xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp (revision 3750ccefb8629a08890bfbae894dd6bc6a7483b4)
1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// SI Machine Scheduler interface
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIMachineScheduler.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "SIInstrInfo.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "machine-scheduler"
23 
24 // This scheduler implements a different scheduling algorithm than
25 // GenericScheduler.
26 //
27 // There are several specific architecture behaviours that can't be modelled
28 // for GenericScheduler:
29 // . When accessing the result of an SGPR load instruction, you have to wait
30 // for all the SGPR load instructions before your current instruction to
31 // have finished.
32 // . When accessing the result of an VGPR load instruction, you have to wait
33 // for all the VGPR load instructions previous to the VGPR load instruction
34 // you are interested in to finish.
35 // . The less the register pressure, the best load latencies are hidden
36 //
37 // Moreover some specifities (like the fact a lot of instructions in the shader
38 // have few dependencies) makes the generic scheduler have some unpredictable
39 // behaviours. For example when register pressure becomes high, it can either
40 // manage to prevent register pressure from going too high, or it can
41 // increase register pressure even more than if it hadn't taken register
42 // pressure into account.
43 //
44 // Also some other bad behaviours are generated, like loading at the beginning
45 // of the shader a constant in VGPR you won't need until the end of the shader.
46 //
47 // The scheduling problem for SI can distinguish three main parts:
48 // . Hiding high latencies (texture sampling, etc)
49 // . Hiding low latencies (SGPR constant loading, etc)
50 // . Keeping register usage low for better latency hiding and general
51 //   performance
52 //
53 // Some other things can also affect performance, but are hard to predict
54 // (cache usage, the fact the HW can issue several instructions from different
55 // wavefronts if different types, etc)
56 //
57 // This scheduler tries to solve the scheduling problem by dividing it into
58 // simpler sub-problems. It divides the instructions into blocks, schedules
59 // locally inside the blocks where it takes care of low latencies, and then
60 // chooses the order of the blocks by taking care of high latencies.
61 // Dividing the instructions into blocks helps control keeping register
62 // usage low.
63 //
64 // First the instructions are put into blocks.
65 //   We want the blocks help control register usage and hide high latencies
66 //   later. To help control register usage, we typically want all local
67 //   computations, when for example you create a result that can be consumed
68 //   right away, to be contained in a block. Block inputs and outputs would
69 //   typically be important results that are needed in several locations of
70 //   the shader. Since we do want blocks to help hide high latencies, we want
71 //   the instructions inside the block to have a minimal set of dependencies
72 //   on high latencies. It will make it easy to pick blocks to hide specific
73 //   high latencies.
74 //   The block creation algorithm is divided into several steps, and several
75 //   variants can be tried during the scheduling process.
76 //
77 // Second the order of the instructions inside the blocks is chosen.
78 //   At that step we do take into account only register usage and hiding
79 //   low latency instructions
80 //
81 // Third the block order is chosen, there we try to hide high latencies
82 // and keep register usage low.
83 //
84 // After the third step, a pass is done to improve the hiding of low
85 // latencies.
86 //
87 // Actually when talking about 'low latency' or 'high latency' it includes
88 // both the latency to get the cache (or global mem) data go to the register,
89 // and the bandwidth limitations.
90 // Increasing the number of active wavefronts helps hide the former, but it
91 // doesn't solve the latter, thus why even if wavefront count is high, we have
92 // to try have as many instructions hiding high latencies as possible.
93 // The OpenCL doc says for example latency of 400 cycles for a global mem
94 // access, which is hidden by 10 instructions if the wavefront count is 10.
95 
96 // Some figures taken from AMD docs:
97 // Both texture and constant L1 caches are 4-way associative with 64 bytes
98 // lines.
99 // Constant cache is shared with 4 CUs.
100 // For texture sampling, the address generation unit receives 4 texture
101 // addresses per cycle, thus we could expect texture sampling latency to be
102 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
103 // instructions in a wavefront group are executed every 4 cycles),
104 // or 16 instructions if the other wavefronts associated to the 3 other VALUs
105 // of the CU do texture sampling too. (Don't take these figures too seriously,
106 // as I'm not 100% sure of the computation)
107 // Data exports should get similar latency.
108 // For constant loading, the cache is shader with 4 CUs.
109 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
110 // I guess if the other CU don't read the cache, it can go up to 64B/cycle.
111 // It means a simple s_buffer_load should take one instruction to hide, as
112 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
113 // cache line.
114 //
115 // As of today the driver doesn't preload the constants in cache, thus the
116 // first loads get extra latency. The doc says global memory access can be
117 // 300-600 cycles. We do not specially take that into account when scheduling
118 // As we expect the driver to be able to preload the constants soon.
119 
120 // common code //
121 
122 #ifndef NDEBUG
123 
124 static const char *getReasonStr(SIScheduleCandReason Reason) {
125   switch (Reason) {
126   case NoCand:         return "NOCAND";
127   case RegUsage:       return "REGUSAGE";
128   case Latency:        return "LATENCY";
129   case Successor:      return "SUCCESSOR";
130   case Depth:          return "DEPTH";
131   case NodeOrder:      return "ORDER";
132   }
133   llvm_unreachable("Unknown reason!");
134 }
135 
136 #endif
137 
138 namespace llvm::SISched {
139 static bool tryLess(int TryVal, int CandVal,
140                     SISchedulerCandidate &TryCand,
141                     SISchedulerCandidate &Cand,
142                     SIScheduleCandReason Reason) {
143   if (TryVal < CandVal) {
144     TryCand.Reason = Reason;
145     return true;
146   }
147   if (TryVal > CandVal) {
148     if (Cand.Reason > Reason)
149       Cand.Reason = Reason;
150     return true;
151   }
152   Cand.setRepeat(Reason);
153   return false;
154 }
155 
156 static bool tryGreater(int TryVal, int CandVal,
157                        SISchedulerCandidate &TryCand,
158                        SISchedulerCandidate &Cand,
159                        SIScheduleCandReason Reason) {
160   if (TryVal > CandVal) {
161     TryCand.Reason = Reason;
162     return true;
163   }
164   if (TryVal < CandVal) {
165     if (Cand.Reason > Reason)
166       Cand.Reason = Reason;
167     return true;
168   }
169   Cand.setRepeat(Reason);
170   return false;
171 }
172 } // end namespace llvm::SISched
173 
174 // SIScheduleBlock //
175 
176 void SIScheduleBlock::addUnit(SUnit *SU) {
177   NodeNum2Index[SU->NodeNum] = SUnits.size();
178   SUnits.push_back(SU);
179 }
180 
181 #ifndef NDEBUG
182 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
183 
184   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
185   dbgs() << '\n';
186 }
187 #endif
188 
189 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
190                                           SISchedCandidate &TryCand) {
191   // Initialize the candidate if needed.
192   if (!Cand.isValid()) {
193     TryCand.Reason = NodeOrder;
194     return;
195   }
196 
197   if (Cand.SGPRUsage > 60 &&
198       SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
199                        TryCand, Cand, RegUsage))
200     return;
201 
202   // Schedule low latency instructions as top as possible.
203   // Order of priority is:
204   // . Low latency instructions which do not depend on other low latency
205   //   instructions we haven't waited for
206   // . Other instructions which do not depend on low latency instructions
207   //   we haven't waited for
208   // . Low latencies
209   // . All other instructions
210   // Goal is to get: low latency instructions - independent instructions
211   //     - (eventually some more low latency instructions)
212   //     - instructions that depend on the first low latency instructions.
213   // If in the block there is a lot of constant loads, the SGPR usage
214   // could go quite high, thus above the arbitrary limit of 60 will encourage
215   // use the already loaded constants (in order to release some SGPRs) before
216   // loading more.
217   if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
218                        Cand.HasLowLatencyNonWaitedParent,
219                        TryCand, Cand, SIScheduleCandReason::Depth))
220     return;
221 
222   if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
223                           TryCand, Cand, SIScheduleCandReason::Depth))
224     return;
225 
226   if (TryCand.IsLowLatency &&
227       SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
228                        TryCand, Cand, SIScheduleCandReason::Depth))
229     return;
230 
231   if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
232                        TryCand, Cand, RegUsage))
233     return;
234 
235   // Fall through to original instruction order.
