xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/FloatingPointMode.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/UniformityAnalysis.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/ByteProvider.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
31 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/IntrinsicsAMDGPU.h"
39 #include "llvm/IR/IntrinsicsR600.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Support/ModRef.h"
43 #include <optional>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "si-lower"
48 
49 STATISTIC(NumTailCalls, "Number of tail calls");
50 
51 static cl::opt<bool> DisableLoopAlignment(
52   "amdgpu-disable-loop-alignment",
53   cl::desc("Do not align and prefetch loops"),
54   cl::init(false));
55 
56 static cl::opt<bool> UseDivergentRegisterIndexing(
57   "amdgpu-use-divergent-register-indexing",
58   cl::Hidden,
59   cl::desc("Use indirect register addressing for divergent indexes"),
60   cl::init(false));
61 
62 static bool denormalModeIsFlushAllF32(const MachineFunction &MF) {
63   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
64   return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign();
65 }
66 
67 static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) {
68   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
69   return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign();
70 }
71 
72 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
73   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
74   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
75     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
76       return AMDGPU::SGPR0 + Reg;
77     }
78   }
79   llvm_unreachable("Cannot allocate sgpr");
80 }
81 
82 SITargetLowering::SITargetLowering(const TargetMachine &TM,
83                                    const GCNSubtarget &STI)
84     : AMDGPUTargetLowering(TM, STI),
85       Subtarget(&STI) {
86   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
87   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
88 
89   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
90   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
91 
92   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
93 
94   const SIRegisterInfo *TRI = STI.getRegisterInfo();
95   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
96 
97   addRegisterClass(MVT::f64, V64RegClass);
98   addRegisterClass(MVT::v2f32, V64RegClass);
99 
100   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
101   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
102 
103   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
104   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
105 
106   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
107   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
108 
109   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
110   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
111 
112   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
113   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
114 
115   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
116   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
117 
118   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
119   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
120 
121   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
122   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
123 
124   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
125   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
126 
127   addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass);
128   addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288));
129 
130   addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass);
131   addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320));
132 
133   addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass);
134   addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352));
135 
136   addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass);
137   addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384));
138 
139   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
140   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
141 
142   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
143   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
144 
145   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
146   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
147 
148   if (Subtarget->has16BitInsts()) {
149     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
150     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
151 
152     // Unless there are also VOP3P operations, not operations are really legal.
153     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
154     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
155     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
156     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
157     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
158     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
159     addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
160     addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
161   }
162 
163   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
164   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
165 
166   computeRegisterProperties(Subtarget->getRegisterInfo());
167 
168   // The boolean content concept here is too inflexible. Compares only ever
169   // really produce a 1-bit result. Any copy/extend from these will turn into a
170   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
171   // it's what most targets use.
172   setBooleanContents(ZeroOrOneBooleanContent);
173   setBooleanVectorContents(ZeroOrOneBooleanContent);
174 
175   // We need to custom lower vector stores from local memory
176   setOperationAction(ISD::LOAD,
177                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
178                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
179                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
180                       MVT::i1,     MVT::v32i32},
181                      Custom);
182 
183   setOperationAction(ISD::STORE,
184                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
185                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
186                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
187                       MVT::i1,     MVT::v32i32},
188                      Custom);
189 
190   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
191   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
192   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
193   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
194   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
195   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
196   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
197   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
198   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
199   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
200   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
201   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
202   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
203   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
204   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
205   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
206 
207   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
208   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
209   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
210   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
211   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
212   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
213   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
214 
215   setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
216 
217   setOperationAction(ISD::SELECT, MVT::i1, Promote);
218   setOperationAction(ISD::SELECT, MVT::i64, Custom);
219   setOperationAction(ISD::SELECT, MVT::f64, Promote);
220   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
221 
222   setOperationAction(ISD::FSQRT, MVT::f64, Custom);
223 
224   setOperationAction(ISD::SELECT_CC,
225                      {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
226 
227   setOperationAction(ISD::SETCC, MVT::i1, Promote);
228   setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
229   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
230 
231   setOperationAction(ISD::TRUNCATE,
232                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
233                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
234                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
235                      Expand);
236   setOperationAction(ISD::FP_ROUND,
237                      {MVT::v2f32,  MVT::v3f32,  MVT::v4f32,  MVT::v5f32,
238                       MVT::v6f32,  MVT::v7f32,  MVT::v8f32,  MVT::v9f32,
239                       MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
240                      Expand);
241 
242   setOperationAction(ISD::SIGN_EXTEND_INREG,
243                      {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
244                       MVT::v3i16, MVT::v4i16, MVT::Other},
245                      Custom);
246 
247   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
248   setOperationAction(ISD::BR_CC,
249                      {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
250 
251   setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
252 
253   setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal);
254 
255   setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
256                      Expand);
257 
258 #if 0
259   setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal);
260 #endif
261 
262   // We only support LOAD/STORE and vector manipulation ops for vectors
263   // with > 4 elements.
