1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/CodeGen/MachinePostDominators.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/TargetParser.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "si-insert-waitcnts" 41 42 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 43 "Force emit s_waitcnt expcnt(0) instrs"); 44 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 45 "Force emit s_waitcnt lgkmcnt(0) instrs"); 46 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 47 "Force emit s_waitcnt vmcnt(0) instrs"); 48 49 static cl::opt<bool> ForceEmitZeroFlag( 50 "amdgpu-waitcnt-forcezero", 51 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 52 cl::init(false), cl::Hidden); 53 54 namespace { 55 // Class of object that encapsulates latest instruction counter score 56 // associated with the operand. Used for determining whether 57 // s_waitcnt instruction needs to be emitted. 58 59 #define CNT_MASK(t) (1u << (t)) 60 61 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 62 } // namespace 63 64 namespace llvm { 65 template <> struct enum_iteration_traits<InstCounterType> { 66 static constexpr bool is_iterable = true; 67 }; 68 } // namespace llvm 69 70 namespace { 71 auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); } 72 73 using RegInterval = std::pair<int, int>; 74 75 struct HardwareLimits { 76 unsigned VmcntMax; 77 unsigned ExpcntMax; 78 unsigned LgkmcntMax; 79 unsigned VscntMax; 80 }; 81 82 struct RegisterEncoding { 83 unsigned VGPR0; 84 unsigned VGPRL; 85 unsigned SGPR0; 86 unsigned SGPRL; 87 }; 88 89 enum WaitEventType { 90 VMEM_ACCESS, // vector-memory read & write 91 VMEM_READ_ACCESS, // vector-memory read 92 VMEM_WRITE_ACCESS,// vector-memory write 93 LDS_ACCESS, // lds read & write 94 GDS_ACCESS, // gds read & write 95 SQ_MESSAGE, // send message 96 SMEM_ACCESS, // scalar-memory read & write 97 EXP_GPR_LOCK, // export holding on its data src 98 GDS_GPR_LOCK, // GDS holding on its data and addr src 99 EXP_POS_ACCESS, // write to export position 100 EXP_PARAM_ACCESS, // write to export parameter 101 VMW_GPR_LOCK, // vector-memory write holding on its data src 102 NUM_WAIT_EVENTS, 103 }; 104 105 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 106 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 107 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 108 (1 << SQ_MESSAGE), 109 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 110 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 111 (1 << VMEM_WRITE_ACCESS) 112 }; 113 114 // The mapping is: 115 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 116 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 117 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 118 // We reserve a fixed number of VGPR slots in the scoring tables for 119 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 120 enum RegisterMapping { 121 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 122 AGPR_OFFSET = 226, // Maximum programmable ArchVGPRs across all targets. 123 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 124 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 125 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 126 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 127 }; 128 129 // Enumerate different types of result-returning VMEM operations. Although 130 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 131 // s_waitcnt only instructions of the same VmemType are guaranteed to write 132 // their results in order -- so there is no need to insert an s_waitcnt between 133 // two instructions of the same type that write the same vgpr. 134 enum VmemType { 135 // BUF instructions and MIMG instructions without a sampler. 136 VMEM_NOSAMPLER, 137 // MIMG instructions with a sampler. 138 VMEM_SAMPLER, 139 // BVH instructions 140 VMEM_BVH 141 }; 142 143 VmemType getVmemType(const MachineInstr &Inst) { 144 assert(SIInstrInfo::isVMEM(Inst)); 145 if (!SIInstrInfo::isMIMG(Inst)) 146 return VMEM_NOSAMPLER; 147 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 148 const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = 149 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 150 return BaseInfo->BVH ? VMEM_BVH 151 : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER; 152 } 153 154 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 155 switch (T) { 156 case VM_CNT: 157 Wait.VmCnt = std::min(Wait.VmCnt, Count); 158 break; 159 case EXP_CNT: 160 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 161 break; 162 case LGKM_CNT: 163 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 164 break; 165 case VS_CNT: 166 Wait.VsCnt = std::min(Wait.VsCnt, Count); 167 break; 168 default: 169 llvm_unreachable("bad InstCounterType"); 170 } 171 } 172 173 // This objects maintains the current score brackets of each wait counter, and 174 // a per-register scoreboard for each wait counter. 175 // 176 // We also maintain the latest score for every event type that can change the 177 // waitcnt in order to know if there are multiple types of events within 178 // the brackets. When multiple types of event happen in the bracket, 179 // wait count may get decreased out of order, therefore we need to put in 180 // "s_waitcnt 0" before use. 181 class WaitcntBrackets { 182 public: 183 WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits, 184 RegisterEncoding Encoding) 185 : ST(SubTarget), Limits(Limits), Encoding(Encoding) {} 186 187 unsigned getWaitCountMax(InstCounterType T) const { 188 switch (T) { 189 case VM_CNT: 190 return Limits.VmcntMax; 191 case LGKM_CNT: 192 return Limits.LgkmcntMax; 193 case EXP_CNT: 194 return Limits.ExpcntMax; 195 case VS_CNT: 196 return Limits.VscntMax; 197 default: 198 break; 199 } 200 return 0; 201 } 202 203 unsigned getScoreLB(InstCounterType T) const { 204 assert(T < NUM_INST_CNTS); 205 return ScoreLBs[T]; 206 } 207 208 unsigned getScoreUB(InstCounterType T) const { 209 assert(T < NUM_INST_CNTS); 210 return ScoreUBs[T]; 211 } 212 213 // Mapping from event to counter. 214 InstCounterType eventCounter(WaitEventType E) { 215 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 216 return VM_CNT; 217 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 218 return LGKM_CNT; 219 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 220 return VS_CNT; 221 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 222 return EXP_CNT; 223 } 224 225 unsigned getRegScore(int GprNo, InstCounterType T) { 226 if (GprNo < NUM_ALL_VGPRS) { 227 return VgprScores[T][GprNo]; 228 } 229 assert(T == LGKM_CNT); 230 return SgprScores[GprNo - NUM_ALL_VGPRS]; 231 } 232 233 bool merge(const WaitcntBrackets &Other); 234 235 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 236 const MachineRegisterInfo *MRI, 237 const SIRegisterInfo *TRI, unsigned OpNo) const; 238 239 bool counterOutOfOrder(InstCounterType T) const; 240 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 241 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 242 void determineWait(InstCounterType T, unsigned ScoreToWait, 243 AMDGPU::Waitcnt &Wait) const; 244 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 245 void applyWaitcnt(InstCounterType T, unsigned Count); 246 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 247 const MachineRegisterInfo *MRI, WaitEventType E, 248 MachineInstr &MI); 249 250 bool hasPending() const { return PendingEvents != 0; } 251 bool hasPendingEvent(WaitEventType E) const { 252 return PendingEvents & (1 << E); 253 } 254 255 bool hasMixedPendingEvents(InstCounterType T) const { 256 unsigned Events = PendingEvents & WaitEventMaskForInst[T]; 257 // Return true if more than one bit is set in Events. 