236   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
237     TryCand.Reason = NodeOrder;
238   }
239 }
240 
241 SUnit* SIScheduleBlock::pickNode() {
242   SISchedCandidate TopCand;
243 
244   for (SUnit* SU : TopReadySUs) {
245     SISchedCandidate TryCand;
246     std::vector<unsigned> pressure;
247     std::vector<unsigned> MaxPressure;
248     // Predict register usage after this instruction.
249     TryCand.SU = SU;
250     TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
251     TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
252     TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
253     TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
254     TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
255     TryCand.HasLowLatencyNonWaitedParent =
256       HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
257     tryCandidateTopDown(TopCand, TryCand);
258     if (TryCand.Reason != NoCand)
259       TopCand.setBest(TryCand);
260   }
261 
262   return TopCand.SU;
263 }
264 
265 
266 // Schedule something valid.
267 void SIScheduleBlock::fastSchedule() {
268   TopReadySUs.clear();
269   if (Scheduled)
270     undoSchedule();
271 
272   for (SUnit* SU : SUnits) {
273     if (!SU->NumPredsLeft)
274       TopReadySUs.push_back(SU);
275   }
276 
277   while (!TopReadySUs.empty()) {
278     SUnit *SU = TopReadySUs[0];
279     ScheduledSUnits.push_back(SU);
280     nodeScheduled(SU);
281   }
282 
283   Scheduled = true;
284 }
285 
286 // Returns if the register was set between first and last.
287 static bool isDefBetween(unsigned Reg,
288                            SlotIndex First, SlotIndex Last,
289                            const MachineRegisterInfo *MRI,
290                            const LiveIntervals *LIS) {
291   for (MachineRegisterInfo::def_instr_iterator
292        UI = MRI->def_instr_begin(Reg),
293        UE = MRI->def_instr_end(); UI != UE; ++UI) {
294     const MachineInstr* MI = &*UI;
295     if (MI->isDebugValue())
296       continue;
297     SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
298     if (InstSlot >= First && InstSlot <= Last)
299       return true;
300   }
301   return false;
302 }
303 
304 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
305                                       MachineBasicBlock::iterator EndBlock) {
306   IntervalPressure Pressure, BotPressure;
307   RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
308   LiveIntervals *LIS = DAG->getLIS();
309   MachineRegisterInfo *MRI = DAG->getMRI();
310   DAG->initRPTracker(TopRPTracker);
311   DAG->initRPTracker(BotRPTracker);
312   DAG->initRPTracker(RPTracker);
313 
314   // Goes though all SU. RPTracker captures what had to be alive for the SUs
315   // to execute, and what is still alive at the end.
316   for (SUnit* SU : ScheduledSUnits) {
317     RPTracker.setPos(SU->getInstr());
318     RPTracker.advance();
319   }
320 
321   // Close the RPTracker to finalize live ins/outs.
322   RPTracker.closeRegion();
323 
324   // Initialize the live ins and live outs.
325   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
326   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
327 
328   // Do not Track Physical Registers, because it messes up.
329   for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
330     if (RegMaskPair.RegUnit.isVirtual())
331       LiveInRegs.insert(RegMaskPair.RegUnit);
332   }
333   LiveOutRegs.clear();
334   // There is several possibilities to distinguish:
335   // 1) Reg is not input to any instruction in the block, but is output of one
336   // 2) 1) + read in the block and not needed after it
337   // 3) 1) + read in the block but needed in another block
338   // 4) Reg is input of an instruction but another block will read it too
339   // 5) Reg is input of an instruction and then rewritten in the block.
340   //    result is not read in the block (implies used in another block)
341   // 6) Reg is input of an instruction and then rewritten in the block.
342   //    result is read in the block and not needed in another block
343   // 7) Reg is input of an instruction and then rewritten in the block.
344   //    result is read in the block but also needed in another block
345   // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
346   // We want LiveOutRegs to contain only Regs whose content will be read after
347   // in another block, and whose content was written in the current block,
348   // that is we want it to get 1, 3, 5, 7
349   // Since we made the MIs of a block to be packed all together before
350   // scheduling, then the LiveIntervals were correct, and the RPTracker was
351   // able to correctly handle 5 vs 6, 2 vs 3.
352   // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
353   // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
354   // Comparing to LiveInRegs is not sufficient to differentiate 4 vs 5, 7
355   // The use of findDefBetween removes the case 4.
356   for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
357     Register Reg = RegMaskPair.RegUnit;
358     if (Reg.isVirtual() &&
359         isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
360                      LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
361                      LIS)) {
362       LiveOutRegs.insert(Reg);
363     }
364   }
365 
366   // Pressure = sum_alive_registers register size
367   // Internally llvm will represent some registers as big 128 bits registers
368   // for example, but they actually correspond to 4 actual 32 bits registers.
369   // Thus Pressure is not equal to num_alive_registers * constant.
370   LiveInPressure = TopPressure.MaxSetPressure;
371   LiveOutPressure = BotPressure.MaxSetPressure;
372 
373   // Prepares TopRPTracker for top down scheduling.
374   TopRPTracker.closeTop();
375 }
376 
377 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
378                                MachineBasicBlock::iterator EndBlock) {
379   if (!Scheduled)
380     fastSchedule();
381 
382   // PreScheduling phase to set LiveIn and LiveOut.
383   initRegPressure(BeginBlock, EndBlock);
384   undoSchedule();
385 
386   // Schedule for real now.
387 
388   TopReadySUs.clear();
389 
390   for (SUnit* SU : SUnits) {
391     if (!SU->NumPredsLeft)
392       TopReadySUs.push_back(SU);
393   }
394 
395   while (!TopReadySUs.empty()) {
396     SUnit *SU = pickNode();
397     ScheduledSUnits.push_back(SU);
398     TopRPTracker.setPos(SU->getInstr());
399     TopRPTracker.advance();
400     nodeScheduled(SU);
401   }
402 
403   // TODO: compute InternalAdditionalPressure.
404   InternalAdditionalPressure.resize(TopPressure.MaxSetPressure.size());
405 
406   // Check everything is right.
407 #ifndef NDEBUG
408   assert(SUnits.size() == ScheduledSUnits.size() &&
409             TopReadySUs.empty());
410   for (SUnit* SU : SUnits) {
411     assert(SU->isScheduled &&
412               SU->NumPredsLeft == 0);
413   }
414 #endif
415 
416   Scheduled = true;
417 }
418 
419 void SIScheduleBlock::undoSchedule() {
420   for (SUnit* SU : SUnits) {
421     SU->isScheduled = false;
422     for (SDep& Succ : SU->Succs) {
423       if (BC->isSUInBlock(Succ.getSUnit(), ID))
424         undoReleaseSucc(SU, &Succ);
425     }
426   }
427   HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
428   ScheduledSUnits.clear();
429   Scheduled = false;
430 }
431 
432 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
433   SUnit *SuccSU = SuccEdge->getSUnit();
434 
435   if (SuccEdge->isWeak()) {
436     ++SuccSU->WeakPredsLeft;
437     return;
438   }
439   ++SuccSU->NumPredsLeft;
440 }
441 
442 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
443   SUnit *SuccSU = SuccEdge->getSUnit();
444 
445   if (SuccEdge->isWeak()) {
446     --SuccSU->WeakPredsLeft;
447     return;
448   }
449 #ifndef NDEBUG
450   if (SuccSU->NumPredsLeft == 0) {
451     dbgs() << "*** Scheduling failed! ***\n";
452     DAG->dumpNode(*SuccSU);
453     dbgs() << " has been released too many times!\n";
454     llvm_unreachable(nullptr);
455   }
456 #endif
457 
458   --SuccSU->NumPredsLeft;
459 }
460 
461 /// Release Successors of the SU that are in the block or not.
462 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
463   for (SDep& Succ : SU->Succs) {
464     SUnit *SuccSU = Succ.getSUnit();
465 
466     if (SuccSU->NodeNum >= DAG->SUnits.size())
467         continue;
468 
469     if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
470       continue;
471 
472     releaseSucc(SU, &Succ);
473     if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
474       TopReadySUs.push_back(SuccSU);
475   }
476 }
477 
478 void SIScheduleBlock::nodeScheduled(SUnit *SU) {
479   // Is in TopReadySUs
480   assert (!SU->NumPredsLeft);
481   std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
482   if (I == TopReadySUs.end()) {
483     dbgs() << "Data Structure Bug in SI Scheduler\n";
484     llvm_unreachable(nullptr);
485   }
486   TopReadySUs.erase(I);
487 
488   releaseSuccessors(SU, true);
489   // Scheduling this node will trigger a wait,
490   // thus propagate to other instructions that they do not need to wait either.
