1//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the Thumb instruction set. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Thumb specific DAG Nodes. 15// 16 17def ARMtsecall : SDNode<"ARMISD::tSECALL", SDT_ARMcall, 18 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 19 SDNPVariadic]>; 20 21def imm_sr_XFORM: SDNodeXForm<imm, [{ 22 unsigned Imm = N->getZExtValue(); 23 return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), SDLoc(N), MVT::i32); 24}]>; 25def ThumbSRImmAsmOperand: ImmAsmOperand<1,32> { let Name = "ImmThumbSR"; } 26def imm_sr : Operand<i32>, PatLeaf<(imm), [{ 27 uint64_t Imm = N->getZExtValue(); 28 return Imm > 0 && Imm <= 32; 29}], imm_sr_XFORM> { 30 let PrintMethod = "printThumbSRImm"; 31 let ParserMatchClass = ThumbSRImmAsmOperand; 32} 33 34def imm0_7_neg : PatLeaf<(i32 imm), [{ 35 return (uint32_t)-N->getZExtValue() < 8; 36}], imm_neg_XFORM>; 37 38def ThumbModImmNeg1_7AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg1_7"; } 39def mod_imm1_7_neg : Operand<i32>, PatLeaf<(imm), [{ 40 unsigned Value = -(unsigned)N->getZExtValue(); 41 return 0 < Value && Value < 8; 42 }], imm_neg_XFORM> { 43 let ParserMatchClass = ThumbModImmNeg1_7AsmOperand; 44} 45 46def ThumbModImmNeg8_255AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg8_255"; } 47def mod_imm8_255_neg : Operand<i32>, PatLeaf<(imm), [{ 48 unsigned Value = -(unsigned)N->getZExtValue(); 49 return 7 < Value && Value < 256; 50 }], imm_neg_XFORM> { 51 let ParserMatchClass = ThumbModImmNeg8_255AsmOperand; 52} 53 54 55def imm0_255_comp : PatLeaf<(i32 imm), [{ 56 return ~((uint32_t)N->getZExtValue()) < 256; 57}]>; 58 59def imm8_255_neg : PatLeaf<(i32 imm), [{ 60 unsigned Val = -N->getZExtValue(); 61 return Val >= 8 && Val < 256; 62}], imm_neg_XFORM>; 63 64// Break imm's up into two pieces: an immediate + a left shift. This uses 65// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt 66// to get the val/shift pieces. 67def thumb_immshifted : PatLeaf<(imm), [{ 68 return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue()); 69}]>; 70 71def thumb_immshifted_val : SDNodeXForm<imm, [{ 72 unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue()); 73 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); 74}]>; 75 76def thumb_immshifted_shamt : SDNodeXForm<imm, [{ 77 unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue()); 78 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); 79}]>; 80 81def imm256_510 : ImmLeaf<i32, [{ 82 return Imm >= 256 && Imm < 511; 83}]>; 84 85def thumb_imm256_510_addend : SDNodeXForm<imm, [{ 86 return CurDAG->getTargetConstant(N->getZExtValue() - 255, SDLoc(N), MVT::i32); 87}]>; 88 89// Scaled 4 immediate. 90def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; } 91def t_imm0_1020s4 : Operand<i32> { 92 let PrintMethod = "printThumbS4ImmOperand"; 93 let ParserMatchClass = t_imm0_1020s4_asmoperand; 94 let OperandType = "OPERAND_IMMEDIATE"; 95} 96 97def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; } 98def t_imm0_508s4 : Operand<i32> { 99 let PrintMethod = "printThumbS4ImmOperand"; 100 let ParserMatchClass = t_imm0_508s4_asmoperand; 101 let OperandType = "OPERAND_IMMEDIATE"; 102} 103// Alias use only, so no printer is necessary. 104def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; } 105def t_imm0_508s4_neg : Operand<i32> { 106 let ParserMatchClass = t_imm0_508s4_neg_asmoperand; 107 let OperandType = "OPERAND_IMMEDIATE"; 108} 109 110// Define Thumb specific addressing modes. 111 112// unsigned 8-bit, 2-scaled memory offset 113class OperandUnsignedOffset_b8s2 : AsmOperandClass { 114 let Name = "UnsignedOffset_b8s2"; 115 let PredicateMethod = "isUnsignedOffset<8, 2>"; 116} 117 118def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2; 119 120// thumb style PC relative operand. signed, 8 bits magnitude, 121// two bits shift. can be represented as either [pc, #imm], #imm, 122// or relocatable expression... 123def ThumbMemPC : AsmOperandClass { 124 let Name = "ThumbMemPC"; 125} 126 127let OperandType = "OPERAND_PCREL" in { 128def t_brtarget : Operand<OtherVT> { 129 let EncoderMethod = "getThumbBRTargetOpValue"; 130 let DecoderMethod = "DecodeThumbBROperand"; 131} 132 133// ADR instruction labels. 134def t_adrlabel : Operand<i32> { 135 let EncoderMethod = "getThumbAdrLabelOpValue"; 136 let PrintMethod = "printAdrLabelOperand<2>"; 137 let ParserMatchClass = UnsignedOffset_b8s2; 138} 139 140 141def thumb_br_target : Operand<OtherVT> { 142 let ParserMatchClass = ThumbBranchTarget; 143 let EncoderMethod = "getThumbBranchTargetOpValue"; 144 let OperandType = "OPERAND_PCREL"; 145} 146 147def thumb_bl_target : Operand<i32> { 148 let ParserMatchClass = ThumbBranchTarget; 149 let EncoderMethod = "getThumbBLTargetOpValue"; 150 let DecoderMethod = "DecodeThumbBLTargetOperand"; 151} 152 153// Target for BLX *from* thumb mode. 154def thumb_blx_target : Operand<i32> { 155 let ParserMatchClass = ARMBranchTarget; 156 let EncoderMethod = "getThumbBLXTargetOpValue"; 157 let DecoderMethod = "DecodeThumbBLXOffset"; 158} 159 160def thumb_bcc_target : Operand<OtherVT> { 161 let ParserMatchClass = ThumbBranchTarget; 162 let EncoderMethod = "getThumbBCCTargetOpValue"; 163 let DecoderMethod = "DecodeThumbBCCTargetOperand"; 164} 165 166def thumb_cb_target : Operand<OtherVT> { 167 let ParserMatchClass = ThumbBranchTarget; 168 let EncoderMethod = "getThumbCBTargetOpValue"; 169 let DecoderMethod = "DecodeThumbCmpBROperand"; 170} 171} // OperandType = "OPERAND_PCREL" 172 173// t_addrmode_pc := <label> => pc + imm8 * 4 174// 175def t_addrmode_pc : MemOperand { 176 let EncoderMethod = "getAddrModePCOpValue"; 177 let DecoderMethod = "DecodeThumbAddrModePC"; 178 let PrintMethod = "printThumbLdrLabelOperand"; 179 let ParserMatchClass = ThumbMemPC; 180} 181 182// t_addrmode_rr := reg + reg 183// 184def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; } 185def t_addrmode_rr : MemOperand, 186 ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> { 187 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 188 let PrintMethod = "printThumbAddrModeRROperand"; 189 let DecoderMethod = "DecodeThumbAddrModeRR"; 190 let ParserMatchClass = t_addrmode_rr_asm_operand; 191 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 192} 193 194// t_addrmode_rr_sext := reg + reg 195// 196// This is similar to t_addrmode_rr, but uses different heuristics for 197// ldrsb/ldrsh. 198def t_addrmode_rr_sext : MemOperand, 199 ComplexPattern<i32, 2, "SelectThumbAddrModeRRSext", []> { 200 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 201 let PrintMethod = "printThumbAddrModeRROperand"; 202 let DecoderMethod = "DecodeThumbAddrModeRR"; 203 let ParserMatchClass = t_addrmode_rr_asm_operand; 204 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 205} 206 207// t_addrmode_rrs := reg + reg 208// 209// We use separate scaled versions because the Select* functions need 210// to explicitly check for a matching constant and return false here so that 211// the reg+imm forms will match instead. This is a horrible way to do that, 212// as it forces tight coupling between the methods, but it's how selectiondag 213// currently works. 