xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInsertWaitcnts.cpp (revision ae41709ab46305df80f7f35bb478a3c8ebf22ebb)
1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "AMDGPUSubtarget.h"
28 #include "SIDefines.h"
29 #include "SIInstrInfo.h"
30 #include "SIMachineFunctionInfo.h"
31 #include "SIRegisterInfo.h"
32 #include "Utils/AMDGPUBaseInfo.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PostOrderIterator.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePostDominators.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/DebugCounter.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <cstring>
59 #include <memory>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "si-insert-waitcnts"
65 
66 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
67               "Force emit s_waitcnt expcnt(0) instrs");
68 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
69               "Force emit s_waitcnt lgkmcnt(0) instrs");
70 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
71               "Force emit s_waitcnt vmcnt(0) instrs");
72 
73 static cl::opt<bool> ForceEmitZeroFlag(
74   "amdgpu-waitcnt-forcezero",
75   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
76   cl::init(false), cl::Hidden);
77 
78 namespace {
79 
80 template <typename EnumT>
81 class enum_iterator
82     : public iterator_facade_base<enum_iterator<EnumT>,
83                                   std::forward_iterator_tag, const EnumT> {
84   EnumT Value;
85 public:
86   enum_iterator() = default;
87   enum_iterator(EnumT Value) : Value(Value) {}
88 
89   enum_iterator &operator++() {
90     Value = static_cast<EnumT>(Value + 1);
91     return *this;
92   }
93 
94   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
95 
96   EnumT operator*() const { return Value; }
97 };
98 
99 // Class of object that encapsulates latest instruction counter score
100 // associated with the operand.  Used for determining whether
101 // s_waitcnt instruction needs to be emited.
102 
103 #define CNT_MASK(t) (1u << (t))
104 
105 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
106 
107 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
108   return make_range(enum_iterator<InstCounterType>(VM_CNT),
109                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
110 }
111 
112 using RegInterval = std::pair<int, int>;
113 
114 struct {
115   unsigned VmcntMax;
116   unsigned ExpcntMax;
117   unsigned LgkmcntMax;
118   unsigned VscntMax;
119 } HardwareLimits;
120 
121 struct {
122   unsigned VGPR0;
123   unsigned VGPRL;
124   unsigned SGPR0;
125   unsigned SGPRL;
126 } RegisterEncoding;
127 
128 enum WaitEventType {
129   VMEM_ACCESS,      // vector-memory read & write
130   VMEM_READ_ACCESS, // vector-memory read
131   VMEM_WRITE_ACCESS,// vector-memory write
132   LDS_ACCESS,       // lds read & write
133   GDS_ACCESS,       // gds read & write
134   SQ_MESSAGE,       // send message
135   SMEM_ACCESS,      // scalar-memory read & write
136   EXP_GPR_LOCK,     // export holding on its data src
137   GDS_GPR_LOCK,     // GDS holding on its data and addr src
138   EXP_POS_ACCESS,   // write to export position
139   EXP_PARAM_ACCESS, // write to export parameter
140   VMW_GPR_LOCK,     // vector-memory write holding on its data src
141   NUM_WAIT_EVENTS,
142 };
143 
144 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
145   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
146   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
147       (1 << SQ_MESSAGE),
148   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
149       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
150   (1 << VMEM_WRITE_ACCESS)
151 };
152 
153 // The mapping is:
154 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
155 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
156 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
157 // We reserve a fixed number of VGPR slots in the scoring tables for
158 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
159 enum RegisterMapping {
160   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
161   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
162   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
163   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
164   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
165 };
166 
167 // Enumerate different types of result-returning VMEM operations. Although
168 // s_waitcnt orders them all with a single vmcnt counter, in the absence of
169 // s_waitcnt only instructions of the same VmemType are guaranteed to write
170 // their results in order -- so there is no need to insert an s_waitcnt between
171 // two instructions of the same type that write the same vgpr.
172 enum VmemType {
173   // BUF instructions and MIMG instructions without a sampler.
174   VMEM_NOSAMPLER,
175   // MIMG instructions with a sampler.
176   VMEM_SAMPLER,
177 };
178 
179 VmemType getVmemType(const MachineInstr &Inst) {
180   assert(SIInstrInfo::isVMEM(Inst));
181   if (!SIInstrInfo::isMIMG(Inst))
182     return VMEM_NOSAMPLER;
183   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
184   return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler
185              ? VMEM_SAMPLER
186              : VMEM_NOSAMPLER;
187 }
188 
189 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
190   switch (T) {
191   case VM_CNT:
192     Wait.VmCnt = std::min(Wait.VmCnt, Count);
193     break;
194   case EXP_CNT:
195     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
196     break;
197   case LGKM_CNT:
198     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
199     break;
200   case VS_CNT:
201     Wait.VsCnt = std::min(Wait.VsCnt, Count);
202     break;
203   default:
204     llvm_unreachable("bad InstCounterType");
205   }
206 }
207 
208 // This objects maintains the current score brackets of each wait counter, and
209 // a per-register scoreboard for each wait counter.
210 //
211 // We also maintain the latest score for every event type that can change the
212 // waitcnt in order to know if there are multiple types of events within
213 // the brackets. When multiple types of event happen in the bracket,
214 // wait count may get decreased out of order, therefore we need to put in
215 // "s_waitcnt 0" before use.
216 class WaitcntBrackets {
217 public:
218   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {}
219 
220   static unsigned getWaitCountMax(InstCounterType T) {
221     switch (T) {
222     case VM_CNT:
223       return HardwareLimits.VmcntMax;
224     case LGKM_CNT:
225       return HardwareLimits.LgkmcntMax;
226     case EXP_CNT:
227       return HardwareLimits.ExpcntMax;
228     case VS_CNT:
229       return HardwareLimits.VscntMax;
230     default:
231       break;
232     }
233     return 0;
234   }
235 
236   unsigned getScoreLB(InstCounterType T) const {
237     assert(T < NUM_INST_CNTS);
238     return ScoreLBs[T];
239   }
240 
241   unsigned getScoreUB(InstCounterType T) const {
242     assert(T < NUM_INST_CNTS);
243     return ScoreUBs[T];
244   }
245 
246   // Mapping from event to counter.
