_16: 9035 case ARM::VST4LNqWB_register_Asm_32: { 9036 MCInst TmpInst; 9037 // Shuffle the operands around so the lane index operand is in the 9038 // right place. 9039 unsigned Spacing; 9040 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9041 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9042 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9043 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9044 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9045 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9046 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9047 Spacing)); 9048 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9049 Spacing * 2)); 9050 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9051 Spacing * 3)); 9052 TmpInst.addOperand(Inst.getOperand(1)); // lane 9053 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9054 TmpInst.addOperand(Inst.getOperand(6)); 9055 Inst = TmpInst; 9056 return true; 9057 } 9058 9059 case ARM::VST1LNdWB_fixed_Asm_8: 9060 case ARM::VST1LNdWB_fixed_Asm_16: 9061 case ARM::VST1LNdWB_fixed_Asm_32: { 9062 MCInst TmpInst; 9063 // Shuffle the operands around so the lane index operand is in the 9064 // right place. 9065 unsigned Spacing; 9066 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9067 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9068 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9069 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9070 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9071 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9072 TmpInst.addOperand(Inst.getOperand(1)); // lane 9073 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9074 TmpInst.addOperand(Inst.getOperand(5)); 9075 Inst = TmpInst; 9076 return true; 9077 } 9078 9079 case ARM::VST2LNdWB_fixed_Asm_8: 9080 case ARM::VST2LNdWB_fixed_Asm_16: 9081 case ARM::VST2LNdWB_fixed_Asm_32: 9082 case ARM::VST2LNqWB_fixed_Asm_16: 9083 case ARM::VST2LNqWB_fixed_Asm_32: { 9084 MCInst TmpInst; 9085 // Shuffle the operands around so the lane index operand is in the 9086 // right place. 9087 unsigned Spacing; 9088 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9089 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9090 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9091 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9092 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9093 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9095 Spacing)); 9096 TmpInst.addOperand(Inst.getOperand(1)); // lane 9097 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9098 TmpInst.addOperand(Inst.getOperand(5)); 9099 Inst = TmpInst; 9100 return true; 9101 } 9102 9103 case ARM::VST3LNdWB_fixed_Asm_8: 9104 case ARM::VST3LNdWB_fixed_Asm_16: 9105 case ARM::VST3LNdWB_fixed_Asm_32: 9106 case ARM::VST3LNqWB_fixed_Asm_16: 9107 case ARM::VST3LNqWB_fixed_Asm_32: { 9108 MCInst TmpInst; 9109 // Shuffle the operands around so the lane index operand is in the 9110 // right place. 9111 unsigned Spacing; 9112 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9113 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9114 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9115 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9116 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9117 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9119 Spacing)); 9120 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9121 Spacing * 2)); 9122 TmpInst.addOperand(Inst.getOperand(1)); // lane 9123 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9124 TmpInst.addOperand(Inst.getOperand(5)); 9125 Inst = TmpInst; 9126 return true; 9127 } 9128 9129 case ARM::VST4LNdWB_fixed_Asm_8: 9130 case ARM::VST4LNdWB_fixed_Asm_16: 9131 case ARM::VST4LNdWB_fixed_Asm_32: 9132 case ARM::VST4LNqWB_fixed_Asm_16: 9133 case ARM::VST4LNqWB_fixed_Asm_32: { 9134 MCInst TmpInst; 9135 // Shuffle the operands around so the lane index operand is in the 9136 // right place. 9137 unsigned Spacing; 9138 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9139 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9140 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9141 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9142 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9143 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9144 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9145 Spacing)); 9146 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9147 Spacing * 2)); 9148 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9149 Spacing * 3)); 9150 TmpInst.addOperand(Inst.getOperand(1)); // lane 9151 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9152 TmpInst.addOperand(Inst.getOperand(5)); 9153 Inst = TmpInst; 9154 return true; 9155 } 9156 9157 case ARM::VST1LNdAsm_8: 9158 case ARM::VST1LNdAsm_16: 9159 case ARM::VST1LNdAsm_32: { 9160 MCInst TmpInst; 9161 // Shuffle the operands around so the lane index operand is in the 9162 // right place. 9163 unsigned Spacing; 9164 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9165 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9166 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9167 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9168 TmpInst.addOperand(Inst.getOperand(1)); // lane 9169 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9170 TmpInst.addOperand(Inst.getOperand(5)); 9171 Inst = TmpInst; 9172 return true; 9173 } 9174 9175 case ARM::VST2LNdAsm_8: 9176 case ARM::VST2LNdAsm_16: 9177 case ARM::VST2LNdAsm_32: 9178 case ARM::VST2LNqAsm_16: 9179 case ARM::VST2LNqAsm_32: { 9180 MCInst TmpInst; 9181 // Shuffle the operands around so the lane index operand is in the 9182 // right place. 9183 unsigned Spacing; 9184 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9185 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9186 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9187 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9188 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9189 Spacing)); 9190 TmpInst.addOperand(Inst.getOperand(1)); // lane 9191 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9192 TmpInst.addOperand(Inst.getOperand(5)); 9193 Inst = TmpInst; 9194 return true; 9195 } 9196 9197 case ARM::VST3LNdAsm_8: 9198 case ARM::VST3LNdAsm_16: 9199 case ARM::VST3LNdAsm_32: 9200 case ARM::VST3LNqAsm_16: 9201 case ARM::VST3LNqAsm_32: { 9202 MCInst TmpInst; 9203 // Shuffle the operands around so the lane index operand is in the 9204 // right place. 9205 unsigned Spacing; 9206 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9207 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9208 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9209 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9211 Spacing)); 9212 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9213 Spacing * 2)); 9214 TmpInst.addOperand(Inst.getOperand(1)); // lane 9215 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9216 TmpInst.addOperand(Inst.getOperand(5)); 9217 Inst = TmpInst; 9218 return true; 9219 } 9220 9221 case ARM::VST4LNdAsm_8: 9222 case ARM::VST4LNdAsm_16: 9223 case ARM::VST4LNdAsm_32: 9224 case ARM::VST4LNqAsm_16: 9225 case ARM::VST4LNqAsm_32: { 9226 MCInst TmpInst; 9227 // Shuffle the operands around so the lane index operand is in the 9228 // right place. 9229 unsigned Spacing; 9230 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9231 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9232 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9233 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9235 Spacing)); 9236 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9237 Spacing * 2)); 9238 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9239 Spacing * 3)); 9240 TmpInst.addOperand(Inst.getOperand(1)); // lane 9241 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9242 TmpInst.addOperand(Inst.getOperand(5)); 9243 Inst = TmpInst; 9244 return true; 9245 } 9246 9247 // Handle NEON VLD complex aliases. 9248 case ARM::VLD1LNdWB_register_Asm_8: 9249 case ARM::VLD1LNdWB_register_Asm_16: 9250 case ARM::VLD1LNdWB_register_Asm_32: { 9251 MCInst TmpInst; 9252 // Shuffle the operands around so the lane index operand is in the 9253 // right place. 9254 unsigned Spacing; 9255 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9256 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9257 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9258 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9259 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9260 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9261 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9262 TmpInst.addOperand(Inst.getOperand(1)); // lane 9263 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9264 TmpInst.addOperand(Inst.getOperand(6)); 9265 Inst = TmpInst; 9266 return true; 9267 } 9268 9269 case ARM::VLD2LNdWB_register_Asm_8: 9270 case ARM::VLD2LNdWB_register_Asm_16: 9271 case ARM::VLD2LNdWB_register_Asm_32: 9272 case ARM::VLD2LNqWB_register_Asm_16: 9273 case ARM::VLD2LNqWB_register_Asm_32: { 9274 MCInst TmpInst; 9275 // Shuffle the operands around so the lane index operand is in the 9276 // right place. 9277 unsigned Spacing; 9278 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9279 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9281 Spacing)); 9282 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9283 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9284 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9285 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9286 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9287 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9288 Spacing)); 9289 TmpInst.addOperand(Inst.getOperand(1)); // lane 9290 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9291 TmpInst.addOperand(Inst.getOperand(6)); 9292 Inst = TmpInst; 9293 return true; 9294 } 9295 9296 case ARM::VLD3LNdWB_register_Asm_8: 9297 case ARM::VLD3LNdWB_register_Asm_16: 9298 case ARM::VLD3LNdWB_register_Asm_32: 9299 case ARM::VLD3LNqWB_register_Asm_16: 9300 case ARM::VLD3LNqWB_register_Asm_32: { 9301 MCInst TmpInst; 9302 // Shuffle the operands around so the lane index operand is in the 9303 // right place. 9304 unsigned Spacing; 9305 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9306 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9308 Spacing)); 9309 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9310 Spacing * 2)); 9311 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9312 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9313 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9314 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9315 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9317 Spacing)); 9318 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9319 Spacing * 2)); 9320 TmpInst.addOperand(Inst.getOperand(1)); // lane 9321 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9322 TmpInst.addOperand(Inst.getOperand(6)); 9323 Inst = TmpInst; 9324 return true; 9325 } 9326 9327 case ARM::VLD4LNdWB_register_Asm_8: 9328 case ARM::VLD4LNdWB_register_Asm_16: 9329 case ARM::VLD4LNdWB_register_Asm_32: 9330 case ARM::VLD4LNqWB_register_Asm_16: 9331 case ARM::VLD4LNqWB_register_Asm_32: { 9332 MCInst TmpInst; 9333 // Shuffle the operands around so the lane index operand is in the 9334 // right place. 9335 unsigned Spacing; 9336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9339 Spacing)); 9340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9341 Spacing * 2)); 9342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9343 Spacing * 3)); 9344 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9345 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9346 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9347 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9348 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9350 Spacing)); 9351 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9352 Spacing * 2)); 9353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9354 Spacing * 3)); 9355 TmpInst.addOperand(Inst.getOperand(1)); // lane 9356 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9357 TmpInst.addOperand(Inst.getOperand(6)); 9358 Inst = TmpInst; 9359 return true; 9360 } 9361 9362 case ARM::VLD1LNdWB_fixed_Asm_8: 9363 case ARM::VLD1LNdWB_fixed_Asm_16: 9364 case ARM::VLD1LNdWB_fixed_Asm_32: { 9365 MCInst TmpInst; 9366 // Shuffle the operands around so the lane index operand is in the 9367 // right place. 9368 unsigned Spacing; 9369 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9370 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9371 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9372 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9373 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9374 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9375 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9376 TmpInst.addOperand(Inst.getOperand(1)); // lane 9377 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9378 TmpInst.addOperand(Inst.getOperand(5)); 9379 Inst = TmpInst; 9380 return true; 9381 } 9382 9383 case ARM::VLD2LNdWB_fixed_Asm_8: 9384 case ARM::VLD2LNdWB_fixed_Asm_16: 9385 case ARM::VLD2LNdWB_fixed_Asm_32: 9386 case ARM::VLD2LNqWB_fixed_Asm_16: 9387 case ARM::VLD2LNqWB_fixed_Asm_32: { 9388 MCInst TmpInst; 9389 // Shuffle the operands around so the lane index operand is in the 9390 // right place. 9391 unsigned Spacing; 9392 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9393 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9394 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9395 Spacing)); 9396 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9397 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9398 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9399 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9400 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9401 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9402 Spacing)); 9403 TmpInst.addOperand(Inst.getOperand(1)); // lane 9404 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9405 TmpInst.addOperand(Inst.getOperand(5)); 9406 Inst = TmpInst; 9407 return true; 9408 } 9409 9410 case ARM::VLD3LNdWB_fixed_Asm_8: 9411 case ARM::VLD3LNdWB_fixed_Asm_16: 9412 case ARM::VLD3LNdWB_fixed_Asm_32: 9413 case ARM::VLD3LNqWB_fixed_Asm_16: 9414 case ARM::VLD3LNqWB_fixed_Asm_32: { 9415 MCInst TmpInst; 9416 // Shuffle the operands around so the lane index operand is in the 9417 // right place. 9418 unsigned Spacing; 9419 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9420 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9421 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9422 Spacing)); 9423 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9424 Spacing * 2)); 9425 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9426 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9427 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9428 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9429 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9430 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9431 Spacing)); 9432 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9433 Spacing * 2)); 9434 TmpInst.addOperand(Inst.getOperand(1)); // lane 9435 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9436 TmpInst.addOperand(Inst.getOperand(5)); 9437 Inst = TmpInst; 9438 return true; 9439 } 9440 9441 case ARM::VLD4LNdWB_fixed_Asm_8: 9442 case ARM::VLD4LNdWB_fixed_Asm_16: 9443 case ARM::VLD4LNdWB_fixed_Asm_32: 9444 case ARM::VLD4LNqWB_fixed_Asm_16: 9445 case ARM::VLD4LNqWB_fixed_Asm_32: { 9446 MCInst TmpInst; 9447 // Shuffle the operands around so the lane index operand is in the 9448 // right place. 9449 unsigned Spacing; 9450 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9451 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9452 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9453 Spacing)); 9454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9455 Spacing * 2)); 9456 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9457 Spacing * 3)); 9458 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9459 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9460 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9461 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9462 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9463 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9464 Spacing)); 9465 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9466 Spacing * 2)); 9467 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9468 Spacing * 3)); 9469 TmpInst.addOperand(Inst.getOperand(1)); // lane 9470 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9471 TmpInst.addOperand(Inst.getOperand(5)); 9472 Inst = TmpInst; 9473 return true; 9474 } 9475 9476 case ARM::VLD1LNdAsm_8: 9477 case ARM::VLD1LNdAsm_16: 9478 case ARM::VLD1LNdAsm_32: { 9479 MCInst TmpInst; 9480 // Shuffle the operands around so the lane index operand is in the 9481 // right place. 