264   for (MVT VT :
265        {MVT::v8i32,  MVT::v8f32,  MVT::v9i32,   MVT::v9f32,  MVT::v10i32,
266         MVT::v10f32, MVT::v11i32, MVT::v11f32,  MVT::v12i32, MVT::v12f32,
267         MVT::v16i32, MVT::v16f32, MVT::v2i64,   MVT::v2f64,  MVT::v4i16,
268         MVT::v4f16,  MVT::v3i64,  MVT::v3f64,   MVT::v6i32,  MVT::v6f32,
269         MVT::v4i64,  MVT::v4f64,  MVT::v8i64,   MVT::v8f64,  MVT::v8i16,
270         MVT::v8f16,  MVT::v16i16, MVT::v16f16,  MVT::v16i64, MVT::v16f64,
271         MVT::v32i32, MVT::v32f32}) {
272     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
273       switch (Op) {
274       case ISD::LOAD:
275       case ISD::STORE:
276       case ISD::BUILD_VECTOR:
277       case ISD::BITCAST:
278       case ISD::UNDEF:
279       case ISD::EXTRACT_VECTOR_ELT:
280       case ISD::INSERT_VECTOR_ELT:
281       case ISD::EXTRACT_SUBVECTOR:
282       case ISD::SCALAR_TO_VECTOR:
283       case ISD::IS_FPCLASS:
284         break;
285       case ISD::INSERT_SUBVECTOR:
286       case ISD::CONCAT_VECTORS:
287         setOperationAction(Op, VT, Custom);
288         break;
289       default:
290         setOperationAction(Op, VT, Expand);
291         break;
292       }
293     }
294   }
295 
296   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
297 
298   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
299   // is expanded to avoid having two separate loops in case the index is a VGPR.
300 
301   // Most operations are naturally 32-bit vector operations. We only support
302   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
303   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
304     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
305     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
306 
307     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
308     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
309 
310     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
311     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
312 
313     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
314     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
315   }
316 
317   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
318     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
319     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
320 
321     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
322     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
323 
324     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
325     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
326 
327     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
328     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
329   }
330 
331   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
332     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
333     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
334 
335     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
336     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
337 
338     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
339     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
340 
341     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
342     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
343   }
344 
345   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
346     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
347     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
348 
349     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
350     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
351 
352     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
353     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
354 
355     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
356     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
357   }
358 
359   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
360     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
361     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
362 
363     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
364     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
365 
366     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
367     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
368 
369     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
370     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
371   }
372 
373   setOperationAction(ISD::VECTOR_SHUFFLE,
374                      {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
375                      Expand);
376 
377   setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom);
378 
379   // Avoid stack access for these.
380   // TODO: Generalize to more vector types.
381   setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
382                      {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
383                       MVT::v4i16, MVT::v4f16},
384                      Custom);
385 
386   // Deal with vec3 vector operations when widened to vec4.
387   setOperationAction(ISD::INSERT_SUBVECTOR,
388                      {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
389 
390   // Deal with vec5/6/7 vector operations when widened to vec8.
391   setOperationAction(ISD::INSERT_SUBVECTOR,
392                      {MVT::v5i32,  MVT::v5f32,  MVT::v6i32,  MVT::v6f32,
393                       MVT::v7i32,  MVT::v7f32,  MVT::v8i32,  MVT::v8f32,
394                       MVT::v9i32,  MVT::v9f32,  MVT::v10i32, MVT::v10f32,
395                       MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
396                      Custom);
397 
398   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
399   // and output demarshalling
400   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
401 
402   // We can't return success/failure, only the old value,
403   // let LLVM add the comparison
404   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
405                      Expand);
406 
407   setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
408 
409   setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
410 
411   // FIXME: This should be narrowed to i32, but that only happens if i64 is
412   // illegal.
413   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
414   setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
415 
416   // On SI this is s_memtime and s_memrealtime on VI.
417   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
418   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
419 
420   if (Subtarget->has16BitInsts()) {
421     setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
422     setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
423   }
424 
425   if (Subtarget->hasMadMacF32Insts())
426     setOperationAction(ISD::FMAD, MVT::f32, Legal);
427 
428   if (!Subtarget->hasBFI())
429     // fcopysign can be done in a single instruction with BFI.
430     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
431 
432   if (!Subtarget->hasBCNT(32))
433     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
434 
435   if (!Subtarget->hasBCNT(64))
436     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
437 
438   if (Subtarget->hasFFBH())
439     setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
440 
441   if (Subtarget->hasFFBL())
442     setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
443 
444   // We only really have 32-bit BFE instructions (and 16-bit on VI).
445   //
446   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
447   // effort to match them now. We want this to be false for i64 cases when the
448   // extraction isn't restricted to the upper or lower half. Ideally we would
449   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
450   // span the midpoint are probably relatively rare, so don't worry about them
451   // for now.
452   if (Subtarget->hasBFE())
453     setHasExtractBitsInsn(true);
454 
455   // Clamp modifier on add/sub
456   if (Subtarget->hasIntClamp())
457     setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
458 
459   if (Subtarget->hasAddNoCarry())
460     setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
461                        Legal);
462 
463   setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
464                      Custom);
465 
466   // These are really only legal for ieee_mode functions. We should be avoiding
467   // them for functions that don't have ieee_mode enabled, so just say they are
468   // legal.