247   InstCounterType eventCounter(WaitEventType E) {
248     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
249       return VM_CNT;
250     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
251       return LGKM_CNT;
252     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
253       return VS_CNT;
254     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
255     return EXP_CNT;
256   }
257 
258   unsigned getRegScore(int GprNo, InstCounterType T) {
259     if (GprNo < NUM_ALL_VGPRS) {
260       return VgprScores[T][GprNo];
261     }
262     assert(T == LGKM_CNT);
263     return SgprScores[GprNo - NUM_ALL_VGPRS];
264   }
265 
266   bool merge(const WaitcntBrackets &Other);
267 
268   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
269                              const MachineRegisterInfo *MRI,
270                              const SIRegisterInfo *TRI, unsigned OpNo) const;
271 
272   bool counterOutOfOrder(InstCounterType T) const;
273   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
274   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
275   void determineWait(InstCounterType T, unsigned ScoreToWait,
276                      AMDGPU::Waitcnt &Wait) const;
277   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
278   void applyWaitcnt(InstCounterType T, unsigned Count);
279   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
280                      const MachineRegisterInfo *MRI, WaitEventType E,
281                      MachineInstr &MI);
282 
283   bool hasPending() const { return PendingEvents != 0; }
284   bool hasPendingEvent(WaitEventType E) const {
285     return PendingEvents & (1 << E);
286   }
287 
288   bool hasMixedPendingEvents(InstCounterType T) const {
289     unsigned Events = PendingEvents & WaitEventMaskForInst[T];
290     // Return true if more than one bit is set in Events.
291     return Events & (Events - 1);
292   }
293 
294   bool hasPendingFlat() const {
295     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
296              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
297             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
298              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
299   }
300 
301   void setPendingFlat() {
302     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
303     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
304   }
305 
306   // Return true if there might be pending writes to the specified vgpr by VMEM
307   // instructions with types different from V.
308   bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
309     assert(GprNo < NUM_ALL_VGPRS);
310     return VgprVmemTypes[GprNo] & ~(1 << V);
311   }
312 
313   void clearVgprVmemTypes(int GprNo) {
314     assert(GprNo < NUM_ALL_VGPRS);
315     VgprVmemTypes[GprNo] = 0;
316   }
317 
318   void print(raw_ostream &);
319   void dump() { print(dbgs()); }
320 
321 private:
322   struct MergeInfo {
323     unsigned OldLB;
324     unsigned OtherLB;
325     unsigned MyShift;
326     unsigned OtherShift;
327   };
328   static bool mergeScore(const MergeInfo &M, unsigned &Score,
329                          unsigned OtherScore);
330 
331   void setScoreLB(InstCounterType T, unsigned Val) {
332     assert(T < NUM_INST_CNTS);
333     ScoreLBs[T] = Val;
334   }
335 
336   void setScoreUB(InstCounterType T, unsigned Val) {
337     assert(T < NUM_INST_CNTS);
338     ScoreUBs[T] = Val;
339     if (T == EXP_CNT) {
340       unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
341       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
342         ScoreLBs[T] = UB;
343     }
344   }
345 
346   void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
347     if (GprNo < NUM_ALL_VGPRS) {
348       VgprUB = std::max(VgprUB, GprNo);
349       VgprScores[T][GprNo] = Val;
350     } else {
351       assert(T == LGKM_CNT);
352       SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
353       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
354     }
355   }
356 
357   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
358                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
359                    unsigned OpNo, unsigned Val);
360 
361   const GCNSubtarget *ST = nullptr;
362   unsigned ScoreLBs[NUM_INST_CNTS] = {0};
363   unsigned ScoreUBs[NUM_INST_CNTS] = {0};
364   unsigned PendingEvents = 0;
365   // Remember the last flat memory operation.
366   unsigned LastFlat[NUM_INST_CNTS] = {0};
367   // wait_cnt scores for every vgpr.
368   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
369   int VgprUB = -1;
370   int SgprUB = -1;
371   unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
372   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
373   unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
374   // Bitmask of the VmemTypes of VMEM instructions that might have a pending
375   // write to each vgpr.
376   unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
377 };
378 
379 class SIInsertWaitcnts : public MachineFunctionPass {
380 private:
381   const GCNSubtarget *ST = nullptr;
382   const SIInstrInfo *TII = nullptr;
383   const SIRegisterInfo *TRI = nullptr;
384   const MachineRegisterInfo *MRI = nullptr;
385   AMDGPU::IsaVersion IV;
386 
387   DenseSet<MachineInstr *> TrackedWaitcntSet;
388   DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
389   MachinePostDominatorTree *PDT;
390 
391   struct BlockInfo {
392     MachineBasicBlock *MBB;
393     std::unique_ptr<WaitcntBrackets> Incoming;
394     bool Dirty = true;
395 
396     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
397   };
398 
399   MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;
400 
401   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
402   // because of amdgpu-waitcnt-forcezero flag
403   bool ForceEmitZeroWaitcnts;
404   bool ForceEmitWaitcnt[NUM_INST_CNTS];
405 
406 public:
407   static char ID;
408 
409   SIInsertWaitcnts() : MachineFunctionPass(ID) {
410     (void)ForceExpCounter;
411     (void)ForceLgkmCounter;
412     (void)ForceVMCounter;
413   }
414 
415   bool runOnMachineFunction(MachineFunction &MF) override;
416 
417   StringRef getPassName() const override {
418     return "SI insert wait instructions";
419   }
420 
421   void getAnalysisUsage(AnalysisUsage &AU) const override {
422     AU.setPreservesCFG();
423     AU.addRequired<MachinePostDominatorTree>();
424     MachineFunctionPass::getAnalysisUsage(AU);
425   }
426 
427   bool isForceEmitWaitcnt() const {
428     for (auto T : inst_counter_types())
429       if (ForceEmitWaitcnt[T])
430         return true;
431     return false;
432   }
433 
434   void setForceEmitWaitcnt() {
435 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
436 // For debug builds, get the debug counter info and adjust if need be
437 #ifndef NDEBUG
438     if (DebugCounter::isCounterSet(ForceExpCounter) &&
439         DebugCounter::shouldExecute(ForceExpCounter)) {
440       ForceEmitWaitcnt[EXP_CNT] = true;
441     } else {
442       ForceEmitWaitcnt[EXP_CNT] = false;
443     }
444 
445     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
446          DebugCounter::shouldExecute(ForceLgkmCounter)) {
447       ForceEmitWaitcnt[LGKM_CNT] = true;
448     } else {
449       ForceEmitWaitcnt[LGKM_CNT] = false;
450     }
451 
452     if (DebugCounter::isCounterSet(ForceVMCounter) &&
453         DebugCounter::shouldExecute(ForceVMCounter)) {
454       ForceEmitWaitcnt[VM_CNT] = true;
455     } else {
456       ForceEmitWaitcnt[VM_CNT] = false;
457     }
458 #endif // NDEBUG
459   }
460 
461   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
462   bool generateWaitcntInstBefore(MachineInstr &MI,
463                                  WaitcntBrackets &ScoreBrackets,
464                                  MachineInstr *OldWaitcntInstr);
465   void updateEventWaitcntAfter(MachineInstr &Inst,
466                                WaitcntBrackets *ScoreBrackets);
467   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
468                             WaitcntBrackets &ScoreBrackets);
469 };
470 
471 } // end anonymous namespace
472 
473 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
474                                             const SIInstrInfo *TII,
475                                             const MachineRegisterInfo *MRI,
476                                             const SIRegisterInfo *TRI,
477                                             unsigned OpNo) const {
478   const MachineOperand &Op = MI->getOperand(OpNo);
479   assert(Op.isReg());
480   if (!TRI->isInAllocatableClass(Op.getReg()) || TRI->isAGPR(*MRI, Op.getReg()))
481     return {-1, -1};
482 
483   // A use via a PW operand does not need a waitcnt.