491   if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
492     HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
493 
494   if (DAG->IsLowLatencySU[SU->NodeNum]) {
495      for (SDep& Succ : SU->Succs) {
496       std::map<unsigned, unsigned>::iterator I =
497         NodeNum2Index.find(Succ.getSUnit()->NodeNum);
498       if (I != NodeNum2Index.end())
499         HasLowLatencyNonWaitedParent[I->second] = 1;
500     }
501   }
502   SU->isScheduled = true;
503 }
504 
505 void SIScheduleBlock::finalizeUnits() {
506   // We remove links from outside blocks to enable scheduling inside the block.
507   for (SUnit* SU : SUnits) {
508     releaseSuccessors(SU, false);
509     if (DAG->IsHighLatencySU[SU->NodeNum])
510       HighLatencyBlock = true;
511   }
512   HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
513 }
514 
515 // we maintain ascending order of IDs
516 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
517   unsigned PredID = Pred->getID();
518 
519   // Check if not already predecessor.
520   for (SIScheduleBlock* P : Preds) {
521     if (PredID == P->getID())
522       return;
523   }
524   Preds.push_back(Pred);
525 
526   assert(none_of(Succs,
527                  [=](std::pair<SIScheduleBlock*,
528                      SIScheduleBlockLinkKind> S) {
529                    return PredID == S.first->getID();
530                     }) &&
531          "Loop in the Block Graph!");
532 }
533 
534 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
535                               SIScheduleBlockLinkKind Kind) {
536   unsigned SuccID = Succ->getID();
537 
538   // Check if not already predecessor.
539   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
540     if (SuccID == S.first->getID()) {
541       if (S.second == SIScheduleBlockLinkKind::NoData &&
542           Kind == SIScheduleBlockLinkKind::Data)
543         S.second = Kind;
544       return;
545     }
546   }
547   if (Succ->isHighLatencyBlock())
548     ++NumHighLatencySuccessors;
549   Succs.emplace_back(Succ, Kind);
550 
551   assert(none_of(Preds,
552                  [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
553          "Loop in the Block Graph!");
554 }
555 
556 #ifndef NDEBUG
557 void SIScheduleBlock::printDebug(bool full) {
558   dbgs() << "Block (" << ID << ")\n";
559   if (!full)
560     return;
561 
562   dbgs() << "\nContains High Latency Instruction: "
563          << HighLatencyBlock << '\n';
564   dbgs() << "\nDepends On:\n";
565   for (SIScheduleBlock* P : Preds) {
566     P->printDebug(false);
567   }
568 
569   dbgs() << "\nSuccessors:\n";
570   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
571     if (S.second == SIScheduleBlockLinkKind::Data)
572       dbgs() << "(Data Dep) ";
573     S.first->printDebug(false);
574   }
575 
576   if (Scheduled) {
577     dbgs() << "LiveInPressure "
578            << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
579            << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
580     dbgs() << "LiveOutPressure "
581            << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
582            << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
583     dbgs() << "LiveIns:\n";
584     for (unsigned Reg : LiveInRegs)
585       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
586 
587     dbgs() << "\nLiveOuts:\n";
588     for (unsigned Reg : LiveOutRegs)
589       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
590   }
591 
592   dbgs() << "\nInstructions:\n";
593   for (const SUnit* SU : SUnits)
594       DAG->dumpNode(*SU);
595 
596   dbgs() << "///////////////////////\n";
597 }
598 #endif
599 
600 // SIScheduleBlockCreator //
601 
602 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
603     : DAG(DAG) {}
604 
605 SIScheduleBlocks
606 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
607   std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
608     Blocks.find(BlockVariant);
609   if (B == Blocks.end()) {
610     SIScheduleBlocks Res;
611     createBlocksForVariant(BlockVariant);
612     topologicalSort();
613     scheduleInsideBlocks();
614     fillStats();
615     Res.Blocks = CurrentBlocks;
616     Res.TopDownIndex2Block = TopDownIndex2Block;
617     Res.TopDownBlock2Index = TopDownBlock2Index;
618     Blocks[BlockVariant] = Res;
619     return Res;
620   }
621   return B->second;
622 }
623 
624 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
625   if (SU->NodeNum >= DAG->SUnits.size())
626     return false;
627   return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
628 }
629 
630 void SIScheduleBlockCreator::colorHighLatenciesAlone() {
631   unsigned DAGSize = DAG->SUnits.size();
632 
633   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
634     SUnit *SU = &DAG->SUnits[i];
635     if (DAG->IsHighLatencySU[SU->NodeNum]) {
636       CurrentColoring[SU->NodeNum] = NextReservedID++;
637     }
638   }
639 }
640 
641 static bool
642 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
643   for (const auto &PredDep : SU.Preds) {
644     if (PredDep.getSUnit() == &FromSU &&
645         PredDep.getKind() == llvm::SDep::Data)
646       return true;
647   }
648   return false;
649 }
650 
651 void SIScheduleBlockCreator::colorHighLatenciesGroups() {
652   unsigned DAGSize = DAG->SUnits.size();
653   unsigned NumHighLatencies = 0;
654   unsigned GroupSize;
655   int Color = NextReservedID;
656   unsigned Count = 0;
657   std::set<unsigned> FormingGroup;
658 
659   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
660     SUnit *SU = &DAG->SUnits[i];
661     if (DAG->IsHighLatencySU[SU->NodeNum])
662       ++NumHighLatencies;
663   }
664 
665   if (NumHighLatencies == 0)
666     return;
667 
668   if (NumHighLatencies <= 6)
669     GroupSize = 2;
670   else if (NumHighLatencies <= 12)
671     GroupSize = 3;
672   else
673     GroupSize = 4;
674 
675   for (unsigned SUNum : DAG->TopDownIndex2SU) {
676     const SUnit &SU = DAG->SUnits[SUNum];
677     if (DAG->IsHighLatencySU[SU.NodeNum]) {
678       unsigned CompatibleGroup = true;
679       int ProposedColor = Color;
680       std::vector<int> AdditionalElements;
681 
682       // We don't want to put in the same block
683       // two high latency instructions that depend
684       // on each other.
685       // One way would be to check canAddEdge
686       // in both directions, but that currently is not
687       // enough because there the high latency order is
688       // enforced (via links).
689       // Instead, look at the dependencies between the
690       // high latency instructions and deduce if it is
691       // a data dependency or not.
692       for (unsigned j : FormingGroup) {
693         bool HasSubGraph;
694         std::vector<int> SubGraph;
695         // By construction (topological order), if SU and
696         // DAG->SUnits[j] are linked, DAG->SUnits[j] is necessary
697         // in the parent graph of SU.
698 #ifndef NDEBUG
699         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
700                                                HasSubGraph);
701         assert(!HasSubGraph);
702 #endif
703         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
704                                                HasSubGraph);
705         if (!HasSubGraph)
706           continue; // No dependencies between each other
707         if (SubGraph.size() > 5) {
708           // Too many elements would be required to be added to the block.
709           CompatibleGroup = false;
710           break;
711         }
712         // Check the type of dependency
713         for (unsigned k : SubGraph) {
714           // If in the path to join the two instructions,
715           // there is another high latency instruction,
716           // or instructions colored for another block
717           // abort the merge.
718           if (DAG->IsHighLatencySU[k] || (CurrentColoring[k] != ProposedColor &&
719                                           CurrentColoring[k] != 0)) {
720             CompatibleGroup = false;
721             break;
722           }
723           // If one of the SU in the subgraph depends on the result of SU j,
724           // there'll be a data dependency.
725           if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
726             CompatibleGroup = false;
727             break;
728           }
729         }
730         if (!CompatibleGroup)
731           break;
732         // Same check for the SU
733         if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
734           CompatibleGroup = false;
735           break;
736         }
737         // Add all the required instructions to the block
738         // These cannot live in another block (because they
739         // depend (order dependency) on one of the
740         // instruction in the block, and are required for the
741         // high latency instruction we add.
742         llvm::append_range(AdditionalElements, SubGraph);
743       }
744       if (CompatibleGroup) {
745         FormingGroup.insert(SU.NodeNum);
746         for (unsigned j : AdditionalElements)
747           CurrentColoring[j] = ProposedColor;
748         CurrentColoring[SU.NodeNum] = ProposedColor;
749         ++Count;
750       }
751       // Found one incompatible instruction,
752       // or has filled a big enough group.