469   setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
470                      {MVT::f32, MVT::f64}, Legal);
471 
472   if (Subtarget->haveRoundOpsF64())
473     setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal);
474   else
475     setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR},
476                        MVT::f64, Custom);
477 
478   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
479   setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64},
480                      Legal);
481   setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom);
482 
483   setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
484   setOperationAction(ISD::FDIV, MVT::f64, Custom);
485 
486   setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand);
487   setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand);
488 
489   if (Subtarget->has16BitInsts()) {
490     setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
491                         ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
492                        MVT::i16, Legal);
493 
494     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
495 
496     setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
497                        MVT::i16, Expand);
498 
499     setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
500                         ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
501                         ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
502                         ISD::CTPOP},
503                        MVT::i16, Promote);
504 
505     setOperationAction(ISD::LOAD, MVT::i16, Custom);
506 
507     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
508 
509     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
510     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
511     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
512     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
513 
514     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
515 
516     // F16 - Constant Actions.
517     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
518 
519     // F16 - Load/Store Actions.
520     setOperationAction(ISD::LOAD, MVT::f16, Promote);
521     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
522     setOperationAction(ISD::STORE, MVT::f16, Promote);
523     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
524 
525     // F16 - VOP1 Actions.
526     setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS,
527                         ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
528                        MVT::f16, Custom);
529 
530     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
531 
532     setOperationAction(
533         {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP},
534         MVT::f16, Promote);
535 
536     // F16 - VOP2 Actions.
537     setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand);
538     setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom);
539     setOperationAction(ISD::FFREXP, MVT::f16, Custom);
540     setOperationAction(ISD::FDIV, MVT::f16, Custom);
541 
542     // F16 - VOP3 Actions.
543     setOperationAction(ISD::FMA, MVT::f16, Legal);
544     if (STI.hasMadF16())
545       setOperationAction(ISD::FMAD, MVT::f16, Legal);
546 
547     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
548                    MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
549       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
550         switch (Op) {
551         case ISD::LOAD:
552         case ISD::STORE:
553         case ISD::BUILD_VECTOR:
554         case ISD::BITCAST:
555         case ISD::UNDEF:
556         case ISD::EXTRACT_VECTOR_ELT:
557         case ISD::INSERT_VECTOR_ELT:
558         case ISD::INSERT_SUBVECTOR:
559         case ISD::EXTRACT_SUBVECTOR:
560         case ISD::SCALAR_TO_VECTOR:
561         case ISD::IS_FPCLASS:
562           break;
563         case ISD::CONCAT_VECTORS:
564           setOperationAction(Op, VT, Custom);
565           break;
566         default:
567           setOperationAction(Op, VT, Expand);
568           break;
569         }
570       }
571     }
572 
573     // v_perm_b32 can handle either of these.
574     setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
575     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
576 
577     // XXX - Do these do anything? Vector constants turn into build_vector.
578     setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
579 
580     setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal);
581 
582     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
583     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
584     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
585     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
586 
587     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
588     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
589     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
590     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
591 
592     setOperationAction(ISD::AND, MVT::v2i16, Promote);
593     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
594     setOperationAction(ISD::OR, MVT::v2i16, Promote);
595     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
596     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
597     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
598 
599     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
600     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
601     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
602     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
603 
604     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
605     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
606     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
607     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
608 
609     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
610     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
611     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
612     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
613 
614     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
615     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
616     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
617     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
618 
619     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
620     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
621     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
622     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
623 
624     setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
625     AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
626     setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
627     AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
628 
629     setOperationAction(ISD::STORE, MVT::v16i16, Promote);
630     AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
631     setOperationAction(ISD::STORE, MVT::v16f16, Promote);
632     AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
633 
634     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
635                        MVT::v2i32, Expand);
636     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
637 
638     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
639                        MVT::v4i32, Expand);
640 
641     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
642                        MVT::v8i32, Expand);
643 
644     if (!Subtarget->hasVOP3PInsts())
645       setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom);
646 
647     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
648     // This isn't really legal, but this avoids the legalizer unrolling it (and
649     // allows matching fneg (fabs x) patterns)
650     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
651 
652     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
653     setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
654 
655     setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
656                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom);
657 
658     setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
659                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand);
660 
661     for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
662       setOperationAction(
663           {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
664           Vec16, Custom);
665       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
666     }
667   }
668 
669   if (Subtarget->hasVOP3PInsts()) {
670     setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
671                         ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
672                         ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
673                        MVT::v2i16, Legal);
674 
675     setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
676                         ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
677                        MVT::v2f16, Legal);
678 
679     setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16},
680                        Custom);
681 
682     setOperationAction(ISD::VECTOR_SHUFFLE,
683                        {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
684                         MVT::v16f16, MVT::v16i16},
685                        Custom);
686 
687     for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16})
688       // Split vector operations.
689       setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
690                           ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
691                           ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
692                           ISD::SSUBSAT},
693                          VT, Custom);
694 
695     for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16})
696       // Split vector operations.