484   // A partial write is not a WAW.
485   assert(!Op.getSubReg() || !Op.isUndef());
486 
487   RegInterval Result;
488 
489   unsigned Reg = TRI->getEncodingValue(Op.getReg());
490 
491   if (TRI->isVGPR(*MRI, Op.getReg())) {
492     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
493     Result.first = Reg - RegisterEncoding.VGPR0;
494     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
495   } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
496     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
497     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
498     assert(Result.first >= NUM_ALL_VGPRS &&
499            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
500   }
501   // TODO: Handle TTMP
502   // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
503   else
504     return {-1, -1};
505 
506   const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
507   unsigned Size = TRI->getRegSizeInBits(*RC);
508   Result.second = Result.first + ((Size + 16) / 32);
509 
510   return Result;
511 }
512 
513 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
514                                   const SIInstrInfo *TII,
515                                   const SIRegisterInfo *TRI,
516                                   const MachineRegisterInfo *MRI, unsigned OpNo,
517                                   unsigned Val) {
518   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
519   assert(TRI->isVGPR(*MRI, MI->getOperand(OpNo).getReg()));
520   for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
521     setRegScore(RegNo, EXP_CNT, Val);
522   }
523 }
524 
525 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
526                                     const SIRegisterInfo *TRI,
527                                     const MachineRegisterInfo *MRI,
528                                     WaitEventType E, MachineInstr &Inst) {
529   InstCounterType T = eventCounter(E);
530   unsigned CurrScore = getScoreUB(T) + 1;
531   if (CurrScore == 0)
532     report_fatal_error("InsertWaitcnt score wraparound");
533   // PendingEvents and ScoreUB need to be update regardless if this event
534   // changes the score of a register or not.
535   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
536   PendingEvents |= 1 << E;
537   setScoreUB(T, CurrScore);
538 
539   if (T == EXP_CNT) {
540     // Put score on the source vgprs. If this is a store, just use those
541     // specific register(s).
542     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
543       int AddrOpIdx =
544           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
545       // All GDS operations must protect their address register (same as
546       // export.)
547       if (AddrOpIdx != -1) {
548         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
549       }
550 
551       if (Inst.mayStore()) {
552         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
553                                        AMDGPU::OpName::data0) != -1) {
554           setExpScore(
555               &Inst, TII, TRI, MRI,
556               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
557               CurrScore);
558         }
559         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
560                                        AMDGPU::OpName::data1) != -1) {
561           setExpScore(&Inst, TII, TRI, MRI,
562                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
563                                                  AMDGPU::OpName::data1),
564                       CurrScore);
565         }
566       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
567                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
568                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
569                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
570                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
571                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
572                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
573                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
574                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
575         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
576           const MachineOperand &Op = Inst.getOperand(I);
577           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(*MRI, Op.getReg())) {
578             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
579           }
580         }
581       }
582     } else if (TII->isFLAT(Inst)) {
583       if (Inst.mayStore()) {
584         setExpScore(
585             &Inst, TII, TRI, MRI,
586             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
587             CurrScore);
588       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
589         setExpScore(
590             &Inst, TII, TRI, MRI,
591             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
592             CurrScore);
593       }
594     } else if (TII->isMIMG(Inst)) {
595       if (Inst.mayStore()) {
596         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
597       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
598         setExpScore(
599             &Inst, TII, TRI, MRI,
600             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
601             CurrScore);
602       }
603     } else if (TII->isMTBUF(Inst)) {
604       if (Inst.mayStore()) {
605         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
606       }
607     } else if (TII->isMUBUF(Inst)) {
608       if (Inst.mayStore()) {
609         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
610       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
611         setExpScore(
612             &Inst, TII, TRI, MRI,
613             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
614             CurrScore);
615       }
616     } else {
617       if (TII->isEXP(Inst)) {
618         // For export the destination registers are really temps that
619         // can be used as the actual source after export patching, so
620         // we need to treat them like sources and set the EXP_CNT
621         // score.
622         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
623           MachineOperand &DefMO = Inst.getOperand(I);
624           if (DefMO.isReg() && DefMO.isDef() &&
625               TRI->isVGPR(*MRI, DefMO.getReg())) {
626             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
627                         CurrScore);
628           }
629         }
630       }
631       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
632         MachineOperand &MO = Inst.getOperand(I);
633         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(*MRI, MO.getReg())) {
634           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
635         }
636       }
637     }
638 #if 0 // TODO: check if this is handled by MUBUF code above.