9482 unsigned Spacing; 9483 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9484 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9485 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9486 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9487 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9488 TmpInst.addOperand(Inst.getOperand(1)); // lane 9489 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9490 TmpInst.addOperand(Inst.getOperand(5)); 9491 Inst = TmpInst; 9492 return true; 9493 } 9494 9495 case ARM::VLD2LNdAsm_8: 9496 case ARM::VLD2LNdAsm_16: 9497 case ARM::VLD2LNdAsm_32: 9498 case ARM::VLD2LNqAsm_16: 9499 case ARM::VLD2LNqAsm_32: { 9500 MCInst TmpInst; 9501 // Shuffle the operands around so the lane index operand is in the 9502 // right place. 9503 unsigned Spacing; 9504 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9505 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9506 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9507 Spacing)); 9508 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9509 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9510 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9512 Spacing)); 9513 TmpInst.addOperand(Inst.getOperand(1)); // lane 9514 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9515 TmpInst.addOperand(Inst.getOperand(5)); 9516 Inst = TmpInst; 9517 return true; 9518 } 9519 9520 case ARM::VLD3LNdAsm_8: 9521 case ARM::VLD3LNdAsm_16: 9522 case ARM::VLD3LNdAsm_32: 9523 case ARM::VLD3LNqAsm_16: 9524 case ARM::VLD3LNqAsm_32: { 9525 MCInst TmpInst; 9526 // Shuffle the operands around so the lane index operand is in the 9527 // right place. 9528 unsigned Spacing; 9529 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9530 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9531 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9532 Spacing)); 9533 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9534 Spacing * 2)); 9535 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9536 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9537 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9539 Spacing)); 9540 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9541 Spacing * 2)); 9542 TmpInst.addOperand(Inst.getOperand(1)); // lane 9543 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9544 TmpInst.addOperand(Inst.getOperand(5)); 9545 Inst = TmpInst; 9546 return true; 9547 } 9548 9549 case ARM::VLD4LNdAsm_8: 9550 case ARM::VLD4LNdAsm_16: 9551 case ARM::VLD4LNdAsm_32: 9552 case ARM::VLD4LNqAsm_16: 9553 case ARM::VLD4LNqAsm_32: { 9554 MCInst TmpInst; 9555 // Shuffle the operands around so the lane index operand is in the 9556 // right place. 9557 unsigned Spacing; 9558 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9559 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9561 Spacing)); 9562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9563 Spacing * 2)); 9564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9565 Spacing * 3)); 9566 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9567 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9568 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9569 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9570 Spacing)); 9571 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9572 Spacing * 2)); 9573 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9574 Spacing * 3)); 9575 TmpInst.addOperand(Inst.getOperand(1)); // lane 9576 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9577 TmpInst.addOperand(Inst.getOperand(5)); 9578 Inst = TmpInst; 9579 return true; 9580 } 9581 9582 // VLD3DUP single 3-element structure to all lanes instructions. 9583 case ARM::VLD3DUPdAsm_8: 9584 case ARM::VLD3DUPdAsm_16: 9585 case ARM::VLD3DUPdAsm_32: 9586 case ARM::VLD3DUPqAsm_8: 9587 case ARM::VLD3DUPqAsm_16: 9588 case ARM::VLD3DUPqAsm_32: { 9589 MCInst TmpInst; 9590 unsigned Spacing; 9591 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9592 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9593 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9594 Spacing)); 9595 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9596 Spacing * 2)); 9597 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9598 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9599 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9600 TmpInst.addOperand(Inst.getOperand(4)); 9601 Inst = TmpInst; 9602 return true; 9603 } 9604 9605 case ARM::VLD3DUPdWB_fixed_Asm_8: 9606 case ARM::VLD3DUPdWB_fixed_Asm_16: 9607 case ARM::VLD3DUPdWB_fixed_Asm_32: 9608 case ARM::VLD3DUPqWB_fixed_Asm_8: 9609 case ARM::VLD3DUPqWB_fixed_Asm_16: 9610 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9611 MCInst TmpInst; 9612 unsigned Spacing; 9613 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9614 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9616 Spacing)); 9617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9618 Spacing * 2)); 9619 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9620 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9621 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9622 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9623 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9624 TmpInst.addOperand(Inst.getOperand(4)); 9625 Inst = TmpInst; 9626 return true; 9627 } 9628 9629 case ARM::VLD3DUPdWB_register_Asm_8: 9630 case ARM::VLD3DUPdWB_register_Asm_16: 9631 case ARM::VLD3DUPdWB_register_Asm_32: 9632 case ARM::VLD3DUPqWB_register_Asm_8: 9633 case ARM::VLD3DUPqWB_register_Asm_16: 9634 case ARM::VLD3DUPqWB_register_Asm_32: { 9635 MCInst TmpInst; 9636 unsigned Spacing; 9637 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9638 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9640 Spacing)); 9641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9642 Spacing * 2)); 9643 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9644 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9645 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9646 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9647 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9648 TmpInst.addOperand(Inst.getOperand(5)); 9649 Inst = TmpInst; 9650 return true; 9651 } 9652 9653 // VLD3 multiple 3-element structure instructions. 9654 case ARM::VLD3dAsm_8: 9655 case ARM::VLD3dAsm_16: 9656 case ARM::VLD3dAsm_32: 9657 case ARM::VLD3qAsm_8: 9658 case ARM::VLD3qAsm_16: 9659 case ARM::VLD3qAsm_32: { 9660 MCInst TmpInst; 9661 unsigned Spacing; 9662 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9663 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9664 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9665 Spacing)); 9666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9667 Spacing * 2)); 9668 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9669 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9670 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9671 TmpInst.addOperand(Inst.getOperand(4)); 9672 Inst = TmpInst; 9673 return true; 9674 } 9675 9676 case ARM::VLD3dWB_fixed_Asm_8: 9677 case ARM::VLD3dWB_fixed_Asm_16: 9678 case ARM::VLD3dWB_fixed_Asm_32: 9679 case ARM::VLD3qWB_fixed_Asm_8: 9680 case ARM::VLD3qWB_fixed_Asm_16: 9681 case ARM::VLD3qWB_fixed_Asm_32: { 9682 MCInst TmpInst; 9683 unsigned Spacing; 9684 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9685 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9687 Spacing)); 9688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9689 Spacing * 2)); 9690 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9691 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9692 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9693 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9694 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9695 TmpInst.addOperand(Inst.getOperand(4)); 9696 Inst = TmpInst; 9697 return true; 9698 } 9699 9700 case ARM::VLD3dWB_register_Asm_8: 9701 case ARM::VLD3dWB_register_Asm_16: 9702 case ARM::VLD3dWB_register_Asm_32: 9703 case ARM::VLD3qWB_register_Asm_8: 9704 case ARM::VLD3qWB_register_Asm_16: 9705 case ARM::VLD3qWB_register_Asm_32: { 9706 MCInst TmpInst; 9707 unsigned Spacing; 9708 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9711 Spacing)); 9712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9713 Spacing * 2)); 9714 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9715 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9716 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9717 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9718 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9719 TmpInst.addOperand(Inst.getOperand(5)); 9720 Inst = TmpInst; 9721 return true; 9722 } 9723 9724 // VLD4DUP single 3-element structure to all lanes instructions. 9725 case ARM::VLD4DUPdAsm_8: 9726 case ARM::VLD4DUPdAsm_16: 9727 case ARM::VLD4DUPdAsm_32: 9728 case ARM::VLD4DUPqAsm_8: 9729 case ARM::VLD4DUPqAsm_16: 9730 case ARM::VLD4DUPqAsm_32: { 9731 MCInst TmpInst; 9732 unsigned Spacing; 9733 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9734 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9735 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9736 Spacing)); 9737 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9738 Spacing * 2)); 9739 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9740 Spacing * 3)); 9741 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9742 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9743 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9744 TmpInst.addOperand(Inst.getOperand(4)); 9745 Inst = TmpInst; 9746 return true; 9747 } 9748 9749 case ARM::VLD4DUPdWB_fixed_Asm_8: 9750 case ARM::VLD4DUPdWB_fixed_Asm_16: 9751 case ARM::VLD4DUPdWB_fixed_Asm_32: 9752 case ARM::VLD4DUPqWB_fixed_Asm_8: 9753 case ARM::VLD4DUPqWB_fixed_Asm_16: 9754 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9755 MCInst TmpInst; 9756 unsigned Spacing; 9757 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9758 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9759 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9760 Spacing)); 9761 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9762 Spacing * 2)); 9763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9764 Spacing * 3)); 9765 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9766 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9767 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9768 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9769 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9770 TmpInst.addOperand(Inst.getOperand(4)); 9771 Inst = TmpInst; 9772 return true; 9773 } 9774 9775 case ARM::VLD4DUPdWB_register_Asm_8: 9776 case ARM::VLD4DUPdWB_register_Asm_16: 9777 case ARM::VLD4DUPdWB_register_Asm_32: 9778 case ARM::VLD4DUPqWB_register_Asm_8: 9779 case ARM::VLD4DUPqWB_register_Asm_16: 9780 case ARM::VLD4DUPqWB_register_Asm_32: { 9781 MCInst TmpInst; 9782 unsigned Spacing; 9783 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9784 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9786 Spacing)); 9787 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9788 Spacing * 2)); 9789 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9790 Spacing * 3)); 9791 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9792 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9793 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9794 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9795 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9796 TmpInst.addOperand(Inst.getOperand(5)); 9797 Inst = TmpInst; 9798 return true; 9799 } 9800 9801 // VLD4 multiple 4-element structure instructions. 9802 case ARM::VLD4dAsm_8: 9803 case ARM::VLD4dAsm_16: 9804 case ARM::VLD4dAsm_32: 9805 case ARM::VLD4qAsm_8: 9806 case ARM::VLD4qAsm_16: 9807 case ARM::VLD4qAsm_32: { 9808 MCInst TmpInst; 9809 unsigned Spacing; 9810 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9811 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9812 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9813 Spacing)); 9814 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9815 Spacing * 2)); 9816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9817 Spacing * 3)); 9818 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9819 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9820 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9821 TmpInst.addOperand(Inst.getOperand(4)); 9822 Inst = TmpInst; 9823 return true; 9824 } 9825 9826 case ARM::VLD4dWB_fixed_Asm_8: 9827 case ARM::VLD4dWB_fixed_Asm_16: 9828 case ARM::VLD4dWB_fixed_Asm_32: 9829 case ARM::VLD4qWB_fixed_Asm_8: 9830 case ARM::VLD4qWB_fixed_Asm_16: 9831 case ARM::VLD4qWB_fixed_Asm_32: { 9832 MCInst TmpInst; 9833 unsigned Spacing; 9834 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9835 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9836 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9837 Spacing)); 9838 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9839 Spacing * 2)); 9840 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9841 Spacing * 3)); 9842 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9843 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9844 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9845 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9846 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9847 TmpInst.addOperand(Inst.getOperand(4)); 9848 Inst = TmpInst; 9849 return true; 9850 } 9851 9852 case ARM::VLD4dWB_register_Asm_8: 9853 case ARM::VLD4dWB_register_Asm_16: 9854 case ARM::VLD4dWB_register_Asm_32: 9855 case ARM::VLD4qWB_register_Asm_8: 9856 case ARM::VLD4qWB_register_Asm_16: 9857 case ARM::VLD4qWB_register_Asm_32: { 9858 MCInst TmpInst; 9859 unsigned Spacing; 9860 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9861 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9862 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9863 Spacing)); 9864 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9865 Spacing * 2)); 9866 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9867 Spacing * 3)); 9868 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9869 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9870 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9871 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9872 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9873 TmpInst.addOperand(Inst.getOperand(5)); 9874 Inst = TmpInst; 9875 return true; 9876 } 9877 9878 // VST3 multiple 3-element structure instructions. 9879 case ARM::VST3dAsm_8: 9880 case ARM::VST3dAsm_16: 9881 case ARM::VST3dAsm_32: 9882 case ARM::VST3qAsm_8: 9883 case ARM::VST3qAsm_16: 9884 case ARM::VST3qAsm_32: { 9885 MCInst TmpInst; 9886 unsigned Spacing; 9887 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9888 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9889 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9890 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9891 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9892 Spacing)); 9893 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9894 Spacing * 2)); 9895 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9896 TmpInst.addOperand(Inst.getOperand(4)); 9897 Inst = TmpInst; 9898 return true; 9899 } 9900 9901 case ARM::VST3dWB_fixed_Asm_8: 9902 case ARM::VST3dWB_fixed_Asm_16: 9903 case ARM::VST3dWB_fixed_Asm_32: 9904 case ARM::VST3qWB_fixed_Asm_8: 9905 case ARM::VST3qWB_fixed_Asm_16: 9906 case ARM::VST3qWB_fixed_Asm_32: { 9907 MCInst TmpInst; 9908 unsigned Spacing; 9909 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9910 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9911 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9912 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9913 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9914 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9915 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9916 Spacing)); 9917 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9918 Spacing * 2)); 9919 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9920 TmpInst.addOperand(Inst.getOperand(4)); 9921 Inst = TmpInst; 9922 return true; 9923 } 9924 9925 case ARM::VST3dWB_register_Asm_8: 9926 case ARM::VST3dWB_register_Asm_16: 9927 case ARM::VST3dWB_register_Asm_32: 9928 case ARM::VST3qWB_register_Asm_8: 9929 case ARM::VST3qWB_register_Asm_16: 9930 case ARM::VST3qWB_register_Asm_32: { 9931 MCInst TmpInst; 9932 unsigned Spacing; 9933 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9934 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9935 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9936 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9937 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9938 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9940 Spacing)); 9941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9942 Spacing * 2)); 9943 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9944 TmpInst.addOperand(Inst.getOperand(5)); 9945 Inst = TmpInst; 9946 return true; 9947 } 9948 9949 // VST4 multiple 3-element structure instructions. 