697       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
698                          VT, Custom);
699 
700     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
701                        Custom);
702 
703     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
704     setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom);
705 
706     if (Subtarget->hasPackedFP32Ops()) {
707       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
708                          MVT::v2f32, Legal);
709       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
710                          {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
711                          Custom);
712     }
713   }
714 
715   setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
716 
717   if (Subtarget->has16BitInsts()) {
718     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
719     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
720     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
721     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
722   } else {
723     // Legalization hack.
724     setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
725 
726     setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
727   }
728 
729   setOperationAction(ISD::SELECT,
730                      {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
731                       MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16},
732                      Custom);
733 
734   setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
735 
736   if (Subtarget->hasMad64_32())
737     setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
738 
739   setOperationAction(ISD::INTRINSIC_WO_CHAIN,
740                      {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
741                       MVT::v2i16, MVT::v2f16, MVT::i128},
742                      Custom);
743 
744   setOperationAction(ISD::INTRINSIC_W_CHAIN,
745                      {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
746                       MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
747                       MVT::i16, MVT::i8, MVT::i128},
748                      Custom);
749 
750   setOperationAction(ISD::INTRINSIC_VOID,
751                      {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
752                       MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
753                       MVT::i8, MVT::i128},
754                      Custom);
755 
756   setTargetDAGCombine({ISD::ADD,
757                        ISD::UADDO_CARRY,
758                        ISD::SUB,
759                        ISD::USUBO_CARRY,
760                        ISD::FADD,
761                        ISD::FSUB,
762                        ISD::FMINNUM,
763                        ISD::FMAXNUM,
764                        ISD::FMINNUM_IEEE,
765                        ISD::FMAXNUM_IEEE,
766                        ISD::FMA,
767                        ISD::SMIN,
768                        ISD::SMAX,
769                        ISD::UMIN,
770                        ISD::UMAX,
771                        ISD::SETCC,
772                        ISD::AND,
773                        ISD::OR,
774                        ISD::XOR,
775                        ISD::SINT_TO_FP,
776                        ISD::UINT_TO_FP,
777                        ISD::FCANONICALIZE,
778                        ISD::SCALAR_TO_VECTOR,
779                        ISD::ZERO_EXTEND,
780                        ISD::SIGN_EXTEND_INREG,
781                        ISD::EXTRACT_VECTOR_ELT,
782                        ISD::INSERT_VECTOR_ELT,
783                        ISD::FCOPYSIGN});
784 
785   if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
786     setTargetDAGCombine(ISD::FP_ROUND);
787 
788   // All memory operations. Some folding on the pointer operand is done to help
789   // matching the constant offsets in the addressing modes.
790   setTargetDAGCombine({ISD::LOAD,
791                        ISD::STORE,
792                        ISD::ATOMIC_LOAD,
793                        ISD::ATOMIC_STORE,
794                        ISD::ATOMIC_CMP_SWAP,
795                        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
796                        ISD::ATOMIC_SWAP,
797                        ISD::ATOMIC_LOAD_ADD,
798                        ISD::ATOMIC_LOAD_SUB,
799                        ISD::ATOMIC_LOAD_AND,
800                        ISD::ATOMIC_LOAD_OR,
801                        ISD::ATOMIC_LOAD_XOR,
802                        ISD::ATOMIC_LOAD_NAND,
803                        ISD::ATOMIC_LOAD_MIN,
804                        ISD::ATOMIC_LOAD_MAX,
805                        ISD::ATOMIC_LOAD_UMIN,
806                        ISD::ATOMIC_LOAD_UMAX,
807                        ISD::ATOMIC_LOAD_FADD,
808                        ISD::ATOMIC_LOAD_UINC_WRAP,
809                        ISD::ATOMIC_LOAD_UDEC_WRAP,
810                        ISD::INTRINSIC_VOID,
811                        ISD::INTRINSIC_W_CHAIN});
812 
813   // FIXME: In other contexts we pretend this is a per-function property.
814   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
815 
816   setSchedulingPreference(Sched::RegPressure);
817 }
818 
819 const GCNSubtarget *SITargetLowering::getSubtarget() const {
820   return Subtarget;
821 }
822 
823 //===----------------------------------------------------------------------===//
824 // TargetLowering queries
825 //===----------------------------------------------------------------------===//
826 
827 // v_mad_mix* support a conversion from f16 to f32.
828 //
829 // There is only one special case when denormals are enabled we don't currently,
830 // where this is OK to use.
831 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
832                                        EVT DestVT, EVT SrcVT) const {
833   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
834           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
835          DestVT.getScalarType() == MVT::f32 &&
836          SrcVT.getScalarType() == MVT::f16 &&
837          // TODO: This probably only requires no input flushing?
838          denormalModeIsFlushAllF32(DAG.getMachineFunction());
839 }
840 
841 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
842                                        LLT DestTy, LLT SrcTy) const {
843   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
844           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
845          DestTy.getScalarSizeInBits() == 32 &&
846          SrcTy.getScalarSizeInBits() == 16 &&
847          // TODO: This probably only requires no input flushing?
