1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/DFAPacketizer.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachinePipeliner.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/MachineScheduler.h" 41 #include "llvm/CodeGen/MultiHazardRecognizer.h" 42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 43 #include "llvm/CodeGen/SelectionDAGNodes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/IR/Attributes.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/MC/MCAsmInfo.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCInstrItineraries.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include "llvm/TargetParser/Triple.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <new> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-instrinfo" 75 76 #define GET_INSTRINFO_CTOR_DTOR 77 #include "ARMGenInstrInfo.inc" 78 79 static cl::opt<bool> 80 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 81 cl::desc("Enable ARM 2-addr to 3-addr conv")); 82 83 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 84 struct ARM_MLxEntry { 85 uint16_t MLxOpc; // MLA / MLS opcode 86 uint16_t MulOpc; // Expanded multiplication opcode 87 uint16_t AddSubOpc; // Expanded add / sub opcode 88 bool NegAcc; // True if the acc is negated before the add / sub. 89 bool HasLane; // True if instruction has an extra "lane" operand. 90 }; 91 92 static const ARM_MLxEntry ARM_MLxTable[] = { 93 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 94 // fp scalar ops 95 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 96 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 97 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 98 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 99 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 100 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 101 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 102 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 103 104 // fp SIMD ops 105 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 106 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 107 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 108 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 109 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 110 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 111 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 112 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 113 }; 114 115 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 116 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 117 Subtarget(STI) { 118 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) { 119 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 120 llvm_unreachable("Duplicated entries?"); 121 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 122 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 123 } 124 } 125 126 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 127 // currently defaults to no prepass hazard recognizer. 128 ScheduleHazardRecognizer * 129 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 130 const ScheduleDAG *DAG) const { 131 if (usePreRAHazardRecognizer()) { 132 const InstrItineraryData *II = 133 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 134 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 135 } 136 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 137 } 138 139 // Called during: 140 // - pre-RA scheduling 141 // - post-RA scheduling when FeatureUseMISched is set 142 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 143 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 144 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 145 146 // We would like to restrict this hazard recognizer to only 147 // post-RA scheduling; we can tell that we're post-RA because we don't 148 // track VRegLiveness. 149 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 150 // banks banked on bit 2. Assume that TCMs are in use. 151 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 152 MHR->AddHazardRecognizer( 153 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 154 155 // Not inserting ARMHazardRecognizerFPMLx because that would change 156 // legacy behavior 157 158 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 159 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 160 return MHR; 161 } 162 163 // Called during post-RA scheduling when FeatureUseMISched is not set 164 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 165 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 166 const ScheduleDAG *DAG) const { 167 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 168 169 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 170 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 171 172 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 173 if (BHR) 174 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 175 return MHR; 176 } 177 178 MachineInstr * 179 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 180 LiveIntervals *LIS) const { 181 // FIXME: Thumb2 support. 182 183 if (!EnableARM3Addr) 184 return nullptr; 185 186 MachineFunction &MF = *MI.getParent()->getParent(); 187 uint64_t TSFlags = MI.getDesc().TSFlags; 188 bool isPre = false; 189 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 190 default: return nullptr; 191 case ARMII::IndexModePre: 192 isPre = true; 193 break; 194 case ARMII::IndexModePost: 195 break; 196 } 197 198 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 199 // operation. 200 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 201 if (MemOpc == 0) 202 return nullptr; 203 204 MachineInstr *UpdateMI = nullptr; 205 MachineInstr *MemMI = nullptr; 206 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 207 const MCInstrDesc &MCID = MI.getDesc(); 208 unsigned NumOps = MCID.getNumOperands(); 209 bool isLoad = !MI.mayStore(); 210 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 211 const MachineOperand &Base = MI.getOperand(2); 212 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 213 Register WBReg = WB.getReg(); 214 Register BaseReg = Base.getReg(); 215 Register OffReg = Offset.getReg(); 216 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 217 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 218 switch (AddrMode) { 219 default: llvm_unreachable("Unknown indexed op!"); 220 case ARMII::AddrMode2: { 221 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 222 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 223 if (OffReg == 0) { 224 if (ARM_AM::getSOImmVal(Amt) == -1) 225 // Can't encode it in a so_imm operand. This transformation will 226 // add more than 1 instruction. Abandon! 227 return nullptr; 228 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 229 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 230 .addReg(BaseReg) 231 .addImm(Amt) 232 .add(predOps(Pred)) 233 .add(condCodeOp()); 234 } else if (Amt != 0) { 235 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 236 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 237 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 238 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 239 .addReg(BaseReg) 240 .addReg(OffReg) 241 .addReg(0) 242 .addImm(SOOpc) 243 .add(predOps(Pred)) 244 .add(condCodeOp()); 245 } else 246 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 247 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 248 .addReg(BaseReg) 249 .addReg(OffReg) 250 .add(predOps(Pred)) 251 .add(condCodeOp()); 252 break; 253 } 254 case ARMII::AddrMode3 : { 255 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 256 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 257 if (OffReg == 0) 258 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 259 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 260 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 261 .addReg(BaseReg) 262 .addImm(Amt) 263 .add(predOps(Pred)) 264 .add(condCodeOp()); 265 else 266 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 267 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 268 .addReg(BaseReg) 269 .addReg(OffReg) 270 .add(predOps(Pred)) 271 .add(condCodeOp()); 272 break; 273 } 274 } 275 276 std::vector<MachineInstr*> NewMIs; 277 if (isPre) { 278 if (isLoad) 279 MemMI = 280 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 281 .addReg(WBReg) 282 .addImm(0) 283 .addImm(Pred); 284 else 285 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 286 .addReg(MI.getOperand(1).getReg()) 287 .addReg(WBReg) 288 .addReg(0) 289 .addImm(0) 290 .addImm(Pred); 291 NewMIs.push_back(MemMI); 292 NewMIs.push_back(UpdateMI); 293 } else { 294 if (isLoad) 295 MemMI = 296 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 297 .addReg(BaseReg) 298 .addImm(0) 299 .addImm(Pred); 300 else 301 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 302 .addReg(MI.getOperand(1).getReg()) 303 .addReg(BaseReg) 304 .addReg(0) 305 .addImm(0) 306 .addImm(Pred); 307 if (WB.isDead()) 308 UpdateMI->getOperand(0).setIsDead(); 309 NewMIs.push_back(UpdateMI); 310 NewMIs.push_back(MemMI); 311 } 312 313 // Transfer LiveVariables states, kill / dead info. 314 if (LV) { 315 for (const MachineOperand &MO : MI.operands()) { 316 if (MO.isReg() && MO.getReg().isVirtual()) { 317 Register Reg = MO.getReg(); 318 319 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 320 if (MO.isDef()) { 321 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 322 if (MO.isDead()) 323 LV->addVirtualRegisterDead(Reg, *NewMI); 324 } 325 if (MO.isUse() && MO.isKill()) { 326 for (unsigned j = 0; j < 2; ++j) { 327 // Look at the two new MI's in reverse order. 328 MachineInstr *NewMI = NewMIs[j]; 329 if (!NewMI->readsRegister(Reg)) 330 continue; 331 LV->addVirtualRegisterKilled(Reg, *NewMI); 332 if (VI.removeKill(MI)) 333 VI.Kills.push_back(NewMI); 334 break; 335 } 336 } 337 } 338 } 339 } 340 341 MachineBasicBlock &MBB = *MI.getParent(); 342 MBB.insert(MI, NewMIs[1]); 343 MBB.insert(MI, NewMIs[0]); 344 return NewMIs[0]; 345 } 346 347 // Branch analysis. 348 // Cond vector output format: 349 // 0 elements indicates an unconditional branch 350 // 2 elements indicates a conditional branch; the elements are 351 // the condition to check and the CPSR. 352 // 3 elements indicates a hardware loop end; the elements 353 // are the opcode, the operand value to test, and a dummy 354 // operand used to pad out to 3 operands. 355 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 356 MachineBasicBlock *&TBB, 357 MachineBasicBlock *&FBB, 358 SmallVectorImpl<MachineOperand> &Cond, 359 bool AllowModify) const { 360 TBB = nullptr; 361 FBB = nullptr; 362 363 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 364 if (I == MBB.instr_begin()) 365 return false; // Empty blocks are easy. 366 --I; 367 368 // Walk backwards from the end of the basic block until the branch is 369 // analyzed or we give up. 370 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 371 // Flag to be raised on unanalyzeable instructions. This is useful in cases 372 // where we want to clean up on the end of the basic block before we bail 373 // out. 374 bool CantAnalyze = false; 375 376 // Skip over DEBUG values, predicated nonterminators and speculation 377 // barrier terminators. 378 while (I->isDebugInstr() || !I->isTerminator() || 379 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 380 I->getOpcode() == ARM::t2DoLoopStartTP){ 381 if (I == MBB.instr_begin()) 382 return false; 383 --I; 384 } 385 386 if (isIndirectBranchOpcode(I->getOpcode()) || 387 isJumpTableBranchOpcode(I->getOpcode())) { 388 // Indirect branches and jump tables can't be analyzed, but we still want 389 // to clean up any instructions at the tail of the basic block. 390 CantAnalyze = true; 391 } else if (isUncondBranchOpcode(I->getOpcode())) { 392 TBB = I->getOperand(0).getMBB(); 393 } else if (isCondBranchOpcode(I->getOpcode())) { 394 // Bail out if we encounter multiple conditional branches. 395 if (!Cond.empty()) 396 return true; 397 398 assert(!FBB && "FBB should have been null."); 399 FBB = TBB; 400 TBB = I->getOperand(0).getMBB(); 401 Cond.push_back(I->getOperand(1)); 402 Cond.push_back(I->getOperand(2)); 403 } else if (I->isReturn()) { 404 // Returns can't be analyzed, but we should run cleanup. 405 CantAnalyze = true; 406 } else if (I->getOpcode() == ARM::t2LoopEnd && 407 MBB.getParent() 408 ->getSubtarget<ARMSubtarget>() 409 .enableMachinePipeliner()) { 410 if (!Cond.empty()) 411 return true; 412 FBB = TBB; 413 TBB = I->getOperand(1).getMBB(); 414 Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); 415 Cond.push_back(I->getOperand(0)); 416 Cond.push_back(MachineOperand::CreateImm(0)); 417 } else { 418 // We encountered other unrecognized terminator. Bail out immediately. 419 return true; 420 } 421 422 // Cleanup code - to be run for unpredicated unconditional branches and 423 // returns. 424 if (!isPredicated(*I) && 425 (isUncondBranchOpcode(I->getOpcode()) || 426 isIndirectBranchOpcode(I->getOpcode()) || 427 isJumpTableBranchOpcode(I->getOpcode()) || 428 I->isReturn())) { 429 // Forget any previous condition branch information - it no longer applies. 430 Cond.clear(); 431 FBB = nullptr; 432 433 // If we can modify the function, delete everything below this 434 // unconditional branch. 435 if (AllowModify) { 436 MachineBasicBlock::iterator DI = std::next(I); 437 while (DI != MBB.instr_end()) { 438 MachineInstr &InstToDelete = *DI; 439 ++DI; 440 // Speculation barriers must not be deleted. 441 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 442 continue; 443 InstToDelete.eraseFromParent(); 444 } 445 } 446 } 447 448 if (CantAnalyze) { 449 // We may not be able to analyze the block, but we could still have 450 // an unconditional branch as the last instruction in the block, which 451 // just branches to layout successor. If this is the case, then just 452 // remove it if we're allowed to make modifications. 453 if (AllowModify && !isPredicated(MBB.back()) && 454 isUncondBranchOpcode(MBB.back().getOpcode()) && 455 TBB && MBB.isLayoutSuccessor(TBB)) 456 removeBranch(MBB); 457 return true; 458 } 459 460 if (I == MBB.instr_begin()) 461 return false; 462 463 --I; 464 } 465 466 // We made it past the terminators without bailing out - we must have 467 // analyzed this branch successfully. 468 return false; 469 } 470 471 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 472 int *BytesRemoved) const { 473 assert(!BytesRemoved && "code size not handled"); 474 475 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 476 if (I == MBB.end()) 477 return 0; 478 479 if (!isUncondBranchOpcode(I->getOpcode()) && 480 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 481 return 0; 482 483 // Remove the branch. 484 I->eraseFromParent(); 485 486 I = MBB.end(); 487 488 if (I == MBB.begin()) return 1; 489 --I; 490 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 491 return 1; 492 493 // Remove the branch. 494 I->eraseFromParent(); 495 return 2; 496 } 497 498 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 499 MachineBasicBlock *TBB, 500 MachineBasicBlock *FBB, 501 ArrayRef<MachineOperand> Cond, 502 const DebugLoc &DL, 503 int *BytesAdded) const { 504 assert(!BytesAdded && "code size not handled"); 505 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 506 int BOpc = !AFI->isThumbFunction() 507 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 508 int BccOpc = !AFI->isThumbFunction() 509 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 510 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 511 512 // Shouldn't be a fall through. 513 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 514 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && 515 "ARM branch conditions have two or three components!"); 516 517 // For conditional branches, we use addOperand to preserve CPSR flags. 518 519 if (!FBB) { 520 if (Cond.empty()) { // Unconditional branch? 521 if (isThumb) 522 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 523 else 524 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 525 } else if (Cond.size() == 2) { 526 BuildMI(&MBB, DL, get(BccOpc)) 527 .addMBB(TBB) 528 .addImm(Cond[0].getImm()) 529 .add(Cond[1]); 530 } else 531 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 532 return 1; 533 } 534 535 // Two-way conditional branch. 536 if (Cond.size() == 2) 537 BuildMI(&MBB, DL, get(BccOpc)) 538 .addMBB(TBB) 539 .addImm(Cond[0].getImm()) 540 .add(Cond[1]); 541 else if (Cond.size() == 3) 542 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 543 if (isThumb) 544 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 545 else 546 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 547 return 2; 548 } 549 550 bool ARMBaseInstrInfo:: 551 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 552 if (Cond.size() == 2) { 553 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 554 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 555 return false; 556 } 557 return true; 558 } 559 560 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 561 if (MI.isBundle()) { 562 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 563 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 564 while (++I != E && I->isInsideBundle()) { 565 int PIdx = I->findFirstPredOperandIdx(); 566 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 567 return true; 568 } 569 return false; 570 } 571 572 int PIdx = MI.findFirstPredOperandIdx(); 573 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 574 } 575 576 std::string ARMBaseInstrInfo::createMIROperandComment( 577 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 578 const TargetRegisterInfo *TRI) const { 579 580 // First, let's see if there is a generic comment for this operand 581 std::string GenericComment = 582 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 583 if (!GenericComment.empty()) 584 return GenericComment; 585 586 // If not, check if we have an immediate operand. 587 if (!Op.isImm()) 588 return std::string(); 589 590 // And print its corresponding condition code if the immediate is a 591 // predicate. 592 int FirstPredOp = MI.findFirstPredOperandIdx(); 593 if (FirstPredOp != (int) OpIdx) 594 return std::string(); 595 596 std::string CC = "CC::"; 597 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 598 return CC; 599 } 600 601 bool ARMBaseInstrInfo::PredicateInstruction( 602 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 603 unsigned Opc = MI.getOpcode(); 604 if (isUncondBranchOpcode(Opc)) { 605 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 606 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 607 .addImm(Pred[0].getImm()) 608 .addReg(Pred[1].getReg()); 609 return true; 610 } 611 612 int PIdx = MI.findFirstPredOperandIdx(); 613 if (PIdx != -1) { 614 MachineOperand &PMO = MI.getOperand(PIdx); 615 PMO.setImm(Pred[0].getImm()); 616 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 617 618 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 619 // IT block. This affects how they are printed. 620 const MCInstrDesc &MCID = MI.getDesc(); 621 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 622 assert(MCID.operands()[1].isOptionalDef() && 623 "CPSR def isn't expected operand"); 624 assert((MI.getOperand(1).isDead() || 625 MI.getOperand(1).getReg() != ARM::CPSR) && 626 "if conversion tried to stop defining used CPSR"); 627 MI.getOperand(1).setReg(ARM::NoRegister); 628 } 629 630 return true; 631 } 632 return false; 633 } 634 635 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 636 ArrayRef<MachineOperand> Pred2) const { 637 if (Pred1.size() > 2 || Pred2.size() > 2) 638 return false; 639 640 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 641 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 642 if (CC1 == CC2) 643 return true; 644 645 switch (CC1) { 646 default: 647 return false; 648 case ARMCC::AL: 649 return true; 650 case ARMCC::HS: 651 return CC2 == ARMCC::HI; 652 case ARMCC::LS: 653 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 654 case ARMCC::GE: 655 return CC2 == ARMCC::GT; 656 case ARMCC::LE: 657 return CC2 == ARMCC::LT; 658 } 659 } 660 661 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 662 std::vector<MachineOperand> &Pred, 663 bool SkipDead) const { 664 bool Found = false; 665 for (const MachineOperand &MO : MI.operands()) { 666 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 667 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 668 if (ClobbersCPSR || IsCPSR) { 669 670 // Filter out T1 instructions that have a dead CPSR, 671 // allowing IT blocks to be generated containing T1 instructions 672 const MCInstrDesc &MCID = MI.getDesc(); 673 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 674 SkipDead) 675 continue; 676 677 Pred.push_back(MO); 678 Found = true; 679 } 680 } 681 682 return Found; 683 } 684 685 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 686 for (const auto &MO : MI.operands()) 687 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 688 return true; 689 return false; 690 } 691 692 static bool isEligibleForITBlock(const MachineInstr *MI) { 693 switch (MI->getOpcode()) { 694 default: return true; 695 case ARM::tADC: // ADC (register) T1 696 case ARM::tADDi3: // ADD (immediate) T1 697 case ARM::tADDi8: // ADD (immediate) T2 698 case ARM::tADDrr: // ADD (register) T1 699 case ARM::tAND: // AND (register) T1 700 case ARM::tASRri: // ASR (immediate) T1 701 case ARM::tASRrr: // ASR (register) T1 702 case ARM::tBIC: // BIC (register) T1 703 case ARM::tEOR: // EOR (register) T1 704 case ARM::tLSLri: // LSL (immediate) T1 705 case ARM::tLSLrr: // LSL (register) T1 706 case ARM::tLSRri: // LSR (immediate) T1 707 case ARM::tLSRrr: // LSR (register) T1 708 case ARM::tMUL: // MUL T1 709 case ARM::tMVN: // MVN (register) T1 710 case ARM::tORR: // ORR (register) T1 711 case ARM::tROR: // ROR (register) T1 712 case ARM::tRSB: // RSB (immediate) T1 713 case ARM::tSBC: // SBC (register) T1 714 case ARM::tSUBi3: // SUB (immediate) T1 715 case ARM::tSUBi8: // SUB (immediate) T2 716 case ARM::tSUBrr: // SUB (register) T1 717 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 718 } 719 } 720 721 /// isPredicable - Return true if the specified instruction can be predicated. 722 /// By default, this returns true for every instruction with a 723 /// PredicateOperand. 724 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 725 if (!MI.isPredicable()) 726 return false; 727 728 if (MI.isBundle()) 729 return false; 730 731 if (!isEligibleForITBlock(&MI)) 732 return false; 733 734 const MachineFunction *MF = MI.getParent()->getParent(); 735 const ARMFunctionInfo *AFI = 736 MF->getInfo<ARMFunctionInfo>(); 737 738 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 739 // In their ARM encoding, they can't be encoded in a conditional form. 740 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 741 return false; 742 743 // Make indirect control flow changes unpredicable when SLS mitigation is 744 // enabled. 745 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 746 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 747 return false; 748 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 749 return false; 750 751 if (AFI->isThumb2Function()) { 752 if (getSubtarget().restrictIT()) 753 return isV8EligibleForIT(&MI); 754 } 755 756 return true; 757 } 758 759 namespace llvm { 760 761 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 762 for (const MachineOperand &MO : MI->operands()) { 763 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 764 continue; 765 if (MO.getReg() != ARM::CPSR) 766 continue; 767 if (!MO.isDead()) 768 return false; 769 } 770 // all definitions of CPSR are dead 771 return true; 772 } 773 774 } // end namespace llvm 775 776 /// GetInstSize - Return the size of the specified MachineInstr. 777 /// 778 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 779 const MachineBasicBlock &MBB = *MI.getParent(); 780 const MachineFunction *MF = MBB.getParent(); 781 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 782 783 const MCInstrDesc &MCID = MI.getDesc(); 784 785 switch (MI.getOpcode()) { 786 default: 787 // Return the size specified in .td file. If there's none, return 0, as we 788 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 789 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in 790 // contrast to AArch64 instructions which have a default size of 4 bytes for 791 // example. 792 return MCID.getSize(); 793 case TargetOpcode::BUNDLE: 794 return getInstBundleLength(MI); 795 case ARM::CONSTPOOL_ENTRY: 796 case ARM::JUMPTABLE_INSTS: 797 case ARM::JUMPTABLE_ADDRS: 798 case ARM::JUMPTABLE_TBB: 799 case ARM::JUMPTABLE_TBH: 800 // If this machine instr is a constant pool entry, its size is recorded as 801 // operand #2. 802 return MI.getOperand(2).getImm(); 803 case ARM::SPACE: 804 return MI.getOperand(1).getImm(); 805 case ARM::INLINEASM: 806 case ARM::INLINEASM_BR: { 807 // If this machine instr is an inline asm, measure it. 808 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 809 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 810 Size = alignTo(Size, 4); 811 return Size; 812 } 813 } 814 } 815 816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 817 unsigned Size = 0; 818 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 820 while (++I != E && I->isInsideBundle()) { 821 assert(!I->isBundle() && "No nested bundle!"); 822 Size += getInstSizeInBytes(*I); 823 } 824 return Size; 825 } 826 827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 828 MachineBasicBlock::iterator I, 829 unsigned DestReg, bool KillSrc, 830 const ARMSubtarget &Subtarget) const { 831 unsigned Opc = Subtarget.isThumb() 832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 833 : ARM::MRS; 834 835 MachineInstrBuilder MIB = 836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 837 838 // There is only 1 A/R class MRS instruction, and it always refers to 839 // APSR. However, there are lots of other possibilities on M-class cores. 840 if (Subtarget.isMClass()) 841 MIB.addImm(0x800); 842 843 MIB.add(predOps(ARMCC::AL)) 844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 845 } 846 847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 848 MachineBasicBlock::iterator I, 849 unsigned SrcReg, bool KillSrc, 850 const ARMSubtarget &Subtarget) const { 851 unsigned Opc = Subtarget.isThumb() 852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 853 : ARM::MSR; 854 855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 856 857 if (Subtarget.isMClass()) 858 MIB.addImm(0x800); 859 else 860 MIB.addImm(8); 861 862 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 863 .add(predOps(ARMCC::AL)) 864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 865 } 866 867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 868 MIB.addImm(ARMVCC::None); 869 MIB.addReg(0); 870 MIB.addReg(0); // tp_reg 871 } 872 873 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 874 Register DestReg) { 875 addUnpredicatedMveVpredNOp(MIB); 876 MIB.addReg(DestReg, RegState::Undef); 877 } 878 879 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 880 MIB.addImm(Cond); 881 MIB.addReg(ARM::VPR, RegState::Implicit); 882 MIB.addReg(0); // tp_reg 883 } 884 885 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 886 unsigned Cond, unsigned Inactive) { 887 addPredicatedMveVpredNOp(MIB, Cond); 888 MIB.addReg(Inactive); 889 } 890 891 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 892 MachineBasicBlock::iterator I, 893 const DebugLoc &DL, MCRegister DestReg, 894 MCRegister SrcReg, bool KillSrc) const { 895 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 896 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 897 898 if (GPRDest && GPRSrc) { 899 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 900 .addReg(SrcReg, getKillRegState(KillSrc)) 901 .add(predOps(ARMCC::AL)) 902 .add(condCodeOp()); 903 return; 904 } 905 906 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 907 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 908 909 unsigned Opc = 0; 910 if (SPRDest && SPRSrc) 911 Opc = ARM::VMOVS; 912 else if (GPRDest && SPRSrc) 913 Opc = ARM::VMOVRS; 914 else if (SPRDest && GPRSrc) 915 Opc = ARM::VMOVSR; 916 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 917 Opc = ARM::VMOVD; 918 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 919 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; 920 921 if (Opc) { 922 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 923 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 924 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 925 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 926 if (Opc == ARM::MVE_VORR) 927 addUnpredicatedMveVpredROp(MIB, DestReg); 928 else if (Opc != ARM::MQPRCopy) 929 MIB.add(predOps(ARMCC::AL)); 930 return; 931 } 932 933 // Handle register classes that require multiple instructions. 934 unsigned BeginIdx = 0; 935 unsigned SubRegs = 0; 936 int Spacing = 1; 937 938 // Use VORRq when possible. 939 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 940 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 941 BeginIdx = ARM::qsub_0; 942 SubRegs = 2; 943 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 944 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 945 BeginIdx = ARM::qsub_0; 946 SubRegs = 4; 947 // Fall back to VMOVD. 