753       // -> start a new one.
754       if (!CompatibleGroup) {
755         FormingGroup.clear();
756         Color = ++NextReservedID;
757         ProposedColor = Color;
758         FormingGroup.insert(SU.NodeNum);
759         CurrentColoring[SU.NodeNum] = ProposedColor;
760         Count = 0;
761       } else if (Count == GroupSize) {
762         FormingGroup.clear();
763         Color = ++NextReservedID;
764         ProposedColor = Color;
765         Count = 0;
766       }
767     }
768   }
769 }
770 
771 void SIScheduleBlockCreator::colorComputeReservedDependencies() {
772   unsigned DAGSize = DAG->SUnits.size();
773   std::map<std::set<unsigned>, unsigned> ColorCombinations;
774 
775   CurrentTopDownReservedDependencyColoring.clear();
776   CurrentBottomUpReservedDependencyColoring.clear();
777 
778   CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
779   CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
780 
781   // Traverse TopDown, and give different colors to SUs depending
782   // on which combination of High Latencies they depend on.
783 
784   for (unsigned SUNum : DAG->TopDownIndex2SU) {
785     SUnit *SU = &DAG->SUnits[SUNum];
786     std::set<unsigned> SUColors;
787 
788     // Already given.
789     if (CurrentColoring[SU->NodeNum]) {
790       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
791         CurrentColoring[SU->NodeNum];
792       continue;
793     }
794 
795    for (SDep& PredDep : SU->Preds) {
796       SUnit *Pred = PredDep.getSUnit();
797       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
798         continue;
799       if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
800         SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
801     }
802     // Color 0 by default.
803     if (SUColors.empty())
804       continue;
805     // Same color than parents.
806     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
807       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
808         *SUColors.begin();
809     else {
810       std::map<std::set<unsigned>, unsigned>::iterator Pos =
811         ColorCombinations.find(SUColors);
812       if (Pos != ColorCombinations.end()) {
813           CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
814       } else {
815         CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
816           NextNonReservedID;
817         ColorCombinations[SUColors] = NextNonReservedID++;
818       }
819     }
820   }
821 
822   ColorCombinations.clear();
823 
824   // Same as before, but BottomUp.
825 
826   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
827     SUnit *SU = &DAG->SUnits[SUNum];
828     std::set<unsigned> SUColors;
829 
830     // Already given.
831     if (CurrentColoring[SU->NodeNum]) {
832       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
833         CurrentColoring[SU->NodeNum];
834       continue;
835     }
836 
837     for (SDep& SuccDep : SU->Succs) {
838       SUnit *Succ = SuccDep.getSUnit();
839       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
840         continue;
841       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
842         SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
843     }
844     // Keep color 0.
845     if (SUColors.empty())
846       continue;
847     // Same color than parents.
848     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
849       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
850         *SUColors.begin();
851     else {
852       std::map<std::set<unsigned>, unsigned>::iterator Pos =
853         ColorCombinations.find(SUColors);
854       if (Pos != ColorCombinations.end()) {
855         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
856       } else {
857         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
858           NextNonReservedID;
859         ColorCombinations[SUColors] = NextNonReservedID++;
860       }
861     }
862   }
863 }
864 
865 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
866   std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
867 
868   // Every combination of colors given by the top down
869   // and bottom up Reserved node dependency
870 
871   for (const SUnit &SU : DAG->SUnits) {
872     std::pair<unsigned, unsigned> SUColors;
873 
874     // High latency instructions: already given.
875     if (CurrentColoring[SU.NodeNum])
876       continue;
877 
878     SUColors.first = CurrentTopDownReservedDependencyColoring[SU.NodeNum];
879     SUColors.second = CurrentBottomUpReservedDependencyColoring[SU.NodeNum];
880 
881     std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
882       ColorCombinations.find(SUColors);
883     if (Pos != ColorCombinations.end()) {
884       CurrentColoring[SU.NodeNum] = Pos->second;
885     } else {
886       CurrentColoring[SU.NodeNum] = NextNonReservedID;
887       ColorCombinations[SUColors] = NextNonReservedID++;
888     }
889   }
890 }
891 
892 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
893   unsigned DAGSize = DAG->SUnits.size();
894   std::vector<int> PendingColoring = CurrentColoring;
895 
896   assert(DAGSize >= 1 &&
897          CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
898          CurrentTopDownReservedDependencyColoring.size() == DAGSize);
899   // If there is no reserved block at all, do nothing. We don't want
900   // everything in one block.
901   if (*llvm::max_element(CurrentBottomUpReservedDependencyColoring) == 0 &&
902       *llvm::max_element(CurrentTopDownReservedDependencyColoring) == 0)
903     return;
904 
905   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
906     SUnit *SU = &DAG->SUnits[SUNum];
907     std::set<unsigned> SUColors;
908     std::set<unsigned> SUColorsPending;
909 
910     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
911       continue;
912 
913     if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
914         CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
915       continue;
916 
917     for (SDep& SuccDep : SU->Succs) {
918       SUnit *Succ = SuccDep.getSUnit();
919       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
920         continue;
921       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
922           CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
923         SUColors.insert(CurrentColoring[Succ->NodeNum]);
924       SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
925     }
926     // If there is only one child/parent block, and that block
927     // is not among the ones we are removing in this path, then
928     // merge the instruction to that block
929     if (SUColors.size() == 1 && SUColorsPending.size() == 1)
930       PendingColoring[SU->NodeNum] = *SUColors.begin();
931     else // TODO: Attribute new colors depending on color
932          // combination of children.
933       PendingColoring[SU->NodeNum] = NextNonReservedID++;
934   }
935   CurrentColoring = PendingColoring;
936 }
937 
938 
939 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
940   unsigned DAGSize = DAG->SUnits.size();
941   unsigned PreviousColor;
942   std::set<unsigned> SeenColors;
943 
944   if (DAGSize <= 1)
945     return;
946 
947   PreviousColor = CurrentColoring[0];
948 
949   for (unsigned i = 1, e = DAGSize; i != e; ++i) {
950     SUnit *SU = &DAG->SUnits[i];
951     unsigned CurrentColor = CurrentColoring[i];
952     unsigned PreviousColorSave = PreviousColor;
953     assert(i == SU->NodeNum);
954 
955     if (CurrentColor != PreviousColor)
956       SeenColors.insert(PreviousColor);
957     PreviousColor = CurrentColor;
958 
959     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
960       continue;
961 
962     if (SeenColors.find(CurrentColor) == SeenColors.end())
963       continue;
964 
965     if (PreviousColorSave != CurrentColor)
966       CurrentColoring[i] = NextNonReservedID++;
967     else
968       CurrentColoring[i] = CurrentColoring[i-1];
969   }
970 }
971 
972 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
973   unsigned DAGSize = DAG->SUnits.size();
974 
975   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
976     SUnit *SU = &DAG->SUnits[SUNum];
977     std::set<unsigned> SUColors;
978 
979     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
980       continue;
981 
982     // No predecessor: Vgpr constant loading.