848          denormalModeIsFlushAllF32(*MI.getMF());
849 }
850 
851 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
852   // SI has some legal vector types, but no legal vector operations. Say no
853   // shuffles are legal in order to prefer scalarizing some vector operations.
854   return false;
855 }
856 
857 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
858                                                     CallingConv::ID CC,
859                                                     EVT VT) const {
860   if (CC == CallingConv::AMDGPU_KERNEL)
861     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
862 
863   if (VT.isVector()) {
864     EVT ScalarVT = VT.getScalarType();
865     unsigned Size = ScalarVT.getSizeInBits();
866     if (Size == 16) {
867       if (Subtarget->has16BitInsts()) {
868         if (VT.isInteger())
869           return MVT::v2i16;
870         return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
871       }
872       return VT.isInteger() ? MVT::i32 : MVT::f32;
873     }
874 
875     if (Size < 16)
876       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
877     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
878   }
879 
880   if (VT.getSizeInBits() > 32)
881     return MVT::i32;
882 
883   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
884 }
885 
886 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
887                                                          CallingConv::ID CC,
888                                                          EVT VT) const {
889   if (CC == CallingConv::AMDGPU_KERNEL)
890     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
891 
892   if (VT.isVector()) {
893     unsigned NumElts = VT.getVectorNumElements();
894     EVT ScalarVT = VT.getScalarType();
895     unsigned Size = ScalarVT.getSizeInBits();
896 
897     // FIXME: Should probably promote 8-bit vectors to i16.
898     if (Size == 16 && Subtarget->has16BitInsts())
899       return (NumElts + 1) / 2;
900 
901     if (Size <= 32)
902       return NumElts;
903 
904     if (Size > 32)
905       return NumElts * ((Size + 31) / 32);
906   } else if (VT.getSizeInBits() > 32)
907     return (VT.getSizeInBits() + 31) / 32;
908 
909   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
910 }
911 
912 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
913   LLVMContext &Context, CallingConv::ID CC,
914   EVT VT, EVT &IntermediateVT,
915   unsigned &NumIntermediates, MVT &RegisterVT) const {
916   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
917     unsigned NumElts = VT.getVectorNumElements();
918     EVT ScalarVT = VT.getScalarType();
919     unsigned Size = ScalarVT.getSizeInBits();
920     // FIXME: We should fix the ABI to be the same on targets without 16-bit
921     // support, but unless we can properly handle 3-vectors, it will be still be
922     // inconsistent.
923     if (Size == 16 && Subtarget->has16BitInsts()) {
924       if (ScalarVT == MVT::bf16) {
925         RegisterVT = MVT::i32;
926         IntermediateVT = MVT::v2bf16;
927       } else {
928         RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
929         IntermediateVT = RegisterVT;
930       }
931       NumIntermediates = (NumElts + 1) / 2;
932       return NumIntermediates;
933     }
934 
935     if (Size == 32) {
936       RegisterVT = ScalarVT.getSimpleVT();
937       IntermediateVT = RegisterVT;
938       NumIntermediates = NumElts;
939       return NumIntermediates;
940     }
941 
942     if (Size < 16 && Subtarget->has16BitInsts()) {
943       // FIXME: Should probably form v2i16 pieces
944       RegisterVT = MVT::i16;
945       IntermediateVT = ScalarVT;
946       NumIntermediates = NumElts;
947       return NumIntermediates;
948     }
949 
950 
951     if (Size != 16 && Size <= 32) {
952       RegisterVT = MVT::i32;
953       IntermediateVT = ScalarVT;
954       NumIntermediates = NumElts;
955       return NumIntermediates;
956     }
957 
958     if (Size > 32) {
959       RegisterVT = MVT::i32;
960       IntermediateVT = RegisterVT;
961       NumIntermediates = NumElts * ((Size + 31) / 32);
962       return NumIntermediates;
963     }
964   }
965 
966   return TargetLowering::getVectorTypeBreakdownForCallingConv(
967     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
968 }
969 
970 static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) {
971   assert(MaxNumLanes != 0);
972 
973   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
974     unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
975     return EVT::getVectorVT(Ty->getContext(),
976                             EVT::getEVT(VT->getElementType()),
977                             NumElts);
978   }
979 
980   return EVT::getEVT(Ty);
981 }
982 
983 // Peek through TFE struct returns to only use the data size.
984 static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) {
985   auto *ST = dyn_cast<StructType>(Ty);
986   if (!ST)
987     return memVTFromLoadIntrData(Ty, MaxNumLanes);
988 
989   // TFE intrinsics return an aggregate type.
990   assert(ST->getNumContainedTypes() == 2 &&
991          ST->getContainedType(1)->isIntegerTy(32));
992   return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes);
993 }
994 
995 /// Map address space 7 to MVT::v5i32 because that's its in-memory
996 /// representation. This return value is vector-typed because there is no
997 /// MVT::i160 and it is not clear if one can be added. While this could
998 /// cause issues during codegen, these address space 7 pointers will be
999 /// rewritten away by then. Therefore, we can return MVT::v5i32 in order
1000 /// to allow pre-codegen passes that query TargetTransformInfo, often for cost
1001 /// modeling, to work.