948 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 949 Opc = ARM::VMOVD; 950 BeginIdx = ARM::dsub_0; 951 SubRegs = 2; 952 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 953 Opc = ARM::VMOVD; 954 BeginIdx = ARM::dsub_0; 955 SubRegs = 3; 956 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 957 Opc = ARM::VMOVD; 958 BeginIdx = ARM::dsub_0; 959 SubRegs = 4; 960 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 961 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 962 BeginIdx = ARM::gsub_0; 963 SubRegs = 2; 964 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 965 Opc = ARM::VMOVD; 966 BeginIdx = ARM::dsub_0; 967 SubRegs = 2; 968 Spacing = 2; 969 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 970 Opc = ARM::VMOVD; 971 BeginIdx = ARM::dsub_0; 972 SubRegs = 3; 973 Spacing = 2; 974 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 975 Opc = ARM::VMOVD; 976 BeginIdx = ARM::dsub_0; 977 SubRegs = 4; 978 Spacing = 2; 979 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 980 !Subtarget.hasFP64()) { 981 Opc = ARM::VMOVS; 982 BeginIdx = ARM::ssub_0; 983 SubRegs = 2; 984 } else if (SrcReg == ARM::CPSR) { 985 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 986 return; 987 } else if (DestReg == ARM::CPSR) { 988 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 989 return; 990 } else if (DestReg == ARM::VPR) { 991 assert(ARM::GPRRegClass.contains(SrcReg)); 992 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 993 .addReg(SrcReg, getKillRegState(KillSrc)) 994 .add(predOps(ARMCC::AL)); 995 return; 996 } else if (SrcReg == ARM::VPR) { 997 assert(ARM::GPRRegClass.contains(DestReg)); 998 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 999 .addReg(SrcReg, getKillRegState(KillSrc)) 1000 .add(predOps(ARMCC::AL)); 1001 return; 1002 } else if (DestReg == ARM::FPSCR_NZCV) { 1003 assert(ARM::GPRRegClass.contains(SrcReg)); 1004 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1005 .addReg(SrcReg, getKillRegState(KillSrc)) 1006 .add(predOps(ARMCC::AL)); 1007 return; 1008 } else if (SrcReg == ARM::FPSCR_NZCV) { 1009 assert(ARM::GPRRegClass.contains(DestReg)); 1010 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1011 .addReg(SrcReg, getKillRegState(KillSrc)) 1012 .add(predOps(ARMCC::AL)); 1013 return; 1014 } 1015 1016 assert(Opc && "Impossible reg-to-reg copy"); 1017 1018 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1019 MachineInstrBuilder Mov; 1020 1021 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1022 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1023 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1024 Spacing = -Spacing; 1025 } 1026 #ifndef NDEBUG 1027 SmallSet<unsigned, 4> DstRegs; 1028 #endif 1029 for (unsigned i = 0; i != SubRegs; ++i) { 1030 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1031 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1032 assert(Dst && Src && "Bad sub-register"); 1033 #ifndef NDEBUG 1034 assert(!DstRegs.count(Src) && "destructive vector copy"); 1035 DstRegs.insert(Dst); 1036 #endif 1037 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1038 // VORR (NEON or MVE) takes two source operands. 1039 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1040 Mov.addReg(Src); 1041 } 1042 // MVE VORR takes predicate operands in place of an ordinary condition. 1043 if (Opc == ARM::MVE_VORR) 1044 addUnpredicatedMveVpredROp(Mov, Dst); 1045 else 1046 Mov = Mov.add(predOps(ARMCC::AL)); 1047 // MOVr can set CC. 1048 if (Opc == ARM::MOVr) 1049 Mov = Mov.add(condCodeOp()); 1050 } 1051 // Add implicit super-register defs and kills to the last instruction. 1052 Mov->addRegisterDefined(DestReg, TRI); 1053 if (KillSrc) 1054 Mov->addRegisterKilled(SrcReg, TRI); 1055 } 1056 1057 std::optional<DestSourcePair> 1058 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1059 // VMOVRRD is also a copy instruction but it requires 1060 // special way of handling. It is more complex copy version 1061 // and since that we are not considering it. For recognition 1062 // of such instruction isExtractSubregLike MI interface fuction 1063 // could be used. 1064 // VORRq is considered as a move only if two inputs are 1065 // the same register. 1066 if (!MI.isMoveReg() || 1067 (MI.getOpcode() == ARM::VORRq && 1068 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1069 return std::nullopt; 1070 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1071 } 1072 1073 std::optional<ParamLoadedValue> 1074 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1075 Register Reg) const { 1076 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1077 Register DstReg = DstSrcPair->Destination->getReg(); 1078 1079 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1080 // than the copy registers. Consider for example: 1081 // 1082 // s16 = VMOVS s0 1083 // s17 = VMOVS s1 1084 // call @callee(d0) 1085 // 1086 // We'd like to describe the call site value of d0 as d8, but this requires 1087 // gathering and merging the descriptions for the two VMOVS instructions. 1088 // 1089 // We also don't handle the reverse situation, where the forwarding reg is 1090 // narrower than the copy destination: 1091 // 1092 // d8 = VMOVD d0 1093 // call @callee(s1) 1094 // 1095 // We need to produce a fragment description (the call site value of s1 is 1096 // /not/ just d8). 1097 if (DstReg != Reg) 1098 return std::nullopt; 1099 } 1100 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1101 } 1102 1103 const MachineInstrBuilder & 1104 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1105 unsigned SubIdx, unsigned State, 1106 const TargetRegisterInfo *TRI) const { 1107 if (!SubIdx) 1108 return MIB.addReg(Reg, State); 1109 1110 if (Register::isPhysicalRegister(Reg)) 1111 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1112 return MIB.addReg(Reg, State, SubIdx); 1113 } 1114 1115 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1116 MachineBasicBlock::iterator I, 1117 Register SrcReg, bool isKill, int FI, 1118 const TargetRegisterClass *RC, 1119 const TargetRegisterInfo *TRI, 1120 Register VReg) const { 1121 MachineFunction &MF = *MBB.getParent(); 1122 MachineFrameInfo &MFI = MF.getFrameInfo(); 1123 Align Alignment = MFI.getObjectAlign(FI); 1124 1125 MachineMemOperand *MMO = MF.getMachineMemOperand( 1126 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1127 MFI.getObjectSize(FI), Alignment); 1128 1129 switch (TRI->getSpillSize(*RC)) { 1130 case 2: 1131 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1132 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1133 .addReg(SrcReg, getKillRegState(isKill)) 1134 .addFrameIndex(FI) 1135 .addImm(0) 1136 .addMemOperand(MMO) 1137 .add(predOps(ARMCC::AL)); 1138 } else 1139 llvm_unreachable("Unknown reg class!"); 1140 break; 1141 case 4: 1142 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1143 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1144 .addReg(SrcReg, getKillRegState(isKill)) 1145 .addFrameIndex(FI) 1146 .addImm(0) 1147 .addMemOperand(MMO) 1148 .add(predOps(ARMCC::AL)); 1149 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1150 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1151 .addReg(SrcReg, getKillRegState(isKill)) 1152 .addFrameIndex(FI) 1153 .addImm(0) 1154 .addMemOperand(MMO) 1155 .add(predOps(ARMCC::AL)); 1156 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1157 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1158 .addReg(SrcReg, getKillRegState(isKill)) 1159 .addFrameIndex(FI) 1160 .addImm(0) 1161 .addMemOperand(MMO) 1162 .add(predOps(ARMCC::AL)); 1163 } else 1164 llvm_unreachable("Unknown reg class!"); 1165 break; 1166 case 8: 1167 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1168 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1169 .addReg(SrcReg, getKillRegState(isKill)) 1170 .addFrameIndex(FI) 1171 .addImm(0) 1172 .addMemOperand(MMO) 1173 .add(predOps(ARMCC::AL)); 1174 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1175 if (Subtarget.hasV5TEOps()) { 1176 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1177 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1178 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1179 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1180 .add(predOps(ARMCC::AL)); 1181 } else { 1182 // Fallback to STM instruction, which has existed since the dawn of 1183 // time. 1184 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1185 .addFrameIndex(FI) 1186 .addMemOperand(MMO) 1187 .add(predOps(ARMCC::AL)); 1188 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1189 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1190 } 1191 } else 1192 llvm_unreachable("Unknown reg class!"); 1193 break; 1194 case 16: 1195 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1196 // Use aligned spills if the stack can be realigned. 1197 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1198 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1199 .addFrameIndex(FI) 1200 .addImm(16) 1201 .addReg(SrcReg, getKillRegState(isKill)) 1202 .addMemOperand(MMO) 1203 .add(predOps(ARMCC::AL)); 1204 } else { 1205 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1206 .addReg(SrcReg, getKillRegState(isKill)) 1207 .addFrameIndex(FI) 1208 .addMemOperand(MMO) 1209 .add(predOps(ARMCC::AL)); 1210 } 1211 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1212 Subtarget.hasMVEIntegerOps()) { 1213 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1214 MIB.addReg(SrcReg, getKillRegState(isKill)) 1215 .addFrameIndex(FI) 1216 .addImm(0) 1217 .addMemOperand(MMO); 1218 addUnpredicatedMveVpredNOp(MIB); 1219 } else 1220 llvm_unreachable("Unknown reg class!"); 1221 break; 1222 case 24: 1223 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1224 // Use aligned spills if the stack can be realigned. 1225 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1226 Subtarget.hasNEON()) { 1227 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1228 .addFrameIndex(FI) 1229 .addImm(16) 1230 .addReg(SrcReg, getKillRegState(isKill)) 1231 .addMemOperand(MMO) 1232 .add(predOps(ARMCC::AL)); 1233 } else { 1234 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1235 get(ARM::VSTMDIA)) 1236 .addFrameIndex(FI) 1237 .add(predOps(ARMCC::AL)) 1238 .addMemOperand(MMO); 1239 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1240 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1241 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1242 } 1243 } else 1244 llvm_unreachable("Unknown reg class!"); 1245 break; 1246 case 32: 1247 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1248 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1249 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1250 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1251 Subtarget.hasNEON()) { 1252 // FIXME: It's possible to only store part of the QQ register if the 1253 // spilled def has a sub-register index. 1254 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1255 .addFrameIndex(FI) 1256 .addImm(16) 1257 .addReg(SrcReg, getKillRegState(isKill)) 1258 .addMemOperand(MMO) 1259 .add(predOps(ARMCC::AL)); 1260 } else if (Subtarget.hasMVEIntegerOps()) { 1261 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1262 .addReg(SrcReg, getKillRegState(isKill)) 1263 .addFrameIndex(FI) 1264 .addMemOperand(MMO); 1265 } else { 1266 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1267 get(ARM::VSTMDIA)) 1268 .addFrameIndex(FI) 1269 .add(predOps(ARMCC::AL)) 1270 .addMemOperand(MMO); 1271 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1272 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1273 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1274 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1275 } 1276 } else 1277 llvm_unreachable("Unknown reg class!"); 1278 break; 1279 case 64: 1280 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1281 Subtarget.hasMVEIntegerOps()) { 1282 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1283 .addReg(SrcReg, getKillRegState(isKill)) 1284 .addFrameIndex(FI) 1285 .addMemOperand(MMO); 1286 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1287 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1288 .addFrameIndex(FI) 1289 .add(predOps(ARMCC::AL)) 1290 .addMemOperand(MMO); 1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1295 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1296 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1297 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1298 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1299 } else 1300 llvm_unreachable("Unknown reg class!"); 1301 break; 1302 default: 1303 llvm_unreachable("Unknown reg class!"); 1304 } 1305 } 1306 1307 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1308 int &FrameIndex) const { 1309 switch (MI.getOpcode()) { 1310 default: break; 1311 case ARM::STRrs: 1312 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1313 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1314 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1315 MI.getOperand(3).getImm() == 0) { 1316 FrameIndex = MI.getOperand(1).getIndex(); 1317 return MI.getOperand(0).getReg(); 1318 } 1319 break; 1320 case ARM::STRi12: 1321 case ARM::t2STRi12: 1322 case ARM::tSTRspi: 1323 case ARM::VSTRD: 1324 case ARM::VSTRS: 1325 case ARM::VSTR_P0_off: 1326 case ARM::MVE_VSTRWU32: 1327 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1328 MI.getOperand(2).getImm() == 0) { 1329 FrameIndex = MI.getOperand(1).getIndex(); 1330 return MI.getOperand(0).getReg(); 1331 } 1332 break; 1333 case ARM::VST1q64: 1334 case ARM::VST1d64TPseudo: 1335 case ARM::VST1d64QPseudo: 1336 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1337 FrameIndex = MI.getOperand(0).getIndex(); 1338 return MI.getOperand(2).getReg(); 1339 } 1340 break; 1341 case ARM::VSTMQIA: 1342 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1343 FrameIndex = MI.getOperand(1).getIndex(); 1344 return MI.getOperand(0).getReg(); 1345 } 1346 break; 1347 case ARM::MQQPRStore: 1348 case ARM::MQQQQPRStore: 1349 if (MI.getOperand(1).isFI()) { 1350 FrameIndex = MI.getOperand(1).getIndex(); 1351 return MI.getOperand(0).getReg(); 1352 } 1353 break; 1354 } 1355 1356 return 0; 1357 } 1358 1359 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1360 int &FrameIndex) const { 1361 SmallVector<const MachineMemOperand *, 1> Accesses; 1362 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1363 Accesses.size() == 1) { 1364 FrameIndex = 1365 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1366 ->getFrameIndex(); 1367 return true; 1368 } 1369 return false; 1370 } 1371 1372 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1373 MachineBasicBlock::iterator I, 1374 Register DestReg, int FI, 1375 const TargetRegisterClass *RC, 1376 const TargetRegisterInfo *TRI, 1377 Register VReg) const { 1378 DebugLoc DL; 1379 if (I != MBB.end()) DL = I->getDebugLoc(); 1380 MachineFunction &MF = *MBB.getParent(); 1381 MachineFrameInfo &MFI = MF.getFrameInfo(); 1382 const Align Alignment = MFI.getObjectAlign(FI); 1383 MachineMemOperand *MMO = MF.getMachineMemOperand( 1384 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1385 MFI.getObjectSize(FI), Alignment); 1386 1387 switch (TRI->getSpillSize(*RC)) { 1388 case 2: 1389 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1390 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1391 .addFrameIndex(FI) 1392 .addImm(0) 1393 .addMemOperand(MMO) 1394 .add(predOps(ARMCC::AL)); 1395 } else 1396 llvm_unreachable("Unknown reg class!"); 1397 break; 1398 case 4: 1399 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1400 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1401 .addFrameIndex(FI) 1402 .addImm(0) 1403 .addMemOperand(MMO) 1404 .add(predOps(ARMCC::AL)); 1405 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1406 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1407 .addFrameIndex(FI) 1408 .addImm(0) 1409 .addMemOperand(MMO) 1410 .add(predOps(ARMCC::AL)); 1411 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1412 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1413 .addFrameIndex(FI) 1414 .addImm(0) 1415 .addMemOperand(MMO) 1416 .add(predOps(ARMCC::AL)); 1417 } else 1418 llvm_unreachable("Unknown reg class!"); 1419 break; 1420 case 8: 1421 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1422 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1423 .addFrameIndex(FI) 1424 .addImm(0) 1425 .addMemOperand(MMO) 1426 .add(predOps(ARMCC::AL)); 1427 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1428 MachineInstrBuilder MIB; 1429 1430 if (Subtarget.hasV5TEOps()) { 1431 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1432 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1433 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1434 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1435 .add(predOps(ARMCC::AL)); 1436 } else { 1437 // Fallback to LDM instruction, which has existed since the dawn of 1438 // time. 1439 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1440 .addFrameIndex(FI) 1441 .addMemOperand(MMO) 1442 .add(predOps(ARMCC::AL)); 1443 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1444 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1445 } 1446 1447 if (DestReg.isPhysical()) 1448 MIB.addReg(DestReg, RegState::ImplicitDefine); 1449 } else 1450 llvm_unreachable("Unknown reg class!"); 1451 break; 1452 case 16: 1453 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1454 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1455 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1456 .addFrameIndex(FI) 1457 .addImm(16) 1458 .addMemOperand(MMO) 1459 .add(predOps(ARMCC::AL)); 1460 } else { 1461 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1462 .addFrameIndex(FI) 1463 .addMemOperand(MMO) 1464 .add(predOps(ARMCC::AL)); 1465 } 1466 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1467 Subtarget.hasMVEIntegerOps()) { 1468 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1469 MIB.addFrameIndex(FI) 1470 .addImm(0) 1471 .addMemOperand(MMO); 1472 addUnpredicatedMveVpredNOp(MIB); 1473 } else 1474 llvm_unreachable("Unknown reg class!"); 1475 break; 1476 case 24: 1477 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1478 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1479 Subtarget.hasNEON()) { 1480 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1481 .addFrameIndex(FI) 1482 .addImm(16) 1483 .addMemOperand(MMO) 1484 .add(predOps(ARMCC::AL)); 1485 } else { 1486 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1487 .addFrameIndex(FI) 1488 .addMemOperand(MMO) 1489 .add(predOps(ARMCC::AL)); 1490 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1491 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1492 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1493 if (DestReg.isPhysical()) 1494 MIB.addReg(DestReg, RegState::ImplicitDefine); 1495 } 1496 } else 1497 llvm_unreachable("Unknown reg class!"); 1498 break; 1499 case 32: 1500 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1501 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1502 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1503 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1504 Subtarget.hasNEON()) { 1505 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1506 .addFrameIndex(FI) 1507 .addImm(16) 1508 .addMemOperand(MMO) 1509 .add(predOps(ARMCC::AL)); 1510 } else if (Subtarget.hasMVEIntegerOps()) { 1511 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1512 .addFrameIndex(FI) 1513 .addMemOperand(MMO); 1514 } else { 1515 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1516 .addFrameIndex(FI) 1517 .add(predOps(ARMCC::AL)) 1518 .addMemOperand(MMO); 1519 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1520 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1521 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1522 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1523 if (DestReg.isPhysical()) 1524 MIB.addReg(DestReg, RegState::ImplicitDefine); 1525 } 1526 } else 1527 llvm_unreachable("Unknown reg class!"); 1528 break; 1529 case 64: 1530 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1531 Subtarget.hasMVEIntegerOps()) { 1532 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1533 .addFrameIndex(FI) 1534 .addMemOperand(MMO); 1535 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1536 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1537 .addFrameIndex(FI) 1538 .add(predOps(ARMCC::AL)) 1539 .addMemOperand(MMO); 1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1544 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1545 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1546 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1547 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1548 if (DestReg.isPhysical()) 1549 MIB.addReg(DestReg, RegState::ImplicitDefine); 1550 } else 1551 llvm_unreachable("Unknown reg class!"); 1552 break; 1553 default: 1554 llvm_unreachable("Unknown regclass!"); 1555 } 1556 } 1557 1558 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1559 int &FrameIndex) const { 1560 switch (MI.getOpcode()) { 1561 default: break; 1562 case ARM::LDRrs: 1563 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1564 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1565 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1566 MI.getOperand(3).getImm() == 0) { 1567 FrameIndex = MI.getOperand(1).getIndex(); 1568 return MI.getOperand(0).getReg(); 1569 } 1570 break; 1571 case ARM::LDRi12: 1572 case ARM::t2LDRi12: 1573 case ARM::tLDRspi: 1574 case ARM::VLDRD: 1575 case ARM::VLDRS: 1576 case ARM::VLDR_P0_off: 1577 case ARM::MVE_VLDRWU32: 1578 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1579 MI.getOperand(2).getImm() == 0) { 1580 FrameIndex = MI.getOperand(1).getIndex(); 1581 return MI.getOperand(0).getReg(); 1582 } 1583 break; 1584 case ARM::VLD1q64: 1585 case ARM::VLD1d8TPseudo: 1586 case ARM::VLD1d16TPseudo: 1587 case ARM::VLD1d32TPseudo: 1588 case ARM::VLD1d64TPseudo: 1589 case ARM::VLD1d8QPseudo: 1590 case ARM::VLD1d16QPseudo: 1591 case ARM::VLD1d32QPseudo: 1592 case ARM::VLD1d64QPseudo: 1593 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1594 FrameIndex = MI.getOperand(1).getIndex(); 1595 return MI.getOperand(0).getReg(); 1596 } 1597 break; 1598 case ARM::VLDMQIA: 1599 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1600 FrameIndex = MI.getOperand(1).getIndex(); 1601 return MI.getOperand(0).getReg(); 1602 } 1603 break; 1604 case ARM::MQQPRLoad: 1605 case ARM::MQQQQPRLoad: 1606 if (MI.getOperand(1).isFI()) { 1607 FrameIndex = MI.getOperand(1).getIndex(); 1608 return MI.getOperand(0).getReg(); 1609 } 1610 break; 1611 } 1612 1613 return 0; 1614 } 1615 1616 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1617 int &FrameIndex) const { 1618 SmallVector<const MachineMemOperand *, 1> Accesses; 1619 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1620 Accesses.size() == 1) { 1621 FrameIndex = 1622 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1623 ->getFrameIndex(); 1624 return true; 1625 } 1626 return false; 1627 } 1628 1629 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1630 /// depending on whether the result is used. 1631 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1632 bool isThumb1 = Subtarget.isThumb1Only(); 1633 bool isThumb2 = Subtarget.isThumb2(); 1634 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1635 1636 DebugLoc dl = MI->getDebugLoc(); 1637 MachineBasicBlock *BB = MI->getParent(); 1638 1639 MachineInstrBuilder LDM, STM; 1640 if (isThumb1 || !MI->getOperand(1).isDead()) { 1641 MachineOperand LDWb(MI->getOperand(1)); 1642 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1643 : isThumb1 ? ARM::tLDMIA_UPD 1644 : ARM::LDMIA_UPD)) 1645 .add(LDWb); 1646 } else { 1647 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1648 } 1649 1650 if (isThumb1 || !MI->getOperand(0).isDead()) { 1651 MachineOperand STWb(MI->getOperand(0)); 1652 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1653 : isThumb1 ? ARM::tSTMIA_UPD 1654 : ARM::STMIA_UPD)) 1655 .add(STWb); 1656 } else { 1657 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1658 } 1659 1660 MachineOperand LDBase(MI->getOperand(3)); 1661 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1662 1663 MachineOperand STBase(MI->getOperand(2)); 1664 STM.add(STBase).add(predOps(ARMCC::AL)); 1665 1666 // Sort the scratch registers into ascending order. 1667 const TargetRegisterInfo &TRI = getRegisterInfo(); 1668 SmallVector<unsigned, 6> ScratchRegs; 1669 for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5)) 1670 ScratchRegs.push_back(MO.getReg()); 1671 llvm::sort(ScratchRegs, 1672 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1673 return TRI.getEncodingValue(Reg1) < 1674 TRI.getEncodingValue(Reg2); 1675 }); 1676 1677 for (const auto &Reg : ScratchRegs) { 1678 LDM.addReg(Reg, RegState::Define); 1679 STM.addReg(Reg, RegState::Kill); 1680 } 1681 1682 BB->erase(MI); 1683 } 1684 1685 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1686 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1687 expandLoadStackGuard(MI); 1688 MI.getParent()->erase(MI); 1689 return true; 1690 } 1691 1692 if (MI.getOpcode() == ARM::MEMCPY) { 1693 expandMEMCPY(MI); 1694 return true; 1695 } 1696 1697 // This hook gets to expand COPY instructions before they become 1698 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1699 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1700 // changed into a VORR that can go down the NEON pipeline. 1701 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1702 return false; 1703 1704 // Look for a copy between even S-registers. That is where we keep floats 1705 // when using NEON v2f32 instructions for f32 arithmetic. 1706 Register DstRegS = MI.getOperand(0).getReg(); 1707 Register SrcRegS = MI.getOperand(1).getReg(); 1708 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1709 return false; 1710 1711 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1712 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1713 &ARM::DPRRegClass); 1714 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1715 &ARM::DPRRegClass); 1716 if (!DstRegD || !SrcRegD) 1717 return false; 1718 1719 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1720 // legal if the COPY already defines the full DstRegD, and it isn't a 1721 // sub-register insertion. 1722 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1723 return false; 1724 1725 // A dead copy shouldn't show up here, but reject it just in case. 1726 if (MI.getOperand(0).isDead()) 1727 return false; 1728 1729 // All clear, widen the COPY. 1730 LLVM_DEBUG(dbgs() << "widening: " << MI); 1731 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1732 1733 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1734 // or some other super-register. 1735 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1736 if (ImpDefIdx != -1) 1737 MI.removeOperand(ImpDefIdx); 1738 1739 // Change the opcode and operands. 1740 MI.setDesc(get(ARM::VMOVD)); 1741 MI.getOperand(0).setReg(DstRegD); 1742 MI.getOperand(1).setReg(SrcRegD); 1743 MIB.add(predOps(ARMCC::AL)); 1744 1745 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1746 // register scavenger and machine verifier, so we need to indicate that we 1747 // are reading an undefined value from SrcRegD, but a proper value from 1748 // SrcRegS. 1749 MI.getOperand(1).setIsUndef(); 1750 MIB.addReg(SrcRegS, RegState::Implicit); 1751 1752 // SrcRegD may actually contain an unrelated value in the ssub_1 1753 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1754 if (MI.getOperand(1).isKill()) { 1755 MI.getOperand(1).setIsKill(false); 1756 MI.addRegisterKilled(SrcRegS, TRI, true); 1757 } 1758 1759 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1760 return true; 1761 } 1762 1763 /// Create a copy of a const pool value. Update CPI to the new index and return 1764 /// the label UID. 1765 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1766 MachineConstantPool *MCP = MF.getConstantPool(); 1767 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1768 1769 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1770 assert(MCPE.isMachineConstantPoolEntry() && 1771 "Expecting a machine constantpool entry!"); 1772 ARMConstantPoolValue *ACPV = 1773 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1774 1775 unsigned PCLabelId = AFI->createPICLabelUId(); 1776 ARMConstantPoolValue *NewCPV = nullptr; 1777 1778 // FIXME: The below assumes PIC relocation model and that the function 1779 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1780 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1781 // instructions, so that's probably OK, but is PIC always correct when 1782 // we get here? 1783 if (ACPV->isGlobalValue()) 1784 NewCPV = ARMConstantPoolConstant::Create( 1785 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1786 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1787 else if (ACPV->isExtSymbol()) 1788 NewCPV = ARMConstantPoolSymbol:: 1789 Create(MF.getFunction().getContext(), 1790 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1791 else if (ACPV->isBlockAddress()) 1792 NewCPV = ARMConstantPoolConstant:: 1793 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1794 ARMCP::CPBlockAddress, 4); 1795 else if (ACPV->isLSDA()) 1796 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1797 ARMCP::CPLSDA, 4); 1798 else if (ACPV->isMachineBasicBlock()) 1799 NewCPV = ARMConstantPoolMBB:: 1800 Create(MF.getFunction().getContext(), 1801 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1802 else 1803 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1804 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1805 return PCLabelId; 1806 } 1807 1808 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1809 MachineBasicBlock::iterator I, 1810 Register DestReg, unsigned SubIdx, 1811 const MachineInstr &Orig, 1812 const TargetRegisterInfo &TRI) const { 1813 unsigned Opcode = Orig.getOpcode(); 1814 switch (Opcode) { 1815 default: { 1816 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1817 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1818 MBB.insert(I, MI); 1819 break; 1820 } 1821 case ARM::tLDRpci_pic: 1822 case ARM::t2LDRpci_pic: { 1823 MachineFunction &MF = *MBB.getParent(); 1824 unsigned CPI = Orig.getOperand(1).getIndex(); 1825 unsigned PCLabelId = duplicateCPV(MF, CPI); 1826 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1827 .addConstantPoolIndex(CPI) 1828 .addImm(PCLabelId) 1829 .cloneMemRefs(Orig); 1830 break; 1831 } 1832 } 1833 } 1834 1835 MachineInstr & 1836 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1837 MachineBasicBlock::iterator InsertBefore, 1838 const MachineInstr &Orig) const { 1839 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1840 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1841 for (;;) { 1842 switch (I->getOpcode()) { 1843 case ARM::tLDRpci_pic: 1844 case ARM::t2LDRpci_pic: { 1845 MachineFunction &MF = *MBB.getParent(); 1846 unsigned CPI = I->getOperand(1).getIndex(); 1847 unsigned PCLabelId = duplicateCPV(MF, CPI); 1848 I->getOperand(1).setIndex(CPI); 1849 I->getOperand(2).setImm(PCLabelId); 1850 break; 1851 } 1852 } 1853 if (!I->isBundledWithSucc()) 1854 break; 1855 ++I; 1856 } 1857 return Cloned; 1858 } 1859 1860 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1861 const MachineInstr &MI1, 1862 const MachineRegisterInfo *MRI) const { 1863 unsigned Opcode = MI0.getOpcode(); 1864 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || 1865 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || 1866 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1867 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1868 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1869 Opcode == ARM::t2MOV_ga_pcrel) { 1870 if (MI1.getOpcode() != Opcode) 1871 return false; 1872 if (MI0.getNumOperands() != MI1.getNumOperands()) 1873 return false; 1874 1875 const MachineOperand &MO0 = MI0.getOperand(1); 1876 const MachineOperand &MO1 = MI1.getOperand(1); 1877 if (MO0.getOffset() != MO1.getOffset()) 1878 return false; 1879 1880 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1881 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1882 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1883 Opcode == ARM::t2MOV_ga_pcrel) 1884 // Ignore the PC labels. 