639   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
640        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
641        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
642     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
643     unsigned OpNo;//TODO: find the OpNo for this operand;
644     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
645     for (int RegNo = Interval.first; RegNo < Interval.second;
646     ++RegNo) {
647       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
648     }
649 #endif
650   } else {
651     // Match the score to the destination registers.
652     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
653       auto &Op = Inst.getOperand(I);
654       if (!Op.isReg() || !Op.isDef())
655         continue;
656       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
657       if (T == VM_CNT) {
658         if (Interval.first >= NUM_ALL_VGPRS)
659           continue;
660         if (SIInstrInfo::isVMEM(Inst)) {
661           VmemType V = getVmemType(Inst);
662           for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
663             VgprVmemTypes[RegNo] |= 1 << V;
664         }
665       }
666       for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
667         setRegScore(RegNo, T, CurrScore);
668       }
669     }
670     if (TII->isDS(Inst) && Inst.mayStore()) {
671       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
672     }
673   }
674 }
675 
676 void WaitcntBrackets::print(raw_ostream &OS) {
677   OS << '\n';
678   for (auto T : inst_counter_types()) {
679     unsigned LB = getScoreLB(T);
680     unsigned UB = getScoreUB(T);
681 
682     switch (T) {
683     case VM_CNT:
684       OS << "    VM_CNT(" << UB - LB << "): ";
685       break;
686     case LGKM_CNT:
687       OS << "    LGKM_CNT(" << UB - LB << "): ";
688       break;
689     case EXP_CNT:
690       OS << "    EXP_CNT(" << UB - LB << "): ";
691       break;
692     case VS_CNT:
693       OS << "    VS_CNT(" << UB - LB << "): ";
694       break;
695     default:
696       OS << "    UNKNOWN(" << UB - LB << "): ";
697       break;
698     }
699 
700     if (LB < UB) {
701       // Print vgpr scores.
702       for (int J = 0; J <= VgprUB; J++) {
703         unsigned RegScore = getRegScore(J, T);
704         if (RegScore <= LB)
705           continue;
706         unsigned RelScore = RegScore - LB - 1;
707         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
708           OS << RelScore << ":v" << J << " ";
709         } else {
710           OS << RelScore << ":ds ";
711         }
712       }
713       // Also need to print sgpr scores for lgkm_cnt.
714       if (T == LGKM_CNT) {
715         for (int J = 0; J <= SgprUB; J++) {
716           unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
717           if (RegScore <= LB)
718             continue;
719           unsigned RelScore = RegScore - LB - 1;
720           OS << RelScore << ":s" << J << " ";
721         }
722       }
723     }
724     OS << '\n';
725   }
726   OS << '\n';
727 }
728 
729 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
730 /// whether a waitcnt instruction is needed at all.
731 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
732   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
733          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
734          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
735          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
736 }
737 
738 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
739                                       unsigned &Count) const {
740   const unsigned LB = getScoreLB(T);
741   const unsigned UB = getScoreUB(T);
742   if (Count < UB && UB - Count > LB)
743     return true;
744 
745   Count = ~0u;
746   return false;
747 }
748 
749 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait,
750                                     AMDGPU::Waitcnt &Wait) const {
751   // If the score of src_operand falls within the bracket, we need an
752   // s_waitcnt instruction.
753   const unsigned LB = getScoreLB(T);
754   const unsigned UB = getScoreUB(T);
755   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
756     if ((T == VM_CNT || T == LGKM_CNT) &&
757         hasPendingFlat() &&
758         !ST->hasFlatLgkmVMemCountInOrder()) {
759       // If there is a pending FLAT operation, and this is a VMem or LGKM
760       // waitcnt and the target can report early completion, then we need
761       // to force a waitcnt 0.
762       addWait(Wait, T, 0);
763     } else if (counterOutOfOrder(T)) {
764       // Counter can get decremented out-of-order when there
765       // are multiple types event in the bracket. Also emit an s_wait counter
766       // with a conservative value of 0 for the counter.
767       addWait(Wait, T, 0);
768     } else {
769       // If a counter has been maxed out avoid overflow by waiting for
770       // MAX(CounterType) - 1 instead.
771       unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
772       addWait(Wait, T, NeededWait);
773     }
774   }
775 }
776 
777 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
778   applyWaitcnt(VM_CNT, Wait.VmCnt);
779   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
780   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
781   applyWaitcnt(VS_CNT, Wait.VsCnt);
782 }
783 
784 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
785   const unsigned UB = getScoreUB(T);
786   if (Count >= UB)
787     return;
788   if (Count != 0) {
789     if (counterOutOfOrder(T))
790       return;
791     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
792   } else {
793     setScoreLB(T, UB);
794     PendingEvents &= ~WaitEventMaskForInst[T];
795   }
796 }
797 
798 // Where there are multiple types of event in the bracket of a counter,
799 // the decrement may go out of order.
800 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
801   // Scalar memory read always can go out of order.
802   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
803     return true;
804   return hasMixedPendingEvents(T);
805 }
806 
807 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
808                       false)
809 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
810 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
811                     false)
812 
813 char SIInsertWaitcnts::ID = 0;
814 
815 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
816 
817 FunctionPass *llvm::createSIInsertWaitcntsPass() {
818   return new SIInsertWaitcnts();
819 }
820 
821 static bool readsVCCZ(const MachineInstr &MI) {
822   unsigned Opc = MI.getOpcode();
823   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
824          !MI.getOperand(1).isUndef();
825 }
826 
827 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
828 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
829   // Currently all conventions wait, but this may not always be the case.
830   //
831   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
832   // senses to omit the wait and do it in the caller.
833   return true;
834 }
835 
836 /// \returns true if the callee is expected to wait for any outstanding waits
837 /// before returning.
838 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
839   return true;
840 }
841 
842 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
843 ///  Instructions of a given type are returned in order,
844 ///  but instructions of different types can complete out of order.
845 ///  We rely on this in-order completion
846 ///  and simply assign a score to the memory access instructions.
847 ///  We keep track of the active "score bracket" to determine
848 ///  if an access of a memory read requires an s_waitcnt
849 ///  and if so what the value of each counter is.
850 ///  The "score bracket" is bound by the lower bound and upper bound
851 ///  scores (*_score_LB and *_score_ub respectively).