1002 MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const {
1003   if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160)
1004     return MVT::v5i32;
1005   return AMDGPUTargetLowering::getPointerTy(DL, AS);
1006 }
1007 /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka
1008 /// v8i32 when padding is added.
1009 MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const {
1010   if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160)
1011     return MVT::v8i32;
1012   return AMDGPUTargetLowering::getPointerMemTy(DL, AS);
1013 }
1014 
1015 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1016                                           const CallInst &CI,
1017                                           MachineFunction &MF,
1018                                           unsigned IntrID) const {
1019   Info.flags = MachineMemOperand::MONone;
1020   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
1021     Info.flags |= MachineMemOperand::MOInvariant;
1022 
1023   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1024           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1025     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1026                                                   (Intrinsic::ID)IntrID);
1027     MemoryEffects ME = Attr.getMemoryEffects();
1028     if (ME.doesNotAccessMemory())
1029       return false;
1030 
1031     // TODO: Should images get their own address space?
1032     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1033 
1034     if (RsrcIntr->IsImage)
1035       Info.align.reset();
1036 
1037     Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg);
1038     if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) {
1039       if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE)
1040         // We conservatively set the memory operand of a buffer intrinsic to the
1041         // base resource pointer, so that we can access alias information about
1042         // those pointers. Cases like "this points at the same value
1043         // but with a different offset" are handled in
1044         // areMemAccessesTriviallyDisjoint.
1045         Info.ptrVal = RsrcArg;
1046     }
1047 
1048     Info.flags |= MachineMemOperand::MODereferenceable;
1049     if (ME.onlyReadsMemory()) {
1050       unsigned MaxNumLanes = 4;
1051 
1052       if (RsrcIntr->IsImage) {
1053         const AMDGPU::ImageDimIntrinsicInfo *Intr
1054           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1055         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1056           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1057 
1058         if (!BaseOpcode->Gather4) {
1059           // If this isn't a gather, we may have excess loaded elements in the
1060           // IR type. Check the dmask for the real number of elements loaded.
1061           unsigned DMask
1062             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1063           MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1064         }
1065       }
1066 
1067       Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes);
1068 
1069       // FIXME: What does alignment mean for an image?
1070       Info.opc = ISD::INTRINSIC_W_CHAIN;
1071       Info.flags |= MachineMemOperand::MOLoad;
1072     } else if (ME.onlyWritesMemory()) {
1073       Info.opc = ISD::INTRINSIC_VOID;
1074 
1075       Type *DataTy = CI.getArgOperand(0)->getType();
1076       if (RsrcIntr->IsImage) {
1077         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1078         unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1079         Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes);
1080       } else
1081         Info.memVT = EVT::getEVT(DataTy);
1082 
1083       Info.flags |= MachineMemOperand::MOStore;
1084     } else {
1085       // Atomic
1086       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1087                                             ISD::INTRINSIC_W_CHAIN;
1088       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1089       Info.flags |= MachineMemOperand::MOLoad |
1090                     MachineMemOperand::MOStore |
1091                     MachineMemOperand::MODereferenceable;
1092 
1093       // XXX - Should this be volatile without known ordering?
1094       Info.flags |= MachineMemOperand::MOVolatile;
1095 
1096       switch (IntrID) {
1097       default:
1098         break;
1099       case Intrinsic::amdgcn_raw_buffer_load_lds:
1100       case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1101       case Intrinsic::amdgcn_struct_buffer_load_lds:
1102       case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1103         unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1104         Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1105         return true;
1106       }
1107       }
1108     }
1109     return true;
1110   }
1111 
1112   switch (IntrID) {
1113   case Intrinsic::amdgcn_ds_ordered_add:
1114   case Intrinsic::amdgcn_ds_ordered_swap:
1115   case Intrinsic::amdgcn_ds_fadd:
1116   case Intrinsic::amdgcn_ds_fmin:
1117   case Intrinsic::amdgcn_ds_fmax: {
1118     Info.opc = ISD::INTRINSIC_W_CHAIN;
1119     Info.memVT = MVT::getVT(CI.getType());
1120     Info.ptrVal = CI.getOperand(0);
1121     Info.align.reset();
1122     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1123 
1124     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1125     if (!Vol->isZero())
1126       Info.flags |= MachineMemOperand::MOVolatile;
1127 
1128     return true;
1129   }
1130   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1131     Info.opc = ISD::INTRINSIC_W_CHAIN;
1132     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1133     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1134     Info.align.reset();
1135     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1136 
1137     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1138     if (!Vol || !Vol->isZero())