258 return Events & (Events - 1); 259 } 260 261 bool hasPendingFlat() const { 262 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 263 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 264 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 265 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 266 } 267 268 void setPendingFlat() { 269 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 270 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 271 } 272 273 // Return true if there might be pending writes to the specified vgpr by VMEM 274 // instructions with types different from V. 275 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 276 assert(GprNo < NUM_ALL_VGPRS); 277 return VgprVmemTypes[GprNo] & ~(1 << V); 278 } 279 280 void clearVgprVmemTypes(int GprNo) { 281 assert(GprNo < NUM_ALL_VGPRS); 282 VgprVmemTypes[GprNo] = 0; 283 } 284 285 void print(raw_ostream &); 286 void dump() { print(dbgs()); } 287 288 private: 289 struct MergeInfo { 290 unsigned OldLB; 291 unsigned OtherLB; 292 unsigned MyShift; 293 unsigned OtherShift; 294 }; 295 static bool mergeScore(const MergeInfo &M, unsigned &Score, 296 unsigned OtherScore); 297 298 void setScoreLB(InstCounterType T, unsigned Val) { 299 assert(T < NUM_INST_CNTS); 300 ScoreLBs[T] = Val; 301 } 302 303 void setScoreUB(InstCounterType T, unsigned Val) { 304 assert(T < NUM_INST_CNTS); 305 ScoreUBs[T] = Val; 306 if (T == EXP_CNT) { 307 unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 308 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 309 ScoreLBs[T] = UB; 310 } 311 } 312 313 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 314 if (GprNo < NUM_ALL_VGPRS) { 315 VgprUB = std::max(VgprUB, GprNo); 316 VgprScores[T][GprNo] = Val; 317 } else { 318 assert(T == LGKM_CNT); 319 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 320 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 321 } 322 } 323 324 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 325 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 326 unsigned OpNo, unsigned Val); 327 328 const GCNSubtarget *ST = nullptr; 329 HardwareLimits Limits = {}; 330 RegisterEncoding Encoding = {}; 331 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 332 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 333 unsigned PendingEvents = 0; 334 // Remember the last flat memory operation. 335 unsigned LastFlat[NUM_INST_CNTS] = {0}; 336 // wait_cnt scores for every vgpr. 337 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 338 int VgprUB = -1; 339 int SgprUB = -1; 340 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 341 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 342 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 343 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 344 // write to each vgpr. 345 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 346 }; 347 348 class SIInsertWaitcnts : public MachineFunctionPass { 349 private: 350 const GCNSubtarget *ST = nullptr; 351 const SIInstrInfo *TII = nullptr; 352 const SIRegisterInfo *TRI = nullptr; 353 const MachineRegisterInfo *MRI = nullptr; 354 AMDGPU::IsaVersion IV; 355 356 DenseSet<MachineInstr *> TrackedWaitcntSet; 357 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 358 MachinePostDominatorTree *PDT; 359 360 struct BlockInfo { 361 MachineBasicBlock *MBB; 362 std::unique_ptr<WaitcntBrackets> Incoming; 363 bool Dirty = true; 364 365 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 366 }; 367 368 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 369 370 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 371 // because of amdgpu-waitcnt-forcezero flag 372 bool ForceEmitZeroWaitcnts; 373 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 374 375 public: 376 static char ID; 377 378 SIInsertWaitcnts() : MachineFunctionPass(ID) { 379 (void)ForceExpCounter; 380 (void)ForceLgkmCounter; 381 (void)ForceVMCounter; 382 } 383 384 bool runOnMachineFunction(MachineFunction &MF) override; 385 386 StringRef getPassName() const override { 387 return "SI insert wait instructions"; 388 } 389 390 void getAnalysisUsage(AnalysisUsage &AU) const override { 391 AU.setPreservesCFG(); 392 AU.addRequired<MachinePostDominatorTree>(); 393 MachineFunctionPass::getAnalysisUsage(AU); 394 } 395 396 bool isForceEmitWaitcnt() const { 397 for (auto T : inst_counter_types()) 398 if (ForceEmitWaitcnt[T]) 399 return true; 400 return false; 401 } 402 403 void setForceEmitWaitcnt() { 404 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 405 // For debug builds, get the debug counter info and adjust if need be 406 #ifndef NDEBUG 407 if (DebugCounter::isCounterSet(ForceExpCounter) && 408 DebugCounter::shouldExecute(ForceExpCounter)) { 409 ForceEmitWaitcnt[EXP_CNT] = true; 410 } else { 411 ForceEmitWaitcnt[EXP_CNT] = false; 412 } 413 414 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 415 DebugCounter::shouldExecute(ForceLgkmCounter)) { 416 ForceEmitWaitcnt[LGKM_CNT] = true; 417 } else { 418 ForceEmitWaitcnt[LGKM_CNT] = false; 419 } 420 421 if (DebugCounter::isCounterSet(ForceVMCounter) && 422 DebugCounter::shouldExecute(ForceVMCounter)) { 423 ForceEmitWaitcnt[VM_CNT] = true; 424 } else { 425 ForceEmitWaitcnt[VM_CNT] = false; 426 } 427 #endif // NDEBUG 428 } 429 430 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 431 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 432 bool generateWaitcntInstBefore(MachineInstr &MI, 433 WaitcntBrackets &ScoreBrackets, 434 MachineInstr *OldWaitcntInstr); 435 void updateEventWaitcntAfter(MachineInstr &Inst, 436 WaitcntBrackets *ScoreBrackets); 437 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 438 WaitcntBrackets &ScoreBrackets); 439 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 440 MachineInstr &OldWaitcntInstr, 441 AMDGPU::Waitcnt &Wait, const MachineInstr *MI); 442 }; 443 444 } // end anonymous namespace 445 446 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 447 const SIInstrInfo *TII, 448 const MachineRegisterInfo *MRI, 449 const SIRegisterInfo *TRI, 450 unsigned OpNo) const { 451 const MachineOperand &Op = MI->getOperand(OpNo); 452 if (!TRI->isInAllocatableClass(Op.getReg())) 453 return {-1, -1}; 454 455 // A use via a PW operand does not need a waitcnt. 