9950 case ARM::VST4dAsm_8: 9951 case ARM::VST4dAsm_16: 9952 case ARM::VST4dAsm_32: 9953 case ARM::VST4qAsm_8: 9954 case ARM::VST4qAsm_16: 9955 case ARM::VST4qAsm_32: { 9956 MCInst TmpInst; 9957 unsigned Spacing; 9958 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9959 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9960 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9961 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9962 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9963 Spacing)); 9964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9965 Spacing * 2)); 9966 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9967 Spacing * 3)); 9968 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9969 TmpInst.addOperand(Inst.getOperand(4)); 9970 Inst = TmpInst; 9971 return true; 9972 } 9973 9974 case ARM::VST4dWB_fixed_Asm_8: 9975 case ARM::VST4dWB_fixed_Asm_16: 9976 case ARM::VST4dWB_fixed_Asm_32: 9977 case ARM::VST4qWB_fixed_Asm_8: 9978 case ARM::VST4qWB_fixed_Asm_16: 9979 case ARM::VST4qWB_fixed_Asm_32: { 9980 MCInst TmpInst; 9981 unsigned Spacing; 9982 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9983 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9984 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9985 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9986 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9987 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9988 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9989 Spacing)); 9990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9991 Spacing * 2)); 9992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9993 Spacing * 3)); 9994 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9995 TmpInst.addOperand(Inst.getOperand(4)); 9996 Inst = TmpInst; 9997 return true; 9998 } 9999 10000 case ARM::VST4dWB_register_Asm_8: 10001 case ARM::VST4dWB_register_Asm_16: 10002 case ARM::VST4dWB_register_Asm_32: 10003 case ARM::VST4qWB_register_Asm_8: 10004 case ARM::VST4qWB_register_Asm_16: 10005 case ARM::VST4qWB_register_Asm_32: { 10006 MCInst TmpInst; 10007 unsigned Spacing; 10008 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 10009 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10010 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 10011 TmpInst.addOperand(Inst.getOperand(2)); // alignment 10012 TmpInst.addOperand(Inst.getOperand(3)); // Rm 10013 TmpInst.addOperand(Inst.getOperand(0)); // Vd 10014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 10015 Spacing)); 10016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 10017 Spacing * 2)); 10018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 10019 Spacing * 3)); 10020 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 10021 TmpInst.addOperand(Inst.getOperand(5)); 10022 Inst = TmpInst; 10023 return true; 10024 } 10025 10026 // Handle encoding choice for the shift-immediate instructions. 10027 case ARM::t2LSLri: 10028 case ARM::t2LSRri: 10029 case ARM::t2ASRri: 10030 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10031 isARMLowRegister(Inst.getOperand(1).getReg()) && 10032 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10033 !HasWideQualifier) { 10034 unsigned NewOpc; 10035 switch (Inst.getOpcode()) { 10036 default: llvm_unreachable("unexpected opcode"); 10037 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 10038 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 10039 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 10040 } 10041 // The Thumb1 operands aren't in the same order. Awesome, eh? 10042 MCInst TmpInst; 10043 TmpInst.setOpcode(NewOpc); 10044 TmpInst.addOperand(Inst.getOperand(0)); 10045 TmpInst.addOperand(Inst.getOperand(5)); 10046 TmpInst.addOperand(Inst.getOperand(1)); 10047 TmpInst.addOperand(Inst.getOperand(2)); 10048 TmpInst.addOperand(Inst.getOperand(3)); 10049 TmpInst.addOperand(Inst.getOperand(4)); 10050 Inst = TmpInst; 10051 return true; 10052 } 10053 return false; 10054 10055 // Handle the Thumb2 mode MOV complex aliases. 10056 case ARM::t2MOVsr: 10057 case ARM::t2MOVSsr: { 10058 // Which instruction to expand to depends on the CCOut operand and 10059 // whether we're in an IT block if the register operands are low 10060 // registers. 10061 bool isNarrow = false; 10062 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10063 isARMLowRegister(Inst.getOperand(1).getReg()) && 10064 isARMLowRegister(Inst.getOperand(2).getReg()) && 10065 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10066 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 10067 !HasWideQualifier) 10068 isNarrow = true; 10069 MCInst TmpInst; 10070 unsigned newOpc; 10071 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 10072 default: llvm_unreachable("unexpected opcode!"); 10073 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 10074 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 10075 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 10076 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 10077 } 10078 TmpInst.setOpcode(newOpc); 10079 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10080 if (isNarrow) 10081 TmpInst.addOperand(MCOperand::createReg( 10082 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10083 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10084 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10085 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 10086 TmpInst.addOperand(Inst.getOperand(5)); 10087 if (!isNarrow) 10088 TmpInst.addOperand(MCOperand::createReg( 10089 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10090 Inst = TmpInst; 10091 return true; 10092 } 10093 case ARM::t2MOVsi: 10094 case ARM::t2MOVSsi: { 10095 // Which instruction to expand to depends on the CCOut operand and 10096 // whether we're in an IT block if the register operands are low 10097 // registers. 10098 bool isNarrow = false; 10099 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10100 isARMLowRegister(Inst.getOperand(1).getReg()) && 10101 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 10102 !HasWideQualifier) 10103 isNarrow = true; 10104 MCInst TmpInst; 10105 unsigned newOpc; 10106 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10107 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 10108 bool isMov = false; 10109 // MOV rd, rm, LSL #0 is actually a MOV instruction 10110 if (Shift == ARM_AM::lsl && Amount == 0) { 10111 isMov = true; 10112 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 10113 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 10114 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 10115 // instead. 10116 if (inITBlock()) { 10117 isNarrow = false; 10118 } 10119 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 10120 } else { 10121 switch(Shift) { 10122 default: llvm_unreachable("unexpected opcode!"); 10123 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 10124 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 10125 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 10126 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 10127 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 10128 } 10129 } 10130 if (Amount == 32) Amount = 0; 10131 TmpInst.setOpcode(newOpc); 10132 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10133 if (isNarrow && !isMov) 10134 TmpInst.addOperand(MCOperand::createReg( 10135 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10136 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10137 if (newOpc != ARM::t2RRX && !isMov) 10138 TmpInst.addOperand(MCOperand::createImm(Amount)); 10139 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10140 TmpInst.addOperand(Inst.getOperand(4)); 10141 if (!isNarrow) 10142 TmpInst.addOperand(MCOperand::createReg( 10143 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10144 Inst = TmpInst; 10145 return true; 10146 } 10147 // Handle the ARM mode MOV complex aliases. 10148 case ARM::ASRr: 10149 case ARM::LSRr: 10150 case ARM::LSLr: 10151 case ARM::RORr: { 10152 ARM_AM::ShiftOpc ShiftTy; 10153 switch(Inst.getOpcode()) { 10154 default: llvm_unreachable("unexpected opcode!"); 10155 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 10156 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 10157 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 10158 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 10159 } 10160 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 10161 MCInst TmpInst; 10162 TmpInst.setOpcode(ARM::MOVsr); 10163 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10164 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10165 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10166 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10167 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10168 TmpInst.addOperand(Inst.getOperand(4)); 10169 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10170 Inst = TmpInst; 10171 return true; 10172 } 10173 case ARM::ASRi: 10174 case ARM::LSRi: 10175 case ARM::LSLi: 10176 case ARM::RORi: { 10177 ARM_AM::ShiftOpc ShiftTy; 10178 switch(Inst.getOpcode()) { 10179 default: llvm_unreachable("unexpected opcode!"); 10180 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 10181 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 10182 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 10183 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 10184 } 10185 // A shift by zero is a plain MOVr, not a MOVsi. 10186 unsigned Amt = Inst.getOperand(2).getImm(); 10187 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 10188 // A shift by 32 should be encoded as 0 when permitted 10189 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 10190 Amt = 0; 10191 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 10192 MCInst TmpInst; 10193 TmpInst.setOpcode(Opc); 10194 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10195 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10196 if (Opc == ARM::MOVsi) 10197 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10198 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10199 TmpInst.addOperand(Inst.getOperand(4)); 10200 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10201 Inst = TmpInst; 10202 return true; 10203 } 10204 case ARM::RRXi: { 10205 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 10206 MCInst TmpInst; 10207 TmpInst.setOpcode(ARM::MOVsi); 10208 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10209 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10210 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10211 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10212 TmpInst.addOperand(Inst.getOperand(3)); 10213 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 10214 Inst = TmpInst; 10215 return true; 10216 } 10217 case ARM::t2LDMIA_UPD: { 10218 // If this is a load of a single register, then we should use 10219 // a post-indexed LDR instruction instead, per the ARM ARM. 10220 if (Inst.getNumOperands() != 5) 10221 return false; 10222 MCInst TmpInst; 10223 TmpInst.setOpcode(ARM::t2LDR_POST); 10224 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10225 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10226 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10227 TmpInst.addOperand(MCOperand::createImm(4)); 10228 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10229 TmpInst.addOperand(Inst.getOperand(3)); 10230 Inst = TmpInst; 10231 return true; 10232 } 10233 case ARM::t2STMDB_UPD: { 10234 // If this is a store of a single register, then we should use 10235 // a pre-indexed STR instruction instead, per the ARM ARM. 10236 if (Inst.getNumOperands() != 5) 10237 return false; 10238 MCInst TmpInst; 10239 TmpInst.setOpcode(ARM::t2STR_PRE); 10240 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10241 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10242 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10243 TmpInst.addOperand(MCOperand::createImm(-4)); 10244 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10245 TmpInst.addOperand(Inst.getOperand(3)); 10246 Inst = TmpInst; 10247 return true; 10248 } 10249 case ARM::LDMIA_UPD: 10250 // If this is a load of a single register via a 'pop', then we should use 10251 // a post-indexed LDR instruction instead, per the ARM ARM. 10252 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10253 Inst.getNumOperands() == 5) { 10254 MCInst TmpInst; 10255 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10256 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10257 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10258 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10259 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10260 TmpInst.addOperand(MCOperand::createImm(4)); 10261 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10262 TmpInst.addOperand(Inst.getOperand(3)); 10263 Inst = TmpInst; 10264 return true; 10265 } 10266 break; 10267 case ARM::STMDB_UPD: 10268 // If this is a store of a single register via a 'push', then we should use 10269 // a pre-indexed STR instruction instead, per the ARM ARM. 10270 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10271 Inst.getNumOperands() == 5) { 10272 MCInst TmpInst; 10273 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10274 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10275 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10276 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10277 TmpInst.addOperand(MCOperand::createImm(-4)); 10278 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10279 TmpInst.addOperand(Inst.getOperand(3)); 10280 Inst = TmpInst; 10281 } 10282 break; 10283 case ARM::t2ADDri12: 10284 case ARM::t2SUBri12: 10285 case ARM::t2ADDspImm12: 10286 case ARM::t2SUBspImm12: { 10287 // If the immediate fits for encoding T3 and the generic 10288 // mnemonic was used, encoding T3 is preferred. 10289 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10290 if ((Token != "add" && Token != "sub") || 10291 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10292 break; 10293 switch (Inst.getOpcode()) { 10294 case ARM::t2ADDri12: 10295 Inst.setOpcode(ARM::t2ADDri); 10296 break; 10297 case ARM::t2SUBri12: 10298 Inst.setOpcode(ARM::t2SUBri); 10299 break; 10300 case ARM::t2ADDspImm12: 10301 Inst.setOpcode(ARM::t2ADDspImm); 10302 break; 10303 case ARM::t2SUBspImm12: 10304 Inst.setOpcode(ARM::t2SUBspImm); 10305 break; 10306 } 10307 10308 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10309 return true; 10310 } 10311 case ARM::tADDi8: 10312 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10313 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10314 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10315 // to encoding T1 if <Rd> is omitted." 10316 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10317 Inst.setOpcode(ARM::tADDi3); 10318 return true; 10319 } 10320 break; 10321 case ARM::tSUBi8: 10322 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10323 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10324 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10325 // to encoding T1 if <Rd> is omitted." 10326 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10327 Inst.setOpcode(ARM::tSUBi3); 10328 return true; 10329 } 10330 break; 10331 case ARM::t2ADDri: 10332 case ARM::t2SUBri: { 10333 // If the destination and first source operand are the same, and 10334 // the flags are compatible with the current IT status, use encoding T2 10335 // instead of T3. For compatibility with the system 'as'. Make sure the 10336 // wide encoding wasn't explicit. 10337 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10338 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10339 (Inst.getOperand(2).isImm() && 10340 (unsigned)Inst.getOperand(2).getImm() > 255) || 10341 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10342 HasWideQualifier) 10343 break; 10344 MCInst TmpInst; 10345 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10346 ARM::tADDi8 : ARM::tSUBi8); 10347 TmpInst.addOperand(Inst.getOperand(0)); 10348 TmpInst.addOperand(Inst.getOperand(5)); 10349 TmpInst.addOperand(Inst.getOperand(0)); 10350 TmpInst.addOperand(Inst.getOperand(2)); 10351 TmpInst.addOperand(Inst.getOperand(3)); 10352 TmpInst.addOperand(Inst.getOperand(4)); 10353 Inst = TmpInst; 10354 return true; 10355 } 10356 case ARM::t2ADDspImm: 10357 case ARM::t2SUBspImm: { 10358 // Prefer T1 encoding if possible 10359 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10360 break; 10361 unsigned V = Inst.getOperand(2).getImm(); 10362 if (V & 3 || V > ((1 << 7) - 1) << 2) 10363 break; 10364 MCInst TmpInst; 10365 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10366 : ARM::tSUBspi); 10367 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10368 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10369 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10370 TmpInst.addOperand(Inst.getOperand(3)); // pred 10371 TmpInst.addOperand(Inst.getOperand(4)); 10372 Inst = TmpInst; 10373 return true; 10374 } 10375 case ARM::t2ADDrr: { 10376 // If the destination and first source operand are the same, and 10377 // there's no setting of the flags, use encoding T2 instead of T3. 