1139       Info.flags |= MachineMemOperand::MOVolatile;
1140 
1141     return true;
1142   }
1143   case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1144   case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1145     Info.opc = ISD::INTRINSIC_W_CHAIN;
1146     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1147     Info.ptrVal = nullptr;
1148     Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER;
1149     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1150     return true;
1151   }
1152   case Intrinsic::amdgcn_ds_append:
1153   case Intrinsic::amdgcn_ds_consume: {
1154     Info.opc = ISD::INTRINSIC_W_CHAIN;
1155     Info.memVT = MVT::getVT(CI.getType());
1156     Info.ptrVal = CI.getOperand(0);
1157     Info.align.reset();
1158     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1159 
1160     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1161     if (!Vol->isZero())
1162       Info.flags |= MachineMemOperand::MOVolatile;
1163 
1164     return true;
1165   }
1166   case Intrinsic::amdgcn_global_atomic_csub: {
1167     Info.opc = ISD::INTRINSIC_W_CHAIN;
1168     Info.memVT = MVT::getVT(CI.getType());
1169     Info.ptrVal = CI.getOperand(0);
1170     Info.align.reset();
1171     Info.flags |= MachineMemOperand::MOLoad |
1172                   MachineMemOperand::MOStore |
1173                   MachineMemOperand::MOVolatile;
1174     return true;
1175   }
1176   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1177     Info.opc = ISD::INTRINSIC_W_CHAIN;
1178     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1179 
1180     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1181     Info.align.reset();
1182     Info.flags |= MachineMemOperand::MOLoad |
1183                   MachineMemOperand::MODereferenceable;
1184     return true;
1185   }
1186   case Intrinsic::amdgcn_global_atomic_fadd:
1187   case Intrinsic::amdgcn_global_atomic_fmin:
1188   case Intrinsic::amdgcn_global_atomic_fmax:
1189   case Intrinsic::amdgcn_flat_atomic_fadd:
1190   case Intrinsic::amdgcn_flat_atomic_fmin:
1191   case Intrinsic::amdgcn_flat_atomic_fmax:
1192   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1193   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1194     Info.opc = ISD::INTRINSIC_W_CHAIN;
1195     Info.memVT = MVT::getVT(CI.getType());
1196     Info.ptrVal = CI.getOperand(0);
1197     Info.align.reset();
1198     Info.flags |= MachineMemOperand::MOLoad |
1199                   MachineMemOperand::MOStore |
1200                   MachineMemOperand::MODereferenceable |
1201                   MachineMemOperand::MOVolatile;
1202     return true;
1203   }
1204   case Intrinsic::amdgcn_ds_gws_init:
1205   case Intrinsic::amdgcn_ds_gws_barrier:
1206   case Intrinsic::amdgcn_ds_gws_sema_v:
1207   case Intrinsic::amdgcn_ds_gws_sema_br:
1208   case Intrinsic::amdgcn_ds_gws_sema_p:
1209   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1210     Info.opc = ISD::INTRINSIC_VOID;
1211 
1212     const GCNTargetMachine &TM =
1213         static_cast<const GCNTargetMachine &>(getTargetMachine());
1214 
1215     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1216     Info.ptrVal = MFI->getGWSPSV(TM);
1217 
1218     // This is an abstract access, but we need to specify a type and size.
1219     Info.memVT = MVT::i32;
1220     Info.size = 4;
1221     Info.align = Align(4);
1222 
1223     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1224       Info.flags |= MachineMemOperand::MOLoad;
1225     else
1226       Info.flags |= MachineMemOperand::MOStore;
1227     return true;
1228   }
1229   case Intrinsic::amdgcn_global_load_lds: {
1230     Info.opc = ISD::INTRINSIC_VOID;
1231     unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1232     Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1233     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1234                   MachineMemOperand::MOVolatile;
1235     return true;
1236   }
1237   case Intrinsic::amdgcn_ds_bvh_stack_rtn: {
1238     Info.opc = ISD::INTRINSIC_W_CHAIN;
1239 
1240     const GCNTargetMachine &TM =
1241         static_cast<const GCNTargetMachine &>(getTargetMachine());
1242 
1243     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1244     Info.ptrVal = MFI->getGWSPSV(TM);
1245 
1246     // This is an abstract access, but we need to specify a type and size.
1247     Info.memVT = MVT::i32;
1248     Info.size = 4;
1249     Info.align = Align(4);
1250 
1251     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1252     return true;
1253   }
1254   default:
1255     return false;
1256   }
1257 }
1258 
1259 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1260                                             SmallVectorImpl<Value*> &Ops,
1261                                             Type *&AccessTy) const {
1262   switch (II->getIntrinsicID()) {
1263   case Intrinsic::amdgcn_ds_ordered_add:
1264   case Intrinsic::amdgcn_ds_ordered_swap:
1265   case Intrinsic::amdgcn_ds_append:
1266   case Intrinsic::amdgcn_ds_consume:
1267   case Intrinsic::amdgcn_ds_fadd:
1268   case Intrinsic::amdgcn_ds_fmin:
1269   case Intrinsic::amdgcn_ds_fmax:
1270   case Intrinsic::amdgcn_global_atomic_fadd:
1271   case Intrinsic::amdgcn_flat_atomic_fadd:
1272   case Intrinsic::amdgcn_flat_atomic_fmin:
1273   case Intrinsic::amdgcn_flat_atomic_fmax:
1274   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1275   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1276   case Intrinsic::amdgcn_global_atomic_csub: {
1277     Value *Ptr = II->getArgOperand(0);
1278     AccessTy = II->getType();
1279     Ops.push_back(Ptr);
1280     return true;
1281   }
1282   default:
1283     return false;
1284   }
1285 }
1286 
1287 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1288   if (!Subtarget->hasFlatInstOffsets()) {
1289     // Flat instructions do not have offsets, and only have the register
1290     // address.