214def t_addrmode_rrs1 : MemOperand, 215 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> { 216 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 217 let PrintMethod = "printThumbAddrModeRROperand"; 218 let DecoderMethod = "DecodeThumbAddrModeRR"; 219 let ParserMatchClass = t_addrmode_rr_asm_operand; 220 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 221} 222def t_addrmode_rrs2 : MemOperand, 223 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> { 224 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 225 let DecoderMethod = "DecodeThumbAddrModeRR"; 226 let PrintMethod = "printThumbAddrModeRROperand"; 227 let ParserMatchClass = t_addrmode_rr_asm_operand; 228 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 229} 230def t_addrmode_rrs4 : MemOperand, 231 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> { 232 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 233 let DecoderMethod = "DecodeThumbAddrModeRR"; 234 let PrintMethod = "printThumbAddrModeRROperand"; 235 let ParserMatchClass = t_addrmode_rr_asm_operand; 236 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 237} 238 239// t_addrmode_is4 := reg + imm5 * 4 240// 241def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; } 242def t_addrmode_is4 : MemOperand, 243 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> { 244 let EncoderMethod = "getAddrModeISOpValue"; 245 let DecoderMethod = "DecodeThumbAddrModeIS"; 246 let PrintMethod = "printThumbAddrModeImm5S4Operand"; 247 let ParserMatchClass = t_addrmode_is4_asm_operand; 248 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 249} 250 251// t_addrmode_is2 := reg + imm5 * 2 252// 253def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; } 254def t_addrmode_is2 : MemOperand, 255 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> { 256 let EncoderMethod = "getAddrModeISOpValue"; 257 let DecoderMethod = "DecodeThumbAddrModeIS"; 258 let PrintMethod = "printThumbAddrModeImm5S2Operand"; 259 let ParserMatchClass = t_addrmode_is2_asm_operand; 260 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 261} 262 263// t_addrmode_is1 := reg + imm5 264// 265def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; } 266def t_addrmode_is1 : MemOperand, 267 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> { 268 let EncoderMethod = "getAddrModeISOpValue"; 269 let DecoderMethod = "DecodeThumbAddrModeIS"; 270 let PrintMethod = "printThumbAddrModeImm5S1Operand"; 271 let ParserMatchClass = t_addrmode_is1_asm_operand; 272 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 273} 274 275// t_addrmode_sp := sp + imm8 * 4 276// 277// FIXME: This really shouldn't have an explicit SP operand at all. It should 278// be implicit, just like in the instruction encoding itself. 279def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; } 280def t_addrmode_sp : MemOperand, 281 ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> { 282 let EncoderMethod = "getAddrModeThumbSPOpValue"; 283 let DecoderMethod = "DecodeThumbAddrModeSP"; 284 let PrintMethod = "printThumbAddrModeSPOperand"; 285 let ParserMatchClass = t_addrmode_sp_asm_operand; 286 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); 287} 288 289// Inspects parent to determine whether an or instruction can be implemented as 290// an add (i.e. whether we know overflow won't occur in the add). 291def AddLikeOrOp : ComplexPattern<i32, 1, "SelectAddLikeOr", [], 292 [SDNPWantParent]>; 293 294// Pattern to exclude immediates from matching 295def non_imm32 : PatLeaf<(i32 GPR), [{ return !isa<ConstantSDNode>(N); }]>; 296 297//===----------------------------------------------------------------------===// 298// Miscellaneous Instructions. 299// 300 301// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE 302// from removing one half of the matched pairs. That breaks PEI, which assumes 303// these will always be in pairs, and asserts if it finds otherwise. Better way? 304let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 305def tADJCALLSTACKUP : 306 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary, 307 [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, 308 Requires<[IsThumb, IsThumb1Only]>; 309 310def tADJCALLSTACKDOWN : 311 PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2), NoItinerary, 312 [(ARMcallseq_start imm:$amt, imm:$amt2)]>, 313 Requires<[IsThumb, IsThumb1Only]>; 314} 315 316class T1SystemEncoding<bits<8> opc> 317 : T1Encoding<0b101111> { 318 let Inst{9-8} = 0b11; 319 let Inst{7-0} = opc; 320} 321 322def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm", 323 [(int_arm_hint imm0_15:$imm)]>, 324 T1SystemEncoding<0x00>, 325 Requires<[IsThumb, HasV6M]> { 326 bits<4> imm; 327 let Inst{7-4} = imm; 328} 329 330// Note: When EmitPriority == 1, the alias will be used for printing 331class tHintAlias<string Asm, dag Result, bit EmitPriority = 0> : tInstAlias<Asm, Result, EmitPriority> { 332 let Predicates = [IsThumb, HasV6M]; 333} 334 335def : tHintAlias<"nop$p", (tHINT 0, pred:$p), 1>; // A8.6.110 336def : tHintAlias<"yield$p", (tHINT 1, pred:$p), 1>; // A8.6.410 337def : tHintAlias<"wfe$p", (tHINT 2, pred:$p), 1>; // A8.6.408 338def : tHintAlias<"wfi$p", (tHINT 3, pred:$p), 1>; // A8.6.409 339def : tHintAlias<"sev$p", (tHINT 4, pred:$p), 1>; // A8.6.157 340def : tInstAlias<"sevl$p", (tHINT 5, pred:$p), 1> { 341 let Predicates = [IsThumb2, HasV8]; 342} 343 344// The imm operand $val can be used by a debugger to store more information 345// about the breakpoint. 346def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val", 347 []>, 348 T1Encoding<0b101111> { 349 let Inst{9-8} = 0b10; 350 // A8.6.22 351 bits<8> val; 352 let Inst{7-0} = val; 353} 354// default immediate for breakpoint mnemonic 355def : InstAlias<"bkpt", (tBKPT 0), 0>, Requires<[IsThumb]>; 356 357def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val", 358 []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> { 359 let Inst{9-6} = 0b1010; 360 bits<6> val; 361 let Inst{5-0} = val; 362} 363 364def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end", 365 []>, T1Encoding<0b101101>, Requires<[IsThumb, IsNotMClass]>, Deprecated<HasV8Ops> { 366 bits<1> end; 367 // A8.6.156 368 let Inst{9-5} = 0b10010; 369 let Inst{4} = 1; 370 let Inst{3} = end; 371 let Inst{2-0} = 0b000; 372} 373 374// Change Processor State is a system instruction -- for disassembly only. 375def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags), 376 NoItinerary, "cps$imod $iflags", []>, 377 T1Misc<0b0110011> { 378 // A8.6.38 & B6.1.1 379 bit imod; 380 bits<3> iflags; 381 382 let Inst{4} = imod; 383 let Inst{3} = 0; 384 let Inst{2-0} = iflags; 385 let DecoderMethod = "DecodeThumbCPS"; 386} 387 388// For both thumb1 and thumb2. 389let isNotDuplicable = 1, isCodeGenOnly = 1 in 390def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "", 391 [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>, 392 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 393 // A8.6.6 394 bits<3> dst; 395 let Inst{6-3} = 0b1111; // Rm = pc 396 let Inst{2-0} = dst; 397} 398 399// ADD <Rd>, sp, #<imm8> 400// FIXME: This should not be marked as having side effects, and it should be 401// rematerializable. Clearing the side effect bit causes miscompilations, 402// probably because the instruction can be moved around. 403def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm), 404 IIC_iALUi, "add", "\t$dst, $sp, $imm", []>, 405 T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> { 406 // A6.2 & A8.6.8 407 bits<3> dst; 408 bits<8> imm; 409 let Inst{10-8} = dst; 410 let Inst{7-0} = imm; 411 let DecoderMethod = "DecodeThumbAddSpecialReg"; 412} 413 414// Thumb1 frame lowering is rather fragile, we hope to be able to use 415// tADDrSPi, but we may need to insert a sequence that clobbers CPSR. 416def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset), 417 NoItinerary, []>, 418 Requires<[IsThumb, IsThumb1Only]> { 419 let Defs = [CPSR]; 420} 421 422// ADD sp, sp, #<imm7> 423def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), 424 IIC_iALUi, "add", "\t$Rdn, $imm", []>, 425 T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> { 426 // A6.2.5 & A8.6.8 427 bits<7> imm; 428 let Inst{6-0} = imm; 429 let DecoderMethod = "DecodeThumbAddSPImm"; 430} 431 432// SUB sp, sp, #<imm7> 433// FIXME: The encoding and the ASM string don't match up. 434def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), 435 IIC_iALUi, "sub", "\t$Rdn, $imm", []>, 436 T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> { 437 // A6.2.5 & A8.6.214 438 bits<7> imm; 439 let Inst{6-0} = imm; 440 let DecoderMethod = "DecodeThumbAddSPImm"; 441} 442 443def : tInstSubst<"add${p} sp, $imm", 444 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; 445def : tInstSubst<"add${p} sp, sp, $imm", 446 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; 447 448// Can optionally specify SP as a three operand instruction. 