10378 // Note that this is only for ADD, not SUB. This mirrors the system 10379 // 'as' behaviour. Also take advantage of ADD being commutative. 10380 // Make sure the wide encoding wasn't explicit. 10381 bool Swap = false; 10382 auto DestReg = Inst.getOperand(0).getReg(); 10383 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10384 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10385 Transform = true; 10386 Swap = true; 10387 } 10388 if (!Transform || 10389 Inst.getOperand(5).getReg() != 0 || 10390 HasWideQualifier) 10391 break; 10392 MCInst TmpInst; 10393 TmpInst.setOpcode(ARM::tADDhirr); 10394 TmpInst.addOperand(Inst.getOperand(0)); 10395 TmpInst.addOperand(Inst.getOperand(0)); 10396 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10397 TmpInst.addOperand(Inst.getOperand(3)); 10398 TmpInst.addOperand(Inst.getOperand(4)); 10399 Inst = TmpInst; 10400 return true; 10401 } 10402 case ARM::tADDrSP: 10403 // If the non-SP source operand and the destination operand are not the 10404 // same, we need to use the 32-bit encoding if it's available. 10405 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10406 Inst.setOpcode(ARM::t2ADDrr); 10407 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10408 return true; 10409 } 10410 break; 10411 case ARM::tB: 10412 // A Thumb conditional branch outside of an IT block is a tBcc. 10413 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10414 Inst.setOpcode(ARM::tBcc); 10415 return true; 10416 } 10417 break; 10418 case ARM::t2B: 10419 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10420 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10421 Inst.setOpcode(ARM::t2Bcc); 10422 return true; 10423 } 10424 break; 10425 case ARM::t2Bcc: 10426 // If the conditional is AL or we're in an IT block, we really want t2B. 10427 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10428 Inst.setOpcode(ARM::t2B); 10429 return true; 10430 } 10431 break; 10432 case ARM::tBcc: 10433 // If the conditional is AL, we really want tB. 10434 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10435 Inst.setOpcode(ARM::tB); 10436 return true; 10437 } 10438 break; 10439 case ARM::tLDMIA: { 10440 // If the register list contains any high registers, or if the writeback 10441 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10442 // instead if we're in Thumb2. Otherwise, this should have generated 10443 // an error in validateInstruction(). 10444 unsigned Rn = Inst.getOperand(0).getReg(); 10445 bool hasWritebackToken = 10446 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10447 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10448 bool listContainsBase; 10449 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10450 (!listContainsBase && !hasWritebackToken) || 10451 (listContainsBase && hasWritebackToken)) { 10452 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10453 assert(isThumbTwo()); 10454 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10455 // If we're switching to the updating version, we need to insert 10456 // the writeback tied operand. 10457 if (hasWritebackToken) 10458 Inst.insert(Inst.begin(), 10459 MCOperand::createReg(Inst.getOperand(0).getReg())); 10460 return true; 10461 } 10462 break; 10463 } 10464 case ARM::tSTMIA_UPD: { 10465 // If the register list contains any high registers, we need to use 10466 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10467 // should have generated an error in validateInstruction(). 10468 unsigned Rn = Inst.getOperand(0).getReg(); 10469 bool listContainsBase; 10470 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10471 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10472 assert(isThumbTwo()); 10473 Inst.setOpcode(ARM::t2STMIA_UPD); 10474 return true; 10475 } 10476 break; 10477 } 10478 case ARM::tPOP: { 10479 bool listContainsBase; 10480 // If the register list contains any high registers, we need to use 10481 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10482 // should have generated an error in validateInstruction(). 10483 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10484 return false; 10485 assert(isThumbTwo()); 10486 Inst.setOpcode(ARM::t2LDMIA_UPD); 10487 // Add the base register and writeback operands. 10488 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10489 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10490 return true; 10491 } 10492 case ARM::tPUSH: { 10493 bool listContainsBase; 10494 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10495 return false; 10496 assert(isThumbTwo()); 10497 Inst.setOpcode(ARM::t2STMDB_UPD); 10498 // Add the base register and writeback operands. 10499 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10500 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10501 return true; 10502 } 10503 case ARM::t2MOVi: 10504 // If we can use the 16-bit encoding and the user didn't explicitly 10505 // request the 32-bit variant, transform it here. 10506 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10507 (Inst.getOperand(1).isImm() && 10508 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10509 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10510 !HasWideQualifier) { 10511 // The operands aren't in the same order for tMOVi8... 10512 MCInst TmpInst; 10513 TmpInst.setOpcode(ARM::tMOVi8); 10514 TmpInst.addOperand(Inst.getOperand(0)); 10515 TmpInst.addOperand(Inst.getOperand(4)); 10516 TmpInst.addOperand(Inst.getOperand(1)); 10517 TmpInst.addOperand(Inst.getOperand(2)); 10518 TmpInst.addOperand(Inst.getOperand(3)); 10519 Inst = TmpInst; 10520 return true; 10521 } 10522 break; 10523 10524 case ARM::t2MOVr: 10525 // If we can use the 16-bit encoding and the user didn't explicitly 10526 // request the 32-bit variant, transform it here. 10527 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10528 isARMLowRegister(Inst.getOperand(1).getReg()) && 10529 Inst.getOperand(2).getImm() == ARMCC::AL && 10530 Inst.getOperand(4).getReg() == ARM::CPSR && 10531 !HasWideQualifier) { 10532 // The operands aren't the same for tMOV[S]r... (no cc_out) 10533 MCInst TmpInst; 10534 unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr; 10535 TmpInst.setOpcode(Op); 10536 TmpInst.addOperand(Inst.getOperand(0)); 10537 TmpInst.addOperand(Inst.getOperand(1)); 10538 if (Op == ARM::tMOVr) { 10539 TmpInst.addOperand(Inst.getOperand(2)); 10540 TmpInst.addOperand(Inst.getOperand(3)); 10541 } 10542 Inst = TmpInst; 10543 return true; 10544 } 10545 break; 10546 10547 case ARM::t2SXTH: 10548 case ARM::t2SXTB: 10549 case ARM::t2UXTH: 10550 case ARM::t2UXTB: 10551 // If we can use the 16-bit encoding and the user didn't explicitly 10552 // request the 32-bit variant, transform it here. 10553 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10554 isARMLowRegister(Inst.getOperand(1).getReg()) && 10555 Inst.getOperand(2).getImm() == 0 && 10556 !HasWideQualifier) { 10557 unsigned NewOpc; 10558 switch (Inst.getOpcode()) { 10559 default: llvm_unreachable("Illegal opcode!"); 10560 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10561 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10562 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10563 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10564 } 10565 // The operands aren't the same for thumb1 (no rotate operand). 10566 MCInst TmpInst; 10567 TmpInst.setOpcode(NewOpc); 10568 TmpInst.addOperand(Inst.getOperand(0)); 10569 TmpInst.addOperand(Inst.getOperand(1)); 10570 TmpInst.addOperand(Inst.getOperand(3)); 10571 TmpInst.addOperand(Inst.getOperand(4)); 10572 Inst = TmpInst; 10573 return true; 10574 } 10575 break; 10576 10577 case ARM::MOVsi: { 10578 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10579 // rrx shifts and asr/lsr of #32 is encoded as 0 10580 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10581 return false; 10582 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10583 // Shifting by zero is accepted as a vanilla 'MOVr' 10584 MCInst TmpInst; 10585 TmpInst.setOpcode(ARM::MOVr); 10586 TmpInst.addOperand(Inst.getOperand(0)); 10587 TmpInst.addOperand(Inst.getOperand(1)); 10588 TmpInst.addOperand(Inst.getOperand(3)); 10589 TmpInst.addOperand(Inst.getOperand(4)); 10590 TmpInst.addOperand(Inst.getOperand(5)); 10591 Inst = TmpInst; 10592 return true; 10593 } 10594 return false; 10595 } 10596 case ARM::ANDrsi: 10597 case ARM::ORRrsi: 10598 case ARM::EORrsi: 10599 case ARM::BICrsi: 10600 case ARM::SUBrsi: 10601 case ARM::ADDrsi: { 10602 unsigned newOpc; 10603 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10604 if (SOpc == ARM_AM::rrx) return false; 10605 switch (Inst.getOpcode()) { 10606 default: llvm_unreachable("unexpected opcode!"); 10607 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10608 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10609 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10610 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10611 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10612 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10613 } 10614 // If the shift is by zero, use the non-shifted instruction definition. 10615 // The exception is for right shifts, where 0 == 32 10616 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10617 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10618 MCInst TmpInst; 10619 TmpInst.setOpcode(newOpc); 10620 TmpInst.addOperand(Inst.getOperand(0)); 10621 TmpInst.addOperand(Inst.getOperand(1)); 10622 TmpInst.addOperand(Inst.getOperand(2)); 10623 TmpInst.addOperand(Inst.getOperand(4)); 10624 TmpInst.addOperand(Inst.getOperand(5)); 10625 TmpInst.addOperand(Inst.getOperand(6)); 10626 Inst = TmpInst; 10627 return true; 10628 } 10629 return false; 10630 } 10631 case ARM::ITasm: 10632 case ARM::t2IT: { 10633 // Set up the IT block state according to the IT instruction we just 10634 // matched. 10635 assert(!inITBlock() && "nested IT blocks?!"); 10636 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10637 Inst.getOperand(1).getImm()); 10638 break; 10639 } 10640 case ARM::t2LSLrr: 10641 case ARM::t2LSRrr: 10642 case ARM::t2ASRrr: 10643 case ARM::t2SBCrr: 10644 case ARM::t2RORrr: 10645 case ARM::t2BICrr: 10646 // Assemblers should use the narrow encodings of these instructions when permissible. 10647 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10648 isARMLowRegister(Inst.getOperand(2).getReg())) && 10649 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10650 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10651 !HasWideQualifier) { 10652 unsigned NewOpc; 10653 switch (Inst.getOpcode()) { 10654 default: llvm_unreachable("unexpected opcode"); 10655 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10656 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10657 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10658 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10659 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10660 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10661 } 10662 MCInst TmpInst; 10663 TmpInst.setOpcode(NewOpc); 10664 TmpInst.addOperand(Inst.getOperand(0)); 10665 TmpInst.addOperand(Inst.getOperand(5)); 10666 TmpInst.addOperand(Inst.getOperand(1)); 10667 TmpInst.addOperand(Inst.getOperand(2)); 10668 TmpInst.addOperand(Inst.getOperand(3)); 10669 TmpInst.addOperand(Inst.getOperand(4)); 10670 Inst = TmpInst; 10671 return true; 10672 } 10673 return false; 10674 10675 case ARM::t2ANDrr: 10676 case ARM::t2EORrr: 10677 case ARM::t2ADCrr: 10678 case ARM::t2ORRrr: 10679 // Assemblers should use the narrow encodings of these instructions when permissible. 10680 // These instructions are special in that they are commutable, so shorter encodings 10681 // are available more often. 10682 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10683 isARMLowRegister(Inst.getOperand(2).getReg())) && 10684 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10685 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10686 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10687 !HasWideQualifier) { 10688 unsigned NewOpc; 10689 switch (Inst.getOpcode()) { 10690 default: llvm_unreachable("unexpected opcode"); 10691 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10692 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10693 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10694 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10695 } 10696 MCInst TmpInst; 10697 TmpInst.setOpcode(NewOpc); 10698 TmpInst.addOperand(Inst.getOperand(0)); 10699 TmpInst.addOperand(Inst.getOperand(5)); 10700 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10701 TmpInst.addOperand(Inst.getOperand(1)); 10702 TmpInst.addOperand(Inst.getOperand(2)); 10703 } else { 10704 TmpInst.addOperand(Inst.getOperand(2)); 10705 TmpInst.addOperand(Inst.getOperand(1)); 10706 } 10707 TmpInst.addOperand(Inst.getOperand(3)); 10708 TmpInst.addOperand(Inst.getOperand(4)); 10709 Inst = TmpInst; 10710 return true; 10711 } 10712 return false; 10713 case ARM::MVE_VPST: 10714 case ARM::MVE_VPTv16i8: 10715 case ARM::MVE_VPTv8i16: 10716 case ARM::MVE_VPTv4i32: 10717 case ARM::MVE_VPTv16u8: 10718 case ARM::MVE_VPTv8u16: 10719 case ARM::MVE_VPTv4u32: 10720 case ARM::MVE_VPTv16s8: 10721 case ARM::MVE_VPTv8s16: 10722 case ARM::MVE_VPTv4s32: 10723 case ARM::MVE_VPTv4f32: 10724 case ARM::MVE_VPTv8f16: 10725 case ARM::MVE_VPTv16i8r: 10726 case ARM::MVE_VPTv8i16r: 10727 case ARM::MVE_VPTv4i32r: 10728 case ARM::MVE_VPTv16u8r: 10729 case ARM::MVE_VPTv8u16r: 10730 case ARM::MVE_VPTv4u32r: 10731 case ARM::MVE_VPTv16s8r: 10732 case ARM::MVE_VPTv8s16r: 10733 case ARM::MVE_VPTv4s32r: 10734 case ARM::MVE_VPTv4f32r: 10735 case ARM::MVE_VPTv8f16r: { 10736 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10737 MCOperand &MO = Inst.getOperand(0); 10738 VPTState.Mask = MO.getImm(); 10739 VPTState.CurPosition = 0; 10740 break; 10741 } 10742 } 10743 return false; 10744 } 10745 10746 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10747 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10748 // suffix depending on whether they're in an IT block or not. 10749 unsigned Opc = Inst.getOpcode(); 10750 const MCInstrDesc &MCID = MII.get(Opc); 10751 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10752 assert(MCID.hasOptionalDef() && 10753 "optionally flag setting instruction missing optional def operand"); 10754 assert(MCID.NumOperands == Inst.getNumOperands() && 10755 "operand count mismatch!"); 10756 // Find the optional-def operand (cc_out). 10757 unsigned OpNo; 10758 for (OpNo = 0; 10759 !MCID.operands()[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10760 ++OpNo) 10761 ; 10762 // If we're parsing Thumb1, reject it completely. 10763 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10764 return Match_RequiresFlagSetting; 10765 // If we're parsing Thumb2, which form is legal depends on whether we're 10766 // in an IT block. 10767 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10768 !inITBlock()) 10769 return Match_RequiresITBlock; 10770 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10771 inITBlock()) 10772 return Match_RequiresNotITBlock; 10773 // LSL with zero immediate is not allowed in an IT block 10774 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10775 return Match_RequiresNotITBlock; 10776 } else if (isThumbOne()) { 10777 // Some high-register supporting Thumb1 encodings only allow both registers 10778 // to be from r0-r7 when in Thumb2. 10779 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10780 isARMLowRegister(Inst.getOperand(1).getReg()) && 10781 isARMLowRegister(Inst.getOperand(2).getReg())) 10782 return Match_RequiresThumb2; 10783 // Others only require ARMv6 or later. 