852 bool SIInsertWaitcnts::generateWaitcntInstBefore(
853     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
854     MachineInstr *OldWaitcntInstr) {
855   setForceEmitWaitcnt();
856   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
857 
858   if (MI.isDebugInstr())
859     return false;
860 
861   AMDGPU::Waitcnt Wait;
862 
863   // See if this instruction has a forced S_WAITCNT VM.
864   // TODO: Handle other cases of NeedsWaitcntVmBefore()
865   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
866       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
867       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
868       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
869       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
870     Wait.VmCnt = 0;
871   }
872 
873   // All waits must be resolved at call return.
874   // NOTE: this could be improved with knowledge of all call sites or
875   //   with knowledge of the called routines.
876   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
877       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
878       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
879     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
880   }
881   // Resolve vm waits before gs-done.
882   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
883             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
884            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
885             AMDGPU::SendMsg::ID_GS_DONE)) {
886     Wait.VmCnt = 0;
887   }
888 #if 0 // TODO: the following blocks of logic when we have fence.
889   else if (MI.getOpcode() == SC_FENCE) {
890     const unsigned int group_size =
891       context->shader_info->GetMaxThreadGroupSize();
892     // group_size == 0 means thread group size is unknown at compile time
893     const bool group_is_multi_wave =
894       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
895     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
896 
897     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
898       SCRegType src_type = Inst->GetSrcType(i);
899       switch (src_type) {
900         case SCMEM_LDS:
901           if (group_is_multi_wave ||
902             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
903             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
904                                ScoreBrackets->getScoreUB(LGKM_CNT));
905             // LDS may have to wait for VM_CNT after buffer load to LDS
906             if (target_info->HasBufferLoadToLDS()) {
907               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
908                                  ScoreBrackets->getScoreUB(VM_CNT));
909             }
910           }
911           break;
912 
913         case SCMEM_GDS:
914           if (group_is_multi_wave || fence_is_global) {
915             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
916               ScoreBrackets->getScoreUB(EXP_CNT));
917             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
918               ScoreBrackets->getScoreUB(LGKM_CNT));
919           }
920           break;
921 
922         case SCMEM_UAV:
923         case SCMEM_TFBUF:
924         case SCMEM_RING:
925         case SCMEM_SCATTER:
926           if (group_is_multi_wave || fence_is_global) {
927             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
928               ScoreBrackets->getScoreUB(EXP_CNT));
929             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
930               ScoreBrackets->getScoreUB(VM_CNT));
931           }
932           break;
933 
934         case SCMEM_SCRATCH:
935         default:
936           break;
937       }
938     }
939   }
940 #endif
941 
942   // Export & GDS instructions do not read the EXEC mask until after the export
943   // is granted (which can occur well after the instruction is issued).
944   // The shader program must flush all EXP operations on the export-count
945   // before overwriting the EXEC mask.
946   else {
947     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
948       // Export and GDS are tracked individually, either may trigger a waitcnt
949       // for EXEC.
950       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
951           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
952           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
953           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
954         Wait.ExpCnt = 0;
955       }
956     }
957 
958     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
959       // The function is going to insert a wait on everything in its prolog.
960       // This still needs to be careful if the call target is a load (e.g. a GOT
961       // load). We also need to check WAW depenancy with saved PC.
962       Wait = AMDGPU::Waitcnt();
963 
964       int CallAddrOpIdx =
965           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
966       RegInterval CallAddrOpInterval =
967           ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);
968 
969       for (int RegNo = CallAddrOpInterval.first;
970            RegNo < CallAddrOpInterval.second; ++RegNo)
971         ScoreBrackets.determineWait(
972             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
973 
974       int RtnAddrOpIdx =
975             AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
976       if (RtnAddrOpIdx != -1) {
977         RegInterval RtnAddrOpInterval =
978             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);
979 
980         for (int RegNo = RtnAddrOpInterval.first;
981              RegNo < RtnAddrOpInterval.second; ++RegNo)
982           ScoreBrackets.determineWait(
983               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
984       }
985 
986     } else {
987       // FIXME: Should not be relying on memoperands.
988       // Look at the source operands of every instruction to see if
989       // any of them results from a previous memory operation that affects
990       // its current usage. If so, an s_waitcnt instruction needs to be
991       // emitted.
992       // If the source operand was defined by a load, add the s_waitcnt
993       // instruction.
994       //
995       // Two cases are handled for destination operands:
996       // 1) If the destination operand was defined by a load, add the s_waitcnt
997       // instruction to guarantee the right WAW order.
998       // 2) If a destination operand that was used by a recent export/store ins,
999       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1000       for (const MachineMemOperand *Memop : MI.memoperands()) {
1001         const Value *Ptr = Memop->getValue();
1002         if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
1003           addWait(Wait, LGKM_CNT, 0);
1004           if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
1005             SLoadAddresses.erase(Ptr);
1006         }
1007         unsigned AS = Memop->getAddrSpace();
1008         if (AS != AMDGPUAS::LOCAL_ADDRESS)
1009           continue;
1010         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1011         // VM_CNT is only relevant to vgpr or LDS.
1012         ScoreBrackets.determineWait(
1013             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1014         if (Memop->isStore()) {
1015           ScoreBrackets.determineWait(
1016               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1017         }
1018       }
1019 
1020       // Loop over use and def operands.
1021       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1022         MachineOperand &Op = MI.getOperand(I);
1023         if (!Op.isReg())
1024           continue;
1025         RegInterval Interval =
1026             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);
1027         for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1028           if (TRI->isVGPR(*MRI, Op.getReg())) {
1029             // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
1030             // previous write and this write are the same type of VMEM
1031             // instruction, in which case they're guaranteed to write their
1032             // results in order anyway.
1033             if (Op.isUse() || !SIInstrInfo::isVMEM(MI) ||
1034                 ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
1035                                                        getVmemType(MI))) {
1036               ScoreBrackets.determineWait(
1037                   VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1038               ScoreBrackets.clearVgprVmemTypes(RegNo);
1039             }
1040             if (Op.isDef()) {
1041               ScoreBrackets.determineWait(
1042                   EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1043             }
1044           }
1045           ScoreBrackets.determineWait(
1046               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1047         }
1048       }
1049     }
1050   }
1051 
1052   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1053   // occurs before the instruction. Doing it here prevents any additional
1054   // S_WAITCNTs from being emitted if the instruction was marked as
1055   // requiring a WAITCNT beforehand.