983     // Low latency instructions usually have a predecessor (the address)
984     if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
985       continue;
986 
987     for (SDep& SuccDep : SU->Succs) {
988       SUnit *Succ = SuccDep.getSUnit();
989       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
990         continue;
991       SUColors.insert(CurrentColoring[Succ->NodeNum]);
992     }
993     if (SUColors.size() == 1)
994       CurrentColoring[SU->NodeNum] = *SUColors.begin();
995   }
996 }
997 
998 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
999   unsigned DAGSize = DAG->SUnits.size();
1000 
1001   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1002     SUnit *SU = &DAG->SUnits[SUNum];
1003     std::set<unsigned> SUColors;
1004 
1005     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1006       continue;
1007 
1008     for (SDep& SuccDep : SU->Succs) {
1009        SUnit *Succ = SuccDep.getSUnit();
1010       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1011         continue;
1012       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1013     }
1014     if (SUColors.size() == 1)
1015       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1016   }
1017 }
1018 
1019 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
1020   unsigned DAGSize = DAG->SUnits.size();
1021 
1022   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1023     SUnit *SU = &DAG->SUnits[SUNum];
1024     std::set<unsigned> SUColors;
1025 
1026     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1027       continue;
1028 
1029     for (SDep& SuccDep : SU->Succs) {
1030        SUnit *Succ = SuccDep.getSUnit();
1031       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1032         continue;
1033       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1034     }
1035     if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
1036       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1037   }
1038 }
1039 
1040 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
1041   unsigned DAGSize = DAG->SUnits.size();
1042   std::map<unsigned, unsigned> ColorCount;
1043 
1044   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1045     SUnit *SU = &DAG->SUnits[SUNum];
1046     unsigned color = CurrentColoring[SU->NodeNum];
1047      ++ColorCount[color];
1048   }
1049 
1050   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1051     SUnit *SU = &DAG->SUnits[SUNum];
1052     unsigned color = CurrentColoring[SU->NodeNum];
1053     std::set<unsigned> SUColors;
1054 
1055     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1056       continue;
1057 
1058     if (ColorCount[color] > 1)
1059       continue;
1060 
1061     for (SDep& SuccDep : SU->Succs) {
1062        SUnit *Succ = SuccDep.getSUnit();
1063       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1064         continue;
1065       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1066     }
1067     if (SUColors.size() == 1 && *SUColors.begin() != color) {
1068       --ColorCount[color];
1069       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1070       ++ColorCount[*SUColors.begin()];
1071     }
1072   }
1073 }
1074 
1075 void SIScheduleBlockCreator::cutHugeBlocks() {
1076   // TODO
1077 }
1078 
1079 void SIScheduleBlockCreator::regroupNoUserInstructions() {
1080   unsigned DAGSize = DAG->SUnits.size();
1081   int GroupID = NextNonReservedID++;
1082 
1083   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1084     SUnit *SU = &DAG->SUnits[SUNum];
1085     bool hasSuccessor = false;
1086 
1087     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1088       continue;
1089 
1090     for (SDep& SuccDep : SU->Succs) {
1091        SUnit *Succ = SuccDep.getSUnit();
1092       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1093         continue;
1094       hasSuccessor = true;
1095     }
1096     if (!hasSuccessor)
1097       CurrentColoring[SU->NodeNum] = GroupID;
1098   }
1099 }
1100 
1101 void SIScheduleBlockCreator::colorExports() {
1102   unsigned ExportColor = NextNonReservedID++;
1103   SmallVector<unsigned, 8> ExpGroup;
1104 
1105   // Put all exports together in a block.
1106   // The block will naturally end up being scheduled last,
1107   // thus putting exports at the end of the schedule, which
1108   // is better for performance.
1109   // However we must ensure, for safety, the exports can be put
1110   // together in the same block without any other instruction.
1111   // This could happen, for example, when scheduling after regalloc
1112   // if reloading a spilled register from memory using the same
1113   // register than used in a previous export.
1114   // If that happens, do not regroup the exports.
1115   for (unsigned SUNum : DAG->TopDownIndex2SU) {
1116     const SUnit &SU = DAG->SUnits[SUNum];
1117     if (SIInstrInfo::isEXP(*SU.getInstr())) {
1118       // SU is an export instruction. Check whether one of its successor
1119       // dependencies is a non-export, in which case we skip export grouping.
1120       for (const SDep &SuccDep : SU.Succs) {
1121         const SUnit *SuccSU = SuccDep.getSUnit();
1122         if (SuccDep.isWeak() || SuccSU->NodeNum >= DAG->SUnits.size()) {
1123           // Ignore these dependencies.
1124           continue;
1125         }
1126         assert(SuccSU->isInstr() &&
1127                "SUnit unexpectedly not representing an instruction!");
1128 
1129         if (!SIInstrInfo::isEXP(*SuccSU->getInstr())) {
1130           // A non-export depends on us. Skip export grouping.
1131           // Note that this is a bit pessimistic: We could still group all other
1132           // exports that are not depended on by non-exports, directly or
1133           // indirectly. Simply skipping this particular export but grouping all
1134           // others would not account for indirect dependencies.
1135           return;
1136         }
1137       }
1138       ExpGroup.push_back(SUNum);
1139     }
1140   }
1141 
1142   // The group can be formed. Give the color.
1143   for (unsigned j : ExpGroup)
1144     CurrentColoring[j] = ExportColor;
1145 }
1146 
1147 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
1148   unsigned DAGSize = DAG->SUnits.size();
1149   std::map<unsigned,unsigned> RealID;
1150 
1151   CurrentBlocks.clear();
1152   CurrentColoring.clear();
1153   CurrentColoring.resize(DAGSize, 0);
1154   Node2CurrentBlock.clear();
1155 
1156   // Restore links previous scheduling variant has overridden.
1157   DAG->restoreSULinksLeft();
1158 
1159   NextReservedID = 1;
1160   NextNonReservedID = DAGSize + 1;
1161 
1162   LLVM_DEBUG(dbgs() << "Coloring the graph\n");
1163 
1164   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
1165     colorHighLatenciesGroups();
1166   else
1167     colorHighLatenciesAlone();
1168   colorComputeReservedDependencies();
1169   colorAccordingToReservedDependencies();
1170   colorEndsAccordingToDependencies();
1171   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
1172     colorForceConsecutiveOrderInGroup();
1173   regroupNoUserInstructions();
1174   colorMergeConstantLoadsNextGroup();
1175   colorMergeIfPossibleNextGroupOnlyForReserved();
1176   colorExports();
1177 
1178   // Put SUs of same color into same block
1179   Node2CurrentBlock.resize(DAGSize, -1);
1180   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1181     SUnit *SU = &DAG->SUnits[i];
1182     unsigned Color = CurrentColoring[SU->NodeNum];
1183     if (RealID.find(Color) == RealID.end()) {
1184       int ID = CurrentBlocks.size();
1185       BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
1186       CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
1187       RealID[Color] = ID;
1188     }
1189     CurrentBlocks[RealID[Color]]->addUnit(SU);
1190     Node2CurrentBlock[SU->NodeNum] = RealID[Color];
1191   }
1192 
1193   // Build dependencies between blocks.
1194   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1195     SUnit *SU = &DAG->SUnits[i];
1196     int SUID = Node2CurrentBlock[i];
1197      for (SDep& SuccDep : SU->Succs) {
1198        SUnit *Succ = SuccDep.getSUnit();
1199       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1200         continue;
1201       if (Node2CurrentBlock[Succ->NodeNum] != SUID)
1202         CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
1203                                      SuccDep.isCtrl() ? NoData : Data);
1204     }
1205     for (SDep& PredDep : SU->Preds) {
1206       SUnit *Pred = PredDep.getSUnit();
1207       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
1208         continue;
1209       if (Node2CurrentBlock[Pred->NodeNum] != SUID)
1210         CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
1211     }
1212   }
1213 
1214   // Free root and leafs of all blocks to enable scheduling inside them.
1215   for (SIScheduleBlock *Block : CurrentBlocks)
1216     Block->finalizeUnits();
1217   LLVM_DEBUG({
1218     dbgs() << "Blocks created:\n\n";
1219     for (SIScheduleBlock *Block : CurrentBlocks)
1220       Block->printDebug(true);
1221   });
1222 }
1223 
1224 // Two functions taken from Codegen/MachineScheduler.cpp
1225 
1226 /// Non-const version.
1227 static MachineBasicBlock::iterator
1228 nextIfDebug(MachineBasicBlock::iterator I,
1229             MachineBasicBlock::const_iterator End) {
1230   for (; I != End; ++I) {
1231     if (!I->isDebugInstr())
1232       break;
1233   }
1234   return I;
1235 }
1236 
1237 void SIScheduleBlockCreator::topologicalSort() {
1238   unsigned DAGSize = CurrentBlocks.size();
1239   std::vector<int> WorkList;
1240 
1241   LLVM_DEBUG(dbgs() << "Topological Sort\n");
1242 
1243   WorkList.reserve(DAGSize);
1244   TopDownIndex2Block.resize(DAGSize);
1245   TopDownBlock2Index.resize(DAGSize);
1246   BottomUpIndex2Block.resize(DAGSize);
1247 
1248   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1249     SIScheduleBlock *Block = CurrentBlocks[i];
1250     unsigned Degree = Block->getSuccs().size();
1251     TopDownBlock2Index[i] = Degree;
1252     if (Degree == 0) {
1253       WorkList.push_back(i);
1254     }
1255   }
1256 
1257   int Id = DAGSize;
1258   while (!WorkList.empty()) {
1259     int i = WorkList.back();
1260     SIScheduleBlock *Block = CurrentBlocks[i];
1261     WorkList.pop_back();
1262     TopDownBlock2Index[i] = --Id;
1263     TopDownIndex2Block[Id] = i;
1264     for (SIScheduleBlock* Pred : Block->getPreds()) {
1265       if (!--TopDownBlock2Index[Pred->getID()])
1266         WorkList.push_back(Pred->getID());
1267     }
1268   }
1269 
1270 #ifndef NDEBUG
1271   // Check correctness of the ordering.