1885 return MO0.getGlobal() == MO1.getGlobal(); 1886 1887 const MachineFunction *MF = MI0.getParent()->getParent(); 1888 const MachineConstantPool *MCP = MF->getConstantPool(); 1889 int CPI0 = MO0.getIndex(); 1890 int CPI1 = MO1.getIndex(); 1891 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1892 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1893 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1894 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1895 if (isARMCP0 && isARMCP1) { 1896 ARMConstantPoolValue *ACPV0 = 1897 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1898 ARMConstantPoolValue *ACPV1 = 1899 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1900 return ACPV0->hasSameValue(ACPV1); 1901 } else if (!isARMCP0 && !isARMCP1) { 1902 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1903 } 1904 return false; 1905 } else if (Opcode == ARM::PICLDR) { 1906 if (MI1.getOpcode() != Opcode) 1907 return false; 1908 if (MI0.getNumOperands() != MI1.getNumOperands()) 1909 return false; 1910 1911 Register Addr0 = MI0.getOperand(1).getReg(); 1912 Register Addr1 = MI1.getOperand(1).getReg(); 1913 if (Addr0 != Addr1) { 1914 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual()) 1915 return false; 1916 1917 // This assumes SSA form. 1918 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1919 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1920 // Check if the loaded value, e.g. a constantpool of a global address, are 1921 // the same. 1922 if (!produceSameValue(*Def0, *Def1, MRI)) 1923 return false; 1924 } 1925 1926 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1927 // %12 = PICLDR %11, 0, 14, %noreg 1928 const MachineOperand &MO0 = MI0.getOperand(i); 1929 const MachineOperand &MO1 = MI1.getOperand(i); 1930 if (!MO0.isIdenticalTo(MO1)) 1931 return false; 1932 } 1933 return true; 1934 } 1935 1936 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1937 } 1938 1939 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1940 /// determine if two loads are loading from the same base address. It should 1941 /// only return true if the base pointers are the same and the only differences 1942 /// between the two addresses is the offset. It also returns the offsets by 1943 /// reference. 1944 /// 1945 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1946 /// is permanently disabled. 1947 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1948 int64_t &Offset1, 1949 int64_t &Offset2) const { 1950 // Don't worry about Thumb: just ARM and Thumb2. 1951 if (Subtarget.isThumb1Only()) return false; 1952 1953 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1954 return false; 1955 1956 switch (Load1->getMachineOpcode()) { 1957 default: 1958 return false; 1959 case ARM::LDRi12: 1960 case ARM::LDRBi12: 1961 case ARM::LDRD: 1962 case ARM::LDRH: 1963 case ARM::LDRSB: 1964 case ARM::LDRSH: 1965 case ARM::VLDRD: 1966 case ARM::VLDRS: 1967 case ARM::t2LDRi8: 1968 case ARM::t2LDRBi8: 1969 case ARM::t2LDRDi8: 1970 case ARM::t2LDRSHi8: 1971 case ARM::t2LDRi12: 1972 case ARM::t2LDRBi12: 1973 case ARM::t2LDRSHi12: 1974 break; 1975 } 1976 1977 switch (Load2->getMachineOpcode()) { 1978 default: 1979 return false; 1980 case ARM::LDRi12: 1981 case ARM::LDRBi12: 1982 case ARM::LDRD: 1983 case ARM::LDRH: 1984 case ARM::LDRSB: 1985 case ARM::LDRSH: 1986 case ARM::VLDRD: 1987 case ARM::VLDRS: 1988 case ARM::t2LDRi8: 1989 case ARM::t2LDRBi8: 1990 case ARM::t2LDRSHi8: 1991 case ARM::t2LDRi12: 1992 case ARM::t2LDRBi12: 1993 case ARM::t2LDRSHi12: 1994 break; 1995 } 1996 1997 // Check if base addresses and chain operands match. 1998 if (Load1->getOperand(0) != Load2->getOperand(0) || 1999 Load1->getOperand(4) != Load2->getOperand(4)) 2000 return false; 2001 2002 // Index should be Reg0. 2003 if (Load1->getOperand(3) != Load2->getOperand(3)) 2004 return false; 2005 2006 // Determine the offsets. 2007 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 2008 isa<ConstantSDNode>(Load2->getOperand(1))) { 2009 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 2010 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 2011 return true; 2012 } 2013 2014 return false; 2015 } 2016 2017 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2018 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2019 /// be scheduled togther. On some targets if two loads are loading from 2020 /// addresses in the same cache line, it's better if they are scheduled 2021 /// together. This function takes two integers that represent the load offsets 2022 /// from the common base address. It returns true if it decides it's desirable 2023 /// to schedule the two loads together. "NumLoads" is the number of loads that 2024 /// have already been scheduled after Load1. 2025 /// 2026 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2027 /// is permanently disabled. 2028 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2029 int64_t Offset1, int64_t Offset2, 2030 unsigned NumLoads) const { 2031 // Don't worry about Thumb: just ARM and Thumb2. 2032 if (Subtarget.isThumb1Only()) return false; 2033 2034 assert(Offset2 > Offset1); 2035 2036 if ((Offset2 - Offset1) / 8 > 64) 2037 return false; 2038 2039 // Check if the machine opcodes are different. If they are different 2040 // then we consider them to not be of the same base address, 2041 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2042 // In this case, they are considered to be the same because they are different 2043 // encoding forms of the same basic instruction. 2044 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2045 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2046 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2047 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2048 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2049 return false; // FIXME: overly conservative? 2050 2051 // Four loads in a row should be sufficient. 2052 if (NumLoads >= 3) 2053 return false; 2054 2055 return true; 2056 } 2057 2058 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2059 const MachineBasicBlock *MBB, 2060 const MachineFunction &MF) const { 2061 // Debug info is never a scheduling boundary. It's necessary to be explicit 2062 // due to the special treatment of IT instructions below, otherwise a 2063 // dbg_value followed by an IT will result in the IT instruction being 2064 // considered a scheduling hazard, which is wrong. It should be the actual 2065 // instruction preceding the dbg_value instruction(s), just like it is 2066 // when debug info is not present. 2067 if (MI.isDebugInstr()) 2068 return false; 2069 2070 // Terminators and labels can't be scheduled around. 2071 if (MI.isTerminator() || MI.isPosition()) 2072 return true; 2073 2074 // INLINEASM_BR can jump to another block 2075 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2076 return true; 2077 2078 if (isSEHInstruction(MI)) 2079 return true; 2080 2081 // Treat the start of the IT block as a scheduling boundary, but schedule 2082 // t2IT along with all instructions following it. 2083 // FIXME: This is a big hammer. But the alternative is to add all potential 2084 // true and anti dependencies to IT block instructions as implicit operands 2085 // to the t2IT instruction. The added compile time and complexity does not 2086 // seem worth it. 2087 MachineBasicBlock::const_iterator I = MI; 2088 // Make sure to skip any debug instructions 2089 while (++I != MBB->end() && I->isDebugInstr()) 2090 ; 2091 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2092 return true; 2093 2094 // Don't attempt to schedule around any instruction that defines 2095 // a stack-oriented pointer, as it's unlikely to be profitable. This 2096 // saves compile time, because it doesn't require every single 2097 // stack slot reference to depend on the instruction that does the 2098 // modification. 2099 // Calls don't actually change the stack pointer, even if they have imp-defs. 2100 // No ARM calling conventions change the stack pointer. (X86 calling 2101 // conventions sometimes do). 2102 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2103 return true; 2104 2105 return false; 2106 } 2107 2108 bool ARMBaseInstrInfo:: 2109 isProfitableToIfCvt(MachineBasicBlock &MBB, 2110 unsigned NumCycles, unsigned ExtraPredCycles, 2111 BranchProbability Probability) const { 2112 if (!NumCycles) 2113 return false; 2114 2115 // If we are optimizing for size, see if the branch in the predecessor can be 2116 // lowered to cbn?z by the constant island lowering pass, and return false if 2117 // so. This results in a shorter instruction sequence. 2118 if (MBB.getParent()->getFunction().hasOptSize()) { 2119 MachineBasicBlock *Pred = *MBB.pred_begin(); 2120 if (!Pred->empty()) { 2121 MachineInstr *LastMI = &*Pred->rbegin(); 2122 if (LastMI->getOpcode() == ARM::t2Bcc) { 2123 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2124 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2125 if (CmpMI) 2126 return false; 2127 } 2128 } 2129 } 2130 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2131 MBB, 0, 0, Probability); 2132 } 2133 2134 bool ARMBaseInstrInfo:: 2135 isProfitableToIfCvt(MachineBasicBlock &TBB, 2136 unsigned TCycles, unsigned TExtra, 2137 MachineBasicBlock &FBB, 2138 unsigned FCycles, unsigned FExtra, 2139 BranchProbability Probability) const { 2140 if (!TCycles) 2141 return false; 2142 2143 // In thumb code we often end up trading one branch for a IT block, and 2144 // if we are cloning the instruction can increase code size. Prevent 2145 // blocks with multiple predecesors from being ifcvted to prevent this 2146 // cloning. 2147 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2148 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2149 return false; 2150 } 2151 2152 // Attempt to estimate the relative costs of predication versus branching. 2153 // Here we scale up each component of UnpredCost to avoid precision issue when 2154 // scaling TCycles/FCycles by Probability. 2155 const unsigned ScalingUpFactor = 1024; 2156 2157 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2158 unsigned UnpredCost; 2159 if (!Subtarget.hasBranchPredictor()) { 2160 // When we don't have a branch predictor it's always cheaper to not take a 2161 // branch than take it, so we have to take that into account. 2162 unsigned NotTakenBranchCost = 1; 2163 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2164 unsigned TUnpredCycles, FUnpredCycles; 2165 if (!FCycles) { 2166 // Triangle: TBB is the fallthrough 2167 TUnpredCycles = TCycles + NotTakenBranchCost; 2168 FUnpredCycles = TakenBranchCost; 2169 } else { 2170 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2171 TUnpredCycles = TCycles + TakenBranchCost; 2172 FUnpredCycles = FCycles + NotTakenBranchCost; 2173 // The branch at the end of FBB will disappear when it's predicated, so 2174 // discount it from PredCost. 2175 PredCost -= 1 * ScalingUpFactor; 2176 } 2177 // The total cost is the cost of each path scaled by their probabilites 2178 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2179 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2180 UnpredCost = TUnpredCost + FUnpredCost; 2181 // When predicating assume that the first IT can be folded away but later 2182 // ones cost one cycle each 2183 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2184 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2185 } 2186 } else { 2187 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2188 unsigned FUnpredCost = 2189 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2190 UnpredCost = TUnpredCost + FUnpredCost; 2191 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2192 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2193 } 2194 2195 return PredCost <= UnpredCost; 2196 } 2197 2198 unsigned 2199 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2200 unsigned NumInsts) const { 2201 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2202 // ARM has a condition code field in every predicable instruction, using it 2203 // doesn't change code size. 2204 if (!Subtarget.isThumb2()) 2205 return 0; 2206 2207 // It's possible that the size of the IT is restricted to a single block. 2208 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2209 return divideCeil(NumInsts, MaxInsts) * 2; 2210 } 2211 2212 unsigned 2213 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2214 // If this branch is likely to be folded into the comparison to form a 2215 // CB(N)Z, then removing it won't reduce code size at all, because that will 2216 // just replace the CB(N)Z with a CMP. 2217 if (MI.getOpcode() == ARM::t2Bcc && 2218 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2219 return 0; 2220 2221 unsigned Size = getInstSizeInBytes(MI); 2222 2223 // For Thumb2, all branches are 32-bit instructions during the if conversion 2224 // pass, but may be replaced with 16-bit instructions during size reduction. 2225 // Since the branches considered by if conversion tend to be forward branches 2226 // over small basic blocks, they are very likely to be in range for the 2227 // narrow instructions, so we assume the final code size will be half what it 2228 // currently is. 2229 if (Subtarget.isThumb2()) 2230 Size /= 2; 2231 2232 return Size; 2233 } 2234 2235 bool 2236 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2237 MachineBasicBlock &FMBB) const { 2238 // Reduce false anti-dependencies to let the target's out-of-order execution 2239 // engine do its thing. 2240 return Subtarget.isProfitableToUnpredicate(); 2241 } 2242 2243 /// getInstrPredicate - If instruction is predicated, returns its predicate 2244 /// condition, otherwise returns AL. It also returns the condition code 2245 /// register by reference. 2246 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2247 Register &PredReg) { 2248 int PIdx = MI.findFirstPredOperandIdx(); 2249 if (PIdx == -1) { 2250 PredReg = 0; 2251 return ARMCC::AL; 2252 } 2253 2254 PredReg = MI.getOperand(PIdx+1).getReg(); 2255 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2256 } 2257 2258 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2259 if (Opc == ARM::B) 2260 return ARM::Bcc; 2261 if (Opc == ARM::tB) 2262 return ARM::tBcc; 2263 if (Opc == ARM::t2B) 2264 return ARM::t2Bcc; 2265 2266 llvm_unreachable("Unknown unconditional branch opcode!"); 2267 } 2268 2269 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2270 bool NewMI, 2271 unsigned OpIdx1, 2272 unsigned OpIdx2) const { 2273 switch (MI.getOpcode()) { 2274 case ARM::MOVCCr: 2275 case ARM::t2MOVCCr: { 2276 // MOVCC can be commuted by inverting the condition. 2277 Register PredReg; 2278 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2279 // MOVCC AL can't be inverted. Shouldn't happen. 2280 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2281 return nullptr; 2282 MachineInstr *CommutedMI = 2283 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2284 if (!CommutedMI) 2285 return nullptr; 2286 // After swapping the MOVCC operands, also invert the condition. 2287 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2288 .setImm(ARMCC::getOppositeCondition(CC)); 2289 return CommutedMI; 2290 } 2291 } 2292 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2293 } 2294 2295 /// Identify instructions that can be folded into a MOVCC instruction, and 2296 /// return the defining instruction. 2297 MachineInstr * 2298 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2299 const TargetInstrInfo *TII) const { 2300 if (!Reg.isVirtual()) 2301 return nullptr; 2302 if (!MRI.hasOneNonDBGUse(Reg)) 2303 return nullptr; 2304 MachineInstr *MI = MRI.getVRegDef(Reg); 2305 if (!MI) 2306 return nullptr; 2307 // Check if MI can be predicated and folded into the MOVCC. 2308 if (!isPredicable(*MI)) 2309 return nullptr; 2310 // Check if MI has any non-dead defs or physreg uses. This also detects 2311 // predicated instructions which will be reading CPSR. 2312 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { 2313 // Reject frame index operands, PEI can't handle the predicated pseudos. 2314 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2315 return nullptr; 2316 if (!MO.isReg()) 2317 continue; 2318 // MI can't have any tied operands, that would conflict with predication. 2319 if (MO.isTied()) 2320 return nullptr; 2321 if (MO.getReg().isPhysical()) 2322 return nullptr; 2323 if (MO.isDef() && !MO.isDead()) 2324 return nullptr; 2325 } 2326 bool DontMoveAcrossStores = true; 2327 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2328 return nullptr; 2329 return MI; 2330 } 2331 2332 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2333 SmallVectorImpl<MachineOperand> &Cond, 2334 unsigned &TrueOp, unsigned &FalseOp, 2335 bool &Optimizable) const { 2336 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2337 "Unknown select instruction"); 2338 // MOVCC operands: 2339 // 0: Def. 2340 // 1: True use. 2341 // 2: False use. 2342 // 3: Condition code. 2343 // 4: CPSR use. 2344 TrueOp = 1; 2345 FalseOp = 2; 2346 Cond.push_back(MI.getOperand(3)); 2347 Cond.push_back(MI.getOperand(4)); 2348 // We can always fold a def. 2349 Optimizable = true; 2350 return false; 2351 } 2352 2353 MachineInstr * 2354 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2355 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2356 bool PreferFalse) const { 2357 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2358 "Unknown select instruction"); 2359 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2360 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2361 bool Invert = !DefMI; 2362 if (!DefMI) 2363 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2364 if (!DefMI) 2365 return nullptr; 2366 2367 // Find new register class to use. 2368 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2369 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); 2370 Register DestReg = MI.getOperand(0).getReg(); 2371 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); 2372 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); 2373 if (!MRI.constrainRegClass(DestReg, FalseClass)) 2374 return nullptr; 2375 if (!MRI.constrainRegClass(DestReg, TrueClass)) 2376 return nullptr; 2377 2378 // Create a new predicated version of DefMI. 2379 // Rfalse is the first use. 2380 MachineInstrBuilder NewMI = 2381 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2382 2383 // Copy all the DefMI operands, excluding its (null) predicate. 2384 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2385 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2386 i != e && !DefDesc.operands()[i].isPredicate(); ++i) 2387 NewMI.add(DefMI->getOperand(i)); 2388 2389 unsigned CondCode = MI.getOperand(3).getImm(); 2390 if (Invert) 2391 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2392 else 2393 NewMI.addImm(CondCode); 2394 NewMI.add(MI.getOperand(4)); 2395 2396 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2397 if (NewMI->hasOptionalDef()) 2398 NewMI.add(condCodeOp()); 2399 2400 // The output register value when the predicate is false is an implicit 2401 // register operand tied to the first def. 2402 // The tie makes the register allocator ensure the FalseReg is allocated the 2403 // same register as operand 0. 2404 FalseReg.setImplicit(); 2405 NewMI.add(FalseReg); 2406 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2407 2408 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2409 SeenMIs.insert(NewMI); 2410 SeenMIs.erase(DefMI); 2411 2412 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2413 // DefMI would be invalid when tranferred inside the loop. Checking for a 2414 // loop is expensive, but at least remove kill flags if they are in different 2415 // BBs. 2416 if (DefMI->getParent() != MI.getParent()) 2417 NewMI->clearKillInfo(); 2418 2419 // The caller will erase MI, but not DefMI. 2420 DefMI->eraseFromParent(); 2421 return NewMI; 2422 } 2423 2424 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2425 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2426 /// def operand. 2427 /// 2428 /// This will go away once we can teach tblgen how to set the optional CPSR def 2429 /// operand itself. 2430 struct AddSubFlagsOpcodePair { 2431 uint16_t PseudoOpc; 2432 uint16_t MachineOpc; 2433 }; 2434 2435 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2436 {ARM::ADDSri, ARM::ADDri}, 2437 {ARM::ADDSrr, ARM::ADDrr}, 2438 {ARM::ADDSrsi, ARM::ADDrsi}, 2439 {ARM::ADDSrsr, ARM::ADDrsr}, 2440 2441 {ARM::SUBSri, ARM::SUBri}, 2442 {ARM::SUBSrr, ARM::SUBrr}, 2443 {ARM::SUBSrsi, ARM::SUBrsi}, 2444 {ARM::SUBSrsr, ARM::SUBrsr}, 2445 2446 {ARM::RSBSri, ARM::RSBri}, 2447 {ARM::RSBSrsi, ARM::RSBrsi}, 2448 {ARM::RSBSrsr, ARM::RSBrsr}, 2449 2450 {ARM::tADDSi3, ARM::tADDi3}, 2451 {ARM::tADDSi8, ARM::tADDi8}, 2452 {ARM::tADDSrr, ARM::tADDrr}, 2453 {ARM::tADCS, ARM::tADC}, 2454 2455 {ARM::tSUBSi3, ARM::tSUBi3}, 2456 {ARM::tSUBSi8, ARM::tSUBi8}, 2457 {ARM::tSUBSrr, ARM::tSUBrr}, 2458 {ARM::tSBCS, ARM::tSBC}, 2459 {ARM::tRSBS, ARM::tRSB}, 2460 {ARM::tLSLSri, ARM::tLSLri}, 2461 2462 {ARM::t2ADDSri, ARM::t2ADDri}, 2463 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2464 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2465 2466 {ARM::t2SUBSri, ARM::t2SUBri}, 2467 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2468 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2469 2470 {ARM::t2RSBSri, ARM::t2RSBri}, 2471 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2472 }; 2473 2474 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2475 for (const auto &Entry : AddSubFlagsOpcodeMap) 2476 if (OldOpc == Entry.PseudoOpc) 2477 return Entry.MachineOpc; 2478 return 0; 2479 } 2480 2481 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2482 MachineBasicBlock::iterator &MBBI, 2483 const DebugLoc &dl, Register DestReg, 2484 Register BaseReg, int NumBytes, 2485 ARMCC::CondCodes Pred, Register PredReg, 2486 const ARMBaseInstrInfo &TII, 2487 unsigned MIFlags) { 2488 if (NumBytes == 0 && DestReg != BaseReg) { 2489 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2490 .addReg(BaseReg, RegState::Kill) 2491 .add(predOps(Pred, PredReg)) 2492 .add(condCodeOp()) 2493 .setMIFlags(MIFlags); 2494 return; 2495 } 2496 2497 bool isSub = NumBytes < 0; 2498 if (isSub) NumBytes = -NumBytes; 2499 2500 while (NumBytes) { 2501 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2502 unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt); 2503 assert(ThisVal && "Didn't extract field correctly"); 2504 2505 // We will handle these bits from offset, clear them. 2506 NumBytes &= ~ThisVal; 2507 2508 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2509 2510 // Build the new ADD / SUB. 2511 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2512 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2513 .addReg(BaseReg, RegState::Kill) 2514 .addImm(ThisVal) 2515 .add(predOps(Pred, PredReg)) 2516 .add(condCodeOp()) 2517 .setMIFlags(MIFlags); 2518 BaseReg = DestReg; 2519 } 2520 } 2521 2522 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2523 MachineFunction &MF, MachineInstr *MI, 2524 unsigned NumBytes) { 2525 // This optimisation potentially adds lots of load and store 2526 // micro-operations, it's only really a great benefit to code-size. 2527 if (!Subtarget.hasMinSize()) 2528 return false; 2529 2530 // If only one register is pushed/popped, LLVM can use an LDR/STR 2531 // instead. We can't modify those so make sure we're dealing with an 2532 // instruction we understand. 2533 bool IsPop = isPopOpcode(MI->getOpcode()); 2534 bool IsPush = isPushOpcode(MI->getOpcode()); 2535 if (!IsPush && !IsPop) 2536 return false; 2537 2538 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2539 MI->getOpcode() == ARM::VLDMDIA_UPD; 2540 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2541 MI->getOpcode() == ARM::tPOP || 2542 MI->getOpcode() == ARM::tPOP_RET; 2543 2544 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2545 MI->getOperand(1).getReg() == ARM::SP)) && 2546 "trying to fold sp update into non-sp-updating push/pop"); 2547 2548 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2549 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2550 // if this is violated. 2551 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2552 return false; 2553 2554 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2555 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2556 int RegListIdx = IsT1PushPop ? 2 : 4; 2557 2558 // Calculate the space we'll need in terms of registers. 2559 unsigned RegsNeeded; 2560 const TargetRegisterClass *RegClass; 2561 if (IsVFPPushPop) { 2562 RegsNeeded = NumBytes / 8; 2563 RegClass = &ARM::DPRRegClass; 2564 } else { 2565 RegsNeeded = NumBytes / 4; 2566 RegClass = &ARM::GPRRegClass; 2567 } 2568 2569 // We're going to have to strip all list operands off before 2570 // re-adding them since the order matters, so save the existing ones 2571 // for later. 2572 SmallVector<MachineOperand, 4> RegList; 2573 2574 // We're also going to need the first register transferred by this 2575 // instruction, which won't necessarily be the first register in the list. 2576 unsigned FirstRegEnc = -1; 2577 2578 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2579 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2580 MachineOperand &MO = MI->getOperand(i); 2581 RegList.push_back(MO); 2582 2583 if (MO.isReg() && !MO.isImplicit() && 2584 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2585 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2586 } 2587 2588 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2589 2590 // Now try to find enough space in the reglist to allocate NumBytes. 2591 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2592 --CurRegEnc) { 2593 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2594 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2595 continue; 2596 if (!IsPop) { 2597 // Pushing any register is completely harmless, mark the register involved 2598 // as undef since we don't care about its value and must not restore it 2599 // during stack unwinding. 2600 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2601 false, false, true)); 2602 --RegsNeeded; 2603 continue; 2604 } 2605 2606 // However, we can only pop an extra register if it's not live. For 2607 // registers live within the function we might clobber a return value 2608 // register; the other way a register can be live here is if it's 2609 // callee-saved. 2610 if (isCalleeSavedRegister(CurReg, CSRegs) || 2611 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2612 MachineBasicBlock::LQR_Dead) { 2613 // VFP pops don't allow holes in the register list, so any skip is fatal 2614 // for our transformation. GPR pops do, so we should just keep looking. 2615 if (IsVFPPushPop) 2616 return false; 2617 else 2618 continue; 2619 } 2620 2621 // Mark the unimportant registers as <def,dead> in the POP. 2622 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2623 true)); 2624 --RegsNeeded; 2625 } 2626 2627 if (RegsNeeded > 0) 2628 return false; 2629 2630 // Finally we know we can profitably perform the optimisation so go 2631 // ahead: strip all existing registers off and add them back again 2632 // in the right order. 2633 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2634 MI->removeOperand(i); 2635 2636 // Add the complete list back in. 2637 MachineInstrBuilder MIB(MF, &*MI); 2638 for (const MachineOperand &MO : llvm::reverse(RegList)) 2639 MIB.add(MO); 2640 2641 return true; 2642 } 2643 2644 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2645 Register FrameReg, int &Offset, 2646 const ARMBaseInstrInfo &TII) { 2647 unsigned Opcode = MI.getOpcode(); 2648 const MCInstrDesc &Desc = MI.getDesc(); 2649 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2650 bool isSub = false; 2651 2652 // Memory operands in inline assembly always use AddrMode2. 