456 // A partial write is not a WAW. 457 assert(!Op.getSubReg() || !Op.isUndef()); 458 459 RegInterval Result; 460 461 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 462 463 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 464 assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL); 465 Result.first = Reg - Encoding.VGPR0; 466 if (TRI->isAGPR(*MRI, Op.getReg())) 467 Result.first += AGPR_OFFSET; 468 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 469 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 470 assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 471 Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS; 472 assert(Result.first >= NUM_ALL_VGPRS && 473 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 474 } 475 // TODO: Handle TTMP 476 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 477 else 478 return {-1, -1}; 479 480 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 481 unsigned Size = TRI->getRegSizeInBits(*RC); 482 Result.second = Result.first + ((Size + 16) / 32); 483 484 return Result; 485 } 486 487 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 488 const SIInstrInfo *TII, 489 const SIRegisterInfo *TRI, 490 const MachineRegisterInfo *MRI, unsigned OpNo, 491 unsigned Val) { 492 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 493 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 494 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 495 setRegScore(RegNo, EXP_CNT, Val); 496 } 497 } 498 499 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 500 const SIRegisterInfo *TRI, 501 const MachineRegisterInfo *MRI, 502 WaitEventType E, MachineInstr &Inst) { 503 InstCounterType T = eventCounter(E); 504 unsigned CurrScore = getScoreUB(T) + 1; 505 if (CurrScore == 0) 506 report_fatal_error("InsertWaitcnt score wraparound"); 507 // PendingEvents and ScoreUB need to be update regardless if this event 508 // changes the score of a register or not. 509 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 510 PendingEvents |= 1 << E; 511 setScoreUB(T, CurrScore); 512 513 if (T == EXP_CNT) { 514 // Put score on the source vgprs. If this is a store, just use those 515 // specific register(s). 516 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 517 int AddrOpIdx = 518 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 519 // All GDS operations must protect their address register (same as 520 // export.) 521 if (AddrOpIdx != -1) { 522 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 523 } 524 525 if (Inst.mayStore()) { 526 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 527 AMDGPU::OpName::data0) != -1) { 528 setExpScore( 529 &Inst, TII, TRI, MRI, 530 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 531 CurrScore); 532 } 533 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 534 AMDGPU::OpName::data1) != -1) { 535 setExpScore(&Inst, TII, TRI, MRI, 536 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 537 AMDGPU::OpName::data1), 538 CurrScore); 539 } 540 } else if (SIInstrInfo::isAtomicRet(Inst) && 541 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 542 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 543 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 544 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 545 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 546 Inst.getOpcode() != AMDGPU::DS_APPEND && 547 Inst.getOpcode() != AMDGPU::DS_CONSUME && 548 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 549 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 550 const MachineOperand &Op = Inst.getOperand(I); 551 if (Op.isReg() && !Op.isDef() && 552 TRI->isVectorRegister(*MRI, Op.getReg())) { 553 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 554 } 555 } 556 } 557 } else if (TII->isFLAT(Inst)) { 558 if (Inst.mayStore()) { 559 setExpScore( 560 &Inst, TII, TRI, MRI, 561 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 562 CurrScore); 563 } else if (SIInstrInfo::isAtomicRet(Inst)) { 564 setExpScore( 565 &Inst, TII, TRI, MRI, 566 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 567 CurrScore); 568 } 569 } else if (TII->isMIMG(Inst)) { 570 if (Inst.mayStore()) { 571 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 572 } else if (SIInstrInfo::isAtomicRet(Inst)) { 573 setExpScore( 574 &Inst, TII, TRI, MRI, 575 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 576 CurrScore); 577 } 578 } else if (TII->isMTBUF(Inst)) { 579 if (Inst.mayStore()) { 580 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 581 } 582 } else if (TII->isMUBUF(Inst)) { 583 if (Inst.mayStore()) { 584 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 585 } else if (SIInstrInfo::isAtomicRet(Inst)) { 586 setExpScore( 587 &Inst, TII, TRI, MRI, 588 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 589 CurrScore); 590 } 591 } else { 592 if (TII->isEXP(Inst)) { 593 // For export the destination registers are really temps that 594 // can be used as the actual source after export patching, so 595 // we need to treat them like sources and set the EXP_CNT 596 // score. 597 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 598 MachineOperand &DefMO = Inst.getOperand(I); 599 if (DefMO.isReg() && DefMO.isDef() && 600 TRI->isVGPR(*MRI, DefMO.getReg())) { 601 setRegScore( 602 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 603 EXP_CNT, CurrScore); 604 } 605 } 606 } 607 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 608 MachineOperand &MO = Inst.getOperand(I); 609 if (MO.isReg() && !MO.isDef() && 610 TRI->isVectorRegister(*MRI, MO.getReg())) { 611 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 612 } 613 } 614 } 615 #if 0 // TODO: check if this is handled by MUBUF code above. 616 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 617 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 618 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 619 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 620 unsigned OpNo;//TODO: find the OpNo for this operand; 621 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 622 for (int RegNo = Interval.first; RegNo < Interval.second; 623 ++RegNo) { 624 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 625 } 626 #endif 627 } else { 628 // Match the score to the destination registers. 629 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 630 auto &Op = Inst.getOperand(I); 631 if (!Op.isReg() || !Op.isDef()) 632 continue; 633 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 634 if (T == VM_CNT) { 635 if (Interval.first >= NUM_ALL_VGPRS) 636 continue; 637 if (SIInstrInfo::isVMEM(Inst)) { 638 VmemType V = getVmemType(Inst); 639 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 640 VgprVmemTypes[RegNo] |= 1 << V; 641 } 642 } 643 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 644 setRegScore(RegNo, T, CurrScore); 645 } 646 } 647 if (TII->isDS(Inst) && Inst.mayStore()) { 648 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 649 } 650 } 651 } 652 653 void WaitcntBrackets::print(raw_ostream &OS) { 654 OS << '\n'; 655 for (auto T : inst_counter_types()) { 656 unsigned LB = getScoreLB(T); 657 unsigned UB = getScoreUB(T); 658 659 switch (T) { 660 case VM_CNT: 661 OS << " VM_CNT(" << UB - LB << "): "; 662 break; 663 case LGKM_CNT: 664 OS << " LGKM_CNT(" << UB - LB << "): "; 665 break; 666 case EXP_CNT: 667 OS << " EXP_CNT(" << UB - LB << "): "; 668 break; 669 case VS_CNT: 670 OS << " VS_CNT(" << UB - LB << "): "; 671 break; 672 default: 673 OS << " UNKNOWN(" << UB - LB << "): "; 674 break; 675 } 676 677 if (LB < UB) { 678 // Print vgpr scores. 