1272   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1273     SIScheduleBlock *Block = CurrentBlocks[i];
1274     for (SIScheduleBlock* Pred : Block->getPreds()) {
1275       assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
1276       "Wrong Top Down topological sorting");
1277     }
1278   }
1279 #endif
1280 
1281   BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
1282                                          TopDownIndex2Block.rend());
1283 }
1284 
1285 void SIScheduleBlockCreator::scheduleInsideBlocks() {
1286   unsigned DAGSize = CurrentBlocks.size();
1287 
1288   LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
1289 
1290   // We do schedule a valid scheduling such that a Block corresponds
1291   // to a range of instructions.
1292   LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
1293   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1294     SIScheduleBlock *Block = CurrentBlocks[i];
1295     Block->fastSchedule();
1296   }
1297 
1298   // Note: the following code, and the part restoring previous position
1299   // is by far the most expensive operation of the Scheduler.
1300 
1301   // Do not update CurrentTop.
1302   MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
1303   std::vector<MachineBasicBlock::iterator> PosOld;
1304   std::vector<MachineBasicBlock::iterator> PosNew;
1305   PosOld.reserve(DAG->SUnits.size());
1306   PosNew.reserve(DAG->SUnits.size());
1307 
1308   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1309     int BlockIndice = TopDownIndex2Block[i];
1310     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1311     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1312 
1313     for (SUnit* SU : SUs) {
1314       MachineInstr *MI = SU->getInstr();
1315       MachineBasicBlock::iterator Pos = MI;
1316       PosOld.push_back(Pos);
1317       if (&*CurrentTopFastSched == MI) {
1318         PosNew.push_back(Pos);
1319         CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
1320                                           DAG->getCurrentBottom());
1321       } else {
1322         // Update the instruction stream.
1323         DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
1324 
1325         // Update LiveIntervals.
1326         // Note: Moving all instructions and calling handleMove every time
1327         // is the most cpu intensive operation of the scheduler.
1328         // It would gain a lot if there was a way to recompute the
1329         // LiveIntervals for the entire scheduling region.
1330         DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
1331         PosNew.push_back(CurrentTopFastSched);
1332       }
1333     }
1334   }
1335 
1336   // Now we have Block of SUs == Block of MI.
1337   // We do the final schedule for the instructions inside the block.
1338   // The property that all the SUs of the Block are grouped together as MI
1339   // is used for correct reg usage tracking.
1340   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1341     SIScheduleBlock *Block = CurrentBlocks[i];
1342     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1343     Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
1344   }
1345 
1346   LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
1347   // Restore old ordering (which prevents a LIS->handleMove bug).
1348   for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
1349     MachineBasicBlock::iterator POld = PosOld[i-1];
1350     MachineBasicBlock::iterator PNew = PosNew[i-1];
1351     if (PNew != POld) {
1352       // Update the instruction stream.
1353       DAG->getBB()->splice(POld, DAG->getBB(), PNew);
1354 
1355       // Update LiveIntervals.
1356       DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
1357     }
1358   }
1359 
1360   LLVM_DEBUG({
1361     for (SIScheduleBlock *Block : CurrentBlocks)
1362       Block->printDebug(true);
1363   });
1364 }
1365 
1366 void SIScheduleBlockCreator::fillStats() {
1367   unsigned DAGSize = CurrentBlocks.size();
1368 
1369   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1370     int BlockIndice = TopDownIndex2Block[i];
1371     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1372     if (Block->getPreds().empty())
1373       Block->Depth = 0;
1374     else {
1375       unsigned Depth = 0;
1376       for (SIScheduleBlock *Pred : Block->getPreds()) {
1377         if (Depth < Pred->Depth + Pred->getCost())
1378           Depth = Pred->Depth + Pred->getCost();
1379       }
1380       Block->Depth = Depth;
1381     }
1382   }
1383 
1384   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1385     int BlockIndice = BottomUpIndex2Block[i];
1386     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1387     if (Block->getSuccs().empty())
1388       Block->Height = 0;
1389     else {
1390       unsigned Height = 0;
1391       for (const auto &Succ : Block->getSuccs())
1392         Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
1393       Block->Height = Height;
1394     }
1395   }
1396 }
1397 
1398 // SIScheduleBlockScheduler //
1399 
1400 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
1401                                                    SISchedulerBlockSchedulerVariant Variant,
1402                                                    SIScheduleBlocks  BlocksStruct) :
1403   DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
1404   LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
1405   SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
1406 
1407   // Fill the usage of every output
1408   // Warning: while by construction we always have a link between two blocks
1409   // when one needs a result from the other, the number of users of an output
1410   // is not the sum of child blocks having as input the same virtual register.
1411   // Here is an example. A produces x and y. B eats x and produces x'.
1412   // C eats x' and y. The register coalescer may have attributed the same
1413   // virtual register to x and x'.
1414   // To count accurately, we do a topological sort. In case the register is
1415   // found for several parents, we increment the usage of the one with the
1416   // highest topological index.
1417   LiveOutRegsNumUsages.resize(Blocks.size());
1418   for (SIScheduleBlock *Block : Blocks) {
1419     for (unsigned Reg : Block->getInRegs()) {
1420       bool Found = false;
1421       int topoInd = -1;
1422       for (SIScheduleBlock* Pred: Block->getPreds()) {
1423         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1424         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1425 
1426         if (RegPos != PredOutRegs.end()) {
1427           Found = true;
1428           if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
1429             topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
1430           }
1431         }
1432       }
1433 
1434       if (!Found)
1435         continue;
1436 
1437       int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
1438       ++LiveOutRegsNumUsages[PredID][Reg];
1439     }
1440   }
1441 
1442   LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
1443   BlockNumPredsLeft.resize(Blocks.size());
1444   BlockNumSuccsLeft.resize(Blocks.size());
1445 
1446   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1447     SIScheduleBlock *Block = Blocks[i];
1448     BlockNumPredsLeft[i] = Block->getPreds().size();
1449     BlockNumSuccsLeft[i] = Block->getSuccs().size();
1450   }
1451 
1452 #ifndef NDEBUG
1453   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1454     SIScheduleBlock *Block = Blocks[i];
1455     assert(Block->getID() == i);
1456   }
1457 #endif
1458 
1459   std::set<unsigned> InRegs = DAG->getInRegs();
1460   addLiveRegs(InRegs);
1461 
1462   // Increase LiveOutRegsNumUsages for blocks
1463   // producing registers consumed in another
1464   // scheduling region.
1465   for (unsigned Reg : DAG->getOutRegs()) {
1466     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1467       // Do reverse traversal
1468       int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
1469       SIScheduleBlock *Block = Blocks[ID];
1470       const std::set<unsigned> &OutRegs = Block->getOutRegs();
1471 
1472       if (OutRegs.find(Reg) == OutRegs.end())
1473         continue;
1474 
1475       ++LiveOutRegsNumUsages[ID][Reg];
1476       break;
1477     }
1478   }
1479 
1480   // Fill LiveRegsConsumers for regs that were already
1481   // defined before scheduling.
1482   for (SIScheduleBlock *Block : Blocks) {
1483     for (unsigned Reg : Block->getInRegs()) {
1484       bool Found = false;
1485       for (SIScheduleBlock* Pred: Block->getPreds()) {
1486         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1487         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1488 
1489         if (RegPos != PredOutRegs.end()) {
1490           Found = true;
1491           break;
1492         }
1493       }
1494 
1495       if (!Found)
1496         ++LiveRegsConsumers[Reg];
1497     }
1498   }
1499 
1500   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1501     SIScheduleBlock *Block = Blocks[i];
1502     if (BlockNumPredsLeft[i] == 0) {
1503       ReadyBlocks.push_back(Block);
1504     }
1505   }
1506 
1507   while (SIScheduleBlock *Block = pickBlock()) {
1508     BlocksScheduled.push_back(Block);
1509     blockScheduled(Block);
1510   }
1511 
1512   LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
1513                                             : BlocksScheduled) {
1514     dbgs() << ' ' << Block->getID();
1515   } dbgs() << '\n';);
1516 }
1517 
1518 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
1519                                                    SIBlockSchedCandidate &TryCand) {
1520   if (!Cand.isValid()) {
1521     TryCand.Reason = NodeOrder;
1522     return true;
1523   }
1524 
1525   // Try to hide high latencies.