2653 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2654 AddrMode = ARMII::AddrMode2; 2655 2656 if (Opcode == ARM::ADDri) { 2657 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2658 if (Offset == 0) { 2659 // Turn it into a move. 2660 MI.setDesc(TII.get(ARM::MOVr)); 2661 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2662 MI.removeOperand(FrameRegIdx+1); 2663 Offset = 0; 2664 return true; 2665 } else if (Offset < 0) { 2666 Offset = -Offset; 2667 isSub = true; 2668 MI.setDesc(TII.get(ARM::SUBri)); 2669 } 2670 2671 // Common case: small offset, fits into instruction. 2672 if (ARM_AM::getSOImmVal(Offset) != -1) { 2673 // Replace the FrameIndex with sp / fp 2674 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2675 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2676 Offset = 0; 2677 return true; 2678 } 2679 2680 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2681 // as possible. 2682 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2683 unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt); 2684 2685 // We will handle these bits from offset, clear them. 2686 Offset &= ~ThisImmVal; 2687 2688 // Get the properly encoded SOImmVal field. 2689 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2690 "Bit extraction didn't work?"); 2691 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2692 } else { 2693 unsigned ImmIdx = 0; 2694 int InstrOffs = 0; 2695 unsigned NumBits = 0; 2696 unsigned Scale = 1; 2697 switch (AddrMode) { 2698 case ARMII::AddrMode_i12: 2699 ImmIdx = FrameRegIdx + 1; 2700 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2701 NumBits = 12; 2702 break; 2703 case ARMII::AddrMode2: 2704 ImmIdx = FrameRegIdx+2; 2705 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2706 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2707 InstrOffs *= -1; 2708 NumBits = 12; 2709 break; 2710 case ARMII::AddrMode3: 2711 ImmIdx = FrameRegIdx+2; 2712 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2713 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2714 InstrOffs *= -1; 2715 NumBits = 8; 2716 break; 2717 case ARMII::AddrMode4: 2718 case ARMII::AddrMode6: 2719 // Can't fold any offset even if it's zero. 2720 return false; 2721 case ARMII::AddrMode5: 2722 ImmIdx = FrameRegIdx+1; 2723 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2724 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2725 InstrOffs *= -1; 2726 NumBits = 8; 2727 Scale = 4; 2728 break; 2729 case ARMII::AddrMode5FP16: 2730 ImmIdx = FrameRegIdx+1; 2731 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2732 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2733 InstrOffs *= -1; 2734 NumBits = 8; 2735 Scale = 2; 2736 break; 2737 case ARMII::AddrModeT2_i7: 2738 case ARMII::AddrModeT2_i7s2: 2739 case ARMII::AddrModeT2_i7s4: 2740 ImmIdx = FrameRegIdx+1; 2741 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2742 NumBits = 7; 2743 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2744 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2745 break; 2746 default: 2747 llvm_unreachable("Unsupported addressing mode!"); 2748 } 2749 2750 Offset += InstrOffs * Scale; 2751 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2752 if (Offset < 0) { 2753 Offset = -Offset; 2754 isSub = true; 2755 } 2756 2757 // Attempt to fold address comp. if opcode has offset bits 2758 if (NumBits > 0) { 2759 // Common case: small offset, fits into instruction. 2760 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2761 int ImmedOffset = Offset / Scale; 2762 unsigned Mask = (1 << NumBits) - 1; 2763 if ((unsigned)Offset <= Mask * Scale) { 2764 // Replace the FrameIndex with sp 2765 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2766 // FIXME: When addrmode2 goes away, this will simplify (like the 2767 // T2 version), as the LDR.i12 versions don't need the encoding 2768 // tricks for the offset value. 2769 if (isSub) { 2770 if (AddrMode == ARMII::AddrMode_i12) 2771 ImmedOffset = -ImmedOffset; 2772 else 2773 ImmedOffset |= 1 << NumBits; 2774 } 2775 ImmOp.ChangeToImmediate(ImmedOffset); 2776 Offset = 0; 2777 return true; 2778 } 2779 2780 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2781 ImmedOffset = ImmedOffset & Mask; 2782 if (isSub) { 2783 if (AddrMode == ARMII::AddrMode_i12) 2784 ImmedOffset = -ImmedOffset; 2785 else 2786 ImmedOffset |= 1 << NumBits; 2787 } 2788 ImmOp.ChangeToImmediate(ImmedOffset); 2789 Offset &= ~(Mask*Scale); 2790 } 2791 } 2792 2793 Offset = (isSub) ? -Offset : Offset; 2794 return Offset == 0; 2795 } 2796 2797 /// analyzeCompare - For a comparison instruction, return the source registers 2798 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2799 /// compares against in CmpValue. Return true if the comparison instruction 2800 /// can be analyzed. 2801 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2802 Register &SrcReg2, int64_t &CmpMask, 2803 int64_t &CmpValue) const { 2804 switch (MI.getOpcode()) { 2805 default: break; 2806 case ARM::CMPri: 2807 case ARM::t2CMPri: 2808 case ARM::tCMPi8: 2809 SrcReg = MI.getOperand(0).getReg(); 2810 SrcReg2 = 0; 2811 CmpMask = ~0; 2812 CmpValue = MI.getOperand(1).getImm(); 2813 return true; 2814 case ARM::CMPrr: 2815 case ARM::t2CMPrr: 2816 case ARM::tCMPr: 2817 SrcReg = MI.getOperand(0).getReg(); 2818 SrcReg2 = MI.getOperand(1).getReg(); 2819 CmpMask = ~0; 2820 CmpValue = 0; 2821 return true; 2822 case ARM::TSTri: 2823 case ARM::t2TSTri: 2824 SrcReg = MI.getOperand(0).getReg(); 2825 SrcReg2 = 0; 2826 CmpMask = MI.getOperand(1).getImm(); 2827 CmpValue = 0; 2828 return true; 2829 } 2830 2831 return false; 2832 } 2833 2834 /// isSuitableForMask - Identify a suitable 'and' instruction that 2835 /// operates on the given source register and applies the same mask 2836 /// as a 'tst' instruction. Provide a limited look-through for copies. 2837 /// When successful, MI will hold the found instruction. 2838 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2839 int CmpMask, bool CommonUse) { 2840 switch (MI->getOpcode()) { 2841 case ARM::ANDri: 2842 case ARM::t2ANDri: 2843 if (CmpMask != MI->getOperand(2).getImm()) 2844 return false; 2845 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2846 return true; 2847 break; 2848 } 2849 2850 return false; 2851 } 2852 2853 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2854 /// the condition code if we modify the instructions such that flags are 2855 /// set by ADD(a,b,X). 2856 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2857 switch (CC) { 2858 default: return ARMCC::AL; 2859 case ARMCC::HS: return ARMCC::LO; 2860 case ARMCC::LO: return ARMCC::HS; 2861 case ARMCC::VS: return ARMCC::VS; 2862 case ARMCC::VC: return ARMCC::VC; 2863 } 2864 } 2865 2866 /// isRedundantFlagInstr - check whether the first instruction, whose only 2867 /// purpose is to update flags, can be made redundant. 2868 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2869 /// CMPri can be made redundant by SUBri if the operands are the same. 2870 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2871 /// This function can be extended later on. 2872 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2873 Register SrcReg, Register SrcReg2, 2874 int64_t ImmValue, 2875 const MachineInstr *OI, 2876 bool &IsThumb1) { 2877 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2878 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2879 ((OI->getOperand(1).getReg() == SrcReg && 2880 OI->getOperand(2).getReg() == SrcReg2) || 2881 (OI->getOperand(1).getReg() == SrcReg2 && 2882 OI->getOperand(2).getReg() == SrcReg))) { 2883 IsThumb1 = false; 2884 return true; 2885 } 2886 2887 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2888 ((OI->getOperand(2).getReg() == SrcReg && 2889 OI->getOperand(3).getReg() == SrcReg2) || 2890 (OI->getOperand(2).getReg() == SrcReg2 && 2891 OI->getOperand(3).getReg() == SrcReg))) { 2892 IsThumb1 = true; 2893 return true; 2894 } 2895 2896 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2897 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2898 OI->getOperand(1).getReg() == SrcReg && 2899 OI->getOperand(2).getImm() == ImmValue) { 2900 IsThumb1 = false; 2901 return true; 2902 } 2903 2904 if (CmpI->getOpcode() == ARM::tCMPi8 && 2905 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2906 OI->getOperand(2).getReg() == SrcReg && 2907 OI->getOperand(3).getImm() == ImmValue) { 2908 IsThumb1 = true; 2909 return true; 2910 } 2911 2912 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2913 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2914 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2915 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2916 OI->getOperand(0).getReg() == SrcReg && 2917 OI->getOperand(1).getReg() == SrcReg2) { 2918 IsThumb1 = false; 2919 return true; 2920 } 2921 2922 if (CmpI->getOpcode() == ARM::tCMPr && 2923 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2924 OI->getOpcode() == ARM::tADDrr) && 2925 OI->getOperand(0).getReg() == SrcReg && 2926 OI->getOperand(2).getReg() == SrcReg2) { 2927 IsThumb1 = true; 2928 return true; 2929 } 2930 2931 return false; 2932 } 2933 2934 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2935 switch (MI->getOpcode()) { 2936 default: return false; 2937 case ARM::tLSLri: 2938 case ARM::tLSRri: 2939 case ARM::tLSLrr: 2940 case ARM::tLSRrr: 2941 case ARM::tSUBrr: 2942 case ARM::tADDrr: 2943 case ARM::tADDi3: 2944 case ARM::tADDi8: 2945 case ARM::tSUBi3: 2946 case ARM::tSUBi8: 2947 case ARM::tMUL: 2948 case ARM::tADC: 2949 case ARM::tSBC: 2950 case ARM::tRSB: 2951 case ARM::tAND: 2952 case ARM::tORR: 2953 case ARM::tEOR: 2954 case ARM::tBIC: 2955 case ARM::tMVN: 2956 case ARM::tASRri: 2957 case ARM::tASRrr: 2958 case ARM::tROR: 2959 IsThumb1 = true; 2960 [[fallthrough]]; 2961 case ARM::RSBrr: 2962 case ARM::RSBri: 2963 case ARM::RSCrr: 2964 case ARM::RSCri: 2965 case ARM::ADDrr: 2966 case ARM::ADDri: 2967 case ARM::ADCrr: 2968 case ARM::ADCri: 2969 case ARM::SUBrr: 2970 case ARM::SUBri: 2971 case ARM::SBCrr: 2972 case ARM::SBCri: 2973 case ARM::t2RSBri: 2974 case ARM::t2ADDrr: 2975 case ARM::t2ADDri: 2976 case ARM::t2ADCrr: 2977 case ARM::t2ADCri: 2978 case ARM::t2SUBrr: 2979 case ARM::t2SUBri: 2980 case ARM::t2SBCrr: 2981 case ARM::t2SBCri: 2982 case ARM::ANDrr: 2983 case ARM::ANDri: 2984 case ARM::ANDrsr: 2985 case ARM::ANDrsi: 2986 case ARM::t2ANDrr: 2987 case ARM::t2ANDri: 2988 case ARM::t2ANDrs: 2989 case ARM::ORRrr: 2990 case ARM::ORRri: 2991 case ARM::ORRrsr: 2992 case ARM::ORRrsi: 2993 case ARM::t2ORRrr: 2994 case ARM::t2ORRri: 2995 case ARM::t2ORRrs: 2996 case ARM::EORrr: 2997 case ARM::EORri: 2998 case ARM::EORrsr: 2999 case ARM::EORrsi: 3000 case ARM::t2EORrr: 3001 case ARM::t2EORri: 3002 case ARM::t2EORrs: 3003 case ARM::BICri: 3004 case ARM::BICrr: 3005 case ARM::BICrsi: 3006 case ARM::BICrsr: 3007 case ARM::t2BICri: 3008 case ARM::t2BICrr: 3009 case ARM::t2BICrs: 3010 case ARM::t2LSRri: 3011 case ARM::t2LSRrr: 3012 case ARM::t2LSLri: 3013 case ARM::t2LSLrr: 3014 case ARM::MOVsr: 3015 case ARM::MOVsi: 3016 return true; 3017 } 3018 } 3019 3020 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 3021 /// comparison into one that sets the zero bit in the flags register; 3022 /// Remove a redundant Compare instruction if an earlier instruction can set the 3023 /// flags in the same way as Compare. 3024 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3025 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3026 /// condition code of instructions which use the flags. 3027 bool ARMBaseInstrInfo::optimizeCompareInstr( 3028 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3029 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3030 // Get the unique definition of SrcReg. 3031 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3032 if (!MI) return false; 3033 3034 // Masked compares sometimes use the same register as the corresponding 'and'. 3035 if (CmpMask != ~0) { 3036 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3037 MI = nullptr; 3038 for (MachineRegisterInfo::use_instr_iterator 3039 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3040 UI != UE; ++UI) { 3041 if (UI->getParent() != CmpInstr.getParent()) 3042 continue; 3043 MachineInstr *PotentialAND = &*UI; 3044 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3045 isPredicated(*PotentialAND)) 3046 continue; 3047 MI = PotentialAND; 3048 break; 3049 } 3050 if (!MI) return false; 3051 } 3052 } 3053 3054 // Get ready to iterate backward from CmpInstr. 3055 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3056 B = CmpInstr.getParent()->begin(); 3057 3058 // Early exit if CmpInstr is at the beginning of the BB. 3059 if (I == B) return false; 3060 3061 // There are two possible candidates which can be changed to set CPSR: 3062 // One is MI, the other is a SUB or ADD instruction. 3063 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3064 // ADDr[ri](r1, r2, X). 3065 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3066 MachineInstr *SubAdd = nullptr; 3067 if (SrcReg2 != 0) 3068 // MI is not a candidate for CMPrr. 3069 MI = nullptr; 3070 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3071 // Conservatively refuse to convert an instruction which isn't in the same 3072 // BB as the comparison. 3073 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3074 // Thus we cannot return here. 3075 if (CmpInstr.getOpcode() == ARM::CMPri || 3076 CmpInstr.getOpcode() == ARM::t2CMPri || 3077 CmpInstr.getOpcode() == ARM::tCMPi8) 3078 MI = nullptr; 3079 else 3080 return false; 3081 } 3082 3083 bool IsThumb1 = false; 3084 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3085 return false; 3086 3087 // We also want to do this peephole for cases like this: if (a*b == 0), 3088 // and optimise away the CMP instruction from the generated code sequence: 3089 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3090 // resulting from the select instruction, but these MOVS instructions for 3091 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3092 // However, if we only have MOVS instructions in between the CMP and the 3093 // other instruction (the MULS in this example), then the CPSR is dead so we 3094 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3095 // reordering and then continue the analysis hoping we can eliminate the 3096 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3097 // consequence, the movs won't redefine/kill the MUL operands which would 3098 // make this reordering illegal. 3099 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3100 if (MI && IsThumb1) { 3101 --I; 3102 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3103 bool CanReorder = true; 3104 for (; I != E; --I) { 3105 if (I->getOpcode() != ARM::tMOVi8) { 3106 CanReorder = false; 3107 break; 3108 } 3109 } 3110 if (CanReorder) { 3111 MI = MI->removeFromParent(); 3112 E = CmpInstr; 3113 CmpInstr.getParent()->insert(E, MI); 3114 } 3115 } 3116 I = CmpInstr; 3117 E = MI; 3118 } 3119 3120 // Check that CPSR isn't set between the comparison instruction and the one we 3121 // want to change. At the same time, search for SubAdd. 3122 bool SubAddIsThumb1 = false; 3123 do { 3124 const MachineInstr &Instr = *--I; 3125 3126 // Check whether CmpInstr can be made redundant by the current instruction. 3127 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3128 SubAddIsThumb1)) { 3129 SubAdd = &*I; 3130 break; 3131 } 3132 3133 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3134 if (I == E) 3135 break; 3136 3137 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3138 Instr.readsRegister(ARM::CPSR, TRI)) 3139 // This instruction modifies or uses CPSR after the one we want to 3140 // change. We can't do this transformation. 3141 return false; 3142 3143 if (I == B) { 3144 // In some cases, we scan the use-list of an instruction for an AND; 3145 // that AND is in the same BB, but may not be scheduled before the 3146 // corresponding TST. In that case, bail out. 3147 // 3148 // FIXME: We could try to reschedule the AND. 3149 return false; 3150 } 3151 } while (true); 3152 3153 // Return false if no candidates exist. 3154 if (!MI && !SubAdd) 3155 return false; 3156 3157 // If we found a SubAdd, use it as it will be closer to the CMP 3158 if (SubAdd) { 3159 MI = SubAdd; 3160 IsThumb1 = SubAddIsThumb1; 3161 } 3162 3163 // We can't use a predicated instruction - it doesn't always write the flags. 3164 if (isPredicated(*MI)) 3165 return false; 3166 3167 // Scan forward for the use of CPSR 3168 // When checking against MI: if it's a conditional code that requires 3169 // checking of the V bit or C bit, then this is not safe to do. 3170 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3171 // If we are done with the basic block, we need to check whether CPSR is 3172 // live-out. 3173 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3174 OperandsToUpdate; 3175 bool isSafe = false; 3176 I = CmpInstr; 3177 E = CmpInstr.getParent()->end(); 3178 while (!isSafe && ++I != E) { 3179 const MachineInstr &Instr = *I; 3180 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3181 !isSafe && IO != EO; ++IO) { 3182 const MachineOperand &MO = Instr.getOperand(IO); 3183 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3184 isSafe = true; 3185 break; 3186 } 3187 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3188 continue; 3189 if (MO.isDef()) { 3190 isSafe = true; 3191 break; 3192 } 3193 // Condition code is after the operand before CPSR except for VSELs. 3194 ARMCC::CondCodes CC; 3195 bool IsInstrVSel = true; 3196 switch (Instr.getOpcode()) { 3197 default: 3198 IsInstrVSel = false; 3199 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3200 break; 3201 case ARM::VSELEQD: 3202 case ARM::VSELEQS: 3203 case ARM::VSELEQH: 3204 CC = ARMCC::EQ; 3205 break; 3206 case ARM::VSELGTD: 3207 case ARM::VSELGTS: 3208 case ARM::VSELGTH: 3209 CC = ARMCC::GT; 3210 break; 3211 case ARM::VSELGED: 3212 case ARM::VSELGES: 3213 case ARM::VSELGEH: 3214 CC = ARMCC::GE; 3215 break; 3216 case ARM::VSELVSD: 3217 case ARM::VSELVSS: 3218 case ARM::VSELVSH: 3219 CC = ARMCC::VS; 3220 break; 3221 } 3222 3223 if (SubAdd) { 3224 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3225 // on CMP needs to be updated to be based on SUB. 3226 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3227 // needs to be modified. 3228 // Push the condition code operands to OperandsToUpdate. 3229 // If it is safe to remove CmpInstr, the condition code of these 3230 // operands will be modified. 3231 unsigned Opc = SubAdd->getOpcode(); 3232 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3233 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3234 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3235 Opc == ARM::tSUBi8; 3236 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3237 if (!IsSub || 3238 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3239 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3240 // VSel doesn't support condition code update. 3241 if (IsInstrVSel) 3242 return false; 3243 // Ensure we can swap the condition. 3244 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3245 if (NewCC == ARMCC::AL) 3246 return false; 3247 OperandsToUpdate.push_back( 3248 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3249 } 3250 } else { 3251 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3252 switch (CC) { 3253 case ARMCC::EQ: // Z 3254 case ARMCC::NE: // Z 3255 case ARMCC::MI: // N 3256 case ARMCC::PL: // N 3257 case ARMCC::AL: // none 3258 // CPSR can be used multiple times, we should continue. 3259 break; 3260 case ARMCC::HS: // C 3261 case ARMCC::LO: // C 3262 case ARMCC::VS: // V 3263 case ARMCC::VC: // V 3264 case ARMCC::HI: // C Z 3265 case ARMCC::LS: // C Z 3266 case ARMCC::GE: // N V 3267 case ARMCC::LT: // N V 3268 case ARMCC::GT: // Z N V 3269 case ARMCC::LE: // Z N V 3270 // The instruction uses the V bit or C bit which is not safe. 3271 return false; 3272 } 3273 } 3274 } 3275 } 3276 3277 // If CPSR is not killed nor re-defined, we should check whether it is 3278 // live-out. If it is live-out, do not optimize. 3279 if (!isSafe) { 3280 MachineBasicBlock *MBB = CmpInstr.getParent(); 3281 for (MachineBasicBlock *Succ : MBB->successors()) 3282 if (Succ->isLiveIn(ARM::CPSR)) 3283 return false; 3284 } 3285 3286 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3287 // set CPSR so this is represented as an explicit output) 3288 if (!IsThumb1) { 3289 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1; 3290 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR); 3291 MI->getOperand(CPSRRegNum).setIsDef(true); 3292 } 3293 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3294 CmpInstr.eraseFromParent(); 3295 3296 // Modify the condition code of operands in OperandsToUpdate. 3297 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3298 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3299 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3300 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3301 3302 MI->clearRegisterDeads(ARM::CPSR); 3303 3304 return true; 3305 } 3306 3307 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3308 // Do not sink MI if it might be used to optimize a redundant compare. 3309 // We heuristically only look at the instruction immediately following MI to 3310 // avoid potentially searching the entire basic block. 3311 if (isPredicated(MI)) 3312 return true; 3313 MachineBasicBlock::const_iterator Next = &MI; 3314 ++Next; 3315 Register SrcReg, SrcReg2; 3316 int64_t CmpMask, CmpValue; 3317 bool IsThumb1; 3318 if (Next != MI.getParent()->end() && 3319 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3320 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3321 return false; 3322 return true; 3323 } 3324 3325 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3326 Register Reg, 3327 MachineRegisterInfo *MRI) const { 3328 // Fold large immediates into add, sub, or, xor. 3329 unsigned DefOpc = DefMI.getOpcode(); 3330 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm && 3331 DefOpc != ARM::tMOVi32imm) 3332 return false; 3333 if (!DefMI.getOperand(1).isImm()) 3334 // Could be t2MOVi32imm @xx 3335 return false; 3336 3337 if (!MRI->hasOneNonDBGUse(Reg)) 3338 return false; 3339 3340 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3341 if (DefMCID.hasOptionalDef()) { 3342 unsigned NumOps = DefMCID.getNumOperands(); 3343 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3344 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3345 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3346 // to delete DefMI. 3347 return false; 3348 } 3349 3350 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3351 if (UseMCID.hasOptionalDef()) { 3352 unsigned NumOps = UseMCID.getNumOperands(); 3353 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3354 // If the instruction sets the flag, do not attempt this optimization 3355 // since it may change the semantics of the code. 3356 return false; 3357 } 3358 3359 unsigned UseOpc = UseMI.getOpcode(); 3360 unsigned NewUseOpc = 0; 3361 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3362 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3363 bool Commute = false; 3364 switch (UseOpc) { 3365 default: return false; 3366 case ARM::SUBrr: 3367 case ARM::ADDrr: 3368 case ARM::ORRrr: 3369 case ARM::EORrr: 3370 case ARM::t2SUBrr: 3371 case ARM::t2ADDrr: 3372 case ARM::t2ORRrr: 3373 case ARM::t2EORrr: { 3374 Commute = UseMI.getOperand(2).getReg() != Reg; 3375 switch (UseOpc) { 3376 default: break; 3377 case ARM::ADDrr: 3378 case ARM::SUBrr: 3379 if (UseOpc == ARM::SUBrr && Commute) 3380 return false; 3381 3382 // ADD/SUB are special because they're essentially the same operation, so 3383 // we can handle a larger range of immediates. 3384 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3385 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3386 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3387 ImmVal = -ImmVal; 3388 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3389 } else 3390 return false; 3391 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3392 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3393 break; 3394 case ARM::ORRrr: 3395 case ARM::EORrr: 3396 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3397 return false; 3398 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3399 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3400 switch (UseOpc) { 3401 default: break; 3402 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3403 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3404 } 3405 break; 3406 case ARM::t2ADDrr: 3407 case ARM::t2SUBrr: { 3408 if (UseOpc == ARM::t2SUBrr && Commute) 3409 return false; 3410 3411 // ADD/SUB are special because they're essentially the same operation, so 3412 // we can handle a larger range of immediates. 3413 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3414 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3415 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3416 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3417 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3418 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3419 ImmVal = -ImmVal; 3420 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3421 } else 3422 return false; 3423 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3424 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3425 break; 3426 } 3427 case ARM::t2ORRrr: 3428 case ARM::t2EORrr: 3429 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3430 return false; 3431 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3432 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3433 switch (UseOpc) { 3434 default: break; 3435 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3436 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3437 } 3438 break; 3439 } 3440 } 3441 } 3442 3443 unsigned OpIdx = Commute ? 2 : 1; 3444 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3445 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3446 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3447 Register NewReg = MRI->createVirtualRegister(TRC); 3448 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3449 NewReg) 3450 .addReg(Reg1, getKillRegState(isKill)) 3451 .addImm(SOImmValV1) 3452 .add(predOps(ARMCC::AL)) 3453 .add(condCodeOp()); 3454 UseMI.setDesc(get(NewUseOpc)); 3455 UseMI.getOperand(1).setReg(NewReg); 3456 UseMI.getOperand(1).setIsKill(); 3457 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3458 DefMI.eraseFromParent(); 3459 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3460 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3461 // Then the below code will not be needed, as the input/output register 3462 // classes will be rgpr or gprSP. 3463 // For now, we fix the UseMI operand explicitly here: 3464 switch(NewUseOpc){ 3465 case ARM::t2ADDspImm: 3466 case ARM::t2SUBspImm: 3467 case ARM::t2ADDri: 3468 case ARM::t2SUBri: 3469 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3470 } 3471 return true; 3472 } 3473 3474 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3475 const MachineInstr &MI) { 3476 switch (MI.getOpcode()) { 3477 default: { 3478 const MCInstrDesc &Desc = MI.getDesc(); 3479 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3480 assert(UOps >= 0 && "bad # UOps"); 3481 return UOps; 3482 } 3483 3484 case ARM::LDRrs: 3485 case ARM::LDRBrs: 3486 case ARM::STRrs: 3487 case ARM::STRBrs: { 3488 unsigned ShOpVal = MI.getOperand(3).getImm(); 3489 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3490 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3491 if (!isSub && 3492 (ShImm == 0 || 3493 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3494 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3495 return 1; 3496 return 2; 3497 } 3498 3499 case ARM::LDRH: 3500 case ARM::STRH: { 3501 if (!MI.getOperand(2).getReg()) 3502 return 1; 3503 3504 unsigned ShOpVal = MI.getOperand(3).getImm(); 3505 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3506 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3507 if (!isSub && 3508 (ShImm == 0 || 3509 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3510 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3511 return 1; 3512 return 2; 3513 } 3514 3515 case ARM::LDRSB: 3516 case ARM::LDRSH: 3517 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3518 3519 case ARM::LDRSB_POST: 3520 case ARM::LDRSH_POST: { 3521 Register Rt = MI.getOperand(0).getReg(); 3522 Register Rm = MI.getOperand(3).getReg(); 3523 return (Rt == Rm) ? 4 : 3; 3524 } 3525 3526 case ARM::LDR_PRE_REG: 3527 case ARM::LDRB_PRE_REG: { 3528 Register Rt = MI.getOperand(0).getReg(); 3529 Register Rm = MI.getOperand(3).getReg(); 3530 if (Rt == Rm) 3531 return 3; 3532 unsigned ShOpVal = MI.getOperand(4).getImm(); 3533 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3534 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3535 if (!isSub && 3536 (ShImm == 0 || 3537 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3538 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3539 return 2; 3540 return 3; 3541 } 3542 3543 case ARM::STR_PRE_REG: 3544 case ARM::STRB_PRE_REG: { 3545 unsigned ShOpVal = MI.getOperand(4).getImm(); 3546 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3547 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3548 if (!isSub && 3549 (ShImm == 0 || 3550 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3551 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3552 return 2; 3553 return 3; 3554 } 3555 3556 case ARM::LDRH_PRE: 3557 case ARM::STRH_PRE: { 3558 Register Rt = MI.getOperand(0).getReg(); 3559 Register Rm = MI.getOperand(3).getReg(); 3560 if (!Rm) 3561 return 2; 3562 if (Rt == Rm) 3563 return 3; 3564 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3565 } 3566 3567 case ARM::LDR_POST_REG: 3568 case ARM::LDRB_POST_REG: 3569 case ARM::LDRH_POST: { 3570 Register Rt = MI.getOperand(0).getReg(); 3571 Register Rm = MI.getOperand(3).getReg(); 3572 return (Rt == Rm) ? 