449def : tInstAlias<"add${p} sp, sp, $imm", 450 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>; 451def : tInstAlias<"sub${p} sp, sp, $imm", 452 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>; 453 454// ADD <Rm>, sp 455def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr, 456 "add", "\t$Rdn, $sp, $Rn", []>, 457 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 458 // A8.6.9 Encoding T1 459 bits<4> Rdn; 460 let Inst{7} = Rdn{3}; 461 let Inst{6-3} = 0b1101; 462 let Inst{2-0} = Rdn{2-0}; 463 let DecoderMethod = "DecodeThumbAddSPReg"; 464} 465 466// ADD sp, <Rm> 467def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr, 468 "add", "\t$Rdn, $Rm", []>, 469 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 470 // A8.6.9 Encoding T2 471 bits<4> Rm; 472 let Inst{7} = 1; 473 let Inst{6-3} = Rm; 474 let Inst{2-0} = 0b101; 475 let DecoderMethod = "DecodeThumbAddSPReg"; 476} 477 478//===----------------------------------------------------------------------===// 479// Control Flow Instructions. 480// 481 482// Indirect branches 483let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 484 def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>, 485 T1Special<{1,1,0,?}>, Sched<[WriteBr]> { 486 // A6.2.3 & A8.6.25 487 bits<4> Rm; 488 let Inst{6-3} = Rm; 489 let Inst{2-0} = 0b000; 490 let Unpredictable{2-0} = 0b111; 491 } 492 def tBXNS : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bxns${p}\t$Rm", []>, 493 Requires<[IsThumb, Has8MSecExt]>, 494 T1Special<{1,1,0,?}>, Sched<[WriteBr]> { 495 bits<4> Rm; 496 let Inst{6-3} = Rm; 497 let Inst{2-0} = 0b100; 498 let Unpredictable{1-0} = 0b11; 499 } 500} 501 502let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 503 def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br, 504 [(ARMretglue)], (tBX LR, pred:$p)>, Sched<[WriteBr]>; 505 506 // alternative return for CMSE entry functions 507 def tBXNS_RET : tPseudoInst<(outs), (ins), 2, IIC_Br, 508 [(ARMseretglue)]>, Sched<[WriteBr]>; 509 510 // Alternative return instruction used by vararg functions. 511 def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p), 512 2, IIC_Br, [], 513 (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; 514} 515 516// All calls clobber the non-callee saved registers. SP is marked as a use to 517// prevent stack-pointer assignments that appear immediately before calls from 518// potentially appearing dead. 519let isCall = 1, 520 Defs = [LR], Uses = [SP] in { 521 // Also used for Thumb2 522 def tBL : TIx2<0b11110, 0b11, 1, 523 (outs), (ins pred:$p, thumb_bl_target:$func), IIC_Br, 524 "bl${p}\t$func", 525 [(ARMcall tglobaladdr:$func)]>, 526 Requires<[IsThumb]>, Sched<[WriteBrL]> { 527 bits<24> func; 528 let Inst{26} = func{23}; 529 let Inst{25-16} = func{20-11}; 530 let Inst{13} = func{22}; 531 let Inst{11} = func{21}; 532 let Inst{10-0} = func{10-0}; 533 } 534 535 // ARMv5T and above, also used for Thumb2 536 def tBLXi : TIx2<0b11110, 0b11, 0, 537 (outs), (ins pred:$p, thumb_blx_target:$func), IIC_Br, 538 "blx${p}\t$func", []>, 539 Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> { 540 bits<24> func; 541 let Inst{26} = func{23}; 542 let Inst{25-16} = func{20-11}; 543 let Inst{13} = func{22}; 544 let Inst{11} = func{21}; 545 let Inst{10-1} = func{10-1}; 546 let Inst{0} = 0; // func{0} is assumed zero 547 } 548 549 // Also used for Thumb2 550 def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br, 551 "blx${p}\t$func", []>, 552 Requires<[IsThumb, HasV5T]>, 553 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24; 554 bits<4> func; 555 let Inst{6-3} = func; 556 let Inst{2-0} = 0b000; 557 } 558 def tBLXr_noip : ARMPseudoExpand<(outs), (ins pred:$p, GPRnoip:$func), 559 2, IIC_Br, [], (tBLXr pred:$p, GPR:$func)>, 560 Requires<[IsThumb, HasV5T]>, 561 Sched<[WriteBrL]>; 562 563 564 // ARMv8-M Security Extensions 565 def tBLXNSr : TI<(outs), (ins pred:$p, GPRnopc:$func), IIC_Br, 566 "blxns${p}\t$func", []>, 567 Requires<[IsThumb, Has8MSecExt]>, 568 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { 569 bits<4> func; 570 let Inst{6-3} = func; 571 let Inst{2-0} = 0b100; 572 let Unpredictable{1-0} = 0b11; 573 } 574 575 def tBLXNS_CALL : PseudoInst<(outs), (ins GPRnopc:$func), IIC_Br, 576 [(ARMtsecall GPRnopc:$func)]>, 577 Requires<[IsThumb, Has8MSecExt]>, Sched<[WriteBr]>; 578 579 // ARMv4T 580 def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func), 581 4, IIC_Br, 582 [(ARMcall_nolink tGPR:$func)]>, 583 Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>; 584 585 // Also used for Thumb2 586 // push lr before the call 587 def tBL_PUSHLR : tPseudoInst<(outs), (ins GPRlr:$ra, pred:$p, thumb_bl_target:$func), 588 4, IIC_Br, 589 []>, 590 Requires<[IsThumb]>, Sched<[WriteBr]>; 591} 592 593def : ARMPat<(ARMcall GPR:$func), (tBLXr $func)>, 594 Requires<[IsThumb, HasV5T, NoSLSBLRMitigation]>; 595def : ARMPat<(ARMcall GPRnoip:$func), (tBLXr_noip $func)>, 596 Requires<[IsThumb, HasV5T, SLSBLRMitigation]>; 597 598let isBranch = 1, isTerminator = 1, isBarrier = 1 in { 599 let isPredicable = 1 in 600 def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br, 601 "b", "\t$target", [(br bb:$target)]>, 602 T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> { 603 bits<11> target; 604 let Inst{10-0} = target; 605 let AsmMatchConverter = "cvtThumbBranches"; 606 } 607 608 // Far jump 609 // Just a pseudo for a tBL instruction. Needed to let regalloc know about 610 // the clobber of LR. 611 let Defs = [LR] in 612 def tBfar : tPseudoExpand<(outs), (ins thumb_bl_target:$target, pred:$p), 613 4, IIC_Br, [], 614 (tBL pred:$p, thumb_bl_target:$target)>, 615 Sched<[WriteBrTbl]>; 616 617 def tBR_JTr : tPseudoInst<(outs), 618 (ins tGPR:$target, i32imm:$jt), 619 0, IIC_Br, 620 [(ARMbrjt tGPR:$target, tjumptable:$jt)]>, 621 Sched<[WriteBrTbl]> { 622 let Size = 2; 623 let isNotDuplicable = 1; 624 list<Predicate> Predicates = [IsThumb, IsThumb1Only]; 625 } 626} 627 628// FIXME: should be able to write a pattern for ARMBrcond, but can't use 629// a two-value operand where a dag node expects two operands. :( 630let isBranch = 1, isTerminator = 1 in 631 def tBcc : T1I<(outs), (ins thumb_bcc_target:$target, pred:$p), IIC_Br, 632 "b${p}\t$target", 633 [/*(ARMbrcond bb:$target, imm:$cc)*/]>, 634 T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> { 635 bits<4> p; 636 bits<8> target; 637 let Inst{11-8} = p; 638 let Inst{7-0} = target; 639 let AsmMatchConverter = "cvtThumbBranches"; 640} 641 642 643// Tail calls 644let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { 645 // IOS versions. 646 let Uses = [SP] in { 647 def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst), 648 4, IIC_Br, [], 649 (tBX GPR:$dst, (ops 14, zero_reg))>, 650 Requires<[IsThumb]>, Sched<[WriteBr]>; 651 } 652 // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls 653 // on MachO), so it's in ARMInstrThumb2.td. 654 // Non-MachO version: 655 let Uses = [SP] in { 656 def tTAILJMPdND : tPseudoExpand<(outs), 657 (ins t_brtarget:$dst, pred:$p), 658 4, IIC_Br, [], 659 (tB t_brtarget:$dst, pred:$p)>, 660 Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>; 661 } 662} 663 664 665// A8.6.218 Supervisor Call (Software Interrupt) 666// A8.6.16 B: Encoding T1 667// If Inst{11-8} == 0b1111 then SEE SVC 668let isCall = 1, Uses = [SP] in 669def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br, 670 "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> { 671 bits<8> imm; 672 let Inst{15-12} = 0b1101; 673 let Inst{11-8} = 0b1111; 674 let Inst{7-0} = imm; 675} 676 677// The assembler uses 0xDEFE for a trap instruction. 678let isBarrier = 1, isTerminator = 1 in 679def tTRAP : TI<(outs), (ins), IIC_Br, 680 "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> { 681 let Inst = 0xdefe; 682} 683 684//===----------------------------------------------------------------------===// 685// Load Store Instructions. 686// 687 688// PC-relative loads need to be matched first as constant pool accesses need to 689// always be PC-relative. We do this using AddedComplexity, as the pattern is 690// simpler than the patterns of the other load instructions. 691let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 10 in 692def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i, 693 "ldr", "\t$Rt, $addr", 694 [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>, 695 T1Encoding<{0,1,0,0,1,?