1526   if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
1527                  Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
1528     return true;
1529   // Schedule high latencies early so you can hide them better.
1530   if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
1531                           TryCand, Cand, Latency))
1532     return true;
1533   if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
1534                                                    TryCand, Cand, Depth))
1535     return true;
1536   if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
1537                           Cand.NumHighLatencySuccessors,
1538                           TryCand, Cand, Successor))
1539     return true;
1540   return false;
1541 }
1542 
1543 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
1544                                                     SIBlockSchedCandidate &TryCand) {
1545   if (!Cand.isValid()) {
1546     TryCand.Reason = NodeOrder;
1547     return true;
1548   }
1549 
1550   if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
1551                        TryCand, Cand, RegUsage))
1552     return true;
1553   if (SISched::tryGreater(TryCand.NumSuccessors > 0,
1554                           Cand.NumSuccessors > 0,
1555                           TryCand, Cand, Successor))
1556     return true;
1557   if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
1558     return true;
1559   if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
1560                        TryCand, Cand, RegUsage))
1561     return true;
1562   return false;
1563 }
1564 
1565 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
1566   SIBlockSchedCandidate Cand;
1567   std::vector<SIScheduleBlock*>::iterator Best;
1568   SIScheduleBlock *Block;
1569   if (ReadyBlocks.empty())
1570     return nullptr;
1571 
1572   DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
1573                         VregCurrentUsage, SregCurrentUsage);
1574   if (VregCurrentUsage > maxVregUsage)
1575     maxVregUsage = VregCurrentUsage;
1576   if (SregCurrentUsage > maxSregUsage)
1577     maxSregUsage = SregCurrentUsage;
1578   LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
1579              for (SIScheduleBlock *Block
1580                   : ReadyBlocks) dbgs()
1581              << Block->getID() << ' ';
1582              dbgs() << "\nCurrent Live:\n";
1583              for (unsigned Reg
1584                   : LiveRegs) dbgs()
1585              << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
1586              dbgs() << '\n';
1587              dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
1588              dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
1589 
1590   Cand.Block = nullptr;
1591   for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
1592        E = ReadyBlocks.end(); I != E; ++I) {
1593     SIBlockSchedCandidate TryCand;
1594     TryCand.Block = *I;
1595     TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
1596     TryCand.VGPRUsageDiff =
1597       checkRegUsageImpact(TryCand.Block->getInRegs(),
1598           TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
1599     TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
1600     TryCand.NumHighLatencySuccessors =
1601       TryCand.Block->getNumHighLatencySuccessors();
1602     TryCand.LastPosHighLatParentScheduled =
1603       (unsigned int) std::max<int> (0,
1604          LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
1605            LastPosWaitedHighLatency);
1606     TryCand.Height = TryCand.Block->Height;
1607     // Try not to increase VGPR usage too much, else we may spill.
1608     if (VregCurrentUsage > 120 ||
1609         Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
1610       if (!tryCandidateRegUsage(Cand, TryCand) &&
1611           Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
1612         tryCandidateLatency(Cand, TryCand);
1613     } else {
1614       if (!tryCandidateLatency(Cand, TryCand))
1615         tryCandidateRegUsage(Cand, TryCand);
1616     }
1617     if (TryCand.Reason != NoCand) {
1618       Cand.setBest(TryCand);
1619       Best = I;
1620       LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
1621                         << getReasonStr(Cand.Reason) << '\n');
1622     }
1623   }
1624 
1625   LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
1626              dbgs() << "Is a block with high latency instruction: "
1627                     << (Cand.IsHighLatency ? "yes\n" : "no\n");
1628              dbgs() << "Position of last high latency dependency: "
1629                     << Cand.LastPosHighLatParentScheduled << '\n';
1630              dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
1631              dbgs() << '\n';);
1632 
1633   Block = Cand.Block;
1634   ReadyBlocks.erase(Best);
1635   return Block;
1636 }
1637 
1638 // Tracking of currently alive registers to determine VGPR Usage.
1639 
1640 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
1641   for (Register Reg : Regs) {
1642     // For now only track virtual registers.
1643     if (!Reg.isVirtual())
1644       continue;
1645     // If not already in the live set, then add it.
1646     (void) LiveRegs.insert(Reg);
1647   }
1648 }
1649 
1650 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
1651                                        std::set<unsigned> &Regs) {
1652   for (unsigned Reg : Regs) {
1653     // For now only track virtual registers.
1654     std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
1655     assert (Pos != LiveRegs.end() && // Reg must be live.
1656                LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
1657                LiveRegsConsumers[Reg] >= 1);
1658     --LiveRegsConsumers[Reg];
1659     if (LiveRegsConsumers[Reg] == 0)
1660       LiveRegs.erase(Pos);
1661   }
1662 }
1663 
1664 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
1665   for (const auto &Block : Parent->getSuccs()) {
1666     if (--BlockNumPredsLeft[Block.first->getID()] == 0)
1667       ReadyBlocks.push_back(Block.first);
1668 
1669     if (Parent->isHighLatencyBlock() &&
1670         Block.second == SIScheduleBlockLinkKind::Data)
1671       LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
1672   }
1673 }
1674 
1675 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
1676   decreaseLiveRegs(Block, Block->getInRegs());
1677   addLiveRegs(Block->getOutRegs());
1678   releaseBlockSuccs(Block);
1679   for (const auto &RegP : LiveOutRegsNumUsages[Block->getID()]) {
1680     // We produce this register, thus it must not be previously alive.
1681     assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
1682            LiveRegsConsumers[RegP.first] == 0);
1683     LiveRegsConsumers[RegP.first] += RegP.second;
1684   }
1685   if (LastPosHighLatencyParentScheduled[Block->getID()] >
1686         (unsigned)LastPosWaitedHighLatency)
1687     LastPosWaitedHighLatency =
1688       LastPosHighLatencyParentScheduled[Block->getID()];
1689   ++NumBlockScheduled;
1690 }
1691 
1692 std::vector<int>
1693 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
1694                                      std::set<unsigned> &OutRegs) {
1695   std::vector<int> DiffSetPressure;
1696   DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
1697 
1698   for (Register Reg : InRegs) {
1699     // For now only track virtual registers.
1700     if (!Reg.isVirtual())
1701       continue;
1702     if (LiveRegsConsumers[Reg] > 1)
1703       continue;
1704     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1705     for (; PSetI.isValid(); ++PSetI) {
1706       DiffSetPressure[*PSetI] -= PSetI.getWeight();
1707     }
1708   }
1709 
1710   for (Register Reg : OutRegs) {
1711     // For now only track virtual registers.
1712     if (!Reg.isVirtual())
1713       continue;
1714     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1715     for (; PSetI.isValid(); ++PSetI) {
1716       DiffSetPressure[*PSetI] += PSetI.getWeight();
1717     }
1718   }
1719 
1720   return DiffSetPressure;
1721 }
1722 
1723 // SIScheduler //
1724 
1725 struct SIScheduleBlockResult
1726 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
1727                              SISchedulerBlockSchedulerVariant ScheduleVariant) {
1728   SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
1729   SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
1730   std::vector<SIScheduleBlock*> ScheduledBlocks;
1731   struct SIScheduleBlockResult Res;
1732 
1733   ScheduledBlocks = Scheduler.getBlocks();
1734 
1735   for (SIScheduleBlock *Block : ScheduledBlocks) {
1736     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1737 
1738     for (SUnit* SU : SUs)
1739       Res.SUs.push_back(SU->NodeNum);
1740   }
1741 
1742   Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
1743   Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
1744   return Res;
1745 }
1746 
1747 // SIScheduleDAGMI //
1748 
1749 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
1750   ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
1751   SITII = static_cast<const SIInstrInfo*>(TII);
1752   SITRI = static_cast<const SIRegisterInfo*>(TRI);
1753 }
1754 
1755 SIScheduleDAGMI::~SIScheduleDAGMI() = default;
1756 
1757 // Code adapted from scheduleDAG.cpp
1758 // Does a topological sort over the SUs.