3 : 2; 3573 } 3574 3575 case ARM::LDR_PRE_IMM: 3576 case ARM::LDRB_PRE_IMM: 3577 case ARM::LDR_POST_IMM: 3578 case ARM::LDRB_POST_IMM: 3579 case ARM::STRB_POST_IMM: 3580 case ARM::STRB_POST_REG: 3581 case ARM::STRB_PRE_IMM: 3582 case ARM::STRH_POST: 3583 case ARM::STR_POST_IMM: 3584 case ARM::STR_POST_REG: 3585 case ARM::STR_PRE_IMM: 3586 return 2; 3587 3588 case ARM::LDRSB_PRE: 3589 case ARM::LDRSH_PRE: { 3590 Register Rm = MI.getOperand(3).getReg(); 3591 if (Rm == 0) 3592 return 3; 3593 Register Rt = MI.getOperand(0).getReg(); 3594 if (Rt == Rm) 3595 return 4; 3596 unsigned ShOpVal = MI.getOperand(4).getImm(); 3597 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3598 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3599 if (!isSub && 3600 (ShImm == 0 || 3601 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3602 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3603 return 3; 3604 return 4; 3605 } 3606 3607 case ARM::LDRD: { 3608 Register Rt = MI.getOperand(0).getReg(); 3609 Register Rn = MI.getOperand(2).getReg(); 3610 Register Rm = MI.getOperand(3).getReg(); 3611 if (Rm) 3612 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3613 : 3; 3614 return (Rt == Rn) ? 3 : 2; 3615 } 3616 3617 case ARM::STRD: { 3618 Register Rm = MI.getOperand(3).getReg(); 3619 if (Rm) 3620 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3621 : 3; 3622 return 2; 3623 } 3624 3625 case ARM::LDRD_POST: 3626 case ARM::t2LDRD_POST: 3627 return 3; 3628 3629 case ARM::STRD_POST: 3630 case ARM::t2STRD_POST: 3631 return 4; 3632 3633 case ARM::LDRD_PRE: { 3634 Register Rt = MI.getOperand(0).getReg(); 3635 Register Rn = MI.getOperand(3).getReg(); 3636 Register Rm = MI.getOperand(4).getReg(); 3637 if (Rm) 3638 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3639 : 4; 3640 return (Rt == Rn) ? 4 : 3; 3641 } 3642 3643 case ARM::t2LDRD_PRE: { 3644 Register Rt = MI.getOperand(0).getReg(); 3645 Register Rn = MI.getOperand(3).getReg(); 3646 return (Rt == Rn) ? 4 : 3; 3647 } 3648 3649 case ARM::STRD_PRE: { 3650 Register Rm = MI.getOperand(4).getReg(); 3651 if (Rm) 3652 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3653 : 4; 3654 return 3; 3655 } 3656 3657 case ARM::t2STRD_PRE: 3658 return 3; 3659 3660 case ARM::t2LDR_POST: 3661 case ARM::t2LDRB_POST: 3662 case ARM::t2LDRB_PRE: 3663 case ARM::t2LDRSBi12: 3664 case ARM::t2LDRSBi8: 3665 case ARM::t2LDRSBpci: 3666 case ARM::t2LDRSBs: 3667 case ARM::t2LDRH_POST: 3668 case ARM::t2LDRH_PRE: 3669 case ARM::t2LDRSBT: 3670 case ARM::t2LDRSB_POST: 3671 case ARM::t2LDRSB_PRE: 3672 case ARM::t2LDRSH_POST: 3673 case ARM::t2LDRSH_PRE: 3674 case ARM::t2LDRSHi12: 3675 case ARM::t2LDRSHi8: 3676 case ARM::t2LDRSHpci: 3677 case ARM::t2LDRSHs: 3678 return 2; 3679 3680 case ARM::t2LDRDi8: { 3681 Register Rt = MI.getOperand(0).getReg(); 3682 Register Rn = MI.getOperand(2).getReg(); 3683 return (Rt == Rn) ? 3 : 2; 3684 } 3685 3686 case ARM::t2STRB_POST: 3687 case ARM::t2STRB_PRE: 3688 case ARM::t2STRBs: 3689 case ARM::t2STRDi8: 3690 case ARM::t2STRH_POST: 3691 case ARM::t2STRH_PRE: 3692 case ARM::t2STRHs: 3693 case ARM::t2STR_POST: 3694 case ARM::t2STR_PRE: 3695 case ARM::t2STRs: 3696 return 2; 3697 } 3698 } 3699 3700 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3701 // can't be easily determined return 0 (missing MachineMemOperand). 3702 // 3703 // FIXME: The current MachineInstr design does not support relying on machine 3704 // mem operands to determine the width of a memory access. Instead, we expect 3705 // the target to provide this information based on the instruction opcode and 3706 // operands. However, using MachineMemOperand is the best solution now for 3707 // two reasons: 3708 // 3709 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3710 // operands. This is much more dangerous than using the MachineMemOperand 3711 // sizes because CodeGen passes can insert/remove optional machine operands. In 3712 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3713 // postRA passes as well. 3714 // 3715 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3716 // machine model that calls this should handle the unknown (zero size) case. 3717 // 3718 // Long term, we should require a target hook that verifies MachineMemOperand 3719 // sizes during MC lowering. That target hook should be local to MC lowering 3720 // because we can't ensure that it is aware of other MI forms. Doing this will 3721 // ensure that MachineMemOperands are correctly propagated through all passes. 3722 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3723 unsigned Size = 0; 3724 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3725 E = MI.memoperands_end(); 3726 I != E; ++I) { 3727 Size += (*I)->getSize(); 3728 } 3729 // FIXME: The scheduler currently can't handle values larger than 16. But 3730 // the values can actually go up to 32 for floating-point load/store 3731 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3732 // operations isn't right; we could end up with "extra" memory operands for 3733 // various reasons, like tail merge merging two memory operations. 3734 return std::min(Size / 4, 16U); 3735 } 3736 3737 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3738 unsigned NumRegs) { 3739 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3740 switch (Opc) { 3741 default: 3742 break; 3743 case ARM::VLDMDIA_UPD: 3744 case ARM::VLDMDDB_UPD: 3745 case ARM::VLDMSIA_UPD: 3746 case ARM::VLDMSDB_UPD: 3747 case ARM::VSTMDIA_UPD: 3748 case ARM::VSTMDDB_UPD: 3749 case ARM::VSTMSIA_UPD: 3750 case ARM::VSTMSDB_UPD: 3751 case ARM::LDMIA_UPD: 3752 case ARM::LDMDA_UPD: 3753 case ARM::LDMDB_UPD: 3754 case ARM::LDMIB_UPD: 3755 case ARM::STMIA_UPD: 3756 case ARM::STMDA_UPD: 3757 case ARM::STMDB_UPD: 3758 case ARM::STMIB_UPD: 3759 case ARM::tLDMIA_UPD: 3760 case ARM::tSTMIA_UPD: 3761 case ARM::t2LDMIA_UPD: 3762 case ARM::t2LDMDB_UPD: 3763 case ARM::t2STMIA_UPD: 3764 case ARM::t2STMDB_UPD: 3765 ++UOps; // One for base register writeback. 3766 break; 3767 case ARM::LDMIA_RET: 3768 case ARM::tPOP_RET: 3769 case ARM::t2LDMIA_RET: 3770 UOps += 2; // One for base reg wb, one for write to pc. 3771 break; 3772 } 3773 return UOps; 3774 } 3775 3776 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3777 const MachineInstr &MI) const { 3778 if (!ItinData || ItinData->isEmpty()) 3779 return 1; 3780 3781 const MCInstrDesc &Desc = MI.getDesc(); 3782 unsigned Class = Desc.getSchedClass(); 3783 int ItinUOps = ItinData->getNumMicroOps(Class); 3784 if (ItinUOps >= 0) { 3785 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3786 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3787 3788 return ItinUOps; 3789 } 3790 3791 unsigned Opc = MI.getOpcode(); 3792 switch (Opc) { 3793 default: 3794 llvm_unreachable("Unexpected multi-uops instruction!"); 3795 case ARM::VLDMQIA: 3796 case ARM::VSTMQIA: 3797 return 2; 3798 3799 // The number of uOps for load / store multiple are determined by the number 3800 // registers. 3801 // 3802 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3803 // same cycle. The scheduling for the first load / store must be done 3804 // separately by assuming the address is not 64-bit aligned. 3805 // 3806 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3807 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3808 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3809 case ARM::VLDMDIA: 3810 case ARM::VLDMDIA_UPD: 3811 case ARM::VLDMDDB_UPD: 3812 case ARM::VLDMSIA: 3813 case ARM::VLDMSIA_UPD: 3814 case ARM::VLDMSDB_UPD: 3815 case ARM::VSTMDIA: 3816 case ARM::VSTMDIA_UPD: 3817 case ARM::VSTMDDB_UPD: 3818 case ARM::VSTMSIA: 3819 case ARM::VSTMSIA_UPD: 3820 case ARM::VSTMSDB_UPD: { 3821 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3822 return (NumRegs / 2) + (NumRegs % 2) + 1; 3823 } 3824 3825 case ARM::LDMIA_RET: 3826 case ARM::LDMIA: 3827 case ARM::LDMDA: 3828 case ARM::LDMDB: 3829 case ARM::LDMIB: 3830 case ARM::LDMIA_UPD: 3831 case ARM::LDMDA_UPD: 3832 case ARM::LDMDB_UPD: 3833 case ARM::LDMIB_UPD: 3834 case ARM::STMIA: 3835 case ARM::STMDA: 3836 case ARM::STMDB: 3837 case ARM::STMIB: 3838 case ARM::STMIA_UPD: 3839 case ARM::STMDA_UPD: 3840 case ARM::STMDB_UPD: 3841 case ARM::STMIB_UPD: 3842 case ARM::tLDMIA: 3843 case ARM::tLDMIA_UPD: 3844 case ARM::tSTMIA_UPD: 3845 case ARM::tPOP_RET: 3846 case ARM::tPOP: 3847 case ARM::tPUSH: 3848 case ARM::t2LDMIA_RET: 3849 case ARM::t2LDMIA: 3850 case ARM::t2LDMDB: 3851 case ARM::t2LDMIA_UPD: 3852 case ARM::t2LDMDB_UPD: 3853 case ARM::t2STMIA: 3854 case ARM::t2STMDB: 3855 case ARM::t2STMIA_UPD: 3856 case ARM::t2STMDB_UPD: { 3857 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3858 switch (Subtarget.getLdStMultipleTiming()) { 3859 case ARMSubtarget::SingleIssuePlusExtras: 3860 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3861 case ARMSubtarget::SingleIssue: 3862 // Assume the worst. 3863 return NumRegs; 3864 case ARMSubtarget::DoubleIssue: { 3865 if (NumRegs < 4) 3866 return 2; 3867 // 4 registers would be issued: 2, 2. 3868 // 5 registers would be issued: 2, 2, 1. 3869 unsigned UOps = (NumRegs / 2); 3870 if (NumRegs % 2) 3871 ++UOps; 3872 return UOps; 3873 } 3874 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3875 unsigned UOps = (NumRegs / 2); 3876 // If there are odd number of registers or if it's not 64-bit aligned, 3877 // then it takes an extra AGU (Address Generation Unit) cycle. 3878 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3879 (*MI.memoperands_begin())->getAlign() < Align(8)) 3880 ++UOps; 3881 return UOps; 3882 } 3883 } 3884 } 3885 } 3886 llvm_unreachable("Didn't find the number of microops"); 3887 } 3888 3889 int 3890 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3891 const MCInstrDesc &DefMCID, 3892 unsigned DefClass, 3893 unsigned DefIdx, unsigned DefAlign) const { 3894 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3895 if (RegNo <= 0) 3896 // Def is the address writeback. 3897 return ItinData->getOperandCycle(DefClass, DefIdx); 3898 3899 int DefCycle; 3900 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3901 // (regno / 2) + (regno % 2) + 1 3902 DefCycle = RegNo / 2 + 1; 3903 if (RegNo % 2) 3904 ++DefCycle; 3905 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3906 DefCycle = RegNo; 3907 bool isSLoad = false; 3908 3909 switch (DefMCID.getOpcode()) { 3910 default: break; 3911 case ARM::VLDMSIA: 3912 case ARM::VLDMSIA_UPD: 3913 case ARM::VLDMSDB_UPD: 3914 isSLoad = true; 3915 break; 3916 } 3917 3918 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3919 // then it takes an extra cycle. 3920 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3921 ++DefCycle; 3922 } else { 3923 // Assume the worst. 3924 DefCycle = RegNo + 2; 3925 } 3926 3927 return DefCycle; 3928 } 3929 3930 int 3931 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3932 const MCInstrDesc &DefMCID, 3933 unsigned DefClass, 3934 unsigned DefIdx, unsigned DefAlign) const { 3935 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3936 if (RegNo <= 0) 3937 // Def is the address writeback. 3938 return ItinData->getOperandCycle(DefClass, DefIdx); 3939 3940 int DefCycle; 3941 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3942 // 4 registers would be issued: 1, 2, 1. 3943 // 5 registers would be issued: 1, 2, 2. 3944 DefCycle = RegNo / 2; 3945 if (DefCycle < 1) 3946 DefCycle = 1; 3947 // Result latency is issue cycle + 2: E2. 3948 DefCycle += 2; 3949 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3950 DefCycle = (RegNo / 2); 3951 // If there are odd number of registers or if it's not 64-bit aligned, 3952 // then it takes an extra AGU (Address Generation Unit) cycle. 3953 if ((RegNo % 2) || DefAlign < 8) 3954 ++DefCycle; 3955 // Result latency is AGU cycles + 2. 3956 DefCycle += 2; 3957 } else { 3958 // Assume the worst. 3959 DefCycle = RegNo + 2; 3960 } 3961 3962 return DefCycle; 3963 } 3964 3965 int 3966 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3967 const MCInstrDesc &UseMCID, 3968 unsigned UseClass, 3969 unsigned UseIdx, unsigned UseAlign) const { 3970 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3971 if (RegNo <= 0) 3972 return ItinData->getOperandCycle(UseClass, UseIdx); 3973 3974 int UseCycle; 3975 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3976 // (regno / 2) + (regno % 2) + 1 3977 UseCycle = RegNo / 2 + 1; 3978 if (RegNo % 2) 3979 ++UseCycle; 3980 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3981 UseCycle = RegNo; 3982 bool isSStore = false; 3983 3984 switch (UseMCID.getOpcode()) { 3985 default: break; 3986 case ARM::VSTMSIA: 3987 case ARM::VSTMSIA_UPD: 3988 case ARM::VSTMSDB_UPD: 3989 isSStore = true; 3990 break; 3991 } 3992 3993 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3994 // then it takes an extra cycle. 3995 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3996 ++UseCycle; 3997 } else { 3998 // Assume the worst. 3999 UseCycle = RegNo + 2; 4000 } 4001 4002 return UseCycle; 4003 } 4004 4005 int 4006 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 4007 const MCInstrDesc &UseMCID, 4008 unsigned UseClass, 4009 unsigned UseIdx, unsigned UseAlign) const { 4010 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 4011 if (RegNo <= 0) 4012 return ItinData->getOperandCycle(UseClass, UseIdx); 4013 4014 int UseCycle; 4015 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 4016 UseCycle = RegNo / 2; 4017 if (UseCycle < 2) 4018 UseCycle = 2; 4019 // Read in E3. 4020 UseCycle += 2; 4021 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 4022 UseCycle = (RegNo / 2); 4023 // If there are odd number of registers or if it's not 64-bit aligned, 4024 // then it takes an extra AGU (Address Generation Unit) cycle. 4025 if ((RegNo % 2) || UseAlign < 8) 4026 ++UseCycle; 4027 } else { 4028 // Assume the worst. 4029 UseCycle = 1; 4030 } 4031 return UseCycle; 4032 } 4033 4034 int 4035 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4036 const MCInstrDesc &DefMCID, 4037 unsigned DefIdx, unsigned DefAlign, 4038 const MCInstrDesc &UseMCID, 4039 unsigned UseIdx, unsigned UseAlign) const { 4040 unsigned DefClass = DefMCID.getSchedClass(); 4041 unsigned UseClass = UseMCID.getSchedClass(); 4042 4043 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4044 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4045 4046 // This may be a def / use of a variable_ops instruction, the operand 4047 // latency might be determinable dynamically. Let the target try to 4048 // figure it out. 4049 int DefCycle = -1; 4050 bool LdmBypass = false; 4051 switch (DefMCID.getOpcode()) { 4052 default: 4053 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4054 break; 4055 4056 case ARM::VLDMDIA: 4057 case ARM::VLDMDIA_UPD: 4058 case ARM::VLDMDDB_UPD: 4059 case ARM::VLDMSIA: 4060 case ARM::VLDMSIA_UPD: 4061 case ARM::VLDMSDB_UPD: 4062 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4063 break; 4064 4065 case ARM::LDMIA_RET: 4066 case ARM::LDMIA: 4067 case ARM::LDMDA: 4068 case ARM::LDMDB: 4069 case ARM::LDMIB: 4070 case ARM::LDMIA_UPD: 4071 case ARM::LDMDA_UPD: 4072 case ARM::LDMDB_UPD: 4073 case ARM::LDMIB_UPD: 4074 case ARM::tLDMIA: 4075 case ARM::tLDMIA_UPD: 4076 case ARM::tPUSH: 4077 case ARM::t2LDMIA_RET: 4078 case ARM::t2LDMIA: 4079 case ARM::t2LDMDB: 4080 case ARM::t2LDMIA_UPD: 4081 case ARM::t2LDMDB_UPD: 4082 LdmBypass = true; 4083 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4084 break; 4085 } 4086 4087 if (DefCycle == -1) 4088 // We can't seem to determine the result latency of the def, assume it's 2. 4089 DefCycle = 2; 4090 4091 int UseCycle = -1; 4092 switch (UseMCID.getOpcode()) { 4093 default: 4094 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4095 break; 4096 4097 case ARM::VSTMDIA: 4098 case ARM::VSTMDIA_UPD: 4099 case ARM::VSTMDDB_UPD: 4100 case ARM::VSTMSIA: 4101 case ARM::VSTMSIA_UPD: 4102 case ARM::VSTMSDB_UPD: 4103 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4104 break; 4105 4106 case ARM::STMIA: 4107 case ARM::STMDA: 4108 case ARM::STMDB: 4109 case ARM::STMIB: 4110 case ARM::STMIA_UPD: 4111 case ARM::STMDA_UPD: 4112 case ARM::STMDB_UPD: 4113 case ARM::STMIB_UPD: 4114 case ARM::tSTMIA_UPD: 4115 case ARM::tPOP_RET: 4116 case ARM::tPOP: 4117 case ARM::t2STMIA: 4118 case ARM::t2STMDB: 4119 case ARM::t2STMIA_UPD: 4120 case ARM::t2STMDB_UPD: 4121 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4122 break; 4123 } 4124 4125 if (UseCycle == -1) 4126 // Assume it's read in the first stage. 4127 UseCycle = 1; 4128 4129 UseCycle = DefCycle - UseCycle + 1; 4130 if (UseCycle > 0) { 4131 if (LdmBypass) { 4132 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4133 // first def operand. 4134 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4135 UseClass, UseIdx)) 4136 --UseCycle; 4137 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4138 UseClass, UseIdx)) { 4139 --UseCycle; 4140 } 4141 } 4142 4143 return UseCycle; 4144 } 4145 4146 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4147 const MachineInstr *MI, unsigned Reg, 4148 unsigned &DefIdx, unsigned &Dist) { 4149 Dist = 0; 4150 4151 MachineBasicBlock::const_iterator I = MI; ++I; 4152 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4153 assert(II->isInsideBundle() && "Empty bundle?"); 4154 4155 int Idx = -1; 4156 while (II->isInsideBundle()) { 4157 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4158 if (Idx != -1) 4159 break; 4160 --II; 4161 ++Dist; 4162 } 4163 4164 assert(Idx != -1 && "Cannot find bundled definition!"); 4165 DefIdx = Idx; 4166 return &*II; 4167 } 4168 4169 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4170 const MachineInstr &MI, unsigned Reg, 4171 unsigned &UseIdx, unsigned &Dist) { 4172 Dist = 0; 4173 4174 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4175 assert(II->isInsideBundle() && "Empty bundle?"); 4176 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4177 4178 // FIXME: This doesn't properly handle multiple uses. 4179 int Idx = -1; 4180 while (II != E && II->isInsideBundle()) { 4181 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4182 if (Idx != -1) 4183 break; 4184 if (II->getOpcode() != ARM::t2IT) 4185 ++Dist; 4186 ++II; 4187 } 4188 4189 if (Idx == -1) { 4190 Dist = 0; 4191 return nullptr; 4192 } 4193 4194 UseIdx = Idx; 4195 return &*II; 4196 } 4197 4198 /// Return the number of cycles to add to (or subtract from) the static 4199 /// itinerary based on the def opcode and alignment. The caller will ensure that 4200 /// adjusted latency is at least one cycle. 4201 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4202 const MachineInstr &DefMI, 4203 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4204 int Adjust = 0; 4205 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4206 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4207 // variants are one cycle cheaper. 4208 switch (DefMCID.getOpcode()) { 4209 default: break; 4210 case ARM::LDRrs: 4211 case ARM::LDRBrs: { 4212 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4213 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4214 if (ShImm == 0 || 4215 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4216 --Adjust; 4217 break; 4218 } 4219 case ARM::t2LDRs: 4220 case ARM::t2LDRBs: 4221 case ARM::t2LDRHs: 4222 case ARM::t2LDRSHs: { 4223 // Thumb2 mode: lsl only. 4224 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4225 if (ShAmt == 0 || ShAmt == 2) 4226 --Adjust; 4227 break; 4228 } 4229 } 4230 } else if (Subtarget.isSwift()) { 4231 // FIXME: Properly handle all of the latency adjustments for address 4232 // writeback. 4233 switch (DefMCID.getOpcode()) { 4234 default: break; 4235 case ARM::LDRrs: 4236 case ARM::LDRBrs: { 4237 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4238 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4239 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4240 if (!isSub && 4241 (ShImm == 0 || 4242 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4243 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4244 Adjust -= 2; 4245 else if (!isSub && 4246 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4247 --Adjust; 4248 break; 4249 } 4250 case ARM::t2LDRs: 4251 case ARM::t2LDRBs: 4252 case ARM::t2LDRHs: 4253 case ARM::t2LDRSHs: { 4254 // Thumb2 mode: lsl only. 4255 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4256 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4257 Adjust -= 2; 4258 break; 4259 } 4260 } 4261 } 4262 4263 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4264 switch (DefMCID.getOpcode()) { 4265 default: break; 4266 case ARM::VLD1q8: 4267 case ARM::VLD1q16: 4268 case ARM::VLD1q32: 4269 case ARM::VLD1q64: 4270 case ARM::VLD1q8wb_fixed: 4271 case ARM::VLD1q16wb_fixed: 4272 case ARM::VLD1q32wb_fixed: 4273 case ARM::VLD1q64wb_fixed: 4274 case ARM::VLD1q8wb_register: 4275 case ARM::VLD1q16wb_register: 4276 case ARM::VLD1q32wb_register: 4277 case ARM::VLD1q64wb_register: 4278 case ARM::VLD2d8: 4279 case ARM::VLD2d16: 4280 case ARM::VLD2d32: 4281 case ARM::VLD2q8: 4282 case ARM::VLD2q16: 4283 case ARM::VLD2q32: 4284 case ARM::VLD2d8wb_fixed: 4285 case ARM::VLD2d16wb_fixed: 4286 case ARM::VLD2d32wb_fixed: 4287 case ARM::VLD2q8wb_fixed: 4288 case ARM::VLD2q16wb_fixed: 4289 case ARM::VLD2q32wb_fixed: 4290 case ARM::VLD2d8wb_register: 4291 case ARM::VLD2d16wb_register: 4292 case ARM::VLD2d32wb_register: 4293 case ARM::VLD2q8wb_register: 4294 case ARM::VLD2q16wb_register: 4295 case ARM::VLD2q32wb_register: 4296 case ARM::VLD3d8: 4297 case ARM::VLD3d16: 4298 case ARM::VLD3d32: 4299 case ARM::VLD1d64T: 4300 case ARM::VLD3d8_UPD: 4301 case ARM::VLD3d16_UPD: 4302 case ARM::VLD3d32_UPD: 4303 case ARM::VLD1d64Twb_fixed: 4304 case ARM::VLD1d64Twb_register: 4305 case ARM::VLD3q8_UPD: 4306 case ARM::VLD3q16_UPD: 4307 case ARM::VLD3q32_UPD: 4308 case ARM::VLD4d8: 4309 case ARM::VLD4d16: 4310 case ARM::VLD4d32: 4311 case ARM::VLD1d64Q: 4312 case ARM::VLD4d8_UPD: 4313 case ARM::VLD4d16_UPD: 4314 case ARM::VLD4d32_UPD: 4315 case ARM::VLD1d64Qwb_fixed: 4316 case ARM::VLD1d64Qwb_register: 4317 case ARM::VLD4q8_UPD: 4318 case ARM::VLD4q16_UPD: 4319 case ARM::VLD4q32_UPD: 4320 case ARM::VLD1DUPq8: 4321 case ARM::VLD1DUPq16: 4322 case ARM::VLD1DUPq32: 4323 case ARM::VLD1DUPq8wb_fixed: 4324 case ARM::VLD1DUPq16wb_fixed: 4325 case ARM::VLD1DUPq32wb_fixed: 4326 case ARM::VLD1DUPq8wb_register: 4327 case ARM::VLD1DUPq16wb_register: 4328 case ARM::VLD1DUPq32wb_register: 4329 case ARM::VLD2DUPd8: 4330 case ARM::VLD2DUPd16: 4331 case ARM::VLD2DUPd32: 4332 case ARM::VLD2DUPd8wb_fixed: 4333 case ARM::VLD2DUPd16wb_fixed: 4334 case ARM::VLD2DUPd32wb_fixed: 4335 case ARM::VLD2DUPd8wb_register: 4336 case ARM::VLD2DUPd16wb_register: 4337 case ARM::VLD2DUPd32wb_register: 4338 case ARM::VLD4DUPd8: 4339 case ARM::VLD4DUPd16: 4340 case ARM::VLD4DUPd32: 4341 case ARM::VLD4DUPd8_UPD: 4342 case ARM::VLD4DUPd16_UPD: 4343 case ARM::VLD4DUPd32_UPD: 4344 case ARM::VLD1LNd8: 4345 case ARM::VLD1LNd16: 4346 case ARM::VLD1LNd32: 4347 case ARM::VLD1LNd8_UPD: 4348 case ARM::VLD1LNd16_UPD: 4349 case ARM::VLD1LNd32_UPD: 4350 case ARM::VLD2LNd8: 4351 case ARM::VLD2LNd16: 4352 case ARM::VLD2LNd32: 4353 case ARM::VLD2LNq16: 4354 case ARM::VLD2LNq32: 4355 case ARM::VLD2LNd8_UPD: 4356 case ARM::VLD2LNd16_UPD: 4357 case ARM::VLD2LNd32_UPD: 4358 case ARM::VLD2LNq16_UPD: 4359 case ARM::VLD2LNq32_UPD: 4360 case ARM::VLD4LNd8: 4361 case ARM::VLD4LNd16: 4362 case ARM::VLD4LNd32: 4363 case ARM::VLD4LNq16: 4364 case ARM::VLD4LNq32: 4365 case ARM::VLD4LNd8_UPD: 4366 case ARM::VLD4LNd16_UPD: 4367 case ARM::VLD4LNd32_UPD: 4368 case ARM::VLD4LNq16_UPD: 4369 case ARM::VLD4LNq32_UPD: 4370 // If the address is not 64-bit aligned, the latencies of these 4371 // instructions increases by one. 4372 ++Adjust; 4373 break; 4374 } 4375 } 4376 return Adjust; 4377 } 4378 4379 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4380 const MachineInstr &DefMI, 4381 unsigned DefIdx, 4382 const MachineInstr &UseMI, 4383 unsigned UseIdx) const { 4384 // No operand latency. The caller may fall back to getInstrLatency. 4385 if (!ItinData || ItinData->isEmpty()) 4386 return -1; 4387 4388 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4389 Register Reg = DefMO.getReg(); 4390 4391 const MachineInstr *ResolvedDefMI = &DefMI; 4392 unsigned DefAdj = 0; 4393 if (DefMI.isBundle()) 4394 ResolvedDefMI = 4395 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4396 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4397 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4398 return 1; 4399 } 4400 4401 const MachineInstr *ResolvedUseMI = &UseMI; 4402 unsigned UseAdj = 0; 4403 if (UseMI.isBundle()) { 4404 ResolvedUseMI = 4405 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4406 if (!ResolvedUseMI) 4407 return -1; 4408 } 4409 4410 return getOperandLatencyImpl( 4411 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4412 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4413 } 4414 4415 int ARMBaseInstrInfo::getOperandLatencyImpl( 4416 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4417 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4418 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4419 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4420 if (Reg == ARM::CPSR) { 4421 if (DefMI.getOpcode() == ARM::FMSTAT) { 4422 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4423 return Subtarget.isLikeA9() ? 1 : 20; 4424 } 4425 4426 // CPSR set and branch can be paired in the same cycle. 4427 if (UseMI.isBranch()) 4428 return 0; 4429 4430 // Otherwise it takes the instruction latency (generally one). 4431 unsigned Latency = getInstrLatency(ItinData, DefMI); 4432 4433 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4434 // its uses. Instructions which are otherwise scheduled between them may 4435 // incur a code size penalty (not able to use the CPSR setting 16-bit 4436 // instructions). 4437 if (Latency > 0 && Subtarget.isThumb2()) { 4438 const MachineFunction *MF = DefMI.getParent()->getParent(); 4439 // FIXME: Use Function::hasOptSize(). 4440 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4441 --Latency; 4442 } 4443 return Latency; 4444 } 4445 4446 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4447 return -1; 4448 4449 unsigned DefAlign = DefMI.hasOneMemOperand() 4450 ? (*DefMI.memoperands_begin())->getAlign().value() 4451 : 0; 4452 unsigned UseAlign = UseMI.hasOneMemOperand() 4453 ? (*UseMI.memoperands_begin())->getAlign().value() 4454 : 0; 4455 4456 // Get the itinerary's latency if possible, and handle variable_ops. 4457 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4458 UseIdx, UseAlign); 4459 // Unable to find operand latency. The caller may resort to getInstrLatency. 4460 if (Latency < 0) 4461 return Latency; 4462 4463 // Adjust for IT block position. 4464 int Adj = DefAdj + UseAdj; 4465 4466 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4467 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4468 if (Adj >= 0 || (int)Latency > -Adj) { 4469 return Latency + Adj; 4470 } 4471 // Return the itinerary latency, which may be zero but not less than zero. 4472 return Latency; 4473 } 4474 4475 int 4476 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4477 SDNode *DefNode, unsigned DefIdx, 4478 SDNode *UseNode, unsigned UseIdx) const { 4479 if (!DefNode->isMachineOpcode()) 4480 return 1; 4481 4482 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4483 4484 if (isZeroCost(DefMCID.Opcode)) 4485 return 0; 4486 4487 if (!ItinData || ItinData->isEmpty()) 4488 return DefMCID.mayLoad() ? 3 : 1; 4489 4490 if (!UseNode->isMachineOpcode()) { 4491 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4492 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4493 int Threshold = 1 + Adj; 4494 return Latency <= Threshold ? 1 : Latency - Adj; 4495 } 4496 4497 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4498 auto *DefMN = cast<MachineSDNode>(DefNode); 4499 unsigned DefAlign = !DefMN->memoperands_empty() 4500 ? (*DefMN->memoperands_begin())->getAlign().value() 4501 : 0; 4502 auto *UseMN = cast<MachineSDNode>(UseNode); 4503 unsigned UseAlign = !UseMN->memoperands_empty() 4504 ? (*UseMN->memoperands_begin())->getAlign().value() 4505 : 0; 4506 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4507 UseMCID, UseIdx, UseAlign); 4508 4509 if (Latency > 1 && 4510 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4511 Subtarget.isCortexA7())) { 4512 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4513 // variants are one cycle cheaper. 4514 switch (DefMCID.getOpcode()) { 4515 default: break; 4516 case ARM::LDRrs: 4517 case ARM::LDRBrs: { 4518 unsigned ShOpVal = 4519 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4520 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4521 if (ShImm == 0 || 4522 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4523 --Latency; 4524 break; 4525 } 4526 case ARM::t2LDRs: 4527 case ARM::t2LDRBs: 4528 case ARM::t2LDRHs: 4529 case ARM::t2LDRSHs: { 4530 // Thumb2 mode: lsl only. 4531 unsigned ShAmt = 4532 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4533 if (ShAmt == 0 || ShAmt == 2) 4534 --Latency; 4535 break; 4536 } 4537 } 4538 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4539 // FIXME: Properly handle all of the latency adjustments for address 4540 // writeback. 