}>, Sched<[WriteLd]> { 696 // A6.2 & A8.6.59 697 bits<3> Rt; 698 bits<8> addr; 699 let Inst{10-8} = Rt; 700 let Inst{7-0} = addr; 701} 702 703// SP-relative loads should be matched before standard immediate-offset loads as 704// it means we avoid having to move SP to another register. 705let canFoldAsLoad = 1 in 706def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i, 707 "ldr", "\t$Rt, $addr", 708 [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>, 709 T1LdStSP<{1,?,?}>, Sched<[WriteLd]> { 710 bits<3> Rt; 711 bits<8> addr; 712 let Inst{10-8} = Rt; 713 let Inst{7-0} = addr; 714} 715 716// Loads: reg/reg and reg/imm5 717let canFoldAsLoad = 1, isReMaterializable = 1 in 718multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, 719 Operand AddrMode_r, Operand AddrMode_i, 720 AddrMode am, InstrItinClass itin_r, 721 InstrItinClass itin_i, string asm, 722 PatFrag opnode> { 723 // Immediate-offset loads should be matched before register-offset loads as 724 // when the offset is a constant it's simpler to first check if it fits in the 725 // immediate offset field then fall back to register-offset if it doesn't. 726 def i : // reg/imm5 727 T1pILdStEncodeImm<imm_opc, 1 /* Load */, 728 (outs tGPR:$Rt), (ins AddrMode_i:$addr), 729 am, itin_i, asm, "\t$Rt, $addr", 730 [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>; 731 // Register-offset loads are matched last. 732 def r : // reg/reg 733 T1pILdStEncode<reg_opc, 734 (outs tGPR:$Rt), (ins AddrMode_r:$addr), 735 am, itin_r, asm, "\t$Rt, $addr", 736 [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>; 737} 738// Stores: reg/reg and reg/imm5 739multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, 740 Operand AddrMode_r, Operand AddrMode_i, 741 AddrMode am, InstrItinClass itin_r, 742 InstrItinClass itin_i, string asm, 743 PatFrag opnode> { 744 def i : // reg/imm5 745 T1pILdStEncodeImm<imm_opc, 0 /* Store */, 746 (outs), (ins tGPR:$Rt, AddrMode_i:$addr), 747 am, itin_i, asm, "\t$Rt, $addr", 748 [(opnode tGPR:$Rt, AddrMode_i:$addr)]>; 749 def r : // reg/reg 750 T1pILdStEncode<reg_opc, 751 (outs), (ins tGPR:$Rt, AddrMode_r:$addr), 752 am, itin_r, asm, "\t$Rt, $addr", 753 [(opnode tGPR:$Rt, AddrMode_r:$addr)]>; 754} 755 756// A8.6.57 & A8.6.60 757defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rr, 758 t_addrmode_is4, AddrModeT1_4, 759 IIC_iLoad_r, IIC_iLoad_i, "ldr", 760 load>, Sched<[WriteLd]>; 761 762// A8.6.64 & A8.6.61 763defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rr, 764 t_addrmode_is1, AddrModeT1_1, 765 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb", 766 zextloadi8>, Sched<[WriteLd]>; 767 768// A8.6.76 & A8.6.73 769defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rr, 770 t_addrmode_is2, AddrModeT1_2, 771 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh", 772 zextloadi16>, Sched<[WriteLd]>; 773 774let AddedComplexity = 10 in 775def tLDRSB : // A8.6.80 776 T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr), 777 AddrModeT1_1, IIC_iLoad_bh_r, 778 "ldrsb", "\t$Rt, $addr", 779 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>; 780 781let AddedComplexity = 10 in 782def tLDRSH : // A8.6.84 783 T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr), 784 AddrModeT1_2, IIC_iLoad_bh_r, 785 "ldrsh", "\t$Rt, $addr", 786 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>; 787 788 789def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i, 790 "str", "\t$Rt, $addr", 791 [(store tGPR:$Rt, t_addrmode_sp:$addr)]>, 792 T1LdStSP<{0,?,?}>, Sched<[WriteST]> { 793 bits<3> Rt; 794 bits<8> addr; 795 let Inst{10-8} = Rt; 796 let Inst{7-0} = addr; 797} 798 799// A8.6.194 & A8.6.192 800defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rr, 801 t_addrmode_is4, AddrModeT1_4, 802 IIC_iStore_r, IIC_iStore_i, "str", 803 store>, Sched<[WriteST]>; 804 805// A8.6.197 & A8.6.195 806defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rr, 807 t_addrmode_is1, AddrModeT1_1, 808 IIC_iStore_bh_r, IIC_iStore_bh_i, "strb", 809 truncstorei8>, Sched<[WriteST]>; 810 811// A8.6.207 & A8.6.205 812defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rr, 813 t_addrmode_is2, AddrModeT1_2, 814 IIC_iStore_bh_r, IIC_iStore_bh_i, "strh", 815 truncstorei16>, Sched<[WriteST]>; 816 817 818//===----------------------------------------------------------------------===// 819// Load / store multiple Instructions. 820// 821 822// These require base address to be written back or one of the loaded regs. 823let hasSideEffects = 0 in { 824 825let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in 826def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), 827 IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> { 828 bits<3> Rn; 829 bits<8> regs; 830 let Inst{10-8} = Rn; 831 let Inst{7-0} = regs; 832} 833 834// Writeback version is just a pseudo, as there's no encoding difference. 835// Writeback happens iff the base register is not in the destination register 836// list. 837let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 838def tLDMIA_UPD : 839 InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain, 840 "$Rn = $wb", IIC_iLoad_mu>, 841 PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> { 842 let Size = 2; 843 let OutOperandList = (outs tGPR:$wb); 844 let InOperandList = (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops); 845 let Pattern = []; 846 let isCodeGenOnly = 1; 847 let isPseudo = 1; 848 list<Predicate> Predicates = [IsThumb]; 849} 850 851// There is no non-writeback version of STM for Thumb. 852let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 853def tSTMIA_UPD : Thumb1I<(outs tGPR:$wb), 854 (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), 855 AddrModeNone, 2, IIC_iStore_mu, 856 "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>, 857 T1Encoding<{1,1,0,0,0,?}> { 858 bits<3> Rn; 859 bits<8> regs; 860 let Inst{10-8} = Rn; 861 let Inst{7-0} = regs; 862} 863 864} // hasSideEffects 865 866def : InstAlias<"ldm${p} $Rn!, $regs", 867 (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs), 0>, 868 Requires<[IsThumb, IsThumb1Only]>; 869 870let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1, 871 variadicOpsAreDefs = 1 in 872def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), 873 IIC_iPop, 874 "pop${p}\t$regs", []>, 875 T1Misc<{1,1,0,?,?,?,?}>, Sched<[WriteLd]> { 876 bits<16> regs; 877 let Inst{8} = regs{15}; 878 let Inst{7-0} = regs{7-0}; 879} 880 881let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in 882def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), 883 IIC_iStore_m, 884 "push${p}\t$regs", []>, 885 T1Misc<{0,1,0,?,?,?,?}>, Sched<[WriteST]> { 886 bits<16> regs; 887 let Inst{8} = regs{14}; 888 let Inst{7-0} = regs{7-0}; 889} 890 891//===----------------------------------------------------------------------===// 892// Arithmetic Instructions. 