1056   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1057       !ST->hasAutoWaitcntBeforeBarrier()) {
1058     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
1059   }
1060 
1061   // TODO: Remove this work-around, enable the assert for Bug 457939
1062   //       after fixing the scheduler. Also, the Shader Compiler code is
1063   //       independent of target.
1064   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1065     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1066             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1067         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1068       Wait.LgkmCnt = 0;
1069     }
1070   }
1071 
1072   // Early-out if no wait is indicated.
1073   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1074     bool Modified = false;
1075     if (OldWaitcntInstr) {
1076       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1077            &*II != &MI; II = NextI, ++NextI) {
1078         if (II->isDebugInstr())
1079           continue;
1080 
1081         if (TrackedWaitcntSet.count(&*II)) {
1082           TrackedWaitcntSet.erase(&*II);
1083           II->eraseFromParent();
1084           Modified = true;
1085         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1086           int64_t Imm = II->getOperand(0).getImm();
1087           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1088         } else {
1089           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1090           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1091           ScoreBrackets.applyWaitcnt(
1092               AMDGPU::Waitcnt(~0u, ~0u, ~0u, II->getOperand(1).getImm()));
1093         }
1094       }
1095     }
1096     return Modified;
1097   }
1098 
1099   if (ForceEmitZeroWaitcnts)
1100     Wait = AMDGPU::Waitcnt::allZero(IV);
1101 
1102   if (ForceEmitWaitcnt[VM_CNT])
1103     Wait.VmCnt = 0;
1104   if (ForceEmitWaitcnt[EXP_CNT])
1105     Wait.ExpCnt = 0;
1106   if (ForceEmitWaitcnt[LGKM_CNT])
1107     Wait.LgkmCnt = 0;
1108   if (ForceEmitWaitcnt[VS_CNT])
1109     Wait.VsCnt = 0;
1110 
1111   ScoreBrackets.applyWaitcnt(Wait);
1112 
1113   AMDGPU::Waitcnt OldWait;
1114   bool Modified = false;
1115 
1116   if (OldWaitcntInstr) {
1117     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1118          &*II != &MI; II = NextI, NextI++) {
1119       if (II->isDebugInstr())
1120         continue;
1121 
1122       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1123         unsigned IEnc = II->getOperand(0).getImm();
1124         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1125         OldWait = OldWait.combined(IWait);
1126         if (!TrackedWaitcntSet.count(&*II))
1127           Wait = Wait.combined(IWait);
1128         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1129         if (IEnc != NewEnc) {
1130           II->getOperand(0).setImm(NewEnc);
1131           Modified = true;
1132         }
1133         Wait.VmCnt = ~0u;
1134         Wait.LgkmCnt = ~0u;
1135         Wait.ExpCnt = ~0u;
1136       } else {
1137         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1138         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1139 
1140         unsigned ICnt = II->getOperand(1).getImm();
1141         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1142         if (!TrackedWaitcntSet.count(&*II))
1143           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1144         if (Wait.VsCnt != ICnt) {
1145           II->getOperand(1).setImm(Wait.VsCnt);
1146           Modified = true;
1147         }
1148         Wait.VsCnt = ~0u;
1149       }
1150 
1151       LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1152                         << "Old Instr: " << MI
1153                         << "New Instr: " << *II << '\n');
1154 
1155       if (!Wait.hasWait())
1156         return Modified;
1157     }
1158   }
1159 
1160   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1161     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1162     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1163                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1164                          .addImm(Enc);
1165     TrackedWaitcntSet.insert(SWaitInst);
1166     Modified = true;
1167 
1168     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1169                       << "Old Instr: " << MI
1170                       << "New Instr: " << *SWaitInst << '\n');
1171   }
1172 
1173   if (Wait.VsCnt != ~0u) {
1174     assert(ST->hasVscnt());
1175 
1176     auto SWaitInst =
1177         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1178                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1179             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1180             .addImm(Wait.VsCnt);
1181     TrackedWaitcntSet.insert(SWaitInst);
1182     Modified = true;
1183 
1184     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1185                       << "Old Instr: " << MI
1186                       << "New Instr: " << *SWaitInst << '\n');
1187   }
1188 
1189   return Modified;
1190 }
1191 
1192 // This is a flat memory operation. Check to see if it has memory
1193 // tokens for both LDS and Memory, and if so mark it as a flat.
1194 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1195   if (MI.memoperands_empty())
1196     return true;
1197 
1198   for (const MachineMemOperand *Memop : MI.memoperands()) {
1199     unsigned AS = Memop->getAddrSpace();
1200     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1201       return true;
1202   }
1203 
1204   return false;
1205 }
1206 
1207 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1208                                                WaitcntBrackets *ScoreBrackets) {
1209   // Now look at the instruction opcode. If it is a memory access
1210   // instruction, update the upper-bound of the appropriate counter's
1211   // bracket and the destination operand scores.
1212   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1213   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1214     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1215         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1216       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1217       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1218     } else {
1219       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1220     }
1221   } else if (TII->isFLAT(Inst)) {
1222     assert(Inst.mayLoadOrStore());
1223 
1224     if (TII->usesVM_CNT(Inst)) {
1225       if (!ST->hasVscnt())
1226         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1227       else if (Inst.mayLoad() &&
1228                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1229         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1230       else
1231         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1232     }
1233 
1234     if (TII->usesLGKM_CNT(Inst)) {
1235       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1236 
1237       // This is a flat memory operation, so note it - it will require
1238       // that both the VM and LGKM be flushed to zero if it is pending when
1239       // a VM or LGKM dependency occurs.
1240       if (mayAccessLDSThroughFlat(Inst))
1241         ScoreBrackets->setPendingFlat();
1242     }
1243   } else if (SIInstrInfo::isVMEM(Inst) &&
1244              // TODO: get a better carve out.