4541 switch (DefMCID.getOpcode()) { 4542 default: break; 4543 case ARM::LDRrs: 4544 case ARM::LDRBrs: { 4545 unsigned ShOpVal = 4546 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4547 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4548 if (ShImm == 0 || 4549 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4550 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4551 Latency -= 2; 4552 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4553 --Latency; 4554 break; 4555 } 4556 case ARM::t2LDRs: 4557 case ARM::t2LDRBs: 4558 case ARM::t2LDRHs: 4559 case ARM::t2LDRSHs: 4560 // Thumb2 mode: lsl 0-3 only. 4561 Latency -= 2; 4562 break; 4563 } 4564 } 4565 4566 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4567 switch (DefMCID.getOpcode()) { 4568 default: break; 4569 case ARM::VLD1q8: 4570 case ARM::VLD1q16: 4571 case ARM::VLD1q32: 4572 case ARM::VLD1q64: 4573 case ARM::VLD1q8wb_register: 4574 case ARM::VLD1q16wb_register: 4575 case ARM::VLD1q32wb_register: 4576 case ARM::VLD1q64wb_register: 4577 case ARM::VLD1q8wb_fixed: 4578 case ARM::VLD1q16wb_fixed: 4579 case ARM::VLD1q32wb_fixed: 4580 case ARM::VLD1q64wb_fixed: 4581 case ARM::VLD2d8: 4582 case ARM::VLD2d16: 4583 case ARM::VLD2d32: 4584 case ARM::VLD2q8Pseudo: 4585 case ARM::VLD2q16Pseudo: 4586 case ARM::VLD2q32Pseudo: 4587 case ARM::VLD2d8wb_fixed: 4588 case ARM::VLD2d16wb_fixed: 4589 case ARM::VLD2d32wb_fixed: 4590 case ARM::VLD2q8PseudoWB_fixed: 4591 case ARM::VLD2q16PseudoWB_fixed: 4592 case ARM::VLD2q32PseudoWB_fixed: 4593 case ARM::VLD2d8wb_register: 4594 case ARM::VLD2d16wb_register: 4595 case ARM::VLD2d32wb_register: 4596 case ARM::VLD2q8PseudoWB_register: 4597 case ARM::VLD2q16PseudoWB_register: 4598 case ARM::VLD2q32PseudoWB_register: 4599 case ARM::VLD3d8Pseudo: 4600 case ARM::VLD3d16Pseudo: 4601 case ARM::VLD3d32Pseudo: 4602 case ARM::VLD1d8TPseudo: 4603 case ARM::VLD1d16TPseudo: 4604 case ARM::VLD1d32TPseudo: 4605 case ARM::VLD1d64TPseudo: 4606 case ARM::VLD1d64TPseudoWB_fixed: 4607 case ARM::VLD1d64TPseudoWB_register: 4608 case ARM::VLD3d8Pseudo_UPD: 4609 case ARM::VLD3d16Pseudo_UPD: 4610 case ARM::VLD3d32Pseudo_UPD: 4611 case ARM::VLD3q8Pseudo_UPD: 4612 case ARM::VLD3q16Pseudo_UPD: 4613 case ARM::VLD3q32Pseudo_UPD: 4614 case ARM::VLD3q8oddPseudo: 4615 case ARM::VLD3q16oddPseudo: 4616 case ARM::VLD3q32oddPseudo: 4617 case ARM::VLD3q8oddPseudo_UPD: 4618 case ARM::VLD3q16oddPseudo_UPD: 4619 case ARM::VLD3q32oddPseudo_UPD: 4620 case ARM::VLD4d8Pseudo: 4621 case ARM::VLD4d16Pseudo: 4622 case ARM::VLD4d32Pseudo: 4623 case ARM::VLD1d8QPseudo: 4624 case ARM::VLD1d16QPseudo: 4625 case ARM::VLD1d32QPseudo: 4626 case ARM::VLD1d64QPseudo: 4627 case ARM::VLD1d64QPseudoWB_fixed: 4628 case ARM::VLD1d64QPseudoWB_register: 4629 case ARM::VLD1q8HighQPseudo: 4630 case ARM::VLD1q8LowQPseudo_UPD: 4631 case ARM::VLD1q8HighTPseudo: 4632 case ARM::VLD1q8LowTPseudo_UPD: 4633 case ARM::VLD1q16HighQPseudo: 4634 case ARM::VLD1q16LowQPseudo_UPD: 4635 case ARM::VLD1q16HighTPseudo: 4636 case ARM::VLD1q16LowTPseudo_UPD: 4637 case ARM::VLD1q32HighQPseudo: 4638 case ARM::VLD1q32LowQPseudo_UPD: 4639 case ARM::VLD1q32HighTPseudo: 4640 case ARM::VLD1q32LowTPseudo_UPD: 4641 case ARM::VLD1q64HighQPseudo: 4642 case ARM::VLD1q64LowQPseudo_UPD: 4643 case ARM::VLD1q64HighTPseudo: 4644 case ARM::VLD1q64LowTPseudo_UPD: 4645 case ARM::VLD4d8Pseudo_UPD: 4646 case ARM::VLD4d16Pseudo_UPD: 4647 case ARM::VLD4d32Pseudo_UPD: 4648 case ARM::VLD4q8Pseudo_UPD: 4649 case ARM::VLD4q16Pseudo_UPD: 4650 case ARM::VLD4q32Pseudo_UPD: 4651 case ARM::VLD4q8oddPseudo: 4652 case ARM::VLD4q16oddPseudo: 4653 case ARM::VLD4q32oddPseudo: 4654 case ARM::VLD4q8oddPseudo_UPD: 4655 case ARM::VLD4q16oddPseudo_UPD: 4656 case ARM::VLD4q32oddPseudo_UPD: 4657 case ARM::VLD1DUPq8: 4658 case ARM::VLD1DUPq16: 4659 case ARM::VLD1DUPq32: 4660 case ARM::VLD1DUPq8wb_fixed: 4661 case ARM::VLD1DUPq16wb_fixed: 4662 case ARM::VLD1DUPq32wb_fixed: 4663 case ARM::VLD1DUPq8wb_register: 4664 case ARM::VLD1DUPq16wb_register: 4665 case ARM::VLD1DUPq32wb_register: 4666 case ARM::VLD2DUPd8: 4667 case ARM::VLD2DUPd16: 4668 case ARM::VLD2DUPd32: 4669 case ARM::VLD2DUPd8wb_fixed: 4670 case ARM::VLD2DUPd16wb_fixed: 4671 case ARM::VLD2DUPd32wb_fixed: 4672 case ARM::VLD2DUPd8wb_register: 4673 case ARM::VLD2DUPd16wb_register: 4674 case ARM::VLD2DUPd32wb_register: 4675 case ARM::VLD2DUPq8EvenPseudo: 4676 case ARM::VLD2DUPq8OddPseudo: 4677 case ARM::VLD2DUPq16EvenPseudo: 4678 case ARM::VLD2DUPq16OddPseudo: 4679 case ARM::VLD2DUPq32EvenPseudo: 4680 case ARM::VLD2DUPq32OddPseudo: 4681 case ARM::VLD3DUPq8EvenPseudo: 4682 case ARM::VLD3DUPq8OddPseudo: 4683 case ARM::VLD3DUPq16EvenPseudo: 4684 case ARM::VLD3DUPq16OddPseudo: 4685 case ARM::VLD3DUPq32EvenPseudo: 4686 case ARM::VLD3DUPq32OddPseudo: 4687 case ARM::VLD4DUPd8Pseudo: 4688 case ARM::VLD4DUPd16Pseudo: 4689 case ARM::VLD4DUPd32Pseudo: 4690 case ARM::VLD4DUPd8Pseudo_UPD: 4691 case ARM::VLD4DUPd16Pseudo_UPD: 4692 case ARM::VLD4DUPd32Pseudo_UPD: 4693 case ARM::VLD4DUPq8EvenPseudo: 4694 case ARM::VLD4DUPq8OddPseudo: 4695 case ARM::VLD4DUPq16EvenPseudo: 4696 case ARM::VLD4DUPq16OddPseudo: 4697 case ARM::VLD4DUPq32EvenPseudo: 4698 case ARM::VLD4DUPq32OddPseudo: 4699 case ARM::VLD1LNq8Pseudo: 4700 case ARM::VLD1LNq16Pseudo: 4701 case ARM::VLD1LNq32Pseudo: 4702 case ARM::VLD1LNq8Pseudo_UPD: 4703 case ARM::VLD1LNq16Pseudo_UPD: 4704 case ARM::VLD1LNq32Pseudo_UPD: 4705 case ARM::VLD2LNd8Pseudo: 4706 case ARM::VLD2LNd16Pseudo: 4707 case ARM::VLD2LNd32Pseudo: 4708 case ARM::VLD2LNq16Pseudo: 4709 case ARM::VLD2LNq32Pseudo: 4710 case ARM::VLD2LNd8Pseudo_UPD: 4711 case ARM::VLD2LNd16Pseudo_UPD: 4712 case ARM::VLD2LNd32Pseudo_UPD: 4713 case ARM::VLD2LNq16Pseudo_UPD: 4714 case ARM::VLD2LNq32Pseudo_UPD: 4715 case ARM::VLD4LNd8Pseudo: 4716 case ARM::VLD4LNd16Pseudo: 4717 case ARM::VLD4LNd32Pseudo: 4718 case ARM::VLD4LNq16Pseudo: 4719 case ARM::VLD4LNq32Pseudo: 4720 case ARM::VLD4LNd8Pseudo_UPD: 4721 case ARM::VLD4LNd16Pseudo_UPD: 4722 case ARM::VLD4LNd32Pseudo_UPD: 4723 case ARM::VLD4LNq16Pseudo_UPD: 4724 case ARM::VLD4LNq32Pseudo_UPD: 4725 // If the address is not 64-bit aligned, the latencies of these 4726 // instructions increases by one. 4727 ++Latency; 4728 break; 4729 } 4730 4731 return Latency; 4732 } 4733 4734 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4735 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4736 MI.isImplicitDef()) 4737 return 0; 4738 4739 if (MI.isBundle()) 4740 return 0; 4741 4742 const MCInstrDesc &MCID = MI.getDesc(); 4743 4744 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4745 !Subtarget.cheapPredicableCPSRDef())) { 4746 // When predicated, CPSR is an additional source operand for CPSR updating 4747 // instructions, this apparently increases their latencies. 4748 return 1; 4749 } 4750 return 0; 4751 } 4752 4753 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4754 const MachineInstr &MI, 4755 unsigned *PredCost) const { 4756 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4757 MI.isImplicitDef()) 4758 return 1; 4759 4760 // An instruction scheduler typically runs on unbundled instructions, however 4761 // other passes may query the latency of a bundled instruction. 4762 if (MI.isBundle()) { 4763 unsigned Latency = 0; 4764 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4765 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4766 while (++I != E && I->isInsideBundle()) { 4767 if (I->getOpcode() != ARM::t2IT) 4768 Latency += getInstrLatency(ItinData, *I, PredCost); 4769 } 4770 return Latency; 4771 } 4772 4773 const MCInstrDesc &MCID = MI.getDesc(); 4774 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4775 !Subtarget.cheapPredicableCPSRDef()))) { 4776 // When predicated, CPSR is an additional source operand for CPSR updating 4777 // instructions, this apparently increases their latencies. 4778 *PredCost = 1; 4779 } 4780 // Be sure to call getStageLatency for an empty itinerary in case it has a 4781 // valid MinLatency property. 4782 if (!ItinData) 4783 return MI.mayLoad() ? 3 : 1; 4784 4785 unsigned Class = MCID.getSchedClass(); 4786 4787 // For instructions with variable uops, use uops as latency. 4788 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4789 return getNumMicroOps(ItinData, MI); 4790 4791 // For the common case, fall back on the itinerary's latency. 4792 unsigned Latency = ItinData->getStageLatency(Class); 4793 4794 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4795 unsigned DefAlign = 4796 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4797 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4798 if (Adj >= 0 || (int)Latency > -Adj) { 4799 return Latency + Adj; 4800 } 4801 return Latency; 4802 } 4803 4804 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4805 SDNode *Node) const { 4806 if (!Node->isMachineOpcode()) 4807 return 1; 4808 4809 if (!ItinData || ItinData->isEmpty()) 4810 return 1; 4811 4812 unsigned Opcode = Node->getMachineOpcode(); 4813 switch (Opcode) { 4814 default: 4815 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4816 case ARM::VLDMQIA: 4817 case ARM::VSTMQIA: 4818 return 2; 4819 } 4820 } 4821 4822 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4823 const MachineRegisterInfo *MRI, 4824 const MachineInstr &DefMI, 4825 unsigned DefIdx, 4826 const MachineInstr &UseMI, 4827 unsigned UseIdx) const { 4828 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4829 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4830 if (Subtarget.nonpipelinedVFP() && 4831 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4832 return true; 4833 4834 // Hoist VFP / NEON instructions with 4 or higher latency. 4835 unsigned Latency = 4836 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4837 if (Latency <= 3) 4838 return false; 4839 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4840 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4841 } 4842 4843 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4844 const MachineInstr &DefMI, 4845 unsigned DefIdx) const { 4846 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4847 if (!ItinData || ItinData->isEmpty()) 4848 return false; 4849 4850 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4851 if (DDomain == ARMII::DomainGeneral) { 4852 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4853 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4854 return (DefCycle != -1 && DefCycle <= 2); 4855 } 4856 return false; 4857 } 4858 4859 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4860 StringRef &ErrInfo) const { 4861 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4862 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4863 return false; 4864 } 4865 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4866 // Make sure we don't generate a lo-lo mov that isn't supported. 4867 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4868 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4869 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4870 return false; 4871 } 4872 } 4873 if (MI.getOpcode() == ARM::tPUSH || 4874 MI.getOpcode() == ARM::tPOP || 4875 MI.getOpcode() == ARM::tPOP_RET) { 4876 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { 4877 if (MO.isImplicit() || !MO.isReg()) 4878 continue; 4879 Register Reg = MO.getReg(); 4880 if (Reg < ARM::R0 || Reg > ARM::R7) { 4881 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4882 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4883 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4884 return false; 4885 } 4886 } 4887 } 4888 } 4889 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4890 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4891 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4892 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4893 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4894 return false; 4895 } 4896 } 4897 4898 // Check the address model by taking the first Imm operand and checking it is 4899 // legal for that addressing mode. 4900 ARMII::AddrMode AddrMode = 4901 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); 4902 switch (AddrMode) { 4903 default: 4904 break; 4905 case ARMII::AddrModeT2_i7: 4906 case ARMII::AddrModeT2_i7s2: 4907 case ARMII::AddrModeT2_i7s4: 4908 case ARMII::AddrModeT2_i8: 4909 case ARMII::AddrModeT2_i8pos: 4910 case ARMII::AddrModeT2_i8neg: 4911 case ARMII::AddrModeT2_i8s4: 4912 case ARMII::AddrModeT2_i12: { 4913 uint32_t Imm = 0; 4914 for (auto Op : MI.operands()) { 4915 if (Op.isImm()) { 4916 Imm = Op.getImm(); 4917 break; 4918 } 4919 } 4920 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { 4921 ErrInfo = "Incorrect AddrMode Imm for instruction"; 4922 return false; 4923 } 4924 break; 4925 } 4926 } 4927 return true; 4928 } 4929 4930 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4931 unsigned LoadImmOpc, 4932 unsigned LoadOpc) const { 4933 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4934 "ROPI/RWPI not currently supported with stack guard"); 4935 4936 MachineBasicBlock &MBB = *MI->getParent(); 4937 DebugLoc DL = MI->getDebugLoc(); 4938 Register Reg = MI->getOperand(0).getReg(); 4939 MachineInstrBuilder MIB; 4940 unsigned int Offset = 0; 4941 4942 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { 4943 assert(!Subtarget.isReadTPSoft() && 4944 "TLS stack protector requires hardware TLS register"); 4945 4946 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4947 .addImm(15) 4948 .addImm(0) 4949 .addImm(13) 4950 .addImm(0) 4951 .addImm(3) 4952 .add(predOps(ARMCC::AL)); 4953 4954 Module &M = *MBB.getParent()->getFunction().getParent(); 4955 Offset = M.getStackProtectorGuardOffset(); 4956 if (Offset & ~0xfffU) { 4957 // The offset won't fit in the LDR's 12-bit immediate field, so emit an 4958 // extra ADD to cover the delta. This gives us a guaranteed 8 additional 4959 // bits, resulting in a range of 0 to +1 MiB for the guard offset. 4960 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; 4961 BuildMI(MBB, MI, DL, get(AddOpc), Reg) 4962 .addReg(Reg, RegState::Kill) 4963 .addImm(Offset & ~0xfffU) 4964 .add(predOps(ARMCC::AL)) 4965 .addReg(0); 4966 Offset &= 0xfffU; 4967 } 4968 } else { 4969 const GlobalValue *GV = 4970 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4971 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); 4972 4973 unsigned TargetFlags = ARMII::MO_NO_FLAG; 4974 if (Subtarget.isTargetMachO()) { 4975 TargetFlags |= ARMII::MO_NONLAZY; 4976 } else if (Subtarget.isTargetCOFF()) { 4977 if (GV->hasDLLImportStorageClass()) 4978 TargetFlags |= ARMII::MO_DLLIMPORT; 4979 else if (IsIndirect) 4980 TargetFlags |= ARMII::MO_COFFSTUB; 4981 } else if (Subtarget.isGVInGOT(GV)) { 4982 TargetFlags |= ARMII::MO_GOT; 4983 } 4984 4985 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4986 .addGlobalAddress(GV, 0, TargetFlags); 4987 4988 if (IsIndirect) { 4989 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4990 MIB.addReg(Reg, RegState::Kill).addImm(0); 4991 auto Flags = MachineMemOperand::MOLoad | 4992 MachineMemOperand::MODereferenceable | 4993 MachineMemOperand::MOInvariant; 4994 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4995 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4996 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4997 } 4998 } 4999 5000 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 5001 MIB.addReg(Reg, RegState::Kill) 5002 .addImm(Offset) 5003 .cloneMemRefs(*MI) 5004 .add(predOps(ARMCC::AL)); 5005 } 5006 5007 bool 5008 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 5009 unsigned &AddSubOpc, 5010 bool &NegAcc, bool &HasLane) const { 5011 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 5012 if (I == MLxEntryMap.end()) 5013 return false; 5014 5015 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 5016 MulOpc = Entry.MulOpc; 5017 AddSubOpc = Entry.AddSubOpc; 5018 NegAcc = Entry.NegAcc; 5019 HasLane = Entry.HasLane; 5020 return true; 5021 } 5022 5023 //===----------------------------------------------------------------------===// 5024 // Execution domains. 5025 //===----------------------------------------------------------------------===// 5026 // 5027 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 5028 // and some can go down both. The vmov instructions go down the VFP pipeline, 5029 // but they can be changed to vorr equivalents that are executed by the NEON 5030 // pipeline. 5031 // 5032 // We use the following execution domain numbering: 5033 // 5034 enum ARMExeDomain { 5035 ExeGeneric = 0, 5036 ExeVFP = 1, 5037 ExeNEON = 2 5038 }; 5039 5040 // 5041 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 5042 // 5043 std::pair<uint16_t, uint16_t> 5044 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 5045 // If we don't have access to NEON instructions then we won't be able 5046 // to swizzle anything to the NEON domain. Check to make sure. 5047 if (Subtarget.hasNEON()) { 5048 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 5049 // if they are not predicated. 5050 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 5051 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5052 5053 // CortexA9 is particularly picky about mixing the two and wants these 5054 // converted. 5055 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 5056 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 5057 MI.getOpcode() == ARM::VMOVS)) 5058 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5059 } 5060 // No other instructions can be swizzled, so just determine their domain. 5061 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 5062 5063 if (Domain & ARMII::DomainNEON) 5064 return std::make_pair(ExeNEON, 0); 5065 5066 // Certain instructions can go either way on Cortex-A8. 5067 // Treat them as NEON instructions. 5068 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 5069 return std::make_pair(ExeNEON, 0); 5070 5071 if (Domain & ARMII::DomainVFP) 5072 return std::make_pair(ExeVFP, 0); 5073 5074 return std::make_pair(ExeGeneric, 0); 5075 } 5076 5077 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 5078 unsigned SReg, unsigned &Lane) { 5079 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 5080 Lane = 0; 5081 5082 if (DReg != ARM::NoRegister) 5083 return DReg; 5084 5085 Lane = 1; 5086 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 5087 5088 assert(DReg && "S-register with no D super-register?"); 5089 return DReg; 5090 } 5091 5092 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5093 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5094 /// zero if no register needs to be defined as implicit-use. 5095 /// 5096 /// If the function cannot determine if an SPR should be marked implicit use or 5097 /// not, it returns false. 5098 /// 5099 /// This function handles cases where an instruction is being modified from taking 5100 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5101 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5102 /// lane of the DPR). 5103 /// 5104 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5105 /// (including the case where the DPR itself is defined), it should not. 5106 /// 5107 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5108 MachineInstr &MI, unsigned DReg, 5109 unsigned Lane, unsigned &ImplicitSReg) { 5110 // If the DPR is defined or used already, the other SPR lane will be chained 5111 // correctly, so there is nothing to be done. 5112 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5113 ImplicitSReg = 0; 5114 return true; 5115 } 5116 5117 // Otherwise we need to go searching to see if the SPR is set explicitly. 5118 ImplicitSReg = TRI->getSubReg(DReg, 5119 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5120 MachineBasicBlock::LivenessQueryResult LQR = 5121 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5122 5123 if (LQR == MachineBasicBlock::LQR_Live) 5124 return true; 5125 else if (LQR == MachineBasicBlock::LQR_Unknown) 5126 return false; 5127 5128 // If the register is known not to be live, there is no need to add an 5129 // implicit-use. 5130 ImplicitSReg = 0; 5131 return true; 5132 } 5133 5134 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5135 unsigned Domain) const { 5136 unsigned DstReg, SrcReg, DReg; 5137 unsigned Lane; 5138 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5139 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5140 switch (MI.getOpcode()) { 5141 default: 5142 llvm_unreachable("cannot handle opcode!"); 5143 break; 5144 case ARM::VMOVD: 5145 if (Domain != ExeNEON) 5146 break; 5147 5148 // Zap the predicate operands. 5149 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5150 5151 // Make sure we've got NEON instructions. 5152 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5153 5154 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5155 DstReg = MI.getOperand(0).getReg(); 5156 SrcReg = MI.getOperand(1).getReg(); 5157 5158 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5159 MI.removeOperand(i - 1); 5160 5161 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5162 MI.setDesc(get(ARM::VORRd)); 5163 MIB.addReg(DstReg, RegState::Define) 5164 .addReg(SrcReg) 5165 .addReg(SrcReg) 5166 .add(predOps(ARMCC::AL)); 5167 break; 5168 case ARM::VMOVRS: 5169 if (Domain != ExeNEON) 5170 break; 5171 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5172 5173 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5174 DstReg = MI.getOperand(0).getReg(); 5175 SrcReg = MI.getOperand(1).getReg(); 5176 5177 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5178 MI.removeOperand(i - 1); 5179 5180 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5181 5182 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5183 // Note that DSrc has been widened and the other lane may be undef, which 5184 // contaminates the entire register. 5185 MI.setDesc(get(ARM::VGETLNi32)); 5186 MIB.addReg(DstReg, RegState::Define) 5187 .addReg(DReg, RegState::Undef) 5188 .addImm(Lane) 5189 .add(predOps(ARMCC::AL)); 5190 5191 // The old source should be an implicit use, otherwise we might think it 5192 // was dead before here. 5193 MIB.addReg(SrcReg, RegState::Implicit); 5194 break; 5195 case ARM::VMOVSR: { 5196 if (Domain != ExeNEON) 5197 break; 5198 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5199 5200 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5201 DstReg = MI.getOperand(0).getReg(); 5202 SrcReg = MI.getOperand(1).getReg(); 5203 5204 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5205 5206 unsigned ImplicitSReg; 5207 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5208 break; 5209 5210 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5211 MI.removeOperand(i - 1); 5212 5213 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5214 // Again DDst may be undefined at the beginning of this instruction. 5215 MI.setDesc(get(ARM::VSETLNi32)); 5216 MIB.addReg(DReg, RegState::Define) 5217 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5218 .addReg(SrcReg) 5219 .addImm(Lane) 5220 .add(predOps(ARMCC::AL)); 5221 5222 // The narrower destination must be marked as set to keep previous chains 5223 // in place. 5224 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5225 if (ImplicitSReg != 0) 5226 MIB.addReg(ImplicitSReg, RegState::Implicit); 5227 break; 5228 } 5229 case ARM::VMOVS: { 5230 if (Domain != ExeNEON) 5231 break; 5232 5233 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5234 DstReg = MI.getOperand(0).getReg(); 5235 SrcReg = MI.getOperand(1).getReg(); 5236 5237 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5238 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5239 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5240 5241 unsigned ImplicitSReg; 5242 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5243 break; 5244 5245 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5246 MI.removeOperand(i - 1); 5247 5248 if (DSrc == DDst) { 5249 // Destination can be: 5250 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5251 MI.setDesc(get(ARM::VDUPLN32d)); 5252 MIB.addReg(DDst, RegState::Define) 5253 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5254 .addImm(SrcLane) 5255 .add(predOps(ARMCC::AL)); 5256 5257 // Neither the source or the destination are naturally represented any 5258 // more, so add them in manually. 5259 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5260 MIB.addReg(SrcReg, RegState::Implicit); 5261 if (ImplicitSReg != 0) 5262 MIB.addReg(ImplicitSReg, RegState::Implicit); 5263 break; 5264 } 5265 5266 // In general there's no single instruction that can perform an S <-> S 5267 // move in NEON space, but a pair of VEXT instructions *can* do the 5268 // job. It turns out that the VEXTs needed will only use DSrc once, with 5269 // the position based purely on the combination of lane-0 and lane-1 5270 // involved. For example 5271 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5272 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5273 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5274 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5275 // 5276 // Pattern of the MachineInstrs is: 5277 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5278 MachineInstrBuilder NewMIB; 5279 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5280 DDst); 5281 5282 // On the first instruction, both DSrc and DDst may be undef if present. 5283 // Specifically when the original instruction didn't have them as an 5284 // <imp-use>. 5285 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5286 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5287 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5288 5289 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5290 CurUndef = !MI.readsRegister(CurReg, TRI); 5291 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5292 .addImm(1) 5293 .add(predOps(ARMCC::AL)); 5294 5295 if (SrcLane == DstLane) 5296 NewMIB.addReg(SrcReg, RegState::Implicit); 5297 5298 MI.setDesc(get(ARM::VEXTd32)); 5299 MIB.addReg(DDst, RegState::Define); 5300 5301 // On the second instruction, DDst has definitely been defined above, so 5302 // it is not undef. DSrc, if present, can be undef as above. 5303 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5304 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5305 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5306 5307 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5308 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5309 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5310 .addImm(1) 5311 .add(predOps(ARMCC::AL)); 5312 5313 if (SrcLane != DstLane) 5314 MIB.addReg(SrcReg, RegState::Implicit); 5315 5316 // As before, the original destination is no longer represented, add it 5317 // implicitly. 5318 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5319 if (ImplicitSReg != 0) 5320 MIB.addReg(ImplicitSReg, RegState::Implicit); 5321 break; 5322 } 5323 } 5324 } 5325 5326 //===----------------------------------------------------------------------===// 5327 // Partial register updates 5328 //===----------------------------------------------------------------------===// 5329 // 5330 // Swift renames NEON registers with 64-bit granularity. That means any 5331 // instruction writing an S-reg implicitly reads the containing D-reg. The 5332 // problem is mostly avoided by translating f32 operations to v2f32 operations 5333 // on D-registers, but f32 loads are still a problem. 5334 // 5335 // These instructions can load an f32 into a NEON register: 5336 // 5337 // VLDRS - Only writes S, partial D update. 5338 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5339 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5340 // 5341 // FCONSTD can be used as a dependency-breaking instruction. 5342 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5343 const MachineInstr &MI, unsigned OpNum, 5344 const TargetRegisterInfo *TRI) const { 5345 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5346 if (!PartialUpdateClearance) 5347 return 0; 5348 5349 assert(TRI && "Need TRI instance"); 5350 5351 const MachineOperand &MO = MI.getOperand(OpNum); 5352 if (MO.readsReg()) 5353 return 0; 5354 Register Reg = MO.getReg(); 5355 int UseOp = -1; 5356 5357 switch (MI.getOpcode()) { 5358 // Normal instructions writing only an S-register. 5359 case ARM::VLDRS: 5360 case ARM::FCONSTS: 5361 case ARM::VMOVSR: 5362 case ARM::VMOVv8i8: 5363 case ARM::VMOVv4i16: 5364 case ARM::VMOVv2i32: 5365 case ARM::VMOVv2f32: 5366 case ARM::VMOVv1i64: 5367 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5368 break; 5369 5370 // Explicitly reads the dependency. 5371 case ARM::VLD1LNd32: 5372 UseOp = 3; 5373 break; 5374 default: 5375 return 0; 5376 } 5377 5378 // If this instruction actually reads a value from Reg, there is no unwanted 5379 // dependency. 5380 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5381 return 0; 5382 5383 // We must be able to clobber the whole D-reg. 5384 if (Reg.isVirtual()) { 5385 // Virtual register must be a def undef foo:ssub_0 operand. 5386 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5387 return 0; 5388 } else if (ARM::SPRRegClass.contains(Reg)) { 5389 // Physical register: MI must define the full D-reg. 5390 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5391 &ARM::DPRRegClass); 5392 if (!DReg || !MI.definesRegister(DReg, TRI)) 5393 return 0; 5394 } 5395 5396 // MI has an unwanted D-register dependency. 5397 // Avoid defs in the previous N instructrions. 5398 return PartialUpdateClearance; 5399 } 5400 5401 // Break a partial register dependency after getPartialRegUpdateClearance 5402 // returned non-zero. 5403 void ARMBaseInstrInfo::breakPartialRegDependency( 5404 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5405 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5406 assert(TRI && "Need TRI instance"); 5407 5408 const MachineOperand &MO = MI.getOperand(OpNum); 5409 Register Reg = MO.getReg(); 5410 assert(Reg.isPhysical() && "Can't break virtual register dependencies."); 5411 unsigned DReg = Reg; 5412 5413 // If MI defines an S-reg, find the corresponding D super-register. 5414 if (ARM::SPRRegClass.contains(Reg)) { 5415 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5416 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5417 } 5418 5419 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5420 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5421 5422 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5423 // the full D-register by loading the same value to both lanes. The 5424 // instruction is micro-coded with 2 uops, so don't do this until we can 5425 // properly schedule micro-coded instructions. The dispatcher stalls cause 5426 // too big regressions. 