679 for (int J = 0; J <= VgprUB; J++) { 680 unsigned RegScore = getRegScore(J, T); 681 if (RegScore <= LB) 682 continue; 683 unsigned RelScore = RegScore - LB - 1; 684 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 685 OS << RelScore << ":v" << J << " "; 686 } else { 687 OS << RelScore << ":ds "; 688 } 689 } 690 // Also need to print sgpr scores for lgkm_cnt. 691 if (T == LGKM_CNT) { 692 for (int J = 0; J <= SgprUB; J++) { 693 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 694 if (RegScore <= LB) 695 continue; 696 unsigned RelScore = RegScore - LB - 1; 697 OS << RelScore << ":s" << J << " "; 698 } 699 } 700 } 701 OS << '\n'; 702 } 703 OS << '\n'; 704 } 705 706 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 707 /// whether a waitcnt instruction is needed at all. 708 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 709 simplifyWaitcnt(VM_CNT, Wait.VmCnt); 710 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 711 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 712 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 713 } 714 715 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 716 unsigned &Count) const { 717 const unsigned LB = getScoreLB(T); 718 const unsigned UB = getScoreUB(T); 719 720 // The number of outstanding events for this type, T, can be calculated 721 // as (UB - LB). If the current Count is greater than or equal to the number 722 // of outstanding events, then the wait for this counter is redundant. 723 if (Count >= UB - LB) 724 Count = ~0u; 725 } 726 727 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait, 728 AMDGPU::Waitcnt &Wait) const { 729 // If the score of src_operand falls within the bracket, we need an 730 // s_waitcnt instruction. 731 const unsigned LB = getScoreLB(T); 732 const unsigned UB = getScoreUB(T); 733 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 734 if ((T == VM_CNT || T == LGKM_CNT) && 735 hasPendingFlat() && 736 !ST->hasFlatLgkmVMemCountInOrder()) { 737 // If there is a pending FLAT operation, and this is a VMem or LGKM 738 // waitcnt and the target can report early completion, then we need 739 // to force a waitcnt 0. 740 addWait(Wait, T, 0); 741 } else if (counterOutOfOrder(T)) { 742 // Counter can get decremented out-of-order when there 743 // are multiple types event in the bracket. Also emit an s_wait counter 744 // with a conservative value of 0 for the counter. 745 addWait(Wait, T, 0); 746 } else { 747 // If a counter has been maxed out avoid overflow by waiting for 748 // MAX(CounterType) - 1 instead. 749 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 750 addWait(Wait, T, NeededWait); 751 } 752 } 753 } 754 755 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 756 applyWaitcnt(VM_CNT, Wait.VmCnt); 757 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 758 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 759 applyWaitcnt(VS_CNT, Wait.VsCnt); 760 } 761 762 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 763 const unsigned UB = getScoreUB(T); 764 if (Count >= UB) 765 return; 766 if (Count != 0) { 767 if (counterOutOfOrder(T)) 768 return; 769 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 770 } else { 771 setScoreLB(T, UB); 772 PendingEvents &= ~WaitEventMaskForInst[T]; 773 } 774 } 775 776 // Where there are multiple types of event in the bracket of a counter, 777 // the decrement may go out of order. 778 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 779 // Scalar memory read always can go out of order. 780 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 781 return true; 782 return hasMixedPendingEvents(T); 783 } 784 785 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 786 false) 787 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 788 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 789 false) 790 791 char SIInsertWaitcnts::ID = 0; 792 793 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 794 795 FunctionPass *llvm::createSIInsertWaitcntsPass() { 796 return new SIInsertWaitcnts(); 797 } 798 799 /// Combine consecutive waitcnt instructions that precede \p MI and follow 800 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added 801 /// by previous passes. Currently this pass conservatively assumes that these 802 /// preexisting waitcnt are required for correctness. 803 bool SIInsertWaitcnts::applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 804 MachineInstr &OldWaitcntInstr, 805 AMDGPU::Waitcnt &Wait, 806 const MachineInstr *MI) { 807 bool Modified = false; 808 MachineInstr *WaitcntInstr = nullptr; 809 MachineInstr *WaitcntVsCntInstr = nullptr; 810 for (auto II = OldWaitcntInstr.getIterator(), NextI = std::next(II); 811 &*II != MI; II = NextI, ++NextI) { 812 if (II->isMetaInstruction()) 813 continue; 814 815 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 816 // Conservatively update required wait if this waitcnt was added in an 817 // earlier pass. In this case it will not exist in the tracked waitcnt 818 // set. 819 if (!TrackedWaitcntSet.count(&*II)) { 820 unsigned IEnc = II->getOperand(0).getImm(); 821 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 822 Wait = Wait.combined(OldWait); 823 } 824 825 // Merge consecutive waitcnt of the same type by erasing multiples. 826 if (!WaitcntInstr) { 827 WaitcntInstr = &*II; 828 } else { 829 II->eraseFromParent(); 830 Modified = true; 831 } 832 833 } else { 834 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 835 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 836 if (!TrackedWaitcntSet.count(&*II)) { 837 unsigned OldVSCnt = 838 TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm(); 839 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt); 840 } 841 842 if (!WaitcntVsCntInstr) { 843 WaitcntVsCntInstr = &*II; 844 } else { 845 II->eraseFromParent(); 846 Modified = true; 847 } 848 } 849 } 850 851 // Updated encoding of merged waitcnt with the required wait. 852 if (WaitcntInstr) { 853 if (Wait.hasWaitExceptVsCnt()) { 854 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 855 unsigned OldEnc = WaitcntInstr->getOperand(0).getImm(); 856 if (OldEnc != NewEnc) { 857 WaitcntInstr->getOperand(0).setImm(NewEnc); 858 Modified = true; 859 } 860 ScoreBrackets.applyWaitcnt(Wait); 861 Wait.VmCnt = ~0u; 862 Wait.LgkmCnt = ~0u; 863 Wait.ExpCnt = ~0u; 864 865 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 866 << "Old Instr: " << *MI << "New Instr: " << *WaitcntInstr 867 << '\n'); 868 } else { 869 WaitcntInstr->eraseFromParent(); 870 Modified = true; 871 } 872 } 873 874 if (WaitcntVsCntInstr) { 875 if (Wait.hasWaitVsCnt()) { 876 assert(ST->hasVscnt()); 877 unsigned OldVSCnt = 878 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 879 ->getImm(); 880 if (Wait.VsCnt != OldVSCnt) { 881 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 882 ->setImm(Wait.VsCnt); 883 Modified = true; 884 } 885 ScoreBrackets.applyWaitcnt(Wait); 886 Wait.VsCnt = ~0u; 887 888 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 889 << "Old Instr: " << *MI 890 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 891 } else { 892 WaitcntVsCntInstr->eraseFromParent(); 893 Modified = true; 894 } 895 } 896 897 return Modified; 898 } 899 900 static bool readsVCCZ(const MachineInstr &MI) { 901 unsigned Opc = MI.getOpcode(); 902 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 903 !MI.getOperand(1).isUndef(); 904 } 905 906 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 907 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 908 // Currently all conventions wait, but this may not always be the case. 909 // 910 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 911 // senses to omit the wait and do it in the caller. 912 return true; 913 } 914 915 /// \returns true if the callee is expected to wait for any outstanding waits 916 /// before returning. 