1//===-- SIInstrFormats.td - SI Instruction Encodings ----------------------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// SI Instruction format definitions. 10// 11//===----------------------------------------------------------------------===// 12 13class InstSI <dag outs, dag ins, string asm = "", 14 list<dag> pattern = []> : 15 AMDGPUInst<outs, ins, asm, pattern>, GCNPredicateControl { 16 // Low bits - basic encoding information. 17 field bit SALU = 0; 18 field bit VALU = 0; 19 20 // SALU instruction formats. 21 field bit SOP1 = 0; 22 field bit SOP2 = 0; 23 field bit SOPC = 0; 24 field bit SOPK = 0; 25 field bit SOPP = 0; 26 27 // VALU instruction formats. 28 field bit VOP1 = 0; 29 field bit VOP2 = 0; 30 field bit VOPC = 0; 31 field bit VOP3 = 0; 32 field bit VOP3P = 0; 33 field bit VINTRP = 0; 34 field bit SDWA = 0; 35 field bit DPP = 0; 36 field bit TRANS = 0; 37 38 // Memory instruction formats. 39 field bit MUBUF = 0; 40 field bit MTBUF = 0; 41 field bit SMRD = 0; 42 field bit MIMG = 0; 43 field bit EXP = 0; 44 field bit FLAT = 0; 45 field bit DS = 0; 46 47 // Pseudo instruction formats. 48 field bit VGPRSpill = 0; 49 field bit SGPRSpill = 0; 50 51 // LDSDIR instruction format. 52 field bit LDSDIR = 0; 53 54 // VINTERP instruction format. 55 field bit VINTERP = 0; 56 57 // High bits - other information. 58 field bit VM_CNT = 0; 59 field bit EXP_CNT = 0; 60 field bit LGKM_CNT = 0; 61 62 // Whether WQM _must_ be enabled for this instruction. 63 field bit WQM = 0; 64 65 // Whether WQM _must_ be disabled for this instruction. 66 field bit DisableWQM = 0; 67 68 field bit Gather4 = 0; 69 70 // Most sopk treat the immediate as a signed 16-bit, however some 71 // use it as unsigned. 72 field bit SOPKZext = 0; 73 74 // This is an s_store_dword* instruction that requires a cache flush 75 // on wave termination. It is necessary to distinguish from mayStore 76 // SMEM instructions like the cache flush ones. 77 field bit ScalarStore = 0; 78 79 // Whether the operands can be ignored when computing the 80 // instruction size. 81 field bit FixedSize = 0; 82 83 // This bit tells the assembler to use the 32-bit encoding in case it 84 // is unable to infer the encoding from the operands. 85 field bit VOPAsmPrefer32Bit = 0; 86 87 // This bit indicates that this is a VOP3 opcode which supports op_sel 88 // modifier. 89 field bit VOP3_OPSEL = 0; 90 91 // Is it possible for this instruction to be atomic? 92 field bit maybeAtomic = 0; 93 94 // This bit indicates that this is a VI instruction which is renamed 95 // in GFX9. Required for correct mapping from pseudo to MC. 96 field bit renamedInGFX9 = 0; 97 98 // This bit indicates that this has a floating point result type, so 99 // the clamp modifier has floating point semantics. 100 field bit FPClamp = 0; 101 102 // This bit indicates that instruction may support integer clamping 103 // which depends on GPU features. 104 field bit IntClamp = 0; 105 106 // This field indicates that the clamp applies to the low component 107 // of a packed output register. 