5427 5428 // Insert the dependency-breaking FCONSTD before MI. 5429 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5430 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5431 .addImm(96) 5432 .add(predOps(ARMCC::AL)); 5433 MI.addRegisterKilled(DReg, TRI, true); 5434 } 5435 5436 bool ARMBaseInstrInfo::hasNOP() const { 5437 return Subtarget.hasFeature(ARM::HasV6KOps); 5438 } 5439 5440 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5441 if (MI->getNumOperands() < 4) 5442 return true; 5443 unsigned ShOpVal = MI->getOperand(3).getImm(); 5444 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5445 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5446 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5447 ((ShImm == 1 || ShImm == 2) && 5448 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5449 return true; 5450 5451 return false; 5452 } 5453 5454 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5455 const MachineInstr &MI, unsigned DefIdx, 5456 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5457 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5458 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5459 5460 switch (MI.getOpcode()) { 5461 case ARM::VMOVDRR: 5462 // dX = VMOVDRR rY, rZ 5463 // is the same as: 5464 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5465 // Populate the InputRegs accordingly. 5466 // rY 5467 const MachineOperand *MOReg = &MI.getOperand(1); 5468 if (!MOReg->isUndef()) 5469 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5470 MOReg->getSubReg(), ARM::ssub_0)); 5471 // rZ 5472 MOReg = &MI.getOperand(2); 5473 if (!MOReg->isUndef()) 5474 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5475 MOReg->getSubReg(), ARM::ssub_1)); 5476 return true; 5477 } 5478 llvm_unreachable("Target dependent opcode missing"); 5479 } 5480 5481 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5482 const MachineInstr &MI, unsigned DefIdx, 5483 RegSubRegPairAndIdx &InputReg) const { 5484 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5485 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5486 5487 switch (MI.getOpcode()) { 5488 case ARM::VMOVRRD: 5489 // rX, rY = VMOVRRD dZ 5490 // is the same as: 5491 // rX = EXTRACT_SUBREG dZ, ssub_0 5492 // rY = EXTRACT_SUBREG dZ, ssub_1 5493 const MachineOperand &MOReg = MI.getOperand(2); 5494 if (MOReg.isUndef()) 5495 return false; 5496 InputReg.Reg = MOReg.getReg(); 5497 InputReg.SubReg = MOReg.getSubReg(); 5498 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5499 return true; 5500 } 5501 llvm_unreachable("Target dependent opcode missing"); 5502 } 5503 5504 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5505 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5506 RegSubRegPairAndIdx &InsertedReg) const { 5507 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5508 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5509 5510 switch (MI.getOpcode()) { 5511 case ARM::VSETLNi32: 5512 case ARM::MVE_VMOV_to_lane_32: 5513 // dX = VSETLNi32 dY, rZ, imm 5514 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5515 const MachineOperand &MOBaseReg = MI.getOperand(1); 5516 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5517 if (MOInsertedReg.isUndef()) 5518 return false; 5519 const MachineOperand &MOIndex = MI.getOperand(3); 5520 BaseReg.Reg = MOBaseReg.getReg(); 5521 BaseReg.SubReg = MOBaseReg.getSubReg(); 5522 5523 InsertedReg.Reg = MOInsertedReg.getReg(); 5524 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5525 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5526 return true; 5527 } 5528 llvm_unreachable("Target dependent opcode missing"); 5529 } 5530 5531 std::pair<unsigned, unsigned> 5532 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5533 const unsigned Mask = ARMII::MO_OPTION_MASK; 5534 return std::make_pair(TF & Mask, TF & ~Mask); 5535 } 5536 5537 ArrayRef<std::pair<unsigned, const char *>> 5538 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5539 using namespace ARMII; 5540 5541 static const std::pair<unsigned, const char *> TargetFlags[] = { 5542 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}, 5543 {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"}, 5544 {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"}, 5545 }; 5546 return ArrayRef(TargetFlags); 5547 } 5548 5549 ArrayRef<std::pair<unsigned, const char *>> 5550 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5551 using namespace ARMII; 5552 5553 static const std::pair<unsigned, const char *> TargetFlags[] = { 5554 {MO_COFFSTUB, "arm-coffstub"}, 5555 {MO_GOT, "arm-got"}, 5556 {MO_SBREL, "arm-sbrel"}, 5557 {MO_DLLIMPORT, "arm-dllimport"}, 5558 {MO_SECREL, "arm-secrel"}, 5559 {MO_NONLAZY, "arm-nonlazy"}}; 5560 return ArrayRef(TargetFlags); 5561 } 5562 5563 std::optional<RegImmPair> 5564 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const { 5565 int Sign = 1; 5566 unsigned Opcode = MI.getOpcode(); 5567 int64_t Offset = 0; 5568 5569 // TODO: Handle cases where Reg is a super- or sub-register of the 5570 // destination register. 5571 const MachineOperand &Op0 = MI.getOperand(0); 5572 if (!Op0.isReg() || Reg != Op0.getReg()) 5573 return std::nullopt; 5574 5575 // We describe SUBri or ADDri instructions. 5576 if (Opcode == ARM::SUBri) 5577 Sign = -1; 5578 else if (Opcode != ARM::ADDri) 5579 return std::nullopt; 5580 5581 // TODO: Third operand can be global address (usually some string). Since 5582 // strings can be relocated we cannot calculate their offsets for 5583 // now. 5584 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5585 return std::nullopt; 5586 5587 Offset = MI.getOperand(2).getImm() * Sign; 5588 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5589 } 5590 5591 bool llvm::registerDefinedBetween(unsigned Reg, 5592 MachineBasicBlock::iterator From, 5593 MachineBasicBlock::iterator To, 5594 const TargetRegisterInfo *TRI) { 5595 for (auto I = From; I != To; ++I) 5596 if (I->modifiesRegister(Reg, TRI)) 5597 return true; 5598 return false; 5599 } 5600 5601 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5602 const TargetRegisterInfo *TRI) { 5603 // Search backwards to the instruction that defines CSPR. This may or not 5604 // be a CMP, we check that after this loop. If we find another instruction 5605 // that reads cpsr, we return nullptr. 5606 MachineBasicBlock::iterator CmpMI = Br; 5607 while (CmpMI != Br->getParent()->begin()) { 5608 --CmpMI; 5609 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5610 break; 5611 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5612 break; 5613 } 5614 5615 // Check that this inst is a CMP r[0-7], #0 and that the register 5616 // is not redefined between the cmp and the br. 5617 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5618 return nullptr; 5619 Register Reg = CmpMI->getOperand(0).getReg(); 5620 Register PredReg; 5621 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5622 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5623 return nullptr; 5624 if (!isARMLowRegister(Reg)) 5625 return nullptr; 5626 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5627 return nullptr; 5628 5629 return &*CmpMI; 5630 } 5631 5632 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5633 const ARMSubtarget *Subtarget, 5634 bool ForCodesize) { 5635 if (Subtarget->isThumb()) { 5636 if (Val <= 255) // MOV 5637 return ForCodesize ? 2 : 1; 5638 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5639 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5640 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5641 return ForCodesize ? 4 : 1; 5642 if (Val <= 510) // MOV + ADDi8 5643 return ForCodesize ? 4 : 2; 5644 if (~Val <= 255) // MOV + MVN 5645 return ForCodesize ? 4 : 2; 5646 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5647 return ForCodesize ? 4 : 2; 5648 } else { 5649 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5650 return ForCodesize ? 4 : 1; 5651 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5652 return ForCodesize ? 4 : 1; 5653 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5654 return ForCodesize ? 4 : 1; 5655 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5656 return ForCodesize ? 8 : 2; 5657 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5658 return ForCodesize ? 8 : 2; 5659 } 5660 if (Subtarget->useMovt()) // MOVW + MOVT 5661 return ForCodesize ? 8 : 2; 5662 return ForCodesize ? 8 : 3; // Literal pool load 5663 } 5664 5665 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5666 const ARMSubtarget *Subtarget, 5667 bool ForCodesize) { 5668 // Check with ForCodesize 5669 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5670 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5671 if (Cost1 < Cost2) 5672 return true; 5673 if (Cost1 > Cost2) 5674 return false; 5675 5676 // If they are equal, try with !ForCodesize 5677 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5678 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5679 } 5680 5681 /// Constants defining how certain sequences should be outlined. 5682 /// This encompasses how an outlined function should be called, and what kind of 5683 /// frame should be emitted for that outlined function. 5684 /// 5685 /// \p MachineOutlinerTailCall implies that the function is being created from 5686 /// a sequence of instructions ending in a return. 5687 /// 5688 /// That is, 5689 /// 5690 /// I1 OUTLINED_FUNCTION: 5691 /// I2 --> B OUTLINED_FUNCTION I1 5692 /// BX LR I2 5693 /// BX LR 5694 /// 5695 /// +-------------------------+--------+-----+ 5696 /// | | Thumb2 | ARM | 5697 /// +-------------------------+--------+-----+ 5698 /// | Call overhead in Bytes | 4 | 4 | 5699 /// | Frame overhead in Bytes | 0 | 0 | 5700 /// | Stack fixup required | No | No | 5701 /// +-------------------------+--------+-----+ 5702 /// 5703 /// \p MachineOutlinerThunk implies that the function is being created from 5704 /// a sequence of instructions ending in a call. The outlined function is 5705 /// called with a BL instruction, and the outlined function tail-calls the 5706 /// original call destination. 5707 /// 5708 /// That is, 5709 /// 5710 /// I1 OUTLINED_FUNCTION: 5711 /// I2 --> BL OUTLINED_FUNCTION I1 5712 /// BL f I2 5713 /// B f 5714 /// 5715 /// +-------------------------+--------+-----+ 5716 /// | | Thumb2 | ARM | 5717 /// +-------------------------+--------+-----+ 5718 /// | Call overhead in Bytes | 4 | 4 | 5719 /// | Frame overhead in Bytes | 0 | 0 | 5720 /// | Stack fixup required | No | No | 5721 /// +-------------------------+--------+-----+ 5722 /// 5723 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5724 /// a BL instruction, but doesn't require LR to be saved and restored. This 5725 /// happens when LR is known to be dead. 5726 /// 5727 /// That is, 5728 /// 5729 /// I1 OUTLINED_FUNCTION: 5730 /// I2 --> BL OUTLINED_FUNCTION I1 5731 /// I3 I2 5732 /// I3 5733 /// BX LR 5734 /// 5735 /// +-------------------------+--------+-----+ 5736 /// | | Thumb2 | ARM | 5737 /// +-------------------------+--------+-----+ 5738 /// | Call overhead in Bytes | 4 | 4 | 5739 /// | Frame overhead in Bytes | 2 | 4 | 5740 /// | Stack fixup required | No | No | 5741 /// +-------------------------+--------+-----+ 5742 /// 5743 /// \p MachineOutlinerRegSave implies that the function should be called with a 5744 /// save and restore of LR to an available register. This allows us to avoid 5745 /// stack fixups. Note that this outlining variant is compatible with the 5746 /// NoLRSave case. 5747 /// 5748 /// That is, 5749 /// 5750 /// I1 Save LR OUTLINED_FUNCTION: 5751 /// I2 --> BL OUTLINED_FUNCTION I1 5752 /// I3 Restore LR I2 5753 /// I3 5754 /// BX LR 5755 /// 5756 /// +-------------------------+--------+-----+ 5757 /// | | Thumb2 | ARM | 5758 /// +-------------------------+--------+-----+ 5759 /// | Call overhead in Bytes | 8 | 12 | 5760 /// | Frame overhead in Bytes | 2 | 4 | 5761 /// | Stack fixup required | No | No | 5762 /// +-------------------------+--------+-----+ 5763 /// 5764 /// \p MachineOutlinerDefault implies that the function should be called with 5765 /// a save and restore of LR to the stack. 5766 /// 5767 /// That is, 5768 /// 5769 /// I1 Save LR OUTLINED_FUNCTION: 5770 /// I2 --> BL OUTLINED_FUNCTION I1 5771 /// I3 Restore LR I2 5772 /// I3 5773 /// BX LR 5774 /// 5775 /// +-------------------------+--------+-----+ 5776 /// | | Thumb2 | ARM | 5777 /// +-------------------------+--------+-----+ 5778 /// | Call overhead in Bytes | 8 | 12 | 5779 /// | Frame overhead in Bytes | 2 | 4 | 5780 /// | Stack fixup required | Yes | Yes | 5781 /// +-------------------------+--------+-----+ 5782 5783 enum MachineOutlinerClass { 5784 MachineOutlinerTailCall, 5785 MachineOutlinerThunk, 5786 MachineOutlinerNoLRSave, 5787 MachineOutlinerRegSave, 5788 MachineOutlinerDefault 5789 }; 5790 5791 enum MachineOutlinerMBBFlags { 5792 LRUnavailableSomewhere = 0x2, 5793 HasCalls = 0x4, 5794 UnsafeRegsDead = 0x8 5795 }; 5796 5797 struct OutlinerCosts { 5798 int CallTailCall; 5799 int FrameTailCall; 5800 int CallThunk; 5801 int FrameThunk; 5802 int CallNoLRSave; 5803 int FrameNoLRSave; 5804 int CallRegSave; 5805 int FrameRegSave; 5806 int CallDefault; 5807 int FrameDefault; 5808 int SaveRestoreLROnStack; 5809 5810 OutlinerCosts(const ARMSubtarget &target) 5811 : CallTailCall(target.isThumb() ? 4 : 4), 5812 FrameTailCall(target.isThumb() ? 0 : 0), 5813 CallThunk(target.isThumb() ? 4 : 4), 5814 FrameThunk(target.isThumb() ? 0 : 0), 5815 CallNoLRSave(target.isThumb() ? 4 : 4), 5816 FrameNoLRSave(target.isThumb() ? 2 : 4), 5817 CallRegSave(target.isThumb() ? 8 : 12), 5818 FrameRegSave(target.isThumb() ? 2 : 4), 5819 CallDefault(target.isThumb() ? 8 : 12), 5820 FrameDefault(target.isThumb() ? 2 : 4), 5821 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5822 }; 5823 5824 Register 5825 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { 5826 MachineFunction *MF = C.getMF(); 5827 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 5828 const ARMBaseRegisterInfo *ARI = 5829 static_cast<const ARMBaseRegisterInfo *>(&TRI); 5830 5831 BitVector regsReserved = ARI->getReservedRegs(*MF); 5832 // Check if there is an available register across the sequence that we can 5833 // use. 5834 for (Register Reg : ARM::rGPRRegClass) { 5835 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5836 Reg != ARM::LR && // LR is not reserved, but don't use it. 5837 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5838 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && 5839 C.isAvailableInsideSeq(Reg, TRI)) 5840 return Reg; 5841 } 5842 return Register(); 5843 } 5844 5845 // Compute liveness of LR at the point after the interval [I, E), which 5846 // denotes a *backward* iteration through instructions. Used only for return 5847 // basic blocks, which do not end with a tail call. 5848 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5849 MachineBasicBlock::reverse_iterator I, 5850 MachineBasicBlock::reverse_iterator E) { 5851 // At the end of the function LR dead. 5852 bool Live = false; 5853 for (; I != E; ++I) { 5854 const MachineInstr &MI = *I; 5855 5856 // Check defs of LR. 5857 if (MI.modifiesRegister(ARM::LR, &TRI)) 5858 Live = false; 5859 5860 // Check uses of LR. 5861 unsigned Opcode = MI.getOpcode(); 5862 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5863 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5864 Opcode == ARM::tBXNS_RET) { 5865 // These instructions use LR, but it's not an (explicit or implicit) 5866 // operand. 5867 Live = true; 5868 continue; 5869 } 5870 if (MI.readsRegister(ARM::LR, &TRI)) 5871 Live = true; 5872 } 5873 return !Live; 5874 } 5875 5876 std::optional<outliner::OutlinedFunction> 5877 ARMBaseInstrInfo::getOutliningCandidateInfo( 5878 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5879 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5880 unsigned SequenceSize = 5881 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5882 [this](unsigned Sum, const MachineInstr &MI) { 5883 return Sum + getInstSizeInBytes(MI); 5884 }); 5885 5886 // Properties about candidate MBBs that hold for all of them. 5887 unsigned FlagsSetInAll = 0xF; 5888 5889 // Compute liveness information for each candidate, and set FlagsSetInAll. 5890 const TargetRegisterInfo &TRI = getRegisterInfo(); 5891 for (outliner::Candidate &C : RepeatedSequenceLocs) 5892 FlagsSetInAll &= C.Flags; 5893 5894 // According to the ARM Procedure Call Standard, the following are 5895 // undefined on entry/exit from a function call: 5896 // 5897 // * Register R12(IP), 5898 // * Condition codes (and thus the CPSR register) 5899 // 5900 // Since we control the instructions which are part of the outlined regions 5901 // we don't need to be fully compliant with the AAPCS, but we have to 5902 // guarantee that if a veneer is inserted at link time the code is still 5903 // correct. Because of this, we can't outline any sequence of instructions 5904 // where one of these registers is live into/across it. Thus, we need to 5905 // delete those candidates. 5906 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5907 // If the unsafe registers in this block are all dead, then we don't need 5908 // to compute liveness here. 5909 if (C.Flags & UnsafeRegsDead) 5910 return false; 5911 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); 5912 }; 5913 5914 // Are there any candidates where those registers are live? 5915 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5916 // Erase every candidate that violates the restrictions above. (It could be 5917 // true that we have viable candidates, so it's not worth bailing out in 5918 // the case that, say, 1 out of 20 candidates violate the restructions.) 5919 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5920 5921 // If the sequence doesn't have enough candidates left, then we're done. 5922 if (RepeatedSequenceLocs.size() < 2) 5923 return std::nullopt; 5924 } 5925 5926 // We expect the majority of the outlining candidates to be in consensus with 5927 // regard to return address sign and authentication, and branch target 5928 // enforcement, in other words, partitioning according to all the four 5929 // possible combinations of PAC-RET and BTI is going to yield one big subset 5930 // and three small (likely empty) subsets. That allows us to cull incompatible 5931 // candidates separately for PAC-RET and BTI. 5932 5933 // Partition the candidates in two sets: one with BTI enabled and one with BTI 5934 // disabled. Remove the candidates from the smaller set. If they are the same 5935 // number prefer the non-BTI ones for outlining, since they have less 5936 // overhead. 5937 auto NoBTI = 5938 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5939 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5940 return AFI.branchTargetEnforcement(); 5941 }); 5942 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > 5943 std::distance(NoBTI, RepeatedSequenceLocs.end())) 5944 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); 5945 else 5946 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); 5947 5948 if (RepeatedSequenceLocs.size() < 2) 5949 return std::nullopt; 5950 5951 // Likewise, partition the candidates according to PAC-RET enablement. 5952 auto NoPAC = 5953 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5954 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5955 // If the function happens to not spill the LR, do not disqualify it 5956 // from the outlining. 5957 return AFI.shouldSignReturnAddress(true); 5958 }); 5959 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > 5960 std::distance(NoPAC, RepeatedSequenceLocs.end())) 5961 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); 5962 else 5963 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); 5964 5965 if (RepeatedSequenceLocs.size() < 2) 5966 return std::nullopt; 5967 5968 // At this point, we have only "safe" candidates to outline. Figure out 5969 // frame + call instruction information. 5970 5971 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5972 5973 // Helper lambda which sets call information for every candidate. 5974 auto SetCandidateCallInfo = 5975 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5976 for (outliner::Candidate &C : RepeatedSequenceLocs) 5977 C.setCallInfo(CallID, NumBytesForCall); 5978 }; 5979 5980 OutlinerCosts Costs(Subtarget); 5981 5982 const auto &SomeMFI = 5983 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); 5984 // Adjust costs to account for the BTI instructions. 5985 if (SomeMFI.branchTargetEnforcement()) { 5986 Costs.FrameDefault += 4; 5987 Costs.FrameNoLRSave += 4; 5988 Costs.FrameRegSave += 4; 5989 Costs.FrameTailCall += 4; 5990 Costs.FrameThunk += 4; 5991 } 5992 5993 // Adjust costs to account for sign and authentication instructions. 5994 if (SomeMFI.shouldSignReturnAddress(true)) { 5995 Costs.CallDefault += 8; // +PAC instr, +AUT instr 5996 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr 5997 } 5998 5999 unsigned FrameID = MachineOutlinerDefault; 6000 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 6001 6002 // If the last instruction in any candidate is a terminator, then we should 6003 // tail call all of the candidates. 6004 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 6005 FrameID = MachineOutlinerTailCall; 6006 NumBytesToCreateFrame = Costs.FrameTailCall; 6007 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 6008 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 6009 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 6010 LastInstrOpcode == ARM::tBLXr || 6011 LastInstrOpcode == ARM::tBLXr_noip || 6012 LastInstrOpcode == ARM::tBLXi) { 6013 FrameID = MachineOutlinerThunk; 6014 NumBytesToCreateFrame = Costs.FrameThunk; 6015 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 6016 } else { 6017 // We need to decide how to emit calls + frames. We can always emit the same 6018 // frame if we don't need to save to the stack. If we have to save to the 6019 // stack, then we need a different frame. 6020 unsigned NumBytesNoStackCalls = 0; 6021 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 6022 6023 for (outliner::Candidate &C : RepeatedSequenceLocs) { 6024 // LR liveness is overestimated in return blocks, unless they end with a 6025 // tail call. 6026 const auto Last = C.getMBB()->rbegin(); 6027 const bool LRIsAvailable = 6028 C.getMBB()->isReturnBlock() && !Last->isCall() 6029 ? isLRAvailable(TRI, Last, 6030 (MachineBasicBlock::reverse_iterator)C.front()) 6031 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); 6032 if (LRIsAvailable) { 6033 FrameID = MachineOutlinerNoLRSave; 6034 NumBytesNoStackCalls += Costs.CallNoLRSave; 6035 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 6036 CandidatesWithoutStackFixups.push_back(C); 6037 } 6038 6039 // Is an unused register available? If so, we won't modify the stack, so 6040 // we can outline with the same frame type as those that don't save LR. 6041 else if (findRegisterToSaveLRTo(C)) { 6042 FrameID = MachineOutlinerRegSave; 6043 NumBytesNoStackCalls += Costs.CallRegSave; 6044 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 6045 CandidatesWithoutStackFixups.push_back(C); 6046 } 6047 6048 // Is SP used in the sequence at all? If not, we don't have to modify 6049 // the stack, so we are guaranteed to get the same frame. 6050 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { 6051 NumBytesNoStackCalls += Costs.CallDefault; 6052 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6053 CandidatesWithoutStackFixups.push_back(C); 6054 } 6055 6056 // If we outline this, we need to modify the stack. Pretend we don't 6057 // outline this by saving all of its bytes. 6058 else 6059 NumBytesNoStackCalls += SequenceSize; 6060 } 6061 6062 // If there are no places where we have to save LR, then note that we don't 6063 // have to update the stack. Otherwise, give every candidate the default 6064 // call type 6065 if (NumBytesNoStackCalls <= 6066 RepeatedSequenceLocs.size() * Costs.CallDefault) { 6067 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 6068 FrameID = MachineOutlinerNoLRSave; 6069 } else 6070 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6071 } 6072 6073 // Does every candidate's MBB contain a call? If so, then we might have a 6074 // call in the range. 6075 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6076 // check if the range contains a call. These require a save + restore of 6077 // the link register. 6078 if (std::any_of(FirstCand.front(), FirstCand.back(), 6079 [](const MachineInstr &MI) { return MI.isCall(); })) 6080 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6081 6082 // Handle the last instruction separately. If it is tail call, then the 6083 // last instruction is a call, we don't want to save + restore in this 6084 // case. However, it could be possible that the last instruction is a 6085 // call without it being valid to tail call this sequence. We should 6086 // consider this as well. 6087 else if (FrameID != MachineOutlinerThunk && 6088 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 6089 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6090 } 6091 6092 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 6093 NumBytesToCreateFrame, FrameID); 6094 } 6095 6096 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 6097 int64_t Fixup, 6098 bool Updt) const { 6099 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); 6100 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 6101 if (SPIdx < 0) 6102 // No SP operand 6103 return true; 6104 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 6105 // If SP is not the base register we can't do much 6106 return false; 6107 6108 // Stack might be involved but addressing mode doesn't handle any offset. 6109 // Rq: AddrModeT1_[1|2|4] don't operate on SP 6110 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions 6111 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple 6112 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple 6113 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register 6114 AddrMode == ARMII::AddrModeT2_pc || // PCrel access 6115 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST 6116 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE 6117 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE 6118 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR 6119 AddrMode == ARMII::AddrModeNone || 6120 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions 6121 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm 6122 return false; 6123 6124 unsigned NumOps = MI->getDesc().getNumOperands(); 6125 unsigned ImmIdx = NumOps - 3; 6126 6127 const MachineOperand &Offset = MI->getOperand(ImmIdx); 6128 assert(Offset.isImm() && "Is not an immediate"); 6129 int64_t OffVal = Offset.getImm(); 6130 6131 if (OffVal < 0) 6132 // Don't override data if the are below SP. 6133 return false; 6134 6135 unsigned NumBits = 0; 6136 unsigned Scale = 1; 6137 6138 switch (AddrMode) { 6139 case ARMII::AddrMode3: 6140 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 6141 return false; 6142 OffVal = ARM_AM::getAM3Offset(OffVal); 6143 NumBits = 8; 6144 break; 6145 case ARMII::AddrMode5: 6146 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 6147 return false; 6148 OffVal = ARM_AM::getAM5Offset(OffVal); 6149 NumBits = 8; 6150 Scale = 4; 6151 break; 6152 case ARMII::AddrMode5FP16: 6153 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6154 return false; 6155 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6156 NumBits = 8; 6157 Scale = 2; 6158 break; 6159 case ARMII::AddrModeT2_i8pos: 6160 NumBits = 8; 6161 break; 6162 case ARMII::AddrModeT2_i8s4: 6163 // FIXME: Values are already scaled in this addressing mode. 6164 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6165 NumBits = 10; 6166 break; 6167 case ARMII::AddrModeT2_ldrex: 6168 NumBits = 8; 6169 Scale = 4; 6170 break; 6171 case ARMII::AddrModeT2_i12: 6172 case ARMII::AddrMode_i12: 6173 NumBits = 12; 6174 break; 6175 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6176 NumBits = 8; 6177 Scale = 4; 6178 break; 6179 default: 6180 llvm_unreachable("Unsupported addressing mode!"); 6181 } 6182 // Make sure the offset is encodable for instructions that scale the 6183 // immediate. 6184 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6185 "Can't encode this offset!"); 6186 OffVal += Fixup / Scale; 6187 6188 unsigned Mask = (1 << NumBits) - 1; 6189 6190 if (OffVal <= Mask) { 6191 if (Updt) 6192 MI->getOperand(ImmIdx).setImm(OffVal); 6193 return true; 6194 } 6195 6196 return false; 6197 } 6198 6199 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( 6200 Function &F, std::vector<outliner::Candidate> &Candidates) const { 6201 outliner::Candidate &C = Candidates.front(); 6202 // branch-target-enforcement is guaranteed to be consistent between all 6203 // candidates, so we only need to look at one. 6204 const Function &CFn = C.getMF()->getFunction(); 6205 if (CFn.hasFnAttribute("branch-target-enforcement")) 6206 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); 6207 6208 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); 6209 } 6210 6211 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6212 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6213 const Function &F = MF.getFunction(); 6214 6215 // Can F be deduplicated by the linker? If it can, don't outline from it. 6216 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6217 return false; 6218 6219 // Don't outline from functions with section markings; the program could 6220 // expect that all the code is in the named section. 6221 // FIXME: Allow outlining from multiple functions with the same section 6222 // marking. 