893// 894 895// Helper classes for encoding T1pI patterns: 896class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 897 string opc, string asm, list<dag> pattern> 898 : T1pI<oops, iops, itin, opc, asm, pattern>, 899 T1DataProcessing<opA> { 900 bits<3> Rm; 901 bits<3> Rn; 902 let Inst{5-3} = Rm; 903 let Inst{2-0} = Rn; 904} 905class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin, 906 string opc, string asm, list<dag> pattern> 907 : T1pI<oops, iops, itin, opc, asm, pattern>, 908 T1Misc<opA> { 909 bits<3> Rm; 910 bits<3> Rd; 911 let Inst{5-3} = Rm; 912 let Inst{2-0} = Rd; 913} 914 915// Helper classes for encoding T1sI patterns: 916class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 917 string opc, string asm, list<dag> pattern> 918 : T1sI<oops, iops, itin, opc, asm, pattern>, 919 T1DataProcessing<opA> { 920 bits<3> Rd; 921 bits<3> Rn; 922 let Inst{5-3} = Rn; 923 let Inst{2-0} = Rd; 924} 925class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 926 string opc, string asm, list<dag> pattern> 927 : T1sI<oops, iops, itin, opc, asm, pattern>, 928 T1General<opA> { 929 bits<3> Rm; 930 bits<3> Rn; 931 bits<3> Rd; 932 let Inst{8-6} = Rm; 933 let Inst{5-3} = Rn; 934 let Inst{2-0} = Rd; 935} 936class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 937 string opc, string asm, list<dag> pattern> 938 : T1sI<oops, iops, itin, opc, asm, pattern>, 939 T1General<opA> { 940 bits<3> Rd; 941 bits<3> Rm; 942 let Inst{5-3} = Rm; 943 let Inst{2-0} = Rd; 944} 945 946// Helper classes for encoding T1sIt patterns: 947class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 948 string opc, string asm, list<dag> pattern> 949 : T1sIt<oops, iops, itin, opc, asm, pattern>, 950 T1DataProcessing<opA> { 951 bits<3> Rdn; 952 bits<3> Rm; 953 let Inst{5-3} = Rm; 954 let Inst{2-0} = Rdn; 955} 956class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 957 string opc, string asm, list<dag> pattern> 958 : T1sIt<oops, iops, itin, opc, asm, pattern>, 959 T1General<opA> { 960 bits<3> Rdn; 961 bits<8> imm8; 962 let Inst{10-8} = Rdn; 963 let Inst{7-0} = imm8; 964} 965 966let isAdd = 1 in { 967 // Add with carry register 968 let isCommutable = 1, Uses = [CPSR] in 969 def tADC : // A8.6.2 970 T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, 971 "adc", "\t$Rdn, $Rm", 972 []>, Sched<[WriteALU]>; 973 974 // Add immediate 975 def tADDi3 : // A8.6.4 T1 976 T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 977 IIC_iALUi, 978 "add", "\t$Rd, $Rm, $imm3", 979 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>, 980 Sched<[WriteALU]> { 981 bits<3> imm3; 982 let Inst{8-6} = imm3; 983 } 984 985 def tADDi8 : // A8.6.4 T2 986 T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn), 987 (ins tGPR:$Rn, imm0_255_expr:$imm8), IIC_iALUi, 988 "add", "\t$Rdn, $imm8", 989 [(set tGPR:$Rdn, (add tGPR:$Rn, imm0_255_expr:$imm8))]>, 990 Sched<[WriteALU]>; 991 992 // Add register 993 let isCommutable = 1 in 994 def tADDrr : // A8.6.6 T1 995 T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 996 IIC_iALUr, 997 "add", "\t$Rd, $Rn, $Rm", 998 [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, 999 Sched<[WriteALU]>; 1000 1001 /// Similar to the above except these set the 's' bit so the 1002 /// instruction modifies the CPSR register. 1003 /// 1004 /// These opcodes will be converted to the real non-S opcodes by 1005 /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand. 1006 let hasPostISelHook = 1, Defs = [CPSR] in { 1007 let isCommutable = 1, Uses = [CPSR] in 1008 def tADCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1009 2, IIC_iALUr, 1010 [(set tGPR:$Rdn, CPSR, (ARMadde tGPR:$Rn, tGPR:$Rm, 1011 CPSR))]>, 1012 Requires<[IsThumb1Only]>, 1013 Sched<[WriteALU]>; 1014 1015 def tADDSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1016 2, IIC_iALUi, 1017 [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rm, 1018 imm0_7:$imm3))]>, 1019 Requires<[IsThumb1Only]>, 1020 Sched<[WriteALU]>; 1021 1022 def tADDSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255_expr:$imm8), 1023 2, IIC_iALUi, 1024 [(set tGPR:$Rdn, CPSR, (ARMaddc tGPR:$Rn, 1025 imm0_255_expr:$imm8))]>, 1026 Requires<[IsThumb1Only]>, 1027 Sched<[WriteALU]>; 1028 1029 let isCommutable = 1 in 1030 def tADDSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1031 2, IIC_iALUr, 1032 [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rn, 1033 tGPR:$Rm))]>, 1034 Requires<[IsThumb1Only]>, 1035 Sched<[WriteALU]>; 1036 } 1037 1038 let hasSideEffects = 0 in 1039 def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr, 1040 "add", "\t$Rdn, $Rm", []>, 1041 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 1042 // A8.6.6 T2 1043 bits<4> Rdn; 1044 bits<4> Rm; 1045 let Inst{7} = Rdn{3}; 1046 let Inst{6-3} = Rm; 1047 let Inst{2-0} = Rdn{2-0}; 1048 } 1049} 1050 1051// Thumb has more flexible short encodings for ADD than ORR, so use those where 1052// possible. 1053def : T1Pat<(or AddLikeOrOp:$Rn, imm0_7:$imm), (tADDi3 $Rn, imm0_7:$imm)>; 1054 1055def : T1Pat<(or AddLikeOrOp:$Rn, imm8_255:$imm), (tADDi8 $Rn, imm8_255:$imm)>; 1056 1057def : T1Pat<(or AddLikeOrOp:$Rn, tGPR:$Rm), (tADDrr $Rn, $Rm)>; 1058 1059 1060def : tInstAlias <"add${s}${p} $Rdn, $Rm", 1061 (tADDrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>; 1062 1063def : tInstSubst<"sub${s}${p} $rd, $rn, $imm", 1064 (tADDi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>; 1065def : tInstSubst<"sub${s}${p} $rdn, $imm", 1066 (tADDi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>; 1067 1068 1069// AND register 1070let isCommutable = 1 in 1071def tAND : // A8.6.12 1072 T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1073 IIC_iBITr, 1074 "and", "\t$Rdn, $Rm", 1075 [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1076 1077// ASR immediate 1078def tASRri : // A8.6.14 1079 T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), 1080 IIC_iMOVsi, 1081 "asr", "\t$Rd, $Rm, $imm5", 1082 [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>, 1083 Sched<[WriteALU]> { 1084 bits<5> imm5; 1085 let Inst{10-6} = imm5; 1086} 1087 1088// ASR register 1089def tASRrr : // A8.6.15 1090 T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1091 IIC_iMOVsr, 1092 "asr", "\t$Rdn, $Rm", 1093 [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1094 1095// BIC register 1096def tBIC : // A8.6.20 1097 T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1098 IIC_iBITr, 1099 "bic", "\t$Rdn, $Rm", 1100 [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>, 1101 Sched<[WriteALU]>; 1102 1103// CMN register 1104let isCompare = 1, Defs = [CPSR] in { 1105//FIXME: Disable CMN, as CCodes are backwards from compare expectations 1106// Compare-to-zero still works out, just not the relationals 1107//def tCMN : // A8.6.33 1108// T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs), 1109// IIC_iCMPr, 1110// "cmn", "\t$lhs, $rhs", 1111// [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>; 1112 1113def tCMNz : // A8.6.33 1114 T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm), 1115 IIC_iCMPr, 1116 "cmn", "\t$Rn, $Rm", 1117 [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>; 1118 1119} // isCompare = 1, Defs = [CPSR] 1120 1121// CMP immediate 1122let isCompare = 1, Defs = [CPSR] in { 1123def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi, 1124 "cmp", "\t$Rn, $imm8", 1125 [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>, 1126 T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> { 1127 // A8.6.35 1128 bits<3> Rn; 1129 bits<8> imm8; 1130 let Inst{10-8} = Rn; 1131 let Inst{7-0} = imm8; 1132} 1133 1134// CMP register 1135def tCMPr : // A8.6.36 T1 1136 T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm), 1137 IIC_iCMPr, 1138 "cmp", "\t$Rn, $Rm", 1139 [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>; 1140 1141def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr, 1142 "cmp", "\t$Rn, $Rm", []>, 1143 T1Special<{0,1,?,?}>, Sched<[WriteCMP]> { 1144 // A8.6.36 T2 1145 bits<4> Rm; 1146 bits<4> Rn; 1147 let Inst{7} = Rn{3}; 1148 let Inst{6-3} = Rm; 1149 let Inst{2-0} = Rn{2-0}; 1150} 1151} // isCompare = 1, Defs = [CPSR] 1152 1153 1154// XOR register 1155let isCommutable = 1 in 1156def tEOR : // A8.6.45 1157 T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1158 IIC_iBITr, 1159 "eor", "\t$Rdn, $Rm", 1160 [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1161 1162// LSL immediate 1163def tLSLri : // A8.6.88 1164 T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5), 1165 IIC_iMOVsi, 1166 "lsl", "\t$Rd, $Rm, $imm5", 1167 [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>, 1168 Sched<[WriteALU]> { 1169 bits<5> imm5; 1170 let Inst{10-6} = imm5; 1171} 1172 1173// LSL register 1174def tLSLrr : // A8.6.89 1175 T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1176 IIC_iMOVsr, 1177 "lsl", "\t$Rdn, $Rm", 1178 [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1179 1180// LSR immediate 1181def tLSRri : // A8.6.90 1182 T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), 1183 IIC_iMOVsi, 1184 "lsr", "\t$Rd, $Rm, $imm5", 1185 [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>, 1186 Sched<[WriteALU]> { 1187 bits<5> imm5; 1188 let Inst{10-6} = imm5; 1189} 1190 1191// LSR register 1192def tLSRrr : // A8.6.91 1193 T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1194 IIC_iMOVsr, 1195 "lsr", "\t$Rdn, $Rm", 1196 [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1197 1198// Move register 1199let isMoveImm = 1 in 1200def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255_expr:$imm8), IIC_iMOVi, 1201 "mov", "\t$Rd, $imm8", 1202 [(set tGPR:$Rd, imm0_255_expr:$imm8)]>, 1203 T1General<{1,0,0,?,?