10784 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10785 isARMLowRegister(Inst.getOperand(0).getReg()) && 10786 isARMLowRegister(Inst.getOperand(1).getReg())) 10787 return Match_RequiresV6; 10788 } 10789 10790 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10791 // than the loop below can handle, so it uses the GPRnopc register class and 10792 // we do SP handling here. 10793 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10794 { 10795 // SP as both source and destination is not allowed 10796 if (Inst.getOperand(0).getReg() == ARM::SP && 10797 Inst.getOperand(1).getReg() == ARM::SP) 10798 return Match_RequiresV8; 10799 // When flags-setting SP as either source or destination is not allowed 10800 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10801 (Inst.getOperand(0).getReg() == ARM::SP || 10802 Inst.getOperand(1).getReg() == ARM::SP)) 10803 return Match_RequiresV8; 10804 } 10805 10806 switch (Inst.getOpcode()) { 10807 case ARM::VMRS: 10808 case ARM::VMSR: 10809 case ARM::VMRS_FPCXTS: 10810 case ARM::VMRS_FPCXTNS: 10811 case ARM::VMSR_FPCXTS: 10812 case ARM::VMSR_FPCXTNS: 10813 case ARM::VMRS_FPSCR_NZCVQC: 10814 case ARM::VMSR_FPSCR_NZCVQC: 10815 case ARM::FMSTAT: 10816 case ARM::VMRS_VPR: 10817 case ARM::VMRS_P0: 10818 case ARM::VMSR_VPR: 10819 case ARM::VMSR_P0: 10820 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10821 // ARMv8-A. 10822 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10823 (isThumb() && !hasV8Ops())) 10824 return Match_InvalidOperand; 10825 break; 10826 case ARM::t2TBB: 10827 case ARM::t2TBH: 10828 // Rn = sp is only allowed with ARMv8-A 10829 if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP)) 10830 return Match_RequiresV8; 10831 break; 10832 default: 10833 break; 10834 } 10835 10836 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10837 if (MCID.operands()[I].RegClass == ARM::rGPRRegClassID) { 10838 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10839 const auto &Op = Inst.getOperand(I); 10840 if (!Op.isReg()) { 10841 // This can happen in awkward cases with tied operands, e.g. a 10842 // writeback load/store with a complex addressing mode in 10843 // which there's an output operand corresponding to the 10844 // updated written-back base register: the Tablegen-generated 10845 // AsmMatcher will have written a placeholder operand to that 10846 // slot in the form of an immediate 0, because it can't 10847 // generate the register part of the complex addressing-mode 10848 // operand ahead of time. 10849 continue; 10850 } 10851 10852 unsigned Reg = Op.getReg(); 10853 if ((Reg == ARM::SP) && !hasV8Ops()) 10854 return Match_RequiresV8; 10855 else if (Reg == ARM::PC) 10856 return Match_InvalidOperand; 10857 } 10858 10859 return Match_Success; 10860 } 10861 10862 namespace llvm { 10863 10864 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10865 return true; // In an assembly source, no need to second-guess 10866 } 10867 10868 } // end namespace llvm 10869 10870 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10871 // the last instruction in the block. 10872 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10873 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10874 10875 // All branch & call instructions terminate IT blocks with the exception of 10876 // SVC. 10877 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10878 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10879 return true; 10880 10881 // Any arithmetic instruction which writes to the PC also terminates the IT 10882 // block. 10883 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10884 return true; 10885 10886 return false; 10887 } 10888 10889 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10890 SmallVectorImpl<NearMissInfo> &NearMisses, 10891 bool MatchingInlineAsm, 10892 bool &EmitInITBlock, 10893 MCStreamer &Out) { 10894 // If we can't use an implicit IT block here, just match as normal. 10895 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10896 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10897 10898 // Try to match the instruction in an extension of the current IT block (if 10899 // there is one). 10900 if (inImplicitITBlock()) { 10901 extendImplicitITBlock(ITState.Cond); 10902 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10903 Match_Success) { 10904 // The match succeded, but we still have to check that the instruction is 10905 // valid in this implicit IT block. 10906 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10907 if (MCID.isPredicable()) { 10908 ARMCC::CondCodes InstCond = 10909 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10910 .getImm(); 10911 ARMCC::CondCodes ITCond = currentITCond(); 10912 if (InstCond == ITCond) { 10913 EmitInITBlock = true; 10914 return Match_Success; 10915 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10916 invertCurrentITCondition(); 10917 EmitInITBlock = true; 10918 return Match_Success; 10919 } 10920 } 10921 } 10922 rewindImplicitITPosition(); 10923 } 10924 10925 // Finish the current IT block, and try to match outside any IT block. 10926 flushPendingInstructions(Out); 10927 unsigned PlainMatchResult = 10928 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10929 if (PlainMatchResult == Match_Success) { 10930 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10931 if (MCID.isPredicable()) { 10932 ARMCC::CondCodes InstCond = 10933 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10934 .getImm(); 10935 // Some forms of the branch instruction have their own condition code 10936 // fields, so can be conditionally executed without an IT block. 10937 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10938 EmitInITBlock = false; 10939 return Match_Success; 10940 } 10941 if (InstCond == ARMCC::AL) { 10942 EmitInITBlock = false; 10943 return Match_Success; 10944 } 10945 } else { 10946 EmitInITBlock = false; 10947 return Match_Success; 10948 } 10949 } 10950 10951 // Try to match in a new IT block. The matcher doesn't check the actual 10952 // condition, so we create an IT block with a dummy condition, and fix it up 10953 // once we know the actual condition. 10954 startImplicitITBlock(); 10955 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10956 Match_Success) { 10957 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10958 if (MCID.isPredicable()) { 10959 ITState.Cond = 10960 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10961 .getImm(); 10962 EmitInITBlock = true; 10963 return Match_Success; 10964 } 10965 } 10966 discardImplicitITBlock(); 10967 10968 // If none of these succeed, return the error we got when trying to match 10969 // outside any IT blocks. 10970 EmitInITBlock = false; 10971 return PlainMatchResult; 10972 } 10973 10974 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10975 unsigned VariantID = 0); 10976 10977 static const char *getSubtargetFeatureName(uint64_t Val); 10978 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10979 OperandVector &Operands, 10980 MCStreamer &Out, uint64_t &ErrorInfo, 10981 bool MatchingInlineAsm) { 10982 MCInst Inst; 10983 unsigned MatchResult; 10984 bool PendConditionalInstruction = false; 10985 10986 SmallVector<NearMissInfo, 4> NearMisses; 10987 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10988 PendConditionalInstruction, Out); 10989 10990 switch (MatchResult) { 10991 case Match_Success: 10992 LLVM_DEBUG(dbgs() << "Parsed as: "; 10993 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10994 dbgs() << "\n"); 10995 10996 // Context sensitive operand constraints aren't handled by the matcher, 10997 // so check them here. 10998 if (validateInstruction(Inst, Operands)) { 10999 // Still progress the IT block, otherwise one wrong condition causes 11000 // nasty cascading errors. 11001 forwardITPosition(); 11002 forwardVPTPosition(); 11003 return true; 11004 } 11005 11006 { 11007 // Some instructions need post-processing to, for example, tweak which 11008 // encoding is selected. Loop on it while changes happen so the 11009 // individual transformations can chain off each other. E.g., 11010 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 11011 while (processInstruction(Inst, Operands, Out)) 11012 LLVM_DEBUG(dbgs() << "Changed to: "; 11013 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 11014 dbgs() << "\n"); 11015 } 11016 11017 // Only move forward at the very end so that everything in validate 11018 // and process gets a consistent answer about whether we're in an IT 11019 // block. 11020 forwardITPosition(); 11021 forwardVPTPosition(); 11022 11023 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 11024 // doesn't actually encode. 11025 if (Inst.getOpcode() == ARM::ITasm) 11026 return false; 11027 11028 Inst.setLoc(IDLoc); 11029 if (PendConditionalInstruction) { 11030 PendingConditionalInsts.push_back(Inst); 11031 if (isITBlockFull() || isITBlockTerminator(Inst)) 11032 flushPendingInstructions(Out); 11033 } else { 11034 Out.emitInstruction(Inst, getSTI()); 11035 } 11036 return false; 11037 case Match_NearMisses: 11038 ReportNearMisses(NearMisses, IDLoc, Operands); 11039 return true; 11040 case Match_MnemonicFail: { 11041 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 11042 std::string Suggestion = ARMMnemonicSpellCheck( 11043 ((ARMOperand &)*Operands[0]).getToken(), FBS); 11044 return Error(IDLoc, "invalid instruction" + Suggestion, 11045 ((ARMOperand &)*Operands[0]).getLocRange()); 11046 } 11047 } 11048 11049 llvm_unreachable("Implement any new match types added!"); 11050 } 11051 11052 /// parseDirective parses the arm specific directives 11053 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 11054 const MCContext::Environment Format = getContext().getObjectFileType(); 11055 bool IsMachO = Format == MCContext::IsMachO; 11056 bool IsCOFF = Format == MCContext::IsCOFF; 11057 11058 std::string IDVal = DirectiveID.getIdentifier().lower(); 11059 if (IDVal == ".word") 11060 parseLiteralValues(4, DirectiveID.getLoc()); 11061 else if (IDVal == ".short" || IDVal == ".hword") 11062 parseLiteralValues(2, DirectiveID.getLoc()); 11063 else if (IDVal == ".thumb") 11064 parseDirectiveThumb(DirectiveID.getLoc()); 11065 else if (IDVal == ".arm") 11066 parseDirectiveARM(DirectiveID.getLoc()); 11067 else if (IDVal == ".thumb_func") 11068 parseDirectiveThumbFunc(DirectiveID.getLoc()); 11069 else if (IDVal == ".code") 11070 parseDirectiveCode(DirectiveID.getLoc()); 11071 else if (IDVal == ".syntax") 11072 parseDirectiveSyntax(DirectiveID.getLoc()); 11073 else if (IDVal == ".unreq") 11074 parseDirectiveUnreq(DirectiveID.getLoc()); 11075 else if (IDVal == ".fnend") 11076 parseDirectiveFnEnd(DirectiveID.getLoc()); 11077 else if (IDVal == ".cantunwind") 11078 parseDirectiveCantUnwind(DirectiveID.getLoc()); 11079 else if (IDVal == ".personality") 11080 parseDirectivePersonality(DirectiveID.getLoc()); 11081 else if (IDVal == ".handlerdata") 11082 parseDirectiveHandlerData(DirectiveID.getLoc()); 11083 else if (IDVal == ".setfp") 11084 parseDirectiveSetFP(DirectiveID.getLoc()); 11085 else if (IDVal == ".pad") 11086 parseDirectivePad(DirectiveID.getLoc()); 11087 else if (IDVal == ".save") 11088 parseDirectiveRegSave(DirectiveID.getLoc(), false); 11089 else if (IDVal == ".vsave") 11090 parseDirectiveRegSave(DirectiveID.getLoc(), true); 11091 else if (IDVal == ".ltorg" || IDVal == ".pool") 11092 parseDirectiveLtorg(DirectiveID.getLoc()); 11093 else if (IDVal == ".even") 11094 parseDirectiveEven(DirectiveID.getLoc()); 11095 else if (IDVal == ".personalityindex") 11096 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 11097 else if (IDVal == ".unwind_raw") 11098 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 11099 else if (IDVal == ".movsp") 11100 parseDirectiveMovSP(DirectiveID.getLoc()); 11101 else if (IDVal == ".arch_extension") 11102 parseDirectiveArchExtension(DirectiveID.getLoc()); 11103 else if (IDVal == ".align") 11104 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 11105 else if (IDVal == ".thumb_set") 11106 parseDirectiveThumbSet(DirectiveID.getLoc()); 11107 else if (IDVal == ".inst") 11108 parseDirectiveInst(DirectiveID.getLoc()); 11109 else if (IDVal == ".inst.n") 11110 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 11111 else if (IDVal == ".inst.w") 11112 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 11113 else if (!IsMachO && !IsCOFF) { 11114 if (IDVal == ".arch") 11115 parseDirectiveArch(DirectiveID.getLoc()); 11116 else if (IDVal == ".cpu") 11117 parseDirectiveCPU(DirectiveID.getLoc()); 11118 else if (IDVal == ".eabi_attribute") 11119 parseDirectiveEabiAttr(DirectiveID.getLoc()); 11120 else if (IDVal == ".fpu") 11121 parseDirectiveFPU(DirectiveID.getLoc()); 11122 else if (IDVal == ".fnstart") 11123 parseDirectiveFnStart(DirectiveID.getLoc()); 11124 else if (IDVal == ".object_arch") 11125 parseDirectiveObjectArch(DirectiveID.getLoc()); 11126 else if (IDVal == ".tlsdescseq") 11127 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 11128 else 11129 return true; 11130 } else if (IsCOFF) { 11131 if (IDVal == ".seh_stackalloc") 11132 parseDirectiveSEHAllocStack(DirectiveID.getLoc(), /*Wide=*/false); 11133 else if (IDVal == ".seh_stackalloc_w") 11134 parseDirectiveSEHAllocStack(DirectiveID.getLoc(), /*Wide=*/true); 11135 else if (IDVal == ".seh_save_regs") 11136 parseDirectiveSEHSaveRegs(DirectiveID.getLoc(), /*Wide=*/false); 11137 else if (IDVal == ".seh_save_regs_w") 11138 parseDirectiveSEHSaveRegs(DirectiveID.getLoc(), /*Wide=*/true); 11139 else if (IDVal == ".seh_save_sp") 11140 parseDirectiveSEHSaveSP(DirectiveID.getLoc()); 11141 else if (IDVal == ".seh_save_fregs") 11142 parseDirectiveSEHSaveFRegs(DirectiveID.getLoc()); 11143 else if (IDVal == ".seh_save_lr") 11144 parseDirectiveSEHSaveLR(DirectiveID.getLoc()); 11145 else if (IDVal == ".seh_endprologue") 11146 parseDirectiveSEHPrologEnd(DirectiveID.getLoc(), /*Fragment=*/false); 11147 else if (IDVal == ".seh_endprologue_fragment") 11148 parseDirectiveSEHPrologEnd(DirectiveID.getLoc(), /*Fragment=*/true); 11149 else if (IDVal == ".seh_nop") 11150 parseDirectiveSEHNop(DirectiveID.getLoc(), /*Wide=*/false); 11151 else if (IDVal == ".seh_nop_w") 11152 parseDirectiveSEHNop(DirectiveID.getLoc(), /*Wide=*/true); 11153 else if (IDVal == ".seh_startepilogue") 11154 parseDirectiveSEHEpilogStart(DirectiveID.getLoc(), /*Condition=*/false); 11155 else if (IDVal == ".seh_startepilogue_cond") 11156 parseDirectiveSEHEpilogStart(DirectiveID.getLoc(), /*Condition=*/true); 11157 else if (IDVal == ".seh_endepilogue") 11158 parseDirectiveSEHEpilogEnd(DirectiveID.getLoc()); 11159 else if (IDVal == ".seh_custom") 11160 parseDirectiveSEHCustom(DirectiveID.getLoc()); 11161 else 11162 return true; 11163 } else 11164 return true; 11165 return false; 11166 } 11167 11168 /// parseLiteralValues 11169 /// ::= .hword expression [, expression]* 11170 /// ::= .short expression [, expression]* 11171 /// ::= .word expression [, expression]* 11172 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 11173 auto parseOne = [&]() -> bool { 11174 const MCExpr *Value; 11175 if (getParser().parseExpression(Value)) 11176 return true; 11177 getParser().getStreamer().emitValue(Value, Size, L); 11178 return false; 11179 }; 11180 return (parseMany(parseOne)); 11181 } 11182 11183 /// parseDirectiveThumb 11184 /// ::= .thumb 11185 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 11186 if (parseEOL() || check(!hasThumb(), L, "target does not support Thumb mode")) 11187 return true; 11188 11189 if (!isThumb()) 11190 SwitchMode(); 11191 11192 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11193 return false; 11194 } 11195 11196 /// parseDirectiveARM 11197 /// ::= .arm 11198 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 11199 if (parseEOL() || check(!hasARM(), L, "target does not support ARM mode")) 11200 return true; 11201 11202 if (isThumb()) 11203 SwitchMode(); 11204 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11205 return false; 11206 } 11207 11208 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) { 11209 // We need to flush the current implicit IT block on a label, because it is 11210 // not legal to branch into an IT block. 11211 flushPendingInstructions(getStreamer()); 11212 } 11213 11214 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 11215 if (NextSymbolIsThumb) { 11216 getParser().getStreamer().emitThumbFunc(Symbol); 11217 NextSymbolIsThumb = false; 11218 } 11219 } 11220 11221 /// parseDirectiveThumbFunc 11222 /// ::= .thumbfunc symbol_name 11223 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 11224 MCAsmParser &Parser = getParser(); 11225 const auto Format = getContext().getObjectFileType(); 11226 bool IsMachO = Format == MCContext::IsMachO; 11227 11228 // Darwin asm has (optionally) function name after .thumb_func direction 11229 // ELF doesn't 11230 11231 if (IsMachO) { 11232 if (Parser.getTok().is(AsmToken::Identifier) || 11233 Parser.getTok().is(AsmToken::String)) { 11234 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 11235 Parser.getTok().getIdentifier()); 11236 getParser().getStreamer().emitThumbFunc(Func); 11237 Parser.Lex(); 11238 if (parseEOL()) 11239 return true; 11240 return false; 11241 } 11242 } 11243 11244 if (parseEOL()) 11245 return true; 11246 11247 // .thumb_func implies .thumb 11248 if (!isThumb()) 11249 SwitchMode(); 11250 11251 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11252 11253 NextSymbolIsThumb = true; 11254 return false; 11255 } 11256 11257 /// parseDirectiveSyntax 11258 /// ::= .syntax unified | divided 11259 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11260 MCAsmParser &Parser = getParser(); 11261 const AsmToken &Tok = Parser.getTok(); 11262 if (Tok.isNot(AsmToken::Identifier)) { 11263 Error(L, "unexpected token in .syntax directive"); 11264 return false; 11265 } 11266 11267 StringRef Mode = Tok.getString(); 11268 Parser.Lex(); 11269 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11270 "'.syntax divided' arm assembly not supported") || 11271 check(Mode != "unified" && Mode != "UNIFIED", L, 11272 "unrecognized syntax mode in .syntax directive") || 11273 parseEOL()) 11274 return true; 11275 11276 // TODO tell the MC streamer the mode 11277 // getParser().getStreamer().Emit???