6223 if (F.hasSection()) 6224 return false; 6225 6226 // FIXME: Thumb1 outlining is not handled 6227 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6228 return false; 6229 6230 // It's safe to outline from MF. 6231 return true; 6232 } 6233 6234 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6235 unsigned &Flags) const { 6236 // Check if LR is available through all of the MBB. If it's not, then set 6237 // a flag. 6238 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6239 "Suitable Machine Function for outlining must track liveness"); 6240 6241 LiveRegUnits LRU(getRegisterInfo()); 6242 6243 for (MachineInstr &MI : llvm::reverse(MBB)) 6244 LRU.accumulate(MI); 6245 6246 // Check if each of the unsafe registers are available... 6247 bool R12AvailableInBlock = LRU.available(ARM::R12); 6248 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6249 6250 // If all of these are dead (and not live out), we know we don't have to check 6251 // them later. 6252 if (R12AvailableInBlock && CPSRAvailableInBlock) 6253 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6254 6255 // Now, add the live outs to the set. 6256 LRU.addLiveOuts(MBB); 6257 6258 // If any of these registers is available in the MBB, but also a live out of 6259 // the block, then we know outlining is unsafe. 6260 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6261 return false; 6262 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6263 return false; 6264 6265 // Check if there's a call inside this MachineBasicBlock. If there is, then 6266 // set a flag. 6267 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6268 Flags |= MachineOutlinerMBBFlags::HasCalls; 6269 6270 // LR liveness is overestimated in return blocks. 6271 6272 bool LRIsAvailable = 6273 MBB.isReturnBlock() && !MBB.back().isCall() 6274 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6275 : LRU.available(ARM::LR); 6276 if (!LRIsAvailable) 6277 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6278 6279 return true; 6280 } 6281 6282 outliner::InstrType 6283 ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, 6284 unsigned Flags) const { 6285 MachineInstr &MI = *MIT; 6286 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6287 6288 // PIC instructions contain labels, outlining them would break offset 6289 // computing. unsigned Opc = MI.getOpcode(); 6290 unsigned Opc = MI.getOpcode(); 6291 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6292 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6293 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6294 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6295 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6296 Opc == ARM::t2MOV_ga_pcrel) 6297 return outliner::InstrType::Illegal; 6298 6299 // Be conservative with ARMv8.1 MVE instructions. 6300 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6301 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6302 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6303 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6304 Opc == ARM::t2LoopEndDec) 6305 return outliner::InstrType::Illegal; 6306 6307 const MCInstrDesc &MCID = MI.getDesc(); 6308 uint64_t MIFlags = MCID.TSFlags; 6309 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6310 return outliner::InstrType::Illegal; 6311 6312 // Is this a terminator for a basic block? 6313 if (MI.isTerminator()) 6314 // TargetInstrInfo::getOutliningType has already filtered out anything 6315 // that would break this, so we can allow it here. 6316 return outliner::InstrType::Legal; 6317 6318 // Don't outline if link register or program counter value are used. 6319 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6320 return outliner::InstrType::Illegal; 6321 6322 if (MI.isCall()) { 6323 // Get the function associated with the call. Look at each operand and find 6324 // the one that represents the calle and get its name. 6325 const Function *Callee = nullptr; 6326 for (const MachineOperand &MOP : MI.operands()) { 6327 if (MOP.isGlobal()) { 6328 Callee = dyn_cast<Function>(MOP.getGlobal()); 6329 break; 6330 } 6331 } 6332 6333 // Dont't outline calls to "mcount" like functions, in particular Linux 6334 // kernel function tracing relies on it. 6335 if (Callee && 6336 (Callee->getName() == "\01__gnu_mcount_nc" || 6337 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6338 return outliner::InstrType::Illegal; 6339 6340 // If we don't know anything about the callee, assume it depends on the 6341 // stack layout of the caller. In that case, it's only legal to outline 6342 // as a tail-call. Explicitly list the call instructions we know about so 6343 // we don't get unexpected results with call pseudo-instructions. 6344 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6345 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6346 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6347 Opc == ARM::tBLXi) 6348 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6349 6350 if (!Callee) 6351 return UnknownCallOutlineType; 6352 6353 // We have a function we have information about. Check if it's something we 6354 // can safely outline. 6355 MachineFunction *MF = MI.getParent()->getParent(); 6356 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6357 6358 // We don't know what's going on with the callee at all. Don't touch it. 6359 if (!CalleeMF) 6360 return UnknownCallOutlineType; 6361 6362 // Check if we know anything about the callee saves on the function. If we 6363 // don't, then don't touch it, since that implies that we haven't computed 6364 // anything about its stack frame yet. 6365 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6366 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6367 MFI.getNumObjects() > 0) 6368 return UnknownCallOutlineType; 6369 6370 // At this point, we can say that CalleeMF ought to not pass anything on the 6371 // stack. Therefore, we can outline it. 6372 return outliner::InstrType::Legal; 6373 } 6374 6375 // Since calls are handled, don't touch LR or PC 6376 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6377 return outliner::InstrType::Illegal; 6378 6379 // Does this use the stack? 6380 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6381 // True if there is no chance that any outlined candidate from this range 6382 // could require stack fixups. That is, both 6383 // * LR is available in the range (No save/restore around call) 6384 // * The range doesn't include calls (No save/restore in outlined frame) 6385 // are true. 6386 // These conditions also ensure correctness of the return address 6387 // authentication - we insert sign and authentication instructions only if 6388 // we save/restore LR on stack, but then this condition ensures that the 6389 // outlined range does not modify the SP, therefore the SP value used for 6390 // signing is the same as the one used for authentication. 6391 // FIXME: This is very restrictive; the flags check the whole block, 6392 // not just the bit we will try to outline. 6393 bool MightNeedStackFixUp = 6394 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6395 MachineOutlinerMBBFlags::HasCalls)); 6396 6397 if (!MightNeedStackFixUp) 6398 return outliner::InstrType::Legal; 6399 6400 // Any modification of SP will break our code to save/restore LR. 6401 // FIXME: We could handle some instructions which add a constant offset to 6402 // SP, with a bit more work. 6403 if (MI.modifiesRegister(ARM::SP, TRI)) 6404 return outliner::InstrType::Illegal; 6405 6406 // At this point, we have a stack instruction that we might need to fix up. 6407 // up. We'll handle it if it's a load or store. 6408 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6409 false)) 6410 return outliner::InstrType::Legal; 6411 6412 // We can't fix it up, so don't outline it. 6413 return outliner::InstrType::Illegal; 6414 } 6415 6416 // Be conservative with IT blocks. 6417 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6418 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6419 return outliner::InstrType::Illegal; 6420 6421 // Don't outline CFI instructions. 6422 if (MI.isCFIInstruction()) 6423 return outliner::InstrType::Illegal; 6424 6425 return outliner::InstrType::Legal; 6426 } 6427 6428 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6429 for (MachineInstr &MI : MBB) { 6430 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6431 } 6432 } 6433 6434 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6435 MachineBasicBlock::iterator It, bool CFI, 6436 bool Auth) const { 6437 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); 6438 assert(Align >= 8 && Align <= 256); 6439 if (Auth) { 6440 assert(Subtarget.isThumb2()); 6441 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined 6442 // sequence. 6443 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)) 6444 .setMIFlags(MachineInstr::FrameSetup); 6445 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) 6446 .addReg(ARM::R12, RegState::Kill) 6447 .addReg(ARM::LR, RegState::Kill) 6448 .addReg(ARM::SP) 6449 .addImm(-Align) 6450 .add(predOps(ARMCC::AL)) 6451 .setMIFlags(MachineInstr::FrameSetup); 6452 } else { 6453 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6454 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6455 .addReg(ARM::LR, RegState::Kill) 6456 .addReg(ARM::SP) 6457 .addImm(-Align) 6458 .add(predOps(ARMCC::AL)) 6459 .setMIFlags(MachineInstr::FrameSetup); 6460 } 6461 6462 if (!CFI) 6463 return; 6464 6465 MachineFunction &MF = *MBB.getParent(); 6466 6467 // Add a CFI, saying CFA is offset by Align bytes from SP. 6468 int64_t StackPosEntry = 6469 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6470 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6471 .addCFIIndex(StackPosEntry) 6472 .setMIFlags(MachineInstr::FrameSetup); 6473 6474 // Add a CFI saying that the LR that we want to find is now higher than 6475 // before. 6476 int LROffset = Auth ? Align - 4 : Align; 6477 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6478 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6479 int64_t LRPosEntry = MF.addFrameInst( 6480 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); 6481 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6482 .addCFIIndex(LRPosEntry) 6483 .setMIFlags(MachineInstr::FrameSetup); 6484 if (Auth) { 6485 // Add a CFI for the location of the return adddress PAC. 6486 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6487 int64_t RACPosEntry = MF.addFrameInst( 6488 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); 6489 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6490 .addCFIIndex(RACPosEntry) 6491 .setMIFlags(MachineInstr::FrameSetup); 6492 } 6493 } 6494 6495 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6496 MachineBasicBlock::iterator It, 6497 Register Reg) const { 6498 MachineFunction &MF = *MBB.getParent(); 6499 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6500 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6501 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6502 6503 int64_t LRPosEntry = MF.addFrameInst( 6504 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6505 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6506 .addCFIIndex(LRPosEntry) 6507 .setMIFlags(MachineInstr::FrameSetup); 6508 } 6509 6510 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, 6511 MachineBasicBlock::iterator It, 6512 bool CFI, bool Auth) const { 6513 int Align = Subtarget.getStackAlignment().value(); 6514 if (Auth) { 6515 assert(Subtarget.isThumb2()); 6516 // Restore return address PAC and LR. 6517 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) 6518 .addReg(ARM::R12, RegState::Define) 6519 .addReg(ARM::LR, RegState::Define) 6520 .addReg(ARM::SP, RegState::Define) 6521 .addReg(ARM::SP) 6522 .addImm(Align) 6523 .add(predOps(ARMCC::AL)) 6524 .setMIFlags(MachineInstr::FrameDestroy); 6525 // LR authentication is after the CFI instructions, below. 6526 } else { 6527 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6528 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6529 .addReg(ARM::SP, RegState::Define) 6530 .addReg(ARM::SP); 6531 if (!Subtarget.isThumb()) 6532 MIB.addReg(0); 6533 MIB.addImm(Subtarget.getStackAlignment().value()) 6534 .add(predOps(ARMCC::AL)) 6535 .setMIFlags(MachineInstr::FrameDestroy); 6536 } 6537 6538 if (CFI) { 6539 // Now stack has moved back up... 6540 MachineFunction &MF = *MBB.getParent(); 6541 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6542 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6543 int64_t StackPosEntry = 6544 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6545 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6546 .addCFIIndex(StackPosEntry) 6547 .setMIFlags(MachineInstr::FrameDestroy); 6548 6549 // ... and we have restored LR. 6550 int64_t LRPosEntry = 6551 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6552 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6553 .addCFIIndex(LRPosEntry) 6554 .setMIFlags(MachineInstr::FrameDestroy); 6555 6556 if (Auth) { 6557 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6558 int64_t Entry = 6559 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); 6560 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6561 .addCFIIndex(Entry) 6562 .setMIFlags(MachineInstr::FrameDestroy); 6563 } 6564 } 6565 6566 if (Auth) 6567 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); 6568 } 6569 6570 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6571 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6572 MachineFunction &MF = *MBB.getParent(); 6573 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6574 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6575 6576 int64_t LRPosEntry = 6577 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6578 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6579 .addCFIIndex(LRPosEntry) 6580 .setMIFlags(MachineInstr::FrameDestroy); 6581 } 6582 6583 void ARMBaseInstrInfo::buildOutlinedFrame( 6584 MachineBasicBlock &MBB, MachineFunction &MF, 6585 const outliner::OutlinedFunction &OF) const { 6586 // For thunk outlining, rewrite the last instruction from a call to a 6587 // tail-call. 6588 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6589 MachineInstr *Call = &*--MBB.instr_end(); 6590 bool isThumb = Subtarget.isThumb(); 6591 unsigned FuncOp = isThumb ? 2 : 0; 6592 unsigned Opc = Call->getOperand(FuncOp).isReg() 6593 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6594 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6595 : ARM::tTAILJMPdND 6596 : ARM::TAILJMPd; 6597 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6598 .add(Call->getOperand(FuncOp)); 6599 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6600 MIB.add(predOps(ARMCC::AL)); 6601 Call->eraseFromParent(); 6602 } 6603 6604 // Is there a call in the outlined range? 6605 auto IsNonTailCall = [](MachineInstr &MI) { 6606 return MI.isCall() && !MI.isReturn(); 6607 }; 6608 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6609 MachineBasicBlock::iterator It = MBB.begin(); 6610 MachineBasicBlock::iterator Et = MBB.end(); 6611 6612 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6613 OF.FrameConstructionID == MachineOutlinerThunk) 6614 Et = std::prev(MBB.end()); 6615 6616 // We have to save and restore LR, we need to add it to the liveins if it 6617 // is not already part of the set. This is suffient since outlined 6618 // functions only have one block. 6619 if (!MBB.isLiveIn(ARM::LR)) 6620 MBB.addLiveIn(ARM::LR); 6621 6622 // Insert a save before the outlined region 6623 bool Auth = OF.Candidates.front() 6624 .getMF() 6625 ->getInfo<ARMFunctionInfo>() 6626 ->shouldSignReturnAddress(true); 6627 saveLROnStack(MBB, It, true, Auth); 6628 6629 // Fix up the instructions in the range, since we're going to modify the 6630 // stack. 6631 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6632 "Can only fix up stack references once"); 6633 fixupPostOutline(MBB); 6634 6635 // Insert a restore before the terminator for the function. Restore LR. 6636 restoreLRFromStack(MBB, Et, true, Auth); 6637 } 6638 6639 // If this is a tail call outlined function, then there's already a return. 6640 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6641 OF.FrameConstructionID == MachineOutlinerThunk) 6642 return; 6643 6644 // Here we have to insert the return ourselves. Get the correct opcode from 6645 // current feature set. 6646 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6647 .add(predOps(ARMCC::AL)); 6648 6649 // Did we have to modify the stack by saving the link register? 6650 if (OF.FrameConstructionID != MachineOutlinerDefault && 6651 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6652 return; 6653 6654 // We modified the stack. 6655 // Walk over the basic block and fix up all the stack accesses. 6656 fixupPostOutline(MBB); 6657 } 6658 6659 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6660 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6661 MachineFunction &MF, outliner::Candidate &C) const { 6662 MachineInstrBuilder MIB; 6663 MachineBasicBlock::iterator CallPt; 6664 unsigned Opc; 6665 bool isThumb = Subtarget.isThumb(); 6666 6667 // Are we tail calling? 6668 if (C.CallConstructionID == MachineOutlinerTailCall) { 6669 // If yes, then we can just branch to the label. 6670 Opc = isThumb 6671 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6672 : ARM::TAILJMPd; 6673 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6674 .addGlobalAddress(M.getNamedValue(MF.getName())); 6675 if (isThumb) 6676 MIB.add(predOps(ARMCC::AL)); 6677 It = MBB.insert(It, MIB); 6678 return It; 6679 } 6680 6681 // Create the call instruction. 6682 Opc = isThumb ? ARM::tBL : ARM::BL; 6683 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6684 if (isThumb) 6685 CallMIB.add(predOps(ARMCC::AL)); 6686 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6687 6688 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6689 C.CallConstructionID == MachineOutlinerThunk) { 6690 // No, so just insert the call. 6691 It = MBB.insert(It, CallMIB); 6692 return It; 6693 } 6694 6695 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6696 // Can we save to a register? 6697 if (C.CallConstructionID == MachineOutlinerRegSave) { 6698 Register Reg = findRegisterToSaveLRTo(C); 6699 assert(Reg != 0 && "No callee-saved register available?"); 6700 6701 // Save and restore LR from that register. 6702 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6703 if (!AFI.isLRSpilled()) 6704 emitCFIForLRSaveToReg(MBB, It, Reg); 6705 CallPt = MBB.insert(It, CallMIB); 6706 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6707 if (!AFI.isLRSpilled()) 6708 emitCFIForLRRestoreFromReg(MBB, It); 6709 It--; 6710 return CallPt; 6711 } 6712 // We have the default case. Save and restore from SP. 6713 if (!MBB.isLiveIn(ARM::LR)) 6714 MBB.addLiveIn(ARM::LR); 6715 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); 6716 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); 6717 CallPt = MBB.insert(It, CallMIB); 6718 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); 6719 It--; 6720 return CallPt; 6721 } 6722 6723 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6724 MachineFunction &MF) const { 6725 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6726 } 6727 6728 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( 6729 const MachineInstr &MI) const { 6730 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6731 // the tail predication conversion. This means that the element count 6732 // register has to be live for longer, but that has to be better than 6733 // spill/restore and VPT predication. 6734 return isVCTP(&MI) && !isPredicated(MI); 6735 } 6736 6737 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6738 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6739 : ARM::BLX; 6740 } 6741 6742 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6743 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6744 : ARM::tBLXr; 6745 } 6746 6747 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6748 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6749 : ARM::BLX_pred; 6750 } 6751 6752 namespace { 6753 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 6754 MachineInstr *EndLoop, *LoopCount; 6755 MachineFunction *MF; 6756 const TargetInstrInfo *TII; 6757 6758 // Bitset[0 .. MAX_STAGES-1] ... iterations needed 6759 // [LAST_IS_USE] : last reference to register in schedule is a use 6760 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live 6761 static int constexpr MAX_STAGES = 30; 6762 static int constexpr LAST_IS_USE = MAX_STAGES; 6763 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1; 6764 typedef std::bitset<MAX_STAGES + 2> IterNeed; 6765 typedef std::map<unsigned, IterNeed> IterNeeds; 6766 6767 void bumpCrossIterationPressure(RegPressureTracker &RPT, 6768 const IterNeeds &CIN); 6769 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS); 6770 6771 // Meanings of the various stuff with loop types: 6772 // t2Bcc: 6773 // EndLoop = branch at end of original BB that will become a kernel 6774 // LoopCount = CC setter live into branch 6775 // t2LoopEnd: 6776 // EndLoop = branch at end of original BB 6777 // LoopCount = t2LoopDec 6778 public: 6779 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) 6780 : EndLoop(EndLoop), LoopCount(LoopCount), 6781 MF(EndLoop->getParent()->getParent()), 6782 TII(MF->getSubtarget().getInstrInfo()) {} 6783 6784 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 6785 // Only ignore the terminator. 6786 return MI == EndLoop || MI == LoopCount; 6787 } 6788 6789 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override { 6790 if (tooMuchRegisterPressure(SSD, SMS)) 6791 return false; 6792 6793 return true; 6794 } 6795 6796 std::optional<bool> createTripCountGreaterCondition( 6797 int TC, MachineBasicBlock &MBB, 6798 SmallVectorImpl<MachineOperand> &Cond) override { 6799 6800 if (isCondBranchOpcode(EndLoop->getOpcode())) { 6801 Cond.push_back(EndLoop->getOperand(1)); 6802 Cond.push_back(EndLoop->getOperand(2)); 6803 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { 6804 TII->reverseBranchCondition(Cond); 6805 } 6806 return {}; 6807 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { 6808 // General case just lets the unrolled t2LoopDec do the subtraction and 6809 // therefore just needs to check if zero has been reached. 6810 MachineInstr *LoopDec = nullptr; 6811 for (auto &I : MBB.instrs()) 6812 if (I.getOpcode() == ARM::t2LoopDec) 6813 LoopDec = &I; 6814 assert(LoopDec && "Unable to find copied LoopDec"); 6815 // Check if we're done with the loop. 6816 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) 6817 .addReg(LoopDec->getOperand(0).getReg()) 6818 .addImm(0) 6819 .addImm(ARMCC::AL) 6820 .addReg(ARM::NoRegister); 6821 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); 6822 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); 6823 return {}; 6824 } else 6825 llvm_unreachable("Unknown EndLoop"); 6826 } 6827 6828 void setPreheader(MachineBasicBlock *NewPreheader) override {} 6829 6830 void adjustTripCount(int TripCountAdjust) override {} 6831 6832 void disposed() override {} 6833 }; 6834 6835 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT, 6836 const IterNeeds &CIN) { 6837 // Increase pressure by the amounts in CrossIterationNeeds 6838 for (const auto &N : CIN) { 6839 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6840 for (int I = 0; I < Cnt; ++I) 6841 RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(), 6842 LaneBitmask::getAll()); 6843 } 6844 // Decrease pressure by the amounts in CrossIterationNeeds 6845 for (const auto &N : CIN) { 6846 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6847 for (int I = 0; I < Cnt; ++I) 6848 RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(), 6849 LaneBitmask::getNone()); 6850 } 6851 } 6852 6853 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD, 6854 SMSchedule &SMS) { 6855 IterNeeds CrossIterationNeeds; 6856 6857 // Determine which values will be loop-carried after the schedule is 6858 // applied 6859 6860 for (auto &SU : SSD.SUnits) { 6861 const MachineInstr *MI = SU.getInstr(); 6862 int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU)); 6863 for (auto &S : SU.Succs) 6864 if (MI->isPHI() && S.getKind() == SDep::Anti) { 6865 Register Reg = S.getReg(); 6866 if (Reg.isVirtual()) 6867 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) 6868 .first->second.set(0); 6869 } else if (S.isAssignedRegDep()) { 6870 int OStg = SMS.stageScheduled(S.getSUnit()); 6871 if (OStg >= 0 && OStg != Stg) { 6872 Register Reg = S.getReg(); 6873 if (Reg.isVirtual()) 6874 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) 6875 .first->second |= ((1 << (OStg - Stg)) - 1); 6876 } 6877 } 6878 } 6879 6880 // Determine more-or-less what the proposed schedule (reversed) is going to 6881 // be; it might not be quite the same because the within-cycle ordering 6882 // created by SMSchedule depends upon changes to help with address offsets and 6883 // the like. 6884 std::vector<SUnit *> ProposedSchedule; 6885 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle) 6886 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd; 6887 ++Stage) { 6888 std::deque<SUnit *> Instrs = 6889 SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval()); 6890 std::sort(Instrs.begin(), Instrs.end(), 6891 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; }); 6892 for (SUnit *SU : Instrs) 6893 ProposedSchedule.push_back(SU); 6894 } 6895 6896 // Learn whether the last use/def of each cross-iteration register is a use or 6897 // def. If it is a def, RegisterPressure will implicitly increase max pressure 6898 // and we do not have to add the pressure. 6899 for (auto *SU : ProposedSchedule) 6900 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid(); 6901 ++OperI) { 6902 auto MO = *OperI; 6903 if (!MO.isReg() || !MO.getReg()) 6904 continue; 6905 Register Reg = MO.getReg(); 6906 auto CIter = CrossIterationNeeds.find(Reg.id()); 6907 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] || 6908 CIter->second[SEEN_AS_LIVE]) 6909 continue; 6910 if (MO.isDef() && !MO.isDead()) 6911 CIter->second.set(SEEN_AS_LIVE); 6912 else if (MO.isUse()) 6913 CIter->second.set(LAST_IS_USE); 6914 } 6915 for (auto &CI : CrossIterationNeeds) 6916 CI.second.reset(LAST_IS_USE); 6917 6918 RegionPressure RecRegPressure; 6919 RegPressureTracker RPTracker(RecRegPressure); 6920 RegisterClassInfo RegClassInfo; 6921 RegClassInfo.runOnMachineFunction(*MF); 6922 RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(), 6923 EndLoop->getParent()->end(), false, false); 6924 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 6925 6926 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6927 6928 for (auto *SU : ProposedSchedule) { 6929 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 6930 RPTracker.setPos(std::next(CurInstI)); 6931 RPTracker.recede(); 6932 6933 // Track what cross-iteration registers would be seen as live 6934 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) { 6935 auto MO = *OperI; 6936 if (!MO.isReg() || !MO.getReg()) 6937 continue; 6938 Register Reg = MO.getReg(); 6939 if (MO.isDef() && !MO.isDead()) { 6940 auto CIter = CrossIterationNeeds.find(Reg.id()); 6941 if (CIter != CrossIterationNeeds.end()) { 6942 CIter->second.reset(0); 6943 CIter->second.reset(SEEN_AS_LIVE); 6944 } 6945 } 6946 } 6947 for (auto &S : SU->Preds) { 6948 auto Stg = SMS.stageScheduled(SU); 6949 if (S.isAssignedRegDep()) { 6950 Register Reg = S.getReg(); 6951 auto CIter = CrossIterationNeeds.find(Reg.id()); 6952 if (CIter != CrossIterationNeeds.end()) { 6953 auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit())); 6954 assert(Stg2 <= Stg && "Data dependence upon earlier stage"); 6955 if (Stg - Stg2 < MAX_STAGES) 6956 CIter->second.set(Stg - Stg2); 6957 CIter->second.set(SEEN_AS_LIVE); 6958 } 6959 } 6960 } 6961 6962 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6963 } 6964 6965 auto &P = RPTracker.getPressure().MaxSetPressure; 6966 for (unsigned I = 0, E = P.size(); I < E; ++I) 6967 if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) { 6968 return true; 6969 } 6970 return false; 6971 } 6972 6973 } // namespace 6974 6975 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 6976 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 6977 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 6978 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 6979 if (Preheader == LoopBB) 6980 Preheader = *std::next(LoopBB->pred_begin()); 6981 6982 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { 6983 // If the branch is a Bcc, then the CPSR should be set somewhere within the 6984 // block. We need to determine the reaching definition of CPSR so that 6985 // it can be marked as non-pipelineable, allowing the pipeliner to force 6986 // it into stage 0 or give up if it cannot or will not do so. 6987 MachineInstr *CCSetter = nullptr; 6988 for (auto &L : LoopBB->instrs()) { 6989 if (L.isCall()) 6990 return nullptr; 6991 if (isCPSRDefined(L)) 6992 CCSetter = &L; 6993 } 6994 if (CCSetter) 6995 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); 6996 else 6997 return nullptr; // Unable to find the CC setter, so unable to guarantee 6998 // that pipeline will work 6999 } 7000 7001 // Recognize: 7002 // preheader: 7003 // %1 = t2DoopLoopStart %0 7004 // loop: 7005 // %2 = phi %1, <not loop>, %..., %loop 7006 // %3 = t2LoopDec %2, <imm> 7007 // t2LoopEnd %3, %loop 7008 7009 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { 7010 for (auto &L : LoopBB->instrs()) 7011 if (L.isCall()) 7012 return nullptr; 7013 else if (isVCTP(&L)) 7014 return nullptr; 7015 Register LoopDecResult = I->getOperand(0).getReg(); 7016 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); 7017 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); 7018 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) 7019 return nullptr; 7020 MachineInstr *LoopStart = nullptr; 7021 for (auto &J : Preheader->instrs()) 7022 if (J.getOpcode() == ARM::t2DoLoopStart) 7023 LoopStart = &J; 7024 if (!LoopStart) 7025 return nullptr; 7026 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); 7027 } 7028 return nullptr; 7029 } 7030