}>, Sched<[WriteALU]> { 1204 // A8.6.96 1205 bits<3> Rd; 1206 bits<8> imm8; 1207 let Inst{10-8} = Rd; 1208 let Inst{7-0} = imm8; 1209} 1210// Because we have an explicit tMOVSr below, we need an alias to handle 1211// the immediate "movs" form here. Blech. 1212def : tInstAlias <"movs $Rdn, $imm8", 1213 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255_expr:$imm8, 14, 0)>; 1214 1215// A7-73: MOV(2) - mov setting flag. 1216 1217let hasSideEffects = 0, isMoveReg = 1 in { 1218def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone, 1219 2, IIC_iMOVr, 1220 "mov", "\t$Rd, $Rm", "", []>, 1221 T1Special<{1,0,?,?}>, Sched<[WriteALU]> { 1222 // A8.6.97 1223 bits<4> Rd; 1224 bits<4> Rm; 1225 let Inst{7} = Rd{3}; 1226 let Inst{6-3} = Rm; 1227 let Inst{2-0} = Rd{2-0}; 1228} 1229let Defs = [CPSR] in 1230def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr, 1231 "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> { 1232 // A8.6.97 1233 bits<3> Rd; 1234 bits<3> Rm; 1235 let Inst{15-6} = 0b0000000000; 1236 let Inst{5-3} = Rm; 1237 let Inst{2-0} = Rd; 1238} 1239} // hasSideEffects 1240 1241// Multiply register 1242let isCommutable = 1 in 1243def tMUL : // A8.6.105 T1 1244 Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2, 1245 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd", 1246 [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>, 1247 T1DataProcessing<0b1101>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> { 1248 bits<3> Rd; 1249 bits<3> Rn; 1250 let Inst{5-3} = Rn; 1251 let Inst{2-0} = Rd; 1252 let AsmMatchConverter = "cvtThumbMultiply"; 1253} 1254 1255def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn, 1256 pred:$p)>; 1257 1258// Move inverse register 1259def tMVN : // A8.6.107 1260 T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr, 1261 "mvn", "\t$Rd, $Rn", 1262 [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>; 1263 1264// Bitwise or register 1265let isCommutable = 1 in 1266def tORR : // A8.6.114 1267 T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1268 IIC_iBITr, 1269 "orr", "\t$Rdn, $Rm", 1270 [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1271 1272// Swaps 1273def tREV : // A8.6.134 1274 T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1275 IIC_iUNAr, 1276 "rev", "\t$Rd, $Rm", 1277 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>, 1278 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1279 1280def tREV16 : // A8.6.135 1281 T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1282 IIC_iUNAr, 1283 "rev16", "\t$Rd, $Rm", 1284 [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>, 1285 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1286 1287def tREVSH : // A8.6.136 1288 T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1289 IIC_iUNAr, 1290 "revsh", "\t$Rd, $Rm", 1291 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>, 1292 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1293 1294// Rotate right register 1295def tROR : // A8.6.139 1296 T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1297 IIC_iMOVsr, 1298 "ror", "\t$Rdn, $Rm", 1299 [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>, 1300 Sched<[WriteALU]>; 1301 1302// Negate register 1303def tRSB : // A8.6.141 1304 T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn), 1305 IIC_iALUi, 1306 "rsb", "\t$Rd, $Rn, #0", 1307 [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>; 1308 1309// Subtract with carry register 1310let Uses = [CPSR] in 1311def tSBC : // A8.6.151 1312 T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1313 IIC_iALUr, 1314 "sbc", "\t$Rdn, $Rm", 1315 []>, 1316 Sched<[WriteALU]>; 1317 1318// Subtract immediate 1319def tSUBi3 : // A8.6.210 T1 1320 T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1321 IIC_iALUi, 1322 "sub", "\t$Rd, $Rm, $imm3", 1323 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>, 1324 Sched<[WriteALU]> { 1325 bits<3> imm3; 1326 let Inst{8-6} = imm3; 1327} 1328 1329def tSUBi8 : // A8.6.210 T2 1330 T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn), 1331 (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi, 1332 "sub", "\t$Rdn, $imm8", 1333 [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>, 1334 Sched<[WriteALU]>; 1335 1336def : tInstSubst<"add${s}${p} $rd, $rn, $imm", 1337 (tSUBi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>; 1338 1339 1340def : tInstSubst<"add${s}${p} $rdn, $imm", 1341 (tSUBi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>; 1342 1343 1344// Subtract register 1345def tSUBrr : // A8.6.212 1346 T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1347 IIC_iALUr, 1348 "sub", "\t$Rd, $Rn, $Rm", 1349 [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>, 1350 Sched<[WriteALU]>; 1351 1352def : tInstAlias <"sub${s}${p} $Rdn, $Rm", 1353 (tSUBrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>; 1354 1355/// Similar to the above except these set the 's' bit so the 1356/// instruction modifies the CPSR register. 1357/// 1358/// These opcodes will be converted to the real non-S opcodes by 1359/// AdjustInstrPostInstrSelection after giving then an optional CPSR operand. 1360let hasPostISelHook = 1, Defs = [CPSR] in { 1361 let Uses = [CPSR] in 1362 def tSBCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1363 2, IIC_iALUr, 1364 [(set tGPR:$Rdn, CPSR, (ARMsube tGPR:$Rn, tGPR:$Rm, 1365 CPSR))]>, 1366 Requires<[IsThumb1Only]>, 1367 Sched<[WriteALU]>; 1368 1369 def tSUBSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1370 2, IIC_iALUi, 1371 [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rm, 1372 imm0_7:$imm3))]>, 1373 Requires<[IsThumb1Only]>, 1374 Sched<[WriteALU]>; 1375 1376 def tSUBSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8), 1377 2, IIC_iALUi, 1378 [(set tGPR:$Rdn, CPSR, (ARMsubc tGPR:$Rn, 1379 imm8_255:$imm8))]>, 1380 Requires<[IsThumb1Only]>, 1381 Sched<[WriteALU]>; 1382 1383 def tSUBSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1384 2, IIC_iALUr, 1385 [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rn, 1386 tGPR:$Rm))]>, 1387 Requires<[IsThumb1Only]>, 1388 Sched<[WriteALU]>; 1389 1390 def tRSBS : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn), 1391 2, IIC_iALUr, 1392 [(set tGPR:$Rd, CPSR, (ARMsubc 0, tGPR:$Rn))]>, 1393 Requires<[IsThumb1Only]>, 1394 Sched<[WriteALU]>; 1395 1396 def tLSLSri : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, imm0_31:$imm5), 1397 2, IIC_iALUr, 1398 [(set tGPR:$Rd, CPSR, (ARMlsls tGPR:$Rn, imm0_31:$imm5))]>, 1399 Requires<[IsThumb1Only]>, 1400 Sched<[WriteALU]>; 1401} 1402 1403 1404def : T1Pat<(ARMsubs tGPR:$Rn, tGPR:$Rm), (tSUBSrr $Rn, $Rm)>; 1405def : T1Pat<(ARMsubs tGPR:$Rn, imm0_7:$imm3), (tSUBSi3 $Rn, imm0_7:$imm3)>; 1406def : T1Pat<(ARMsubs tGPR:$Rn, imm0_255:$imm8), (tSUBSi8 $Rn, imm0_255:$imm8)>; 1407 1408 1409// Sign-extend byte 1410def tSXTB : // A8.6.222 1411 T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1412 IIC_iUNAr, 1413 "sxtb", "\t$Rd, $Rm", 1414 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>, 1415 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1416 Sched<[WriteALU]>; 1417 1418// Sign-extend short 1419def tSXTH : // A8.6.224 1420 T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1421 IIC_iUNAr, 1422 "sxth", "\t$Rd, $Rm", 1423 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>, 1424 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1425 Sched<[WriteALU]>; 1426 1427// Test 1428let isCompare = 1, isCommutable = 1, Defs = [CPSR] in 1429def tTST : // A8.6.230 1430 T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr, 1431 "tst", "\t$Rn, $Rm", 1432 [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>, 1433 Sched<[WriteALU]>; 1434 1435// A8.8.247 UDF - Undefined (Encoding T1) 1436def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8", 1437 [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 { 1438 bits<8> imm8; 1439 let Inst{15-12} = 0b1101; 1440 let Inst{11-8} = 0b1110; 1441 let Inst{7-0} = imm8; 1442} 1443 1444def : Pat<(debugtrap), (tBKPT 0)>, Requires<[IsThumb, HasV5T]>; 1445def : Pat<(debugtrap), (tUDF 254)>, Requires<[IsThumb, NoV5T]>; 1446 1447def t__brkdiv0 : TI<(outs), (ins), IIC_Br, "__brkdiv0", 1448 [(int_arm_undefined 249)]>, Encoding16, 1449 Requires<[IsThumb, IsWindows]> { 1450 let Inst = 0xdef9; 1451 let isTerminator = 1; 1452} 1453 1454// Zero-extend byte 1455def tUXTB : // A8.6.262 1456 T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1457 IIC_iUNAr, 1458 "uxtb", "\t$Rd, $Rm", 1459 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>, 1460 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1461 Sched<[WriteALU]>; 1462 1463// Zero-extend short 1464def tUXTH : // A8.6.264 1465 T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1466 IIC_iUNAr, 1467 "uxth", "\t$Rd, $Rm", 1468 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>, 1469 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1470 1471// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation. 