(); 11278 return false; 11279 } 11280 11281 /// parseDirectiveCode 11282 /// ::= .code 16 | 32 11283 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11284 MCAsmParser &Parser = getParser(); 11285 const AsmToken &Tok = Parser.getTok(); 11286 if (Tok.isNot(AsmToken::Integer)) 11287 return Error(L, "unexpected token in .code directive"); 11288 int64_t Val = Parser.getTok().getIntVal(); 11289 if (Val != 16 && Val != 32) { 11290 Error(L, "invalid operand to .code directive"); 11291 return false; 11292 } 11293 Parser.Lex(); 11294 11295 if (parseEOL()) 11296 return true; 11297 11298 if (Val == 16) { 11299 if (!hasThumb()) 11300 return Error(L, "target does not support Thumb mode"); 11301 11302 if (!isThumb()) 11303 SwitchMode(); 11304 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11305 } else { 11306 if (!hasARM()) 11307 return Error(L, "target does not support ARM mode"); 11308 11309 if (isThumb()) 11310 SwitchMode(); 11311 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11312 } 11313 11314 return false; 11315 } 11316 11317 /// parseDirectiveReq 11318 /// ::= name .req registername 11319 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11320 MCAsmParser &Parser = getParser(); 11321 Parser.Lex(); // Eat the '.req' token. 11322 MCRegister Reg; 11323 SMLoc SRegLoc, ERegLoc; 11324 if (check(parseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11325 "register name expected") || 11326 parseEOL()) 11327 return true; 11328 11329 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11330 return Error(SRegLoc, 11331 "redefinition of '" + Name + "' does not match original."); 11332 11333 return false; 11334 } 11335 11336 /// parseDirectiveUneq 11337 /// ::= .unreq registername 11338 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11339 MCAsmParser &Parser = getParser(); 11340 if (Parser.getTok().isNot(AsmToken::Identifier)) 11341 return Error(L, "unexpected input in .unreq directive."); 11342 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11343 Parser.Lex(); // Eat the identifier. 11344 return parseEOL(); 11345 } 11346 11347 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11348 // before, if supported by the new target, or emit mapping symbols for the mode 11349 // switch. 11350 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11351 if (WasThumb != isThumb()) { 11352 if (WasThumb && hasThumb()) { 11353 // Stay in Thumb mode 11354 SwitchMode(); 11355 } else if (!WasThumb && hasARM()) { 11356 // Stay in ARM mode 11357 SwitchMode(); 11358 } else { 11359 // Mode switch forced, because the new arch doesn't support the old mode. 11360 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11361 : MCAF_Code32); 11362 // Warn about the implcit mode switch. GAS does not switch modes here, 11363 // but instead stays in the old mode, reporting an error on any following 11364 // instructions as the mode does not exist on the target. 11365 Warning(Loc, Twine("new target does not support ") + 11366 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11367 (!WasThumb ? "thumb" : "arm") + " mode"); 11368 } 11369 } 11370 } 11371 11372 /// parseDirectiveArch 11373 /// ::= .arch token 11374 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11375 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11376 ARM::ArchKind ID = ARM::parseArch(Arch); 11377 11378 if (ID == ARM::ArchKind::INVALID) 11379 return Error(L, "Unknown arch name"); 11380 11381 bool WasThumb = isThumb(); 11382 Triple T; 11383 MCSubtargetInfo &STI = copySTI(); 11384 STI.setDefaultFeatures("", /*TuneCPU*/ "", 11385 ("+" + ARM::getArchName(ID)).str()); 11386 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11387 FixModeAfterArchChange(WasThumb, L); 11388 11389 getTargetStreamer().emitArch(ID); 11390 return false; 11391 } 11392 11393 /// parseDirectiveEabiAttr 11394 /// ::= .eabi_attribute int, int [, "str"] 11395 /// ::= .eabi_attribute Tag_name, int [, "str"] 11396 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11397 MCAsmParser &Parser = getParser(); 11398 int64_t Tag; 11399 SMLoc TagLoc; 11400 TagLoc = Parser.getTok().getLoc(); 11401 if (Parser.getTok().is(AsmToken::Identifier)) { 11402 StringRef Name = Parser.getTok().getIdentifier(); 11403 std::optional<unsigned> Ret = ELFAttrs::attrTypeFromString( 11404 Name, ARMBuildAttrs::getARMAttributeTags()); 11405 if (!Ret) { 11406 Error(TagLoc, "attribute name not recognised: " + Name); 11407 return false; 11408 } 11409 Tag = *Ret; 11410 Parser.Lex(); 11411 } else { 11412 const MCExpr *AttrExpr; 11413 11414 TagLoc = Parser.getTok().getLoc(); 11415 if (Parser.parseExpression(AttrExpr)) 11416 return true; 11417 11418 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11419 if (check(!CE, TagLoc, "expected numeric constant")) 11420 return true; 11421 11422 Tag = CE->getValue(); 11423 } 11424 11425 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11426 return true; 11427 11428 StringRef StringValue = ""; 11429 bool IsStringValue = false; 11430 11431 int64_t IntegerValue = 0; 11432 bool IsIntegerValue = false; 11433 11434 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11435 IsStringValue = true; 11436 else if (Tag == ARMBuildAttrs::compatibility) { 11437 IsStringValue = true; 11438 IsIntegerValue = true; 11439 } else if (Tag < 32 || Tag % 2 == 0) 11440 IsIntegerValue = true; 11441 else if (Tag % 2 == 1) 11442 IsStringValue = true; 11443 else 11444 llvm_unreachable("invalid tag type"); 11445 11446 if (IsIntegerValue) { 11447 const MCExpr *ValueExpr; 11448 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11449 if (Parser.parseExpression(ValueExpr)) 11450 return true; 11451 11452 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11453 if (!CE) 11454 return Error(ValueExprLoc, "expected numeric constant"); 11455 IntegerValue = CE->getValue(); 11456 } 11457 11458 if (Tag == ARMBuildAttrs::compatibility) { 11459 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11460 return true; 11461 } 11462 11463 std::string EscapedValue; 11464 if (IsStringValue) { 11465 if (Parser.getTok().isNot(AsmToken::String)) 11466 return Error(Parser.getTok().getLoc(), "bad string constant"); 11467 11468 if (Tag == ARMBuildAttrs::also_compatible_with) { 11469 if (Parser.parseEscapedString(EscapedValue)) 11470 return Error(Parser.getTok().getLoc(), "bad escaped string constant"); 11471 11472 StringValue = EscapedValue; 11473 } else { 11474 StringValue = Parser.getTok().getStringContents(); 11475 Parser.Lex(); 11476 } 11477 } 11478 11479 if (Parser.parseEOL()) 11480 return true; 11481 11482 if (IsIntegerValue && IsStringValue) { 11483 assert(Tag == ARMBuildAttrs::compatibility); 11484 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11485 } else if (IsIntegerValue) 11486 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11487 else if (IsStringValue) 11488 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11489 return false; 11490 } 11491 11492 /// parseDirectiveCPU 11493 /// ::= .cpu str 11494 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11495 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11496 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11497 11498 // FIXME: This is using table-gen data, but should be moved to 11499 // ARMTargetParser once that is table-gen'd. 11500 if (!getSTI().isCPUStringValid(CPU)) 11501 return Error(L, "Unknown CPU name"); 11502 11503 bool WasThumb = isThumb(); 11504 MCSubtargetInfo &STI = copySTI(); 11505 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 11506 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11507 FixModeAfterArchChange(WasThumb, L); 11508 11509 return false; 11510 } 11511 11512 /// parseDirectiveFPU 11513 /// ::= .fpu str 11514 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11515 SMLoc FPUNameLoc = getTok().getLoc(); 11516 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11517 11518 unsigned ID = ARM::parseFPU(FPU); 11519 std::vector<StringRef> Features; 11520 if (!ARM::getFPUFeatures(ID, Features)) 11521 return Error(FPUNameLoc, "Unknown FPU name"); 11522 11523 MCSubtargetInfo &STI = copySTI(); 11524 for (auto Feature : Features) 11525 STI.ApplyFeatureFlag(Feature); 11526 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11527 11528 getTargetStreamer().emitFPU(ID); 11529 return false; 11530 } 11531 11532 /// parseDirectiveFnStart 11533 /// ::= .fnstart 11534 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11535 if (parseEOL()) 11536 return true; 11537 11538 if (UC.hasFnStart()) { 11539 Error(L, ".fnstart starts before the end of previous one"); 11540 UC.emitFnStartLocNotes(); 11541 return true; 11542 } 11543 11544 // Reset the unwind directives parser state 11545 UC.reset(); 11546 11547 getTargetStreamer().emitFnStart(); 11548 11549 UC.recordFnStart(L); 11550 return false; 11551 } 11552 11553 /// parseDirectiveFnEnd 11554 /// ::= .fnend 11555 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11556 if (parseEOL()) 11557 return true; 11558 // Check the ordering of unwind directives 11559 if (!UC.hasFnStart()) 11560 return Error(L, ".fnstart must precede .fnend directive"); 11561 11562 // Reset the unwind directives parser state 11563 getTargetStreamer().emitFnEnd(); 11564 11565 UC.reset(); 11566 return false; 11567 } 11568 11569 /// parseDirectiveCantUnwind 11570 /// ::= .cantunwind 11571 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11572 if (parseEOL()) 11573 return true; 11574 11575 UC.recordCantUnwind(L); 11576 // Check the ordering of unwind directives 11577 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11578 return true; 11579 11580 if (UC.hasHandlerData()) { 11581 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11582 UC.emitHandlerDataLocNotes(); 11583 return true; 11584 } 11585 if (UC.hasPersonality()) { 11586 Error(L, ".cantunwind can't be used with .personality directive"); 11587 UC.emitPersonalityLocNotes(); 11588 return true; 11589 } 11590 11591 getTargetStreamer().emitCantUnwind(); 11592 return false; 11593 } 11594 11595 /// parseDirectivePersonality 11596 /// ::= .personality name 11597 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11598 MCAsmParser &Parser = getParser(); 11599 bool HasExistingPersonality = UC.hasPersonality(); 11600 11601 // Parse the name of the personality routine 11602 if (Parser.getTok().isNot(AsmToken::Identifier)) 11603 return Error(L, "unexpected input in .personality directive."); 11604 StringRef Name(Parser.getTok().getIdentifier()); 11605 Parser.Lex(); 11606 11607 if (parseEOL()) 11608 return true; 11609 11610 UC.recordPersonality(L); 11611 11612 // Check the ordering of unwind directives 11613 if (!UC.hasFnStart()) 11614 return Error(L, ".fnstart must precede .personality directive"); 11615 if (UC.cantUnwind()) { 11616 Error(L, ".personality can't be used with .cantunwind directive"); 11617 UC.emitCantUnwindLocNotes(); 11618 return true; 11619 } 11620 if (UC.hasHandlerData()) { 11621 Error(L, ".personality must precede .handlerdata directive"); 11622 UC.emitHandlerDataLocNotes(); 11623 return true; 11624 } 11625 if (HasExistingPersonality) { 11626 Error(L, "multiple personality directives"); 11627 UC.emitPersonalityLocNotes(); 11628 return true; 11629 } 11630 11631 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11632 getTargetStreamer().emitPersonality(PR); 11633 return false; 11634 } 11635 11636 /// parseDirectiveHandlerData 11637 /// ::= .handlerdata 11638 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11639 if (parseEOL()) 11640 return true; 11641 11642 UC.recordHandlerData(L); 11643 // Check the ordering of unwind directives 11644 if (!UC.hasFnStart()) 11645 return Error(L, ".fnstart must precede .personality directive"); 11646 if (UC.cantUnwind()) { 11647 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11648 UC.emitCantUnwindLocNotes(); 11649 return true; 11650 } 11651 11652 getTargetStreamer().emitHandlerData(); 11653 return false; 11654 } 11655 11656 /// parseDirectiveSetFP 11657 /// ::= .setfp fpreg, spreg [, offset] 11658 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11659 MCAsmParser &Parser = getParser(); 11660 // Check the ordering of unwind directives 11661 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11662 check(UC.hasHandlerData(), L, 11663 ".setfp must precede .handlerdata directive")) 11664 return true; 11665 11666 // Parse fpreg 11667 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11668 int FPReg = tryParseRegister(); 11669 11670 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11671 Parser.parseToken(AsmToken::Comma, "comma expected")) 11672 return true; 11673 11674 // Parse spreg 11675 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11676 int SPReg = tryParseRegister(); 11677 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11678 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11679 "register should be either $sp or the latest fp register")) 11680 return true; 11681 11682 // Update the frame pointer register 11683 UC.saveFPReg(FPReg); 11684 11685 // Parse offset 11686 int64_t Offset = 0; 11687 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11688 if (Parser.getTok().isNot(AsmToken::Hash) && 11689 Parser.getTok().isNot(AsmToken::Dollar)) 11690 return Error(Parser.getTok().getLoc(), "'#' expected"); 11691 Parser.Lex(); // skip hash token. 11692 11693 const MCExpr *OffsetExpr; 11694 SMLoc ExLoc = Parser.getTok().getLoc(); 11695 SMLoc EndLoc; 11696 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11697 return Error(ExLoc, "malformed setfp offset"); 11698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11699 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11700 return true; 11701 Offset = CE->getValue(); 11702 } 11703 11704 if (Parser.parseToken(AsmToken::EndOfStatement)) 11705 return true; 11706 11707 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11708 static_cast<unsigned>(SPReg), Offset); 11709 return false; 11710 } 11711 11712 /// parseDirective 11713 /// ::= .pad offset 11714 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11715 MCAsmParser &Parser = getParser(); 11716 // Check the ordering of unwind directives 11717 if (!UC.hasFnStart()) 11718 return Error(L, ".fnstart must precede .pad directive"); 11719 if (UC.hasHandlerData()) 11720 return Error(L, ".pad must precede .handlerdata directive"); 11721 11722 // Parse the offset 11723 if (Parser.getTok().isNot(AsmToken::Hash) && 11724 Parser.getTok().isNot(AsmToken::Dollar)) 11725 return Error(Parser.getTok().getLoc(), "'#' expected"); 11726 Parser.Lex(); // skip hash token. 11727 11728 const MCExpr *OffsetExpr; 11729 SMLoc ExLoc = Parser.getTok().getLoc(); 11730 SMLoc EndLoc; 11731 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11732 return Error(ExLoc, "malformed pad offset"); 11733 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11734 if (!CE) 11735 return Error(ExLoc, "pad offset must be an immediate"); 11736 11737 if (parseEOL()) 11738 return true; 11739 11740 getTargetStreamer().emitPad(CE->getValue()); 11741 return false; 11742 } 11743 11744 /// parseDirectiveRegSave 11745 /// ::= .save { registers } 11746 /// ::= .vsave { registers } 11747 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11748 // Check the ordering of unwind directives 11749 if (!UC.hasFnStart()) 11750 return Error(L, ".fnstart must precede .save or .vsave directives"); 11751 if (UC.hasHandlerData()) 11752 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11753 11754 // RAII object to make sure parsed operands are deleted. 11755 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11756 11757 // Parse the register list 11758 if (parseRegisterList(Operands, true, true) || parseEOL()) 11759 return true; 11760 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11761 if (!IsVector && !Op.isRegList()) 11762 return Error(L, ".save expects GPR registers"); 11763 if (IsVector && !Op.isDPRRegList()) 11764 return Error(L, ".vsave expects DPR registers"); 11765 11766 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11767 return false; 11768 } 11769 11770 /// parseDirectiveInst 11771 /// ::= .inst opcode [, ...] 11772 /// ::= .inst.n opcode [, ...] 11773 /// ::= .inst.w opcode [, ...] 