1759 // Both TopDown and BottomUp
1760 void SIScheduleDAGMI::topologicalSort() {
1761   Topo.InitDAGTopologicalSorting();
1762 
1763   TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
1764   BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
1765 }
1766 
1767 // Move low latencies further from their user without
1768 // increasing SGPR usage (in general)
1769 // This is to be replaced by a better pass that would
1770 // take into account SGPR usage (based on VGPR Usage
1771 // and the corresponding wavefront count), that would
1772 // try to merge groups of loads if it make sense, etc
1773 void SIScheduleDAGMI::moveLowLatencies() {
1774    unsigned DAGSize = SUnits.size();
1775    int LastLowLatencyUser = -1;
1776    int LastLowLatencyPos = -1;
1777 
1778    for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
1779     SUnit *SU = &SUnits[ScheduledSUnits[i]];
1780     bool IsLowLatencyUser = false;
1781     unsigned MinPos = 0;
1782 
1783     for (SDep& PredDep : SU->Preds) {
1784       SUnit *Pred = PredDep.getSUnit();
1785       if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
1786         IsLowLatencyUser = true;
1787       }
1788       if (Pred->NodeNum >= DAGSize)
1789         continue;
1790       unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
1791       if (PredPos >= MinPos)
1792         MinPos = PredPos + 1;
1793     }
1794 
1795     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1796       unsigned BestPos = LastLowLatencyUser + 1;
1797       if ((int)BestPos <= LastLowLatencyPos)
1798         BestPos = LastLowLatencyPos + 1;
1799       if (BestPos < MinPos)
1800         BestPos = MinPos;
1801       if (BestPos < i) {
1802         for (unsigned u = i; u > BestPos; --u) {
1803           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1804           ScheduledSUnits[u] = ScheduledSUnits[u-1];
1805         }
1806         ScheduledSUnits[BestPos] = SU->NodeNum;
1807         ScheduledSUnitsInv[SU->NodeNum] = BestPos;
1808       }
1809       LastLowLatencyPos = BestPos;
1810       if (IsLowLatencyUser)
1811         LastLowLatencyUser = BestPos;
1812     } else if (IsLowLatencyUser) {
1813       LastLowLatencyUser = i;
1814     // Moves COPY instructions on which depends
1815     // the low latency instructions too.
1816     } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
1817       bool CopyForLowLat = false;
1818       for (SDep& SuccDep : SU->Succs) {
1819         SUnit *Succ = SuccDep.getSUnit();
1820         if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1821           continue;
1822         if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
1823           CopyForLowLat = true;
1824         }
1825       }
1826       if (!CopyForLowLat)
1827         continue;
1828       if (MinPos < i) {
1829         for (unsigned u = i; u > MinPos; --u) {
1830           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1831           ScheduledSUnits[u] = ScheduledSUnits[u-1];
1832         }
1833         ScheduledSUnits[MinPos] = SU->NodeNum;
1834         ScheduledSUnitsInv[SU->NodeNum] = MinPos;
1835       }
1836     }
1837   }
1838 }
1839 
1840 void SIScheduleDAGMI::restoreSULinksLeft() {
1841   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1842     SUnits[i].isScheduled = false;
1843     SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
1844     SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
1845     SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
1846     SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
1847   }
1848 }
1849 
1850 // Return the Vgpr and Sgpr usage corresponding to some virtual registers.
1851 template<typename _Iterator> void
1852 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
1853                                   unsigned &VgprUsage, unsigned &SgprUsage) {
1854   VgprUsage = 0;
1855   SgprUsage = 0;
1856   for (_Iterator RegI = First; RegI != End; ++RegI) {
1857     Register Reg = *RegI;
1858     // For now only track virtual registers
1859     if (!Reg.isVirtual())
1860       continue;
1861     PSetIterator PSetI = MRI.getPressureSets(Reg);
1862     for (; PSetI.isValid(); ++PSetI) {
1863       if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
1864         VgprUsage += PSetI.getWeight();
1865       else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
1866         SgprUsage += PSetI.getWeight();
1867     }
1868   }
1869 }
1870 
1871 void SIScheduleDAGMI::schedule()
1872 {
1873   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1874   SIScheduleBlockResult Best, Temp;
1875   LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
1876 
1877   buildDAGWithRegPressure();
1878   postProcessDAG();
1879 
1880   LLVM_DEBUG(dump());
1881   if (PrintDAGs)
1882     dump();
1883   if (ViewMISchedDAGs)
1884     viewGraph();
1885 
1886   topologicalSort();
1887   findRootsAndBiasEdges(TopRoots, BotRoots);
1888   // We reuse several ScheduleDAGMI and ScheduleDAGMILive
1889   // functions, but to make them happy we must initialize
1890   // the default Scheduler implementation (even if we do not
1891   // run it)
1892   SchedImpl->initialize(this);
1893   initQueues(TopRoots, BotRoots);
1894 
1895   // Fill some stats to help scheduling.
1896 
1897   SUnitsLinksBackup = SUnits;
1898   IsLowLatencySU.clear();
1899   LowLatencyOffset.clear();
1900   IsHighLatencySU.clear();
1901 
1902   IsLowLatencySU.resize(SUnits.size(), 0);
1903   LowLatencyOffset.resize(SUnits.size(), 0);
1904   IsHighLatencySU.resize(SUnits.size(), 0);
1905 
1906   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1907     SUnit *SU = &SUnits[i];
1908     const MachineOperand *BaseLatOp;
1909     int64_t OffLatReg;
1910     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1911       IsLowLatencySU[i] = 1;
1912       bool OffsetIsScalable;
1913       if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
1914                                          OffsetIsScalable, TRI))
1915         LowLatencyOffset[i] = OffLatReg;
1916     } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
1917       IsHighLatencySU[i] = 1;
1918   }
1919 
1920   SIScheduler Scheduler(this);
1921   Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
1922                                    SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
1923 
1924   // if VGPR usage is extremely high, try other good performing variants
1925   // which could lead to lower VGPR usage
1926   if (Best.MaxVGPRUsage > 180) {
1927     static const std::pair<SISchedulerBlockCreatorVariant,
1928                            SISchedulerBlockSchedulerVariant>
1929         Variants[] = {
1930       { LatenciesAlone, BlockRegUsageLatency },
1931 //      { LatenciesAlone, BlockRegUsage },
1932       { LatenciesGrouped, BlockLatencyRegUsage },
1933 //      { LatenciesGrouped, BlockRegUsageLatency },
1934 //      { LatenciesGrouped, BlockRegUsage },
1935       { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1936 //      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1937 //      { LatenciesAlonePlusConsecutive, BlockRegUsage }
1938     };
1939     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1940       Temp = Scheduler.scheduleVariant(v.first, v.second);
1941       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1942         Best = Temp;
1943     }
1944   }
1945   // if VGPR usage is still extremely high, we may spill. Try other variants
1946   // which are less performing, but that could lead to lower VGPR usage.
1947   if (Best.MaxVGPRUsage > 200) {
1948     static const std::pair<SISchedulerBlockCreatorVariant,
1949                            SISchedulerBlockSchedulerVariant>
1950         Variants[] = {
1951 //      { LatenciesAlone, BlockRegUsageLatency },
1952       { LatenciesAlone, BlockRegUsage },
1953 //      { LatenciesGrouped, BlockLatencyRegUsage },
1954       { LatenciesGrouped, BlockRegUsageLatency },
1955       { LatenciesGrouped, BlockRegUsage },
1956 //      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1957       { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1958       { LatenciesAlonePlusConsecutive, BlockRegUsage }
1959     };
1960     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1961       Temp = Scheduler.scheduleVariant(v.first, v.second);
1962       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1963         Best = Temp;
1964     }
1965   }
1966 
1967   ScheduledSUnits = Best.SUs;
1968   ScheduledSUnitsInv.resize(SUnits.size());
1969 
1970   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1971     ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
1972   }
1973 
1974   moveLowLatencies();
1975 
1976   // Tell the outside world about the result of the scheduling.
1977 
1978   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1979   TopRPTracker.setPos(CurrentTop);
1980 
1981   for (unsigned I : ScheduledSUnits) {
1982     SUnit *SU = &SUnits[I];
1983 
1984     scheduleMI(SU, true);
1985 
1986     LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
1987                       << *SU->getInstr());
1988   }
1989 
1990   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1991 
1992   placeDebugValues();
1993 
1994   LLVM_DEBUG({
1995     dbgs() << "*** Final schedule for "
1996            << printMBBReference(*begin()->getParent()) << " ***\n";
1997     dumpSchedule();
1998     dbgs() << '\n';
1999   });
2000 }
2001