1472// Expanded after instruction selection into a branch sequence. 1473let usesCustomInserter = 1 in // Expanded after instruction selection. 1474 def tMOVCCr_pseudo : 1475 PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p), 1476 NoItinerary, 1477 [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>; 1478 1479// tLEApcrel - Load a pc-relative address into a register without offending the 1480// assembler. 1481 1482def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p), 1483 IIC_iALUi, "adr{$p}\t$Rd, $addr", []>, 1484 T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> { 1485 bits<3> Rd; 1486 bits<8> addr; 1487 let Inst{10-8} = Rd; 1488 let Inst{7-0} = addr; 1489 let DecoderMethod = "DecodeThumbAddSpecialReg"; 1490} 1491 1492let hasSideEffects = 0, isReMaterializable = 1 in 1493def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p), 1494 2, IIC_iALUi, []>, Sched<[WriteALU]>; 1495 1496let hasSideEffects = 1 in 1497def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd), 1498 (ins i32imm:$label, pred:$p), 1499 2, IIC_iALUi, []>, Sched<[WriteALU]>; 1500 1501// Thumb-1 doesn't have the TBB or TBH instructions, but we can synthesize them 1502// and make use of the same compressed jump table format as Thumb-2. 1503let Size = 2, isBranch = 1, isTerminator = 1, isBarrier = 1, 1504 isIndirectBranch = 1, isNotDuplicable = 1 in { 1505def tTBB_JT : tPseudoInst<(outs), 1506 (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0, 1507 IIC_Br, []>, Sched<[WriteBr]>; 1508 1509def tTBH_JT : tPseudoInst<(outs), 1510 (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0, 1511 IIC_Br, []>, Sched<[WriteBr]>; 1512} 1513 1514//===----------------------------------------------------------------------===// 1515// TLS Instructions 1516// 1517 1518// __aeabi_read_tp preserves the registers r1-r3. 1519// This is a pseudo inst so that we can get the encoding right, 1520// complete with fixup for the aeabi_read_tp function. 1521let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in 1522def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br, 1523 [(set R0, ARMthread_pointer)]>, 1524 Requires<[IsThumb, IsReadTPSoft]>, 1525 Sched<[WriteBr]>; 1526 1527//===----------------------------------------------------------------------===// 1528// SJLJ Exception handling intrinsics 1529// 1530 1531// eh_sjlj_setjmp() is an instruction sequence to store the return address and 1532// save #0 in R0 for the non-longjmp case. Since by its nature we may be coming 1533// from some other function to get here, and we're using the stack frame for the 1534// containing function to save/restore registers, we can't keep anything live in 1535// regs across the eh_sjlj_setjmp(), else it will almost certainly have been 1536// tromped upon when we get here from a longjmp(). We force everything out of 1537// registers except for our own input by listing the relevant registers in 1538// Defs. By doing so, we also cause the prologue/epilogue code to actively 1539// preserve all of the callee-saved registers, which is exactly what we want. 1540// $val is a scratch register for our use. 1541// This gets lowered to an instruction sequence of 12 bytes 1542let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ], 1543 hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, Size = 12, 1544 usesCustomInserter = 1 in 1545def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val), 1546 AddrModeNone, 0, NoItinerary, "","", 1547 [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>; 1548 1549// This gets lowered to an instruction sequence of 10 bytes 1550// FIXME: Non-IOS version(s) 1551let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, 1552 Size = 10, Defs = [ R7, LR, SP ] in 1553def tInt_eh_sjlj_longjmp : XI<(outs), (ins tGPR:$src, tGPR:$scratch), 1554 AddrModeNone, 0, IndexModeNone, 1555 Pseudo, NoItinerary, "", "", 1556 [(ARMeh_sjlj_longjmp tGPR:$src, tGPR:$scratch)]>, 1557 Requires<[IsThumb,IsNotWindows]>; 1558 1559// This gets lowered to an instruction sequence of 12 bytes 1560// (Windows is Thumb2-only) 1561let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, 1562 Size = 12, Defs = [ R11, LR, SP ] in 1563def tInt_WIN_eh_sjlj_longjmp 1564 : XI<(outs), (ins GPR:$src, GPR:$scratch), AddrModeNone, 0, IndexModeNone, 1565 Pseudo, NoItinerary, "", "", [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, 1566 Requires<[IsThumb,IsWindows]>; 1567 1568//===----------------------------------------------------------------------===// 1569// Non-Instruction Patterns 1570// 1571 1572// Comparisons 1573def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8), 1574 (tCMPi8 tGPR:$Rn, imm0_255:$imm8)>; 1575def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm), 1576 (tCMPr tGPR:$Rn, tGPR:$Rm)>; 1577 1578// Bswap 16 with load/store 1579def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)), 1580 (tREV16 (tLDRHi t_addrmode_is2:$addr))>; 1581def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rr:$addr)), (i32 16)), 1582 (tREV16 (tLDRHr t_addrmode_rr:$addr))>; 1583def : T1Pat<(srl (bswap top16Zero:$Rn), (i32 16)), 1584 (tREV16 tGPR:$Rn)>; 1585def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), 1586 t_addrmode_is2:$addr), 1587 (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>; 1588def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), 1589 t_addrmode_rr:$addr), 1590 (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rr:$addr)>; 1591 1592// ConstantPool 1593def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>; 1594 1595// GlobalAddress 1596def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr), 1597 IIC_iLoadiALU, 1598 [(set tGPR:$dst, 1599 (ARMWrapperPIC tglobaladdr:$addr))]>, 1600 Requires<[IsThumb, DontUseMovtInPic]>; 1601 1602def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src), 1603 IIC_iLoad_i, 1604 [(set tGPR:$dst, 1605 (ARMWrapper tglobaladdr:$src))]>, 1606 Requires<[IsThumb, DontUseMovt, DontGenExecuteOnly]>; 1607 1608// 32-bit immediate using mov/add with the 4 :lower0_7: to :upper8_15: 1609// relocations. 1610// This is a single pseudo instruction to make it re-materializable. 1611// FIXME: Remove this when we can do generalized remat. 