917 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 918 return true; 919 } 920 921 /// Generate s_waitcnt instruction to be placed before cur_Inst. 922 /// Instructions of a given type are returned in order, 923 /// but instructions of different types can complete out of order. 924 /// We rely on this in-order completion 925 /// and simply assign a score to the memory access instructions. 926 /// We keep track of the active "score bracket" to determine 927 /// if an access of a memory read requires an s_waitcnt 928 /// and if so what the value of each counter is. 929 /// The "score bracket" is bound by the lower bound and upper bound 930 /// scores (*_score_LB and *_score_ub respectively). 931 bool SIInsertWaitcnts::generateWaitcntInstBefore( 932 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 933 MachineInstr *OldWaitcntInstr) { 934 setForceEmitWaitcnt(); 935 936 if (MI.isMetaInstruction()) 937 return false; 938 939 AMDGPU::Waitcnt Wait; 940 bool Modified = false; 941 942 // FIXME: This should have already been handled by the memory legalizer. 943 // Removing this currently doesn't affect any lit tests, but we need to 944 // verify that nothing was relying on this. The number of buffer invalidates 945 // being handled here should not be expanded. 946 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 947 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 948 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 949 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 950 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 951 Wait.VmCnt = 0; 952 } 953 954 // All waits must be resolved at call return. 955 // NOTE: this could be improved with knowledge of all call sites or 956 // with knowledge of the called routines. 957 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 958 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 959 MI.getOpcode() == AMDGPU::S_SETPC_B64_return_gfx || 960 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 961 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 962 } 963 // Resolve vm waits before gs-done. 964 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 965 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 966 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 967 AMDGPU::SendMsg::ID_GS_DONE)) { 968 Wait.VmCnt = 0; 969 } 970 #if 0 // TODO: the following blocks of logic when we have fence. 971 else if (MI.getOpcode() == SC_FENCE) { 972 const unsigned int group_size = 973 context->shader_info->GetMaxThreadGroupSize(); 974 // group_size == 0 means thread group size is unknown at compile time 975 const bool group_is_multi_wave = 976 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 977 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 978 979 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 980 SCRegType src_type = Inst->GetSrcType(i); 981 switch (src_type) { 982 case SCMEM_LDS: 983 if (group_is_multi_wave || 984 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 985 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 986 ScoreBrackets->getScoreUB(LGKM_CNT)); 987 // LDS may have to wait for VM_CNT after buffer load to LDS 988 if (target_info->HasBufferLoadToLDS()) { 989 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 990 ScoreBrackets->getScoreUB(VM_CNT)); 991 } 992 } 993 break; 994 995 case SCMEM_GDS: 996 if (group_is_multi_wave || fence_is_global) { 997 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 998 ScoreBrackets->getScoreUB(EXP_CNT)); 999 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1000 ScoreBrackets->getScoreUB(LGKM_CNT)); 1001 } 1002 break; 1003 1004 case SCMEM_UAV: 1005 case SCMEM_TFBUF: 1006 case SCMEM_RING: 1007 case SCMEM_SCATTER: 1008 if (group_is_multi_wave || fence_is_global) { 1009 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1010 ScoreBrackets->getScoreUB(EXP_CNT)); 1011 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1012 ScoreBrackets->getScoreUB(VM_CNT)); 1013 } 1014 break; 1015 1016 case SCMEM_SCRATCH: 1017 default: 1018 break; 1019 } 1020 } 1021 } 1022 #endif 1023 1024 // Export & GDS instructions do not read the EXEC mask until after the export 1025 // is granted (which can occur well after the instruction is issued). 1026 // The shader program must flush all EXP operations on the export-count 1027 // before overwriting the EXEC mask. 1028 else { 1029 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1030 // Export and GDS are tracked individually, either may trigger a waitcnt 1031 // for EXEC. 1032 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1033 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1034 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1035 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1036 Wait.ExpCnt = 0; 1037 } 1038 } 1039 1040 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1041 // The function is going to insert a wait on everything in its prolog. 1042 // This still needs to be careful if the call target is a load (e.g. a GOT 1043 // load). We also need to check WAW depenancy with saved PC. 1044 Wait = AMDGPU::Waitcnt(); 1045 1046 int CallAddrOpIdx = 1047 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1048 1049 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1050 RegInterval CallAddrOpInterval = 1051 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 1052 1053 for (int RegNo = CallAddrOpInterval.first; 1054 RegNo < CallAddrOpInterval.second; ++RegNo) 1055 ScoreBrackets.determineWait( 1056 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1057 1058 int RtnAddrOpIdx = 1059 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1060 if (RtnAddrOpIdx != -1) { 1061 RegInterval RtnAddrOpInterval = 1062 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 1063 1064 for (int RegNo = RtnAddrOpInterval.first; 1065 RegNo < RtnAddrOpInterval.second; ++RegNo) 1066 ScoreBrackets.determineWait( 1067 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1068 } 1069 } 1070 } else { 1071 // FIXME: Should not be relying on memoperands. 1072 // Look at the source operands of every instruction to see if 1073 // any of them results from a previous memory operation that affects 1074 // its current usage. If so, an s_waitcnt instruction needs to be 1075 // emitted. 1076 // If the source operand was defined by a load, add the s_waitcnt 1077 // instruction. 1078 // 1079 // Two cases are handled for destination operands: 1080 // 1) If the destination operand was defined by a load, add the s_waitcnt 1081 // instruction to guarantee the right WAW order. 1082 // 2) If a destination operand that was used by a recent export/store ins, 1083 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1084 for (const MachineMemOperand *Memop : MI.memoperands()) { 1085 const Value *Ptr = Memop->getValue(); 1086 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1087 addWait(Wait, LGKM_CNT, 0); 1088 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1089 SLoadAddresses.erase(Ptr); 1090 } 1091 unsigned AS = Memop->getAddrSpace(); 1092 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1093 continue; 1094 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1095 // VM_CNT is only relevant to vgpr or LDS. 1096 ScoreBrackets.determineWait( 1097 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1098 if (Memop->isStore()) { 1099 ScoreBrackets.determineWait( 1100 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1101 } 1102 } 1103 1104 // Loop over use and def operands. 