108 field bit ClampLo = 0; 109 110 // This field indicates that the clamp applies to the high component 111 // of a packed output register. 112 field bit ClampHi = 0; 113 114 // This bit indicates that this is a packed VOP3P instruction 115 field bit IsPacked = 0; 116 117 // This bit indicates that this is a D16 buffer instruction. 118 field bit D16Buf = 0; 119 120 // This field indicates that FLAT instruction accesses FLAT_GLBL segment. 121 // Must be 0 for non-FLAT instructions. 122 field bit FlatGlobal = 0; 123 124 // Reads the mode register, usually for FP environment. 125 field bit ReadsModeReg = 0; 126 127 // This bit indicates that this uses the floating point double precision 128 // rounding mode flags 129 field bit FPDPRounding = 0; 130 131 // Instruction is FP atomic. 132 field bit FPAtomic = 0; 133 134 // This bit indicates that this is one of MFMA instructions. 135 field bit IsMAI = 0; 136 137 // This bit indicates that this is one of DOT instructions. 138 field bit IsDOT = 0; 139 140 // This field indicates that FLAT instruction accesses FLAT_SCRATCH segment. 141 // Must be 0 for non-FLAT instructions. 142 field bit FlatScratch = 0; 143 144 // Atomic without a return. 145 field bit IsAtomicNoRet = 0; 146 147 // Atomic with return. 148 field bit IsAtomicRet = 0; 149 150 // This bit indicates that this is one of WMMA instructions. 151 field bit IsWMMA = 0; 152 153 // This bit indicates that tied source will not be read. 154 field bit TiedSourceNotRead = 0; 155 156 // These need to be kept in sync with the enum in SIInstrFlags. 157 let TSFlags{0} = SALU; 158 let TSFlags{1} = VALU; 159 160 let TSFlags{2} = SOP1; 161 let TSFlags{3} = SOP2; 162 let TSFlags{4} = SOPC; 163 let TSFlags{5} = SOPK; 164 let TSFlags{6} = SOPP; 165 166 let TSFlags{7} = VOP1; 167 let TSFlags{8} = VOP2; 168 let TSFlags{9} = VOPC; 169 let TSFlags{10} = VOP3; 170 let TSFlags{12} = VOP3P; 171 172 let TSFlags{13} = VINTRP; 173 let TSFlags{14} = SDWA; 174 let TSFlags{15} = DPP; 175 let TSFlags{16} = TRANS; 176 177 let TSFlags{17} = MUBUF; 178 let TSFlags{18} = MTBUF; 179 let TSFlags{19} = SMRD; 180 let TSFlags{20} = MIMG; 181 let TSFlags{21} = EXP; 182 let TSFlags{22} = FLAT; 183 let TSFlags{23} = DS; 184 185 let TSFlags{24} = VGPRSpill; 186 let TSFlags{25} = SGPRSpill; 187 188 let TSFlags{26} = LDSDIR; 189 let TSFlags{27} = VINTERP; 190 191 let TSFlags{32} = VM_CNT; 192 let TSFlags{33} = EXP_CNT; 193 let TSFlags{34} = LGKM_CNT; 194 195 let TSFlags{35} = WQM; 196 let TSFlags{36} = DisableWQM; 197 let TSFlags{37} = Gather4; 198 199 let TSFlags{38} = SOPKZext; 200 let TSFlags{39} = ScalarStore; 201 let TSFlags{40} = FixedSize; 202 let TSFlags{41} = VOPAsmPrefer32Bit; 203 let TSFlags{42} = VOP3_OPSEL; 204 205 let TSFlags{43} = maybeAtomic; 206 let TSFlags{44} = renamedInGFX9; 207 208 let TSFlags{45} = FPClamp; 209 let TSFlags{46} = IntClamp; 210 let TSFlags{47} = ClampLo; 211 let TSFlags{48} = ClampHi; 212 213 let TSFlags{49} = IsPacked; 214 215 let