11774 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11775 int Width = 4; 11776 11777 if (isThumb()) { 11778 switch (Suffix) { 11779 case 'n': 11780 Width = 2; 11781 break; 11782 case 'w': 11783 break; 11784 default: 11785 Width = 0; 11786 break; 11787 } 11788 } else { 11789 if (Suffix) 11790 return Error(Loc, "width suffixes are invalid in ARM mode"); 11791 } 11792 11793 auto parseOne = [&]() -> bool { 11794 const MCExpr *Expr; 11795 if (getParser().parseExpression(Expr)) 11796 return true; 11797 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11798 if (!Value) { 11799 return Error(Loc, "expected constant expression"); 11800 } 11801 11802 char CurSuffix = Suffix; 11803 switch (Width) { 11804 case 2: 11805 if (Value->getValue() > 0xffff) 11806 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11807 break; 11808 case 4: 11809 if (Value->getValue() > 0xffffffff) 11810 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11811 " operand is too big"); 11812 break; 11813 case 0: 11814 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11815 if (Value->getValue() < 0xe800) 11816 CurSuffix = 'n'; 11817 else if (Value->getValue() >= 0xe8000000) 11818 CurSuffix = 'w'; 11819 else 11820 return Error(Loc, "cannot determine Thumb instruction size, " 11821 "use inst.n/inst.w instead"); 11822 break; 11823 default: 11824 llvm_unreachable("only supported widths are 2 and 4"); 11825 } 11826 11827 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11828 return false; 11829 }; 11830 11831 if (parseOptionalToken(AsmToken::EndOfStatement)) 11832 return Error(Loc, "expected expression following directive"); 11833 if (parseMany(parseOne)) 11834 return true; 11835 return false; 11836 } 11837 11838 /// parseDirectiveLtorg 11839 /// ::= .ltorg | .pool 11840 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11841 if (parseEOL()) 11842 return true; 11843 getTargetStreamer().emitCurrentConstantPool(); 11844 return false; 11845 } 11846 11847 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11848 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11849 11850 if (parseEOL()) 11851 return true; 11852 11853 if (!Section) { 11854 getStreamer().initSections(false, getSTI()); 11855 Section = getStreamer().getCurrentSectionOnly(); 11856 } 11857 11858 assert(Section && "must have section to emit alignment"); 11859 if (Section->useCodeAlign()) 11860 getStreamer().emitCodeAlignment(Align(2), &getSTI()); 11861 else 11862 getStreamer().emitValueToAlignment(Align(2)); 11863 11864 return false; 11865 } 11866 11867 /// parseDirectivePersonalityIndex 11868 /// ::= .personalityindex index 11869 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11870 MCAsmParser &Parser = getParser(); 11871 bool HasExistingPersonality = UC.hasPersonality(); 11872 11873 const MCExpr *IndexExpression; 11874 SMLoc IndexLoc = Parser.getTok().getLoc(); 11875 if (Parser.parseExpression(IndexExpression) || parseEOL()) { 11876 return true; 11877 } 11878 11879 UC.recordPersonalityIndex(L); 11880 11881 if (!UC.hasFnStart()) { 11882 return Error(L, ".fnstart must precede .personalityindex directive"); 11883 } 11884 if (UC.cantUnwind()) { 11885 Error(L, ".personalityindex cannot be used with .cantunwind"); 11886 UC.emitCantUnwindLocNotes(); 11887 return true; 11888 } 11889 if (UC.hasHandlerData()) { 11890 Error(L, ".personalityindex must precede .handlerdata directive"); 11891 UC.emitHandlerDataLocNotes(); 11892 return true; 11893 } 11894 if (HasExistingPersonality) { 11895 Error(L, "multiple personality directives"); 11896 UC.emitPersonalityLocNotes(); 11897 return true; 11898 } 11899 11900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11901 if (!CE) 11902 return Error(IndexLoc, "index must be a constant number"); 11903 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11904 return Error(IndexLoc, 11905 "personality routine index should be in range [0-3]"); 11906 11907 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11908 return false; 11909 } 11910 11911 /// parseDirectiveUnwindRaw 11912 /// ::= .unwind_raw offset, opcode [, opcode...] 11913 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11914 MCAsmParser &Parser = getParser(); 11915 int64_t StackOffset; 11916 const MCExpr *OffsetExpr; 11917 SMLoc OffsetLoc = getLexer().getLoc(); 11918 11919 if (!UC.hasFnStart()) 11920 return Error(L, ".fnstart must precede .unwind_raw directives"); 11921 if (getParser().parseExpression(OffsetExpr)) 11922 return Error(OffsetLoc, "expected expression"); 11923 11924 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11925 if (!CE) 11926 return Error(OffsetLoc, "offset must be a constant"); 11927 11928 StackOffset = CE->getValue(); 11929 11930 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11931 return true; 11932 11933 SmallVector<uint8_t, 16> Opcodes; 11934 11935 auto parseOne = [&]() -> bool { 11936 const MCExpr *OE = nullptr; 11937 SMLoc OpcodeLoc = getLexer().getLoc(); 11938 if (check(getLexer().is(AsmToken::EndOfStatement) || 11939 Parser.parseExpression(OE), 11940 OpcodeLoc, "expected opcode expression")) 11941 return true; 11942 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11943 if (!OC) 11944 return Error(OpcodeLoc, "opcode value must be a constant"); 11945 const int64_t Opcode = OC->getValue(); 11946 if (Opcode & ~0xff) 11947 return Error(OpcodeLoc, "invalid opcode"); 11948 Opcodes.push_back(uint8_t(Opcode)); 11949 return false; 11950 }; 11951 11952 // Must have at least 1 element 11953 SMLoc OpcodeLoc = getLexer().getLoc(); 11954 if (parseOptionalToken(AsmToken::EndOfStatement)) 11955 return Error(OpcodeLoc, "expected opcode expression"); 11956 if (parseMany(parseOne)) 11957 return true; 11958 11959 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11960 return false; 11961 } 11962 11963 /// parseDirectiveTLSDescSeq 11964 /// ::= .tlsdescseq tls-variable 11965 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11966 MCAsmParser &Parser = getParser(); 11967 11968 if (getLexer().isNot(AsmToken::Identifier)) 11969 return TokError("expected variable after '.tlsdescseq' directive"); 11970 11971 const MCSymbolRefExpr *SRE = 11972 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11973 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11974 Lex(); 11975 11976 if (parseEOL()) 11977 return true; 11978 11979 getTargetStreamer().annotateTLSDescriptorSequence(SRE); 11980 return false; 11981 } 11982 11983 /// parseDirectiveMovSP 11984 /// ::= .movsp reg [, #offset] 11985 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11986 MCAsmParser &Parser = getParser(); 11987 if (!UC.hasFnStart()) 11988 return Error(L, ".fnstart must precede .movsp directives"); 11989 if (UC.getFPReg() != ARM::SP) 11990 return Error(L, "unexpected .movsp directive"); 11991 11992 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11993 int SPReg = tryParseRegister(); 11994 if (SPReg == -1) 11995 return Error(SPRegLoc, "register expected"); 11996 if (SPReg == ARM::SP || SPReg == ARM::PC) 11997 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11998 11999 int64_t Offset = 0; 12000 if (Parser.parseOptionalToken(AsmToken::Comma)) { 12001 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 12002 return true; 12003 12004 const MCExpr *OffsetExpr; 12005 SMLoc OffsetLoc = Parser.getTok().getLoc(); 12006 12007 if (Parser.parseExpression(OffsetExpr)) 12008 return Error(OffsetLoc, "malformed offset expression"); 12009 12010 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 12011 if (!CE) 12012 return Error(OffsetLoc, "offset must be an immediate constant"); 12013 12014 Offset = CE->getValue(); 12015 } 12016 12017 if (parseEOL()) 12018 return true; 12019 12020 getTargetStreamer().emitMovSP(SPReg, Offset); 12021 UC.saveFPReg(SPReg); 12022 12023 return false; 12024 } 12025 12026 /// parseDirectiveObjectArch 12027 /// ::= .object_arch name 12028 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 12029 MCAsmParser &Parser = getParser(); 12030 if (getLexer().isNot(AsmToken::Identifier)) 12031 return Error(getLexer().getLoc(), "unexpected token"); 12032 12033 StringRef Arch = Parser.getTok().getString(); 12034 SMLoc ArchLoc = Parser.getTok().getLoc(); 12035 Lex(); 12036 12037 ARM::ArchKind ID = ARM::parseArch(Arch); 12038 12039 if (ID == ARM::ArchKind::INVALID) 12040 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 12041 if (parseToken(AsmToken::EndOfStatement)) 12042 return true; 12043 12044 getTargetStreamer().emitObjectArch(ID); 12045 return false; 12046 } 12047 12048 /// parseDirectiveAlign 12049 /// ::= .align 12050 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 12051 // NOTE: if this is not the end of the statement, fall back to the target 12052 // agnostic handling for this directive which will correctly handle this. 12053 if (parseOptionalToken(AsmToken::EndOfStatement)) { 12054 // '.align' is target specifically handled to mean 2**2 byte alignment. 12055 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 12056 assert(Section && "must have section to emit alignment"); 12057 if (Section->useCodeAlign()) 12058 getStreamer().emitCodeAlignment(Align(4), &getSTI(), 0); 12059 else 12060 getStreamer().emitValueToAlignment(Align(4), 0, 1, 0); 12061 return false; 12062 } 12063 return true; 12064 } 12065 12066 /// parseDirectiveThumbSet 12067 /// ::= .thumb_set name, value 12068 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 12069 MCAsmParser &Parser = getParser(); 12070 12071 StringRef Name; 12072 if (check(Parser.parseIdentifier(Name), 12073 "expected identifier after '.thumb_set'") || 12074 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 12075 return true; 12076 12077 MCSymbol *Sym; 12078 const MCExpr *Value; 12079 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 12080 Parser, Sym, Value)) 12081 return true; 12082 12083 getTargetStreamer().emitThumbSet(Sym, Value); 12084 return false; 12085 } 12086 12087 /// parseDirectiveSEHAllocStack 12088 /// ::= .seh_stackalloc 12089 /// ::= .seh_stackalloc_w 12090 bool ARMAsmParser::parseDirectiveSEHAllocStack(SMLoc L, bool Wide) { 12091 int64_t Size; 12092 if (parseImmExpr(Size)) 12093 return true; 12094 getTargetStreamer().emitARMWinCFIAllocStack(Size, Wide); 12095 return false; 12096 } 12097 12098 /// parseDirectiveSEHSaveRegs 12099 /// ::= .seh_save_regs 12100 /// ::= .seh_save_regs_w 12101 bool ARMAsmParser::parseDirectiveSEHSaveRegs(SMLoc L, bool Wide) { 12102 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 12103 12104 if (parseRegisterList(Operands) || parseEOL()) 12105 return true; 12106 ARMOperand &Op = (ARMOperand &)*Operands[0]; 12107 if (!Op.isRegList()) 12108 return Error(L, ".seh_save_regs{_w} expects GPR registers"); 12109 const SmallVectorImpl<unsigned> &RegList = Op.getRegList(); 12110 uint32_t Mask = 0; 12111 for (size_t i = 0; i < RegList.size(); ++i) { 12112 unsigned Reg = MRI->getEncodingValue(RegList[i]); 12113 if (Reg == 15) // pc -> lr 12114 Reg = 14; 12115 if (Reg == 13) 12116 return Error(L, ".seh_save_regs{_w} can't include SP"); 12117 assert(Reg < 16U && "Register out of range"); 12118 unsigned Bit = (1u << Reg); 12119 Mask |= Bit; 12120 } 12121 if (!Wide && (Mask & 0x1f00) != 0) 12122 return Error(L, 12123 ".seh_save_regs cannot save R8-R12, needs .seh_save_regs_w"); 12124 getTargetStreamer().emitARMWinCFISaveRegMask(Mask, Wide); 12125 return false; 12126 } 12127 12128 /// parseDirectiveSEHSaveSP 12129 /// ::= .seh_save_sp 12130 bool ARMAsmParser::parseDirectiveSEHSaveSP(SMLoc L) { 12131 int Reg = tryParseRegister(); 12132 if (Reg == -1 || !MRI->getRegClass(ARM::GPRRegClassID).contains(Reg)) 12133 return Error(L, "expected GPR"); 12134 unsigned Index = MRI->getEncodingValue(Reg); 12135 if (Index > 14 || Index == 13) 12136 return Error(L, "invalid register for .seh_save_sp"); 12137 getTargetStreamer().emitARMWinCFISaveSP(Index); 12138 return false; 12139 } 12140 12141 /// parseDirectiveSEHSaveFRegs 12142 /// ::= .seh_save_fregs 12143 bool ARMAsmParser::parseDirectiveSEHSaveFRegs(SMLoc L) { 12144 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 12145 12146 if (parseRegisterList(Operands) || parseEOL()) 12147 return true; 12148 ARMOperand &Op = (ARMOperand &)*Operands[0]; 12149 if (!Op.isDPRRegList()) 12150 return Error(L, ".seh_save_fregs expects DPR registers"); 12151 const SmallVectorImpl<unsigned> &RegList = Op.getRegList(); 12152 uint32_t Mask = 0; 12153 for (size_t i = 0; i < RegList.size(); ++i) { 12154 unsigned Reg = MRI->getEncodingValue(RegList[i]); 12155 assert(Reg < 32U && "Register out of range"); 12156 unsigned Bit = (1u << Reg); 12157 Mask |= Bit; 12158 } 12159 12160 if (Mask == 0) 12161 return Error(L, ".seh_save_fregs missing registers"); 12162 12163 unsigned First = 0; 12164 while ((Mask & 1) == 0) { 12165 First++; 12166 Mask >>= 1; 12167 } 12168 if (((Mask + 1) & Mask) != 0) 12169 return Error(L, 12170 ".seh_save_fregs must take a contiguous range of registers"); 12171 unsigned Last = First; 12172 while ((Mask & 2) != 0) { 12173 Last++; 12174 Mask >>= 1; 12175 } 12176 if (First < 16 && Last >= 16) 12177 return Error(L, ".seh_save_fregs must be all d0-d15 or d16-d31"); 12178 getTargetStreamer().emitARMWinCFISaveFRegs(First, Last); 12179 return false; 12180 } 12181 12182 /// parseDirectiveSEHSaveLR 12183 /// ::= .seh_save_lr 12184 bool ARMAsmParser::parseDirectiveSEHSaveLR(SMLoc L) { 12185 int64_t Offset; 12186 if (parseImmExpr(Offset)) 12187 return true; 12188 getTargetStreamer().emitARMWinCFISaveLR(Offset); 12189 return false; 12190 } 12191 12192 /// parseDirectiveSEHPrologEnd 12193 /// ::= .seh_endprologue 12194 /// ::= .seh_endprologue_fragment 12195 bool ARMAsmParser::parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment) { 12196 getTargetStreamer().emitARMWinCFIPrologEnd(Fragment); 12197 return false; 12198 } 12199 12200 /// parseDirectiveSEHNop 12201 /// ::= .seh_nop 12202 /// ::= .seh_nop_w 12203 bool ARMAsmParser::parseDirectiveSEHNop(SMLoc L, bool Wide) { 12204 getTargetStreamer().emitARMWinCFINop(Wide); 12205 return false; 12206 } 12207 12208 /// parseDirectiveSEHEpilogStart 12209 /// ::= .seh_startepilogue 12210 /// ::= .seh_startepilogue_cond 12211 bool ARMAsmParser::parseDirectiveSEHEpilogStart(SMLoc L, bool Condition) { 12212 unsigned CC = ARMCC::AL; 12213 if (Condition) { 12214 MCAsmParser &Parser = getParser(); 12215 SMLoc S = Parser.getTok().getLoc(); 12216 const AsmToken &Tok = Parser.getTok(); 12217 if (!Tok.is(AsmToken::Identifier)) 12218 return Error(S, ".seh_startepilogue_cond missing condition"); 12219 CC = ARMCondCodeFromString(Tok.getString()); 12220 if (CC == ~0U) 12221 return Error(S, "invalid condition"); 12222 Parser.Lex(); // Eat the token. 12223 } 12224 12225 getTargetStreamer().emitARMWinCFIEpilogStart(CC); 12226 return false; 12227 } 12228 12229 /// parseDirectiveSEHEpilogEnd 12230 /// ::= .seh_endepilogue 12231 bool ARMAsmParser::parseDirectiveSEHEpilogEnd(SMLoc L) { 12232 getTargetStreamer().emitARMWinCFIEpilogEnd(); 12233 return false; 12234 } 12235 12236 /// parseDirectiveSEHCustom 12237 /// ::= .seh_custom 12238 bool ARMAsmParser::parseDirectiveSEHCustom(SMLoc L) { 12239 unsigned Opcode = 0; 12240 do { 12241 int64_t Byte; 12242 if (parseImmExpr(Byte)) 12243 return true; 12244 if (Byte > 0xff || Byte < 0) 12245 return Error(L, "Invalid byte value in .seh_custom"); 12246 if (Opcode > 0x00ffffff) 12247 return Error(L, "Too many bytes in .seh_custom"); 12248 // Store the bytes as one big endian number in Opcode. In a multi byte 12249 // opcode sequence, the first byte can't be zero. 12250 Opcode = (Opcode << 8) | Byte; 12251 } while (parseOptionalToken(AsmToken::Comma)); 12252 getTargetStreamer().emitARMWinCFICustom(Opcode); 12253 return false; 12254 } 12255 12256 /// Force static initialization. 12257 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 12258 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 12259 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 12260 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 12261 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 12262 } 12263 12264 #define GET_REGISTER_MATCHER 12265 #define GET_SUBTARGET_FEATURE_NAME 12266 #define GET_MATCHER_IMPLEMENTATION 12267 #define GET_MNEMONIC_SPELL_CHECKER 12268 #include "ARMGenAsmMatcher.inc" 12269 12270 // Some diagnostics need to vary with subtarget features, so they are handled 12271 // here. For example, the DPR class has either 16 or 32 registers, depending 12272 // on the FPU available. 12273 const char * 12274 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 12275 switch (MatchError) { 12276 // rGPR contains sp starting with ARMv8. 12277 case Match_rGPR: 12278 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 12279 : "operand must be a register in range [r0, r12] or r14"; 12280 // DPR contains 16 registers for some FPUs, and 32 for others. 12281 case Match_DPR: 12282 return hasD32() ? "operand must be a register in range [d0, d31]" 12283 : "operand must be a register in range [d0, d15]"; 12284 case Match_DPR_RegList: 12285 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 12286 : "operand must be a list of registers in range [d0, d15]"; 12287 12288 // For all other diags, use the static string from tablegen. 