1105 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1106 MachineOperand &Op = MI.getOperand(I); 1107 if (!Op.isReg()) 1108 continue; 1109 RegInterval Interval = 1110 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1111 1112 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1113 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1114 if (IsVGPR) { 1115 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1116 // previous write and this write are the same type of VMEM 1117 // instruction, in which case they're guaranteed to write their 1118 // results in order anyway. 1119 if (Op.isUse() || !SIInstrInfo::isVMEM(MI) || 1120 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1121 getVmemType(MI))) { 1122 ScoreBrackets.determineWait( 1123 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1124 ScoreBrackets.clearVgprVmemTypes(RegNo); 1125 } 1126 if (Op.isDef()) { 1127 ScoreBrackets.determineWait( 1128 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1129 } 1130 } 1131 ScoreBrackets.determineWait( 1132 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1133 } 1134 } 1135 } 1136 } 1137 1138 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1139 // occurs before the instruction. Doing it here prevents any additional 1140 // S_WAITCNTs from being emitted if the instruction was marked as 1141 // requiring a WAITCNT beforehand. 1142 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1143 !ST->hasAutoWaitcntBeforeBarrier()) { 1144 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1145 } 1146 1147 // TODO: Remove this work-around, enable the assert for Bug 457939 1148 // after fixing the scheduler. Also, the Shader Compiler code is 1149 // independent of target. 1150 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1151 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1152 ScoreBrackets.getScoreUB(LGKM_CNT) && 1153 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1154 Wait.LgkmCnt = 0; 1155 } 1156 } 1157 1158 // Verify that the wait is actually needed. 1159 ScoreBrackets.simplifyWaitcnt(Wait); 1160 1161 if (ForceEmitZeroWaitcnts) 1162 Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt()); 1163 1164 if (ForceEmitWaitcnt[VM_CNT]) 1165 Wait.VmCnt = 0; 1166 if (ForceEmitWaitcnt[EXP_CNT]) 1167 Wait.ExpCnt = 0; 1168 if (ForceEmitWaitcnt[LGKM_CNT]) 1169 Wait.LgkmCnt = 0; 1170 if (ForceEmitWaitcnt[VS_CNT]) 1171 Wait.VsCnt = 0; 1172 1173 if (OldWaitcntInstr) { 1174 // Try to merge the required wait with preexisting waitcnt instructions. 1175 // Also erase redundant waitcnt. 1176 Modified = 1177 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, &MI); 1178 } else { 1179 // Update waitcnt brackets after determining the required wait. 1180 ScoreBrackets.applyWaitcnt(Wait); 1181 } 1182 1183 // Build new waitcnt instructions unless no wait is needed or the old waitcnt 1184 // instruction was modified to handle the required wait. 1185 if (Wait.hasWaitExceptVsCnt()) { 1186 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1187 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1188 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1189 .addImm(Enc); 1190 TrackedWaitcntSet.insert(SWaitInst); 1191 Modified = true; 1192 1193 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1194 << "Old Instr: " << MI 1195 << "New Instr: " << *SWaitInst << '\n'); 1196 } 1197 1198 if (Wait.hasWaitVsCnt()) { 1199 assert(ST->hasVscnt()); 1200 1201 auto SWaitInst = 1202 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1203 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1204 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1205 .addImm(Wait.VsCnt); 1206 TrackedWaitcntSet.insert(SWaitInst); 1207 Modified = true; 1208 1209 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1210 << "Old Instr: " << MI 1211 << "New Instr: " << *SWaitInst << '\n'); 1212 } 1213 1214 return Modified; 1215 } 1216 1217 // This is a flat memory operation. Check to see if it has memory tokens other 1218 // than LDS. Other address spaces supported by flat memory operations involve 1219 // global memory. 1220 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1221 assert(TII->isFLAT(MI)); 1222 1223 // All flat instructions use the VMEM counter. 1224 assert(TII->usesVM_CNT(MI)); 1225 1226 // If there are no memory operands then conservatively assume the flat 1227 // operation may access VMEM. 1228 if (MI.memoperands_empty()) 1229 return true; 1230 1231 // See if any memory operand specifies an address space that involves VMEM. 1232 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1233 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1234 // (GDS) address space is not supported by flat operations. Therefore, simply 1235 // return true unless only the LDS address space is found. 1236 for (const MachineMemOperand *Memop : MI.memoperands()) { 1237 unsigned AS = Memop->getAddrSpace(); 1238 assert(AS != AMDGPUAS::REGION_ADDRESS); 1239 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1240 return true; 1241 } 1242 1243 return false; 1244 } 1245 1246 // This is a flat memory operation. Check to see if it has memory tokens for 1247 // either LDS or FLAT. 1248 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1249 assert(TII->isFLAT(MI)); 1250 1251 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1252 if (!TII->usesLGKM_CNT(MI)) 1253 return false; 1254 1255 // If in tgsplit mode then there can be no use of LDS. 1256 if (ST->isTgSplitEnabled()) 1257 return false; 1258 1259 // If there are no memory operands then conservatively assume the flat 1260 // operation may access LDS. 1261 if (MI.memoperands_empty()) 1262 return true; 1263 1264 // See if any memory operand specifies an address space that involves LDS. 1265 for (const MachineMemOperand *Memop : MI.memoperands()) { 1266 unsigned AS = Memop->getAddrSpace(); 1267 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1268 return true; 1269 } 1270 1271 return false; 1272 } 1273 1274 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1275 WaitcntBrackets *ScoreBrackets) { 1276 // Now look at the instruction opcode. If it is a memory access 1277 // instruction, update the upper-bound of the appropriate counter's 1278 // bracket and the destination operand scores. 1279 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1280 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1281 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1282 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1283 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1284 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1285 } else { 1286 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1287 } 1288 } else if (TII->isFLAT(Inst)) { 1289 assert(Inst.mayLoadOrStore()); 1290 1291 int FlatASCount = 0; 1292 1293 if (mayAccessVMEMThroughFlat(Inst)) { 1294 ++FlatASCount; 1295 if (!ST->hasVscnt()) 1296 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1297 else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) 1298 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1299 else 1300 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1301 } 1302 1303 if (mayAccessLDSThroughFlat(Inst)) { 1304 ++FlatASCount; 1305 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1306 } 1307 1308 // A Flat memory operation must access at least one address space. 