1245              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1246              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1247              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1248              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1249              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1250     if (!ST->hasVscnt())
1251       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1252     else if ((Inst.mayLoad() &&
1253               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1254              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1255              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1256       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1257     else if (Inst.mayStore())
1258       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1259 
1260     if (ST->vmemWriteNeedsExpWaitcnt() &&
1261         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1262       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1263     }
1264   } else if (TII->isSMRD(Inst)) {
1265     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1266   } else if (Inst.isCall()) {
1267     if (callWaitsOnFunctionReturn(Inst)) {
1268       // Act as a wait on everything
1269       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV));
1270     } else {
1271       // May need to way wait for anything.
1272       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1273     }
1274   } else {
1275     switch (Inst.getOpcode()) {
1276     case AMDGPU::S_SENDMSG:
1277     case AMDGPU::S_SENDMSGHALT:
1278       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1279       break;
1280     case AMDGPU::EXP:
1281     case AMDGPU::EXP_DONE: {
1282       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1283       if (Imm >= 32 && Imm <= 63)
1284         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1285       else if (Imm >= 12 && Imm <= 15)
1286         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1287       else
1288         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1289       break;
1290     }
1291     case AMDGPU::S_MEMTIME:
1292     case AMDGPU::S_MEMREALTIME:
1293       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1294       break;
1295     default:
1296       break;
1297     }
1298   }
1299 }
1300 
1301 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
1302                                  unsigned OtherScore) {
1303   unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1304   unsigned OtherShifted =
1305       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1306   Score = std::max(MyShifted, OtherShifted);
1307   return OtherShifted > MyShifted;
1308 }
1309 
1310 /// Merge the pending events and associater score brackets of \p Other into
1311 /// this brackets status.
1312 ///
1313 /// Returns whether the merge resulted in a change that requires tighter waits
1314 /// (i.e. the merged brackets strictly dominate the original brackets).
1315 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1316   bool StrictDom = false;
1317 
1318   VgprUB = std::max(VgprUB, Other.VgprUB);
1319   SgprUB = std::max(SgprUB, Other.SgprUB);
1320 
1321   for (auto T : inst_counter_types()) {
1322     // Merge event flags for this counter
1323     const bool OldOutOfOrder = counterOutOfOrder(T);
1324     const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
1325     const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1326     if (OtherEvents & ~OldEvents)
1327       StrictDom = true;
1328     PendingEvents |= OtherEvents;
1329 
1330     // Merge scores for this counter
1331     const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
1332     const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1333     const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
1334     if (NewUB < ScoreLBs[T])
1335       report_fatal_error("waitcnt score overflow");
1336 
1337     MergeInfo M;
1338     M.OldLB = ScoreLBs[T];
1339     M.OtherLB = Other.ScoreLBs[T];
1340     M.MyShift = NewUB - ScoreUBs[T];
1341     M.OtherShift = NewUB - Other.ScoreUBs[T];
1342 
1343     ScoreUBs[T] = NewUB;
1344 
1345     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1346 
1347     bool RegStrictDom = false;
1348     for (int J = 0; J <= VgprUB; J++) {
1349       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1350     }
1351 
1352     if (T == VM_CNT) {
1353       for (int J = 0; J <= VgprUB; J++) {
1354         unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
1355         RegStrictDom |= NewVmemTypes != VgprVmemTypes[J];
1356         VgprVmemTypes[J] = NewVmemTypes;
1357       }
1358     }
1359 
1360     if (T == LGKM_CNT) {
1361       for (int J = 0; J <= SgprUB; J++) {
1362         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1363       }
1364     }
1365 
1366     if (RegStrictDom && !OldOutOfOrder)
1367       StrictDom = true;
1368   }
1369 
1370   return StrictDom;
1371 }
1372 
1373 // Generate s_waitcnt instructions where needed.
1374 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1375                                             MachineBasicBlock &Block,
1376                                             WaitcntBrackets &ScoreBrackets) {
1377   bool Modified = false;
1378 
1379   LLVM_DEBUG({
1380     dbgs() << "*** Block" << Block.getNumber() << " ***";
1381     ScoreBrackets.dump();
1382   });
1383 
1384   // Assume VCCZ is correct at basic block boundaries, unless and until we need
1385   // to handle cases where that is not true.
1386   bool VCCZCorrect = true;
1387 
1388   // Walk over the instructions.
1389   MachineInstr *OldWaitcntInstr = nullptr;
1390 
1391   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1392                                          E = Block.instr_end();
1393        Iter != E;) {
1394     MachineInstr &Inst = *Iter;
1395 
1396     // Track pre-existing waitcnts from earlier iterations.
1397     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1398         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1399          Inst.getOperand(0).isReg() &&
1400          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1401       if (!OldWaitcntInstr)
1402         OldWaitcntInstr = &Inst;
1403       ++Iter;
1404       continue;
1405     }
1406 
1407     // We might need to restore vccz to its correct value for either of two
1408     // different reasons; see ST->hasReadVCCZBug() and
1409     // ST->partialVCCWritesUpdateVCCZ().
1410     bool RestoreVCCZ = false;
1411     if (readsVCCZ(Inst)) {
1412       if (!VCCZCorrect)
1413         RestoreVCCZ = true;
1414       else if (ST->hasReadVCCZBug()) {
1415         // There is a hardware bug on CI/SI where SMRD instruction may corrupt
1416         // vccz bit, so when we detect that an instruction may read from a
1417         // corrupt vccz bit, we need to:
1418         // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
1419         //    operations to complete.
1420         // 2. Restore the correct value of vccz by writing the current value
1421         //    of vcc back to vcc.
1422         if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1423             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1424             ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1425           RestoreVCCZ = true;
1426         }
1427       }
1428     }
1429 
1430     if (TII->isSMRD(Inst)) {
1431       for (const MachineMemOperand *Memop : Inst.memoperands()) {
1432         const Value *Ptr = Memop->getValue();
1433         SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
1434       }
1435     }
1436 
1437     if (!ST->partialVCCWritesUpdateVCCZ()) {
1438       // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
1439       // Writes to vcc will fix it.
1440       if (Inst.definesRegister(AMDGPU::VCC_LO) ||
1441           Inst.definesRegister(AMDGPU::VCC_HI))
1442         VCCZCorrect = false;
1443       else if (Inst.definesRegister(AMDGPU::VCC))
1444         VCCZCorrect = true;
1445     }
1446 
1447     // Generate an s_waitcnt instruction to be placed before
1448     // cur_Inst, if needed.