1612let Defs = [CPSR], isReMaterializable = 1, isMoveImm = 1, Size = 16, hasNoSchedulingInfo = 1 in 1613def tMOVi32imm : PseudoInst<(outs rGPR:$dst), (ins i32imm:$src), NoItinerary, 1614 [(set rGPR:$dst, (i32 imm:$src))]>, 1615 Requires<[IsThumb1Only, GenExecuteOnly, DontUseMovt]>; 1616 1617def : ARMPat<(ARMWrapper tglobaladdr :$dst), (tMOVi32imm tglobaladdr :$dst)>, 1618 Requires<[GenT1ExecuteOnly]>; 1619def : ARMPat<(ARMWrapper texternalsym :$dst), (tMOVi32imm texternalsym :$dst)>, 1620 Requires<[GenT1ExecuteOnly]>; 1621 1622 1623// TLS globals 1624def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr), 1625 (tLDRLIT_ga_pcrel tglobaltlsaddr:$addr)>, 1626 Requires<[IsThumb, DontUseMovtInPic]>; 1627def : Pat<(ARMWrapper tglobaltlsaddr:$addr), 1628 (tLDRLIT_ga_abs tglobaltlsaddr:$addr)>, 1629 Requires<[IsThumb, DontUseMovt]>; 1630 1631 1632// JumpTable 1633def : T1Pat<(ARMWrapperJT tjumptable:$dst), 1634 (tLEApcrelJT tjumptable:$dst)>; 1635 1636// Direct calls 1637def : T1Pat<(ARMcall texternalsym:$func), (tBL texternalsym:$func)>, 1638 Requires<[IsThumb]>; 1639 1640// zextload i1 -> zextload i8 1641def : T1Pat<(zextloadi1 t_addrmode_is1:$addr), 1642 (tLDRBi t_addrmode_is1:$addr)>; 1643def : T1Pat<(zextloadi1 t_addrmode_rr:$addr), 1644 (tLDRBr t_addrmode_rr:$addr)>; 1645 1646// extload from the stack -> word load from the stack, as it avoids having to 1647// materialize the base in a separate register. This only works when a word 1648// load puts the byte/halfword value in the same place in the register that the 1649// byte/halfword load would, i.e. when little-endian. 1650def : T1Pat<(extloadi1 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1651 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1652def : T1Pat<(extloadi8 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1653 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1654def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1655 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1656 1657// extload -> zextload 1658def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; 1659def : T1Pat<(extloadi1 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; 1660def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; 1661def : T1Pat<(extloadi8 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; 1662def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>; 1663def : T1Pat<(extloadi16 t_addrmode_rr:$addr), (tLDRHr t_addrmode_rr:$addr)>; 1664 1665// post-inc loads and stores 1666 1667// post-inc LDR -> LDM r0!, {r1}. The way operands are layed out in LDMs is 1668// different to how ISel expects them for a post-inc load, so use a pseudo 1669// and expand it just after ISel. 1670let usesCustomInserter = 1, mayLoad =1, 1671 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in 1672 def tLDR_postidx: tPseudoInst<(outs tGPR:$Rt, tGPR:$Rn_wb), 1673 (ins tGPR:$Rn, pred:$p), 1674 4, IIC_iStore_ru, 1675 []>; 1676 1677// post-inc STR -> STM r0!, {r1}. The layout of this (because it doesn't def 1678// multiple registers) is the same in ISel as MachineInstr, so there's no need 1679// for a pseudo. 1680def : T1Pat<(post_store tGPR:$Rt, tGPR:$Rn, 4), 1681 (tSTMIA_UPD tGPR:$Rn, tGPR:$Rt)>; 1682 1683// If it's impossible to use [r,r] address mode for sextload, select to 1684// ldsr{b|h} r, 0 instead, in a hope that the mov 0 will be more likely to be 1685// commoned out than a sxth. 1686let AddedComplexity = 10 in { 1687def : T1Pat<(sextloadi8 tGPR:$Rn), 1688 (tLDRSB tGPR:$Rn, (tMOVi8 0))>, 1689 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1690def : T1Pat<(sextloadi16 tGPR:$Rn), 1691 (tLDRSH tGPR:$Rn, (tMOVi8 0))>, 1692 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1693} 1694 1695def : T1Pat<(sextloadi8 t_addrmode_is1:$addr), 1696 (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>; 1697def : T1Pat<(sextloadi8 t_addrmode_rr:$addr), 1698 (tASRri (tLSLri (tLDRBr t_addrmode_rr:$addr), 24), 24)>; 1699def : T1Pat<(sextloadi16 t_addrmode_is2:$addr), 1700 (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>; 1701def : T1Pat<(sextloadi16 t_addrmode_rr:$addr), 1702 (tASRri (tLSLri (tLDRHr t_addrmode_rr:$addr), 16), 16)>; 1703 1704def : T1Pat<(atomic_load_8 t_addrmode_is1:$src), 1705 (tLDRBi t_addrmode_is1:$src)>; 1706def : T1Pat<(atomic_load_8 t_addrmode_rr:$src), 1707 (tLDRBr t_addrmode_rr:$src)>; 1708def : T1Pat<(atomic_load_16 t_addrmode_is2:$src), 1709 (tLDRHi t_addrmode_is2:$src)>; 1710def : T1Pat<(atomic_load_16 t_addrmode_rr:$src), 1711 (tLDRHr t_addrmode_rr:$src)>; 1712def : T1Pat<(atomic_load_32 t_addrmode_is4:$src), 1713 (tLDRi t_addrmode_is4:$src)>; 1714def : T1Pat<(atomic_load_32 t_addrmode_rr:$src), 1715 (tLDRr t_addrmode_rr:$src)>; 1716def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val), 1717 (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>; 1718def : T1Pat<(atomic_store_8 t_addrmode_rr:$ptr, tGPR:$val), 1719 (tSTRBr tGPR:$val, t_addrmode_rr:$ptr)>; 1720def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val), 1721 (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>; 1722def : T1Pat<(atomic_store_16 t_addrmode_rr:$ptr, tGPR:$val), 1723 (tSTRHr tGPR:$val, t_addrmode_rr:$ptr)>; 1724def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val), 1725 (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>; 1726def : T1Pat<(atomic_store_32 t_addrmode_rr:$ptr, tGPR:$val), 1727 (tSTRr tGPR:$val, t_addrmode_rr:$ptr)>; 1728 1729// Large immediate handling. 1730 1731// Two piece imms. 1732def : T1Pat<(i32 thumb_immshifted:$src), 1733 (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)), 1734 (thumb_immshifted_shamt imm:$src))>; 1735 1736def : T1Pat<(i32 imm0_255_comp:$src), 1737 (tMVN (tMOVi8 (imm_not_XFORM imm:$src)))>; 1738 1739def : T1Pat<(i32 imm256_510:$src), 1740 (tADDi8 (tMOVi8 255), 1741 (thumb_imm256_510_addend imm:$src))>; 1742 1743// Pseudo instruction that combines ldr from constpool and add pc. This should 1744// be expanded into two instructions late to allow if-conversion and 1745// scheduling. 1746let isReMaterializable = 1 in 1747def tLDRpci_pic : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr, pclabel:$cp), 1748 NoItinerary, 1749 [(set tGPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)), 1750 imm:$cp))]>, 1751 Requires<[IsThumb, IsThumb1Only]>; 1752 1753// Pseudo-instruction for merged POP and return. 1754// FIXME: remove when we have a way to marking a MI with these properties. 1755let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, 1756 hasExtraDefRegAllocReq = 1 in 1757def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops), 1758 2, IIC_iPop_Br, [], 1759 (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>; 1760 1761// Indirect branch using "mov pc, $Rm" 1762let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1763 def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p), 1764 2, IIC_Br, [(brind GPR:$Rm)], 1765 (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; 1766} 1767 1768 1769// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00 1770// encoding is available on ARMv6K, but we don't differentiate that finely. 1771def : InstAlias<"nop", (tMOVr R8, R8, 14, 0), 0>, Requires<[IsThumb, IsThumb1Only]>; 1772 1773 1774// "neg" is and alias for "rsb rd, rn, #0" 1775def : tInstAlias<"neg${s}${p} $Rd, $Rm", 1776 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>; 1777 1778 1779// Implied destination operand forms for shifts. 1780def : tInstAlias<"lsl${s}${p} $Rdm, $imm", 1781 (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>; 1782def : tInstAlias<"lsr${s}${p} $Rdm, $imm", 1783 (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; 1784def : tInstAlias<"asr${s}${p} $Rdm, $imm", 1785 (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; 1786 1787// Pseudo instruction ldr Rt, =immediate 1788def tLDRConstPool 1789 : tAsmPseudo<"ldr${p} $Rt, $immediate", 1790 (ins tGPR:$Rt, const_pool_asm_imm:$immediate, pred:$p)>; 1791 1792//===---------------------------------- 1793// Atomic cmpxchg for -O0 1794//===---------------------------------- 1795 1796// See ARMInstrInfo.td. These two thumb specific pseudos are required to 1797// restrict the register class for the UXTB/UXTH ops used in the expansion. 1798 1799let Constraints = "@earlyclobber $Rd,@earlyclobber $temp", 1800 mayLoad = 1, mayStore = 1 in { 1801def tCMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, tGPR:$temp), 1802 (ins GPR:$addr, tGPR:$desired, GPR:$new), 1803 NoItinerary, []>, Sched<[]>; 1804 1805def tCMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, tGPR:$temp), 1806 (ins GPR:$addr, tGPR:$desired, GPR:$new), 1807 NoItinerary, []>, Sched<[]>; 1808 1809def tCMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, tGPR:$temp), 1810 (ins GPR:$addr, GPR:$desired, GPR:$new), 1811 NoItinerary, []>, Sched<[]>; 1812} 1813