1309 assert(FlatASCount); 1310 1311 // This is a flat memory operation that access both VMEM and LDS, so note it 1312 // - it will require that both the VM and LGKM be flushed to zero if it is 1313 // pending when a VM or LGKM dependency occurs. 1314 if (FlatASCount > 1) 1315 ScoreBrackets->setPendingFlat(); 1316 } else if (SIInstrInfo::isVMEM(Inst) && 1317 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { 1318 if (!ST->hasVscnt()) 1319 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1320 else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) || 1321 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1322 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1323 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1324 else if (Inst.mayStore()) 1325 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1326 1327 if (ST->vmemWriteNeedsExpWaitcnt() && 1328 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1329 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1330 } 1331 } else if (TII->isSMRD(Inst)) { 1332 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1333 } else if (Inst.isCall()) { 1334 if (callWaitsOnFunctionReturn(Inst)) { 1335 // Act as a wait on everything 1336 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1337 } else { 1338 // May need to way wait for anything. 1339 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1340 } 1341 } else if (SIInstrInfo::isEXP(Inst)) { 1342 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1343 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1344 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1345 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1346 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1347 else 1348 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1349 } else { 1350 switch (Inst.getOpcode()) { 1351 case AMDGPU::S_SENDMSG: 1352 case AMDGPU::S_SENDMSGHALT: 1353 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1354 break; 1355 case AMDGPU::S_MEMTIME: 1356 case AMDGPU::S_MEMREALTIME: 1357 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1358 break; 1359 } 1360 } 1361 } 1362 1363 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1364 unsigned OtherScore) { 1365 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1366 unsigned OtherShifted = 1367 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1368 Score = std::max(MyShifted, OtherShifted); 1369 return OtherShifted > MyShifted; 1370 } 1371 1372 /// Merge the pending events and associater score brackets of \p Other into 1373 /// this brackets status. 1374 /// 1375 /// Returns whether the merge resulted in a change that requires tighter waits 1376 /// (i.e. the merged brackets strictly dominate the original brackets). 1377 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1378 bool StrictDom = false; 1379 1380 VgprUB = std::max(VgprUB, Other.VgprUB); 1381 SgprUB = std::max(SgprUB, Other.SgprUB); 1382 1383 for (auto T : inst_counter_types()) { 1384 // Merge event flags for this counter 1385 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1386 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1387 if (OtherEvents & ~OldEvents) 1388 StrictDom = true; 1389 PendingEvents |= OtherEvents; 1390 1391 // Merge scores for this counter 1392 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1393 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1394 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1395 if (NewUB < ScoreLBs[T]) 1396 report_fatal_error("waitcnt score overflow"); 1397 1398 MergeInfo M; 1399 M.OldLB = ScoreLBs[T]; 1400 M.OtherLB = Other.ScoreLBs[T]; 1401 M.MyShift = NewUB - ScoreUBs[T]; 1402 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1403 1404 ScoreUBs[T] = NewUB; 1405 1406 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1407 1408 bool RegStrictDom = false; 1409 for (int J = 0; J <= VgprUB; J++) { 1410 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1411 } 1412 1413 if (T == VM_CNT) { 1414 for (int J = 0; J <= VgprUB; J++) { 1415 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1416 RegStrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1417 VgprVmemTypes[J] = NewVmemTypes; 1418 } 1419 } 1420 1421 if (T == LGKM_CNT) { 1422 for (int J = 0; J <= SgprUB; J++) { 1423 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1424 } 1425 } 1426 1427 if (RegStrictDom) 1428 StrictDom = true; 1429 } 1430 1431 return StrictDom; 1432 } 1433 1434 // Generate s_waitcnt instructions where needed. 1435 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1436 MachineBasicBlock &Block, 1437 WaitcntBrackets &ScoreBrackets) { 1438 bool Modified = false; 1439 1440 LLVM_DEBUG({ 1441 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1442 ScoreBrackets.dump(); 1443 }); 1444 1445 // Track the correctness of vccz through this basic block. There are two 1446 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1447 // ST->partialVCCWritesUpdateVCCZ(). 1448 bool VCCZCorrect = true; 1449 if (ST->hasReadVCCZBug()) { 1450 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1451 // to vcc and then issued an smem load. 1452 VCCZCorrect = false; 1453 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1454 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1455 // to vcc_lo or vcc_hi. 1456 VCCZCorrect = false; 1457 } 1458 1459 // Walk over the instructions. 1460 MachineInstr *OldWaitcntInstr = nullptr; 1461 1462 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1463 E = Block.instr_end(); 1464 Iter != E;) { 1465 MachineInstr &Inst = *Iter; 1466 1467 // Track pre-existing waitcnts that were added in earlier iterations or by 1468 // the memory legalizer. 1469 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1470 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1471 Inst.getOperand(0).isReg() && 1472 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1473 if (!OldWaitcntInstr) 1474 OldWaitcntInstr = &Inst; 1475 ++Iter; 1476 continue; 1477 } 1478 1479 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1480 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1481 OldWaitcntInstr = nullptr; 1482 1483 // Restore vccz if it's not known to be correct already. 1484 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1485 1486 // Don't examine operands unless we need to track vccz correctness. 1487 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1488 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1489 Inst.definesRegister(AMDGPU::VCC_HI)) { 1490 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1491 if (!ST->partialVCCWritesUpdateVCCZ()) 1492 VCCZCorrect = false; 1493 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1494 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1495 // vccz bit, so when we detect that an instruction may read from a 1496 // corrupt vccz bit, we need to: 1497 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1498 // operations to complete. 1499 // 2. Restore the correct value of vccz by writing the current value 1500 // of vcc back to vcc. 1501 if (ST->hasReadVCCZBug() && 1502 ScoreBrackets.getScoreLB(LGKM_CNT) < 1503 ScoreBrackets.getScoreUB(LGKM_CNT) && 1504 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1505 // Writes to vcc while there's an outstanding smem read may get 1506 // clobbered as soon as any read completes. 