TSFlags{50} = D16Buf; 216 217 let TSFlags{51} = FlatGlobal; 218 219 let TSFlags{52} = FPDPRounding; 220 221 let TSFlags{53} = FPAtomic; 222 223 let TSFlags{54} = IsMAI; 224 225 let TSFlags{55} = IsDOT; 226 227 let TSFlags{56} = FlatScratch; 228 229 let TSFlags{57} = IsAtomicNoRet; 230 231 let TSFlags{58} = IsAtomicRet; 232 233 let TSFlags{59} = IsWMMA; 234 235 let TSFlags{60} = TiedSourceNotRead; 236 237 let SchedRW = [Write32Bit]; 238 239 let AsmVariantName = AMDGPUAsmVariants.Default; 240 241 // Avoid changing source registers in a way that violates constant bus read limitations. 242 let hasExtraSrcRegAllocReq = !or(VOP1, VOP2, VOP3, VOPC, SDWA, VALU); 243} 244 245class PseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = ""> 246 : InstSI<outs, ins, asm, pattern> { 247 let isPseudo = 1; 248 let isCodeGenOnly = 1; 249} 250 251class SPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = ""> 252 : PseudoInstSI<outs, ins, pattern, asm> { 253 let SALU = 1; 254} 255 256class VPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = ""> 257 : PseudoInstSI<outs, ins, pattern, asm> { 258 let VALU = 1; 259 let Uses = [EXEC]; 260} 261 262class CFPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], 263 bit UseExec = 0, bit DefExec = 0> : 264 SPseudoInstSI<outs, ins, pattern> { 265 266 let Uses = !if(UseExec, [EXEC], []); 267 let Defs = !if(DefExec, [EXEC, SCC], [SCC]); 268 let mayLoad = 0; 269 let mayStore = 0; 270 let hasSideEffects = 0; 271} 272 273class Enc32 { 274 field bits<32> Inst; 275 int Size = 4; 276} 277 278class Enc64 { 279 field bits<64> Inst; 280 int Size = 8; 281} 282 283class Enc96 { 284 field bits<96> Inst; 285 int Size = 12; 286} 287 288def CPolBit { 289 int GLC = 0; 290 int SLC = 1; 291 int DLC = 2; 292 int SCC = 4; 293} 294 295class VOPDstOperand <RegisterClass rc> : RegisterOperand <rc, "printVOPDst">; 296 297class VINTRPe <bits<2> op> : Enc32 { 298 bits<8> vdst; 299 bits<8> vsrc; 300 bits<2> attrchan; 301 bits<6> attr; 302 303 let Inst{7-0} = vsrc; 304 let Inst{9-8} = attrchan; 305 let Inst{15-10} = attr; 306 let Inst{17-16} = op; 307 let Inst{25-18} = vdst; 308 let Inst{31-26} = 0x32; // encoding 309} 310 311class MIMGe_gfxpre11 : Enc64 { 312 bits<10> vdata; 313 bits<4> dmask; 314 bits<1> unorm; 315 bits<5> cpol; 316 bits<1> r128; 317 bits<1> tfe; 318 bits<1> lwe; 319 bit d16; 320 bits<7> srsrc; 321 bits<7> ssamp; 322 323 let Inst{11-8} = dmask; 324 let Inst{12} = unorm; 325 let Inst{13} = cpol{CPolBit.GLC}; 326 let Inst{15} = r128; 327 let Inst{17} = lwe; 328 let Inst{25} = cpol{CPolBit.SLC}; 329 let Inst{31-26} = 0x3c; 330 let Inst{47-40} = vdata{7-0}; 331 let Inst{52-48} = srsrc{6-2}; 332 let Inst{57-53} = ssamp{6-2}; 333 let Inst{63} = d16; 334} 335 336class MIMGe_gfx6789 <bits<8> op> : MIMGe_gfxpre11 { 337 bits<8> vaddr; 338 bits<1> da; 339 340 let Inst{0} = op{7}; 341 let Inst{7} = cpol{CPolBit.SCC}; 342 let Inst{14} = da; 343 let Inst{16} = tfe; 344 let Inst{24-18} = op{6-0}; 345 let Inst{39-32} = vaddr; 346} 347 348class MIMGe_gfx90a <bits<8> op> : MIMGe_gfxpre11 { 349 bits<8> vaddr; 350 bits<1> da; 351 352 let Inst{0} = op{7}; 353 let Inst{7} = cpol{CPolBit.SCC}; 354 let Inst{14} = da; 355 let Inst{16} = vdata{9}; // ACC bit 356 let Inst{24-18} = op{6-0}; 357 let Inst{39-32} = vaddr; 358} 359 360class MIMGe_gfx10 <bits<8> op> : MIMGe_gfxpre11 { 361 bits<8> vaddr0; 362 bits<3> dim; 363 bits<2> nsa; 364 bits<1> a16; 365 366 let Inst{0} = op{7}; 367 let Inst{2-1} = nsa; 368 let Inst{5-3} = dim; 369 let Inst{7} = cpol{CPolBit.DLC}; 370 let Inst{16} = tfe; 371 let Inst{24-18} = op{6-0}; 372 let Inst{39-32} = vaddr0; 373 let Inst{62} = a16; 374} 375 376class MIMGe_gfx11 <bits<8> op> : Enc64 { 377 bits<8> vdata; 378 bits<4> dmask; 379 bits<1> unorm; 380 bits<5> cpol; 381 bits<1> r128; 382 bits<1> tfe; 383 bits<1> lwe; 384 bits<7> srsrc; 385 bits<7> ssamp; 386 bit d16; 387 bits<1> a16; 388 bits<8> vaddr0; 389 bits<3> dim; 390 bits<1> nsa; 391 392 let Inst{0} = nsa; 393 let Inst{4-2} = dim; 394 let Inst{7} = unorm; 395 let Inst{11-8} = dmask; 396 let Inst{12} = cpol{CPolBit.SLC}; 397 let Inst{13} = cpol{CPolBit.DLC}; 398 let Inst{14} = cpol{CPolBit.GLC}; 399 let Inst{15} = r128; 400 let Inst{16} = a16; 401 let Inst{17} = d16; 402 let Inst{25-18} = op; 403 let Inst{31-26} = 0x3c; 404 let Inst{39-32} = vaddr0; 405 let Inst{47-40} = vdata; 406 let Inst{52-48} = srsrc{6-2}; 407 let Inst{53} = tfe; 408 let Inst{54} = lwe; 409 let Inst{62-58} = ssamp{6-2}; 410} 411 412class EXPe : Enc64 { 413 bits<4> en; 414 bits<6> tgt; 415 bits<1> done; 416 bits<8> src0; 417 bits<8> src1; 418 bits<8> src2; 419 bits<8> src3; 420 421 let Inst{3-0} = en; 422 let Inst{9-4} = tgt; 423 let Inst{11} = done; 424 let Inst{31-26} = 0x3e; 425 let Inst{39-32} = src0; 426 let Inst{47-40} = src1; 427 let Inst{55-48} = src2; 428 let Inst{63-56} = src3; 429} 430 431// Pre-GFX11 encoding has compr and vm bits. 432class EXPe_ComprVM : EXPe { 433 bits<1> compr; 434 bits<1> vm; 435 436 let Inst{10} = compr; 437 let Inst{12} = vm; 438} 439 440// GFX11+ encoding has row bit. 441class EXPe_Row : EXPe { 442 bits<1> row; 443 444 let Inst{13} = row; 445} 446 447let Uses = [EXEC] in { 448 449class VINTRPCommon <dag outs, dag ins, string asm, list<dag> pattern> : 450 InstSI <outs, ins, asm, pattern> { 451 let VINTRP = 1; 452 // VINTRP instructions read parameter values from LDS, but these parameter 453 // values are stored outside of the LDS memory that is allocated to the 454 // shader for general purpose use. 455 // 456 // While it may be possible for ds_read/ds_write instructions to access 457 // the parameter values in LDS, this would essentially be an out-of-bounds 458 // memory access which we consider to be undefined behavior. 459 // 460 // So even though these instructions read memory, this memory is outside the 461 // addressable memory space for the shader, and we consider these instructions 462 // to be readnone. 463 let mayLoad = 0; 464 let mayStore = 0; 465 let hasSideEffects = 0; 466 let VALU = 1; 467} 468 469} // End Uses = [EXEC] 470