12289 default: 12290 return getMatchKindDiag(MatchError); 12291 } 12292 } 12293 12294 // Process the list of near-misses, throwing away ones we don't want to report 12295 // to the user, and converting the rest to a source location and string that 12296 // should be reported. 12297 void 12298 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 12299 SmallVectorImpl<NearMissMessage> &NearMissesOut, 12300 SMLoc IDLoc, OperandVector &Operands) { 12301 // TODO: If operand didn't match, sub in a dummy one and run target 12302 // predicate, so that we can avoid reporting near-misses that are invalid? 12303 // TODO: Many operand types dont have SuperClasses set, so we report 12304 // redundant ones. 12305 // TODO: Some operands are superclasses of registers (e.g. 12306 // MCK_RegShiftedImm), we don't have any way to represent that currently. 12307 // TODO: This is not all ARM-specific, can some of it be factored out? 12308 12309 // Record some information about near-misses that we have already seen, so 12310 // that we can avoid reporting redundant ones. For example, if there are 12311 // variants of an instruction that take 8- and 16-bit immediates, we want 12312 // to only report the widest one. 12313 std::multimap<unsigned, unsigned> OperandMissesSeen; 12314 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 12315 bool ReportedTooFewOperands = false; 12316 12317 // Process the near-misses in reverse order, so that we see more general ones 12318 // first, and so can avoid emitting more specific ones. 12319 for (NearMissInfo &I : reverse(NearMissesIn)) { 12320 switch (I.getKind()) { 12321 case NearMissInfo::NearMissOperand: { 12322 SMLoc OperandLoc = 12323 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 12324 const char *OperandDiag = 12325 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 12326 12327 // If we have already emitted a message for a superclass, don't also report 12328 // the sub-class. We consider all operand classes that we don't have a 12329 // specialised diagnostic for to be equal for the propose of this check, 12330 // so that we don't report the generic error multiple times on the same 12331 // operand. 12332 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 12333 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 12334 if (std::any_of(PrevReports.first, PrevReports.second, 12335 [DupCheckMatchClass]( 12336 const std::pair<unsigned, unsigned> Pair) { 12337 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 12338 return Pair.second == DupCheckMatchClass; 12339 else 12340 return isSubclass((MatchClassKind)DupCheckMatchClass, 12341 (MatchClassKind)Pair.second); 12342 })) 12343 break; 12344 OperandMissesSeen.insert( 12345 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 12346 12347 NearMissMessage Message; 12348 Message.Loc = OperandLoc; 12349 if (OperandDiag) { 12350 Message.Message = OperandDiag; 12351 } else if (I.getOperandClass() == InvalidMatchClass) { 12352 Message.Message = "too many operands for instruction"; 12353 } else { 12354 Message.Message = "invalid operand for instruction"; 12355 LLVM_DEBUG( 12356 dbgs() << "Missing diagnostic string for operand class " 12357 << getMatchClassName((MatchClassKind)I.getOperandClass()) 12358 << I.getOperandClass() << ", error " << I.getOperandError() 12359 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 12360 } 12361 NearMissesOut.emplace_back(Message); 12362 break; 12363 } 12364 case NearMissInfo::NearMissFeature: { 12365 const FeatureBitset &MissingFeatures = I.getFeatures(); 12366 // Don't report the same set of features twice. 12367 if (FeatureMissesSeen.count(MissingFeatures)) 12368 break; 12369 FeatureMissesSeen.insert(MissingFeatures); 12370 12371 // Special case: don't report a feature set which includes arm-mode for 12372 // targets that don't have ARM mode. 12373 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 12374 break; 12375 // Don't report any near-misses that both require switching instruction 12376 // set, and adding other subtarget features. 12377 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 12378 MissingFeatures.count() > 1) 12379 break; 12380 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 12381 MissingFeatures.count() > 1) 12382 break; 12383 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 12384 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 12385 Feature_IsThumbBit})).any()) 12386 break; 12387 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 12388 break; 12389 12390 NearMissMessage Message; 12391 Message.Loc = IDLoc; 12392 raw_svector_ostream OS(Message.Message); 12393 12394 OS << "instruction requires:"; 12395 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 12396 if (MissingFeatures.test(i)) 12397 OS << ' ' << getSubtargetFeatureName(i); 12398 12399 NearMissesOut.emplace_back(Message); 12400 12401 break; 12402 } 12403 case NearMissInfo::NearMissPredicate: { 12404 NearMissMessage Message; 12405 Message.Loc = IDLoc; 12406 switch (I.getPredicateError()) { 12407 case Match_RequiresNotITBlock: 12408 Message.Message = "flag setting instruction only valid outside IT block"; 12409 break; 12410 case Match_RequiresITBlock: 12411 Message.Message = "instruction only valid inside IT block"; 12412 break; 12413 case Match_RequiresV6: 12414 Message.Message = "instruction variant requires ARMv6 or later"; 12415 break; 12416 case Match_RequiresThumb2: 12417 Message.Message = "instruction variant requires Thumb2"; 12418 break; 12419 case Match_RequiresV8: 12420 Message.Message = "instruction variant requires ARMv8 or later"; 12421 break; 12422 case Match_RequiresFlagSetting: 12423 Message.Message = "no flag-preserving variant of this instruction available"; 12424 break; 12425 case Match_InvalidOperand: 12426 Message.Message = "invalid operand for instruction"; 12427 break; 12428 default: 12429 llvm_unreachable("Unhandled target predicate error"); 12430 break; 12431 } 12432 NearMissesOut.emplace_back(Message); 12433 break; 12434 } 12435 case NearMissInfo::NearMissTooFewOperands: { 12436 if (!ReportedTooFewOperands) { 12437 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12438 NearMissesOut.emplace_back(NearMissMessage{ 12439 EndLoc, StringRef("too few operands for instruction")}); 12440 ReportedTooFewOperands = true; 12441 } 12442 break; 12443 } 12444 case NearMissInfo::NoNearMiss: 12445 // This should never leave the matcher. 12446 llvm_unreachable("not a near-miss"); 12447 break; 12448 } 12449 } 12450 } 12451 12452 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12453 SMLoc IDLoc, OperandVector &Operands) { 12454 SmallVector<NearMissMessage, 4> Messages; 12455 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12456 12457 if (Messages.size() == 0) { 12458 // No near-misses were found, so the best we can do is "invalid 12459 // instruction". 12460 Error(IDLoc, "invalid instruction"); 12461 } else if (Messages.size() == 1) { 12462 // One near miss was found, report it as the sole error. 12463 Error(Messages[0].Loc, Messages[0].Message); 12464 } else { 12465 // More than one near miss, so report a generic "invalid instruction" 12466 // error, followed by notes for each of the near-misses. 12467 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12468 for (auto &M : Messages) { 12469 Note(M.Loc, M.Message); 12470 } 12471 } 12472 } 12473 12474 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) { 12475 // FIXME: This structure should be moved inside ARMTargetParser 12476 // when we start to table-generate them, and we can use the ARM 12477 // flags below, that were generated by table-gen. 12478 static const struct { 12479 const uint64_t Kind; 12480 const FeatureBitset ArchCheck; 12481 const FeatureBitset Features; 12482 } Extensions[] = { 12483 {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}}, 12484 {ARM::AEK_AES, 12485 {Feature_HasV8Bit}, 12486 {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12487 {ARM::AEK_SHA2, 12488 {Feature_HasV8Bit}, 12489 {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12490 {ARM::AEK_CRYPTO, 12491 {Feature_HasV8Bit}, 12492 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12493 {ARM::AEK_FP, 12494 {Feature_HasV8Bit}, 12495 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12496 {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12497 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12498 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}}, 12499 {ARM::AEK_MP, 12500 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12501 {ARM::FeatureMP}}, 12502 {ARM::AEK_SIMD, 12503 {Feature_HasV8Bit}, 12504 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12505 {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}}, 12506 // FIXME: Only available in A-class, isel not predicated 12507 {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}}, 12508 {ARM::AEK_FP16, 12509 {Feature_HasV8_2aBit}, 12510 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}}, 12511 {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}}, 12512 {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}}, 12513 {ARM::AEK_PACBTI, {Feature_HasV8_1MMainlineBit}, {ARM::FeaturePACBTI}}, 12514 // FIXME: Unsupported extensions. 12515 {ARM::AEK_OS, {}, {}}, 12516 {ARM::AEK_IWMMXT, {}, {}}, 12517 {ARM::AEK_IWMMXT2, {}, {}}, 12518 {ARM::AEK_MAVERICK, {}, {}}, 12519 {ARM::AEK_XSCALE, {}, {}}, 12520 }; 12521 bool EnableFeature = true; 12522 if (Name.startswith_insensitive("no")) { 12523 EnableFeature = false; 12524 Name = Name.substr(2); 12525 } 12526 uint64_t FeatureKind = ARM::parseArchExt(Name); 12527 if (FeatureKind == ARM::AEK_INVALID) 12528 return Error(ExtLoc, "unknown architectural extension: " + Name); 12529 12530 for (const auto &Extension : Extensions) { 12531 if (Extension.Kind != FeatureKind) 12532 continue; 12533 12534 if (Extension.Features.none()) 12535 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12536 12537 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12538 return Error(ExtLoc, "architectural extension '" + Name + 12539 "' is not " 12540 "allowed for the current base architecture"); 12541 12542 MCSubtargetInfo &STI = copySTI(); 12543 if (EnableFeature) { 12544 STI.SetFeatureBitsTransitively(Extension.Features); 12545 } else { 12546 STI.ClearFeatureBitsTransitively(Extension.Features); 12547 } 12548 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12549 setAvailableFeatures(Features); 12550 return true; 12551 } 12552 return false; 12553 } 12554 12555 /// parseDirectiveArchExtension 12556 /// ::= .arch_extension [no]feature 12557 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12558 12559 MCAsmParser &Parser = getParser(); 12560 12561 if (getLexer().isNot(AsmToken::Identifier)) 12562 return Error(getLexer().getLoc(), "expected architecture extension name"); 12563 12564 StringRef Name = Parser.getTok().getString(); 12565 SMLoc ExtLoc = Parser.getTok().getLoc(); 12566 Lex(); 12567 12568 if (parseEOL()) 12569 return true; 12570 12571 if (Name == "nocrypto") { 12572 enableArchExtFeature("nosha2", ExtLoc); 12573 enableArchExtFeature("noaes", ExtLoc); 12574 } 12575 12576 if (enableArchExtFeature(Name, ExtLoc)) 12577 return false; 12578 12579 return Error(ExtLoc, "unknown architectural extension: " + Name); 12580 } 12581 12582 // Define this matcher function after the auto-generated include so we 12583 // have the match class enum definitions. 12584 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12585 unsigned Kind) { 12586 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12587 // If the kind is a token for a literal immediate, check if our asm 12588 // operand matches. This is for InstAliases which have a fixed-value 12589 // immediate in the syntax. 12590 switch (Kind) { 12591 default: break; 12592 case MCK__HASH_0: 12593 if (Op.isImm()) 12594 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12595 if (CE->getValue() == 0) 12596 return Match_Success; 12597 break; 12598 case MCK__HASH_8: 12599 if (Op.isImm()) 12600 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12601 if (CE->getValue() == 8) 12602 return Match_Success; 12603 break; 12604 case MCK__HASH_16: 12605 if (Op.isImm()) 12606 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12607 if (CE->getValue() == 16) 12608 return Match_Success; 12609 break; 12610 case MCK_ModImm: 12611 if (Op.isImm()) { 12612 const MCExpr *SOExpr = Op.getImm(); 12613 int64_t Value; 12614 if (!SOExpr->evaluateAsAbsolute(Value)) 12615 return Match_Success; 12616 assert((Value >= std::numeric_limits<int32_t>::min() && 12617 Value <= std::numeric_limits<uint32_t>::max()) && 12618 "expression value must be representable in 32 bits"); 12619 } 12620 break; 12621 case MCK_rGPR: 12622 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12623 return Match_Success; 12624 return Match_rGPR; 12625 case MCK_GPRPair: 12626 if (Op.isReg() && 12627 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12628 return Match_Success; 12629 break; 12630 } 12631 return Match_InvalidOperand; 12632 } 12633 12634 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12635 StringRef ExtraToken) { 12636 if (!hasMVE()) 12637 return false; 12638 12639 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12640 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12641 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12642 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12643 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12644 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12645 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12646 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12647 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12648 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12649 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12650 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12651 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12652 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12653 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12654 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12655 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12656 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12657 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12658 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12659 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12660 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12661 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12662 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12663 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12664 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12665 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12666 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12667 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12668 Mnemonic.startswith("vqabs") || 12669 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12670 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12671 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12672 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12673 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12674 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12675 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12676 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12677 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12678 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12679 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12680 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12681 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12682 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12683 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12684 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12685 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12686 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12687 Mnemonic.startswith("vldrb") || 12688 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12689 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12690 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12691 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12692 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12693 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12694 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12695 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12696 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12697 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12698 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12699 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12700 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12701 Mnemonic.startswith("vcvt") || 12702 MS.isVPTPredicableCDEInstr(Mnemonic) || 12703 (Mnemonic.startswith("vmov") && 12704 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12705 ExtraToken == ".16" || ExtraToken == ".8")); 12706 } 12707