1507 VCCZCorrect = false; 1508 } else { 1509 // Writes to vcc will fix any incorrect value in vccz. 1510 VCCZCorrect = true; 1511 } 1512 } 1513 } 1514 1515 if (TII->isSMRD(Inst)) { 1516 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1517 // No need to handle invariant loads when avoiding WAR conflicts, as 1518 // there cannot be a vector store to the same memory location. 1519 if (!Memop->isInvariant()) { 1520 const Value *Ptr = Memop->getValue(); 1521 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent())); 1522 } 1523 } 1524 if (ST->hasReadVCCZBug()) { 1525 // This smem read could complete and clobber vccz at any time. 1526 VCCZCorrect = false; 1527 } 1528 } 1529 1530 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1531 1532 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1533 // If this instruction generates a S_SETVSKIP because it is an 1534 // indexed resource, and we are on Tahiti, then it will also force 1535 // an S_WAITCNT vmcnt(0) 1536 if (RequireCheckResourceType(Inst, context)) { 1537 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1538 ScoreBrackets->setScoreLB(VM_CNT, 1539 ScoreBrackets->getScoreUB(VM_CNT)); 1540 } 1541 #endif 1542 1543 LLVM_DEBUG({ 1544 Inst.print(dbgs()); 1545 ScoreBrackets.dump(); 1546 }); 1547 1548 // TODO: Remove this work-around after fixing the scheduler and enable the 1549 // assert above. 1550 if (RestoreVCCZ) { 1551 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1552 // bit is updated, so we can restore the bit by reading the value of 1553 // vcc and then writing it back to the register. 1554 BuildMI(Block, Inst, Inst.getDebugLoc(), 1555 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1556 TRI->getVCC()) 1557 .addReg(TRI->getVCC()); 1558 VCCZCorrect = true; 1559 Modified = true; 1560 } 1561 1562 ++Iter; 1563 } 1564 1565 return Modified; 1566 } 1567 1568 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1569 ST = &MF.getSubtarget<GCNSubtarget>(); 1570 TII = ST->getInstrInfo(); 1571 TRI = &TII->getRegisterInfo(); 1572 MRI = &MF.getRegInfo(); 1573 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1574 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1575 PDT = &getAnalysis<MachinePostDominatorTree>(); 1576 1577 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1578 for (auto T : inst_counter_types()) 1579 ForceEmitWaitcnt[T] = false; 1580 1581 HardwareLimits Limits = {}; 1582 Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1583 Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1584 Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1585 Limits.VscntMax = ST->hasVscnt() ? 63 : 0; 1586 1587 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1588 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1589 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1590 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1591 1592 RegisterEncoding Encoding = {}; 1593 Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1594 Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1; 1595 Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1596 Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1; 1597 1598 TrackedWaitcntSet.clear(); 1599 BlockInfos.clear(); 1600 bool Modified = false; 1601 1602 if (!MFI->isEntryFunction()) { 1603 // Wait for any outstanding memory operations that the input registers may 1604 // depend on. We can't track them and it's better to do the wait after the 1605 // costly call sequence. 1606 1607 // TODO: Could insert earlier and schedule more liberally with operations 1608 // that only use caller preserved registers. 1609 MachineBasicBlock &EntryBB = MF.front(); 1610 MachineBasicBlock::iterator I = EntryBB.begin(); 1611 for (MachineBasicBlock::iterator E = EntryBB.end(); 1612 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1613 ; 1614 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1615 if (ST->hasVscnt()) 1616 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1617 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1618 .addImm(0); 1619 1620 Modified = true; 1621 } 1622 1623 // Keep iterating over the blocks in reverse post order, inserting and 1624 // updating s_waitcnt where needed, until a fix point is reached. 1625 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1626 BlockInfos.insert({MBB, BlockInfo(MBB)}); 1627 1628 std::unique_ptr<WaitcntBrackets> Brackets; 1629 bool Repeat; 1630 do { 1631 Repeat = false; 1632 1633 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1634 ++BII) { 1635 BlockInfo &BI = BII->second; 1636 if (!BI.Dirty) 1637 continue; 1638 1639 if (BI.Incoming) { 1640 if (!Brackets) 1641 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1642 else 1643 *Brackets = *BI.Incoming; 1644 } else { 1645 if (!Brackets) 1646 Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding); 1647 else 1648 *Brackets = WaitcntBrackets(ST, Limits, Encoding); 1649 } 1650 1651 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1652 BI.Dirty = false; 1653 1654 if (Brackets->hasPending()) { 1655 BlockInfo *MoveBracketsToSucc = nullptr; 1656 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1657 auto SuccBII = BlockInfos.find(Succ); 1658 BlockInfo &SuccBI = SuccBII->second; 1659 if (!SuccBI.Incoming) { 1660 SuccBI.Dirty = true; 1661 if (SuccBII <= BII) 1662 Repeat = true; 1663 if (!MoveBracketsToSucc) { 1664 MoveBracketsToSucc = &SuccBI; 1665 } else { 1666 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1667 } 1668 } else if (SuccBI.Incoming->merge(*Brackets)) { 1669 SuccBI.Dirty = true; 1670 if (SuccBII <= BII) 1671 Repeat = true; 1672 } 1673 } 1674 if (MoveBracketsToSucc) 1675 MoveBracketsToSucc->Incoming = std::move(Brackets); 1676 } 1677 } 1678 } while (Repeat); 1679 1680 if (ST->hasScalarStores()) { 1681 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1682 bool HaveScalarStores = false; 1683 1684 for (MachineBasicBlock &MBB : MF) { 1685 for (MachineInstr &MI : MBB) { 1686 if (!HaveScalarStores && TII->isScalarStore(MI)) 1687 HaveScalarStores = true; 1688 1689 if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1690 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1691 EndPgmBlocks.push_back(&MBB); 1692 } 1693 } 1694 1695 if (HaveScalarStores) { 1696 // If scalar writes are used, the cache must be flushed or else the next 1697 // wave to reuse the same scratch memory can be clobbered. 1698 // 1699 // Insert s_dcache_wb at wave termination points if there were any scalar 1700 // stores, and only if the cache hasn't already been flushed. This could 1701 // be improved by looking across blocks for flushes in postdominating 1702 // blocks from the stores but an explicitly requested flush is probably 1703 // very rare. 1704 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1705 bool SeenDCacheWB = false; 1706 1707 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 1708 I != E; ++I) { 1709 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1710 SeenDCacheWB = true; 1711 else if (TII->isScalarStore(*I)) 1712 SeenDCacheWB = false; 1713 1714 // FIXME: It would be better to insert this before a waitcnt if any. 1715 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1716 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1717 !SeenDCacheWB) { 1718 Modified = true; 1719 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1720 } 1721 } 1722 } 1723 } 1724 } 1725 1726 return Modified; 1727 } 1728