1449     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1450     OldWaitcntInstr = nullptr;
1451 
1452     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1453 
1454 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1455     // If this instruction generates a S_SETVSKIP because it is an
1456     // indexed resource, and we are on Tahiti, then it will also force
1457     // an S_WAITCNT vmcnt(0)
1458     if (RequireCheckResourceType(Inst, context)) {
1459       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1460       ScoreBrackets->setScoreLB(VM_CNT,
1461       ScoreBrackets->getScoreUB(VM_CNT));
1462     }
1463 #endif
1464 
1465     LLVM_DEBUG({
1466       Inst.print(dbgs());
1467       ScoreBrackets.dump();
1468     });
1469 
1470     // TODO: Remove this work-around after fixing the scheduler and enable the
1471     // assert above.
1472     if (RestoreVCCZ) {
1473       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1474       // bit is updated, so we can restore the bit by reading the value of
1475       // vcc and then writing it back to the register.
1476       BuildMI(Block, Inst, Inst.getDebugLoc(),
1477               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1478               TRI->getVCC())
1479           .addReg(TRI->getVCC());
1480       VCCZCorrect = true;
1481       Modified = true;
1482     }
1483 
1484     ++Iter;
1485   }
1486 
1487   return Modified;
1488 }
1489 
1490 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1491   ST = &MF.getSubtarget<GCNSubtarget>();
1492   TII = ST->getInstrInfo();
1493   TRI = &TII->getRegisterInfo();
1494   MRI = &MF.getRegInfo();
1495   IV = AMDGPU::getIsaVersion(ST->getCPU());
1496   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1497   PDT = &getAnalysis<MachinePostDominatorTree>();
1498 
1499   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1500   for (auto T : inst_counter_types())
1501     ForceEmitWaitcnt[T] = false;
1502 
1503   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1504   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1505   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1506   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1507 
1508   unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
1509   unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
1510   assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1511   assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1512 
1513   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1514   RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1;
1515   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1516   RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1;
1517 
1518   TrackedWaitcntSet.clear();
1519   BlockInfos.clear();
1520 
1521   // Keep iterating over the blocks in reverse post order, inserting and
1522   // updating s_waitcnt where needed, until a fix point is reached.
1523   for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
1524     BlockInfos.insert({MBB, BlockInfo(MBB)});
1525 
1526   std::unique_ptr<WaitcntBrackets> Brackets;
1527   bool Modified = false;
1528   bool Repeat;
1529   do {
1530     Repeat = false;
1531 
1532     for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
1533          ++BII) {
1534       BlockInfo &BI = BII->second;
1535       if (!BI.Dirty)
1536         continue;
1537 
1538       if (BI.Incoming) {
1539         if (!Brackets)
1540           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1541         else
1542           *Brackets = *BI.Incoming;
1543       } else {
1544         if (!Brackets)
1545           Brackets = std::make_unique<WaitcntBrackets>(ST);
1546         else
1547           *Brackets = WaitcntBrackets(ST);
1548       }
1549 
1550       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1551       BI.Dirty = false;
1552 
1553       if (Brackets->hasPending()) {
1554         BlockInfo *MoveBracketsToSucc = nullptr;
1555         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1556           auto SuccBII = BlockInfos.find(Succ);
1557           BlockInfo &SuccBI = SuccBII->second;
1558           if (!SuccBI.Incoming) {
1559             SuccBI.Dirty = true;
1560             if (SuccBII <= BII)
1561               Repeat = true;
1562             if (!MoveBracketsToSucc) {
1563               MoveBracketsToSucc = &SuccBI;
1564             } else {
1565               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1566             }
1567           } else if (SuccBI.Incoming->merge(*Brackets)) {
1568             SuccBI.Dirty = true;
1569             if (SuccBII <= BII)
1570               Repeat = true;
1571           }
1572         }
1573         if (MoveBracketsToSucc)
1574           MoveBracketsToSucc->Incoming = std::move(Brackets);
1575       }
1576     }
1577   } while (Repeat);
1578 
1579   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1580 
1581   bool HaveScalarStores = false;
1582 
1583   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1584        ++BI) {
1585     MachineBasicBlock &MBB = *BI;
1586 
1587     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1588          ++I) {
1589       if (!HaveScalarStores && TII->isScalarStore(*I))
1590         HaveScalarStores = true;
1591 
1592       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1593           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1594         EndPgmBlocks.push_back(&MBB);
1595     }
1596   }
1597 
1598   if (HaveScalarStores) {
1599     // If scalar writes are used, the cache must be flushed or else the next
1600     // wave to reuse the same scratch memory can be clobbered.
1601     //
1602     // Insert s_dcache_wb at wave termination points if there were any scalar
1603     // stores, and only if the cache hasn't already been flushed. This could be
1604     // improved by looking across blocks for flushes in postdominating blocks
1605     // from the stores but an explicitly requested flush is probably very rare.
1606     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1607       bool SeenDCacheWB = false;
1608 
1609       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1610            ++I) {
1611         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1612           SeenDCacheWB = true;
1613         else if (TII->isScalarStore(*I))
1614           SeenDCacheWB = false;
1615 
1616         // FIXME: It would be better to insert this before a waitcnt if any.
1617         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1618              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1619             !SeenDCacheWB) {
1620           Modified = true;
1621           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1622         }
1623       }
1624     }
1625   }
1626 
1627   if (!MFI->isEntryFunction()) {
1628     // Wait for any outstanding memory operations that the input registers may
1629     // depend on. We can't track them and it's better to the wait after the
1630     // costly call sequence.
1631 
1632     // TODO: Could insert earlier and schedule more liberally with operations
1633     // that only use caller preserved registers.
1634     MachineBasicBlock &EntryBB = MF.front();
1635     MachineBasicBlock::iterator I = EntryBB.begin();
1636     for (MachineBasicBlock::iterator E = EntryBB.end();
1637          I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
1638       ;
1639     BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
1640     if (ST->hasVscnt())
1641       BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT))
1642           .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1643           .addImm(0);
1644 
1645     Modified = true;
1646   }
1647 
1648   return Modified;
1649 }
1650