1291     return AM.BaseOffs == 0 && AM.Scale == 0;
1292   }
1293 
1294   return AM.Scale == 0 &&
1295          (AM.BaseOffs == 0 ||
1296           Subtarget->getInstrInfo()->isLegalFLATOffset(
1297               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1298 }
1299 
1300 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1301   if (Subtarget->hasFlatGlobalInsts())
1302     return AM.Scale == 0 &&
1303            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1304                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1305                                     SIInstrFlags::FlatGlobal));
1306 
1307   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1308       // Assume the we will use FLAT for all global memory accesses
1309       // on VI.
1310       // FIXME: This assumption is currently wrong.  On VI we still use
1311       // MUBUF instructions for the r + i addressing mode.  As currently
1312       // implemented, the MUBUF instructions only work on buffer < 4GB.
1313       // It may be possible to support > 4GB buffers with MUBUF instructions,
1314       // by setting the stride value in the resource descriptor which would
1315       // increase the size limit to (stride * 4GB).  However, this is risky,
1316       // because it has never been validated.
1317     return isLegalFlatAddressingMode(AM);
1318   }
1319 
1320   return isLegalMUBUFAddressingMode(AM);
1321 }
1322 
1323 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1324   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1325   // additionally can do r + r + i with addr64. 32-bit has more addressing
1326   // mode options. Depending on the resource constant, it can also do
1327   // (i64 r0) + (i32 r1) * (i14 i).
1328   //
1329   // Private arrays end up using a scratch buffer most of the time, so also
1330   // assume those use MUBUF instructions. Scratch loads / stores are currently
1331   // implemented as mubuf instructions with offen bit set, so slightly
1332   // different than the normal addr64.
1333   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1334     return false;
1335 
1336   // FIXME: Since we can split immediate into soffset and immediate offset,
1337   // would it make sense to allow any immediate?
1338 
1339   switch (AM.Scale) {
1340   case 0: // r + i or just i, depending on HasBaseReg.
1341     return true;
1342   case 1:
1343     return true; // We have r + r or r + i.
1344   case 2:
1345     if (AM.HasBaseReg) {
1346       // Reject 2 * r + r.
1347       return false;
1348     }
1349 
1350     // Allow 2 * r as r + r
1351     // Or  2 * r + i is allowed as r + r + i.
1352     return true;
1353   default: // Don't allow n * r
1354     return false;
1355   }
1356 }
1357 
1358 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1359                                              const AddrMode &AM, Type *Ty,
1360                                              unsigned AS, Instruction *I) const {
1361   // No global is ever allowed as a base.
1362   if (AM.BaseGV)
1363     return false;
1364 
1365   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1366     return isLegalGlobalAddressingMode(AM);
1367 
1368   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1369       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1370       AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE) {
1371     // If the offset isn't a multiple of 4, it probably isn't going to be
1372     // correctly aligned.
1373     // FIXME: Can we get the real alignment here?
1374     if (AM.BaseOffs % 4 != 0)
1375       return isLegalMUBUFAddressingMode(AM);
1376 
1377     // There are no SMRD extloads, so if we have to do a small type access we
1378     // will use a MUBUF load.
1379     // FIXME?: We also need to do this if unaligned, but we don't know the
1380     // alignment here.
1381     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1382       return isLegalGlobalAddressingMode(AM);
1383 
1384     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1385       // SMRD instructions have an 8-bit, dword offset on SI.
1386       if (!isUInt<8>(AM.BaseOffs / 4))
1387         return false;
1388     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1389       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1390       // in 8-bits, it can use a smaller encoding.
1391       if (!isUInt<32>(AM.BaseOffs / 4))
1392         return false;
1393     } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) {
1394       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1395       if (!isUInt<20>(AM.BaseOffs))
1396         return false;
1397     } else {
1398       // On GFX9 the offset is signed 21-bit in bytes (but must not be negative
1399       // for S_BUFFER_* instructions).
1400       if (!isInt<21>(AM.BaseOffs))
1401         return false;
1402     }
1403 
1404     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1405       return true;
1406 
1407     if (AM.Scale == 1 && AM.HasBaseReg)
1408       return true;
1409 
1410     return false;
1411   }
1412 
1413   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
1414     return isLegalMUBUFAddressingMode(AM);
1415 
1416   if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1417     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1418     // field.
1419     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1420     // an 8-bit dword offset but we don't know the alignment here.
1421     if (!isUInt<16>(AM.BaseOffs))
1422       return false;
1423 
1424     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1425       return true;
1426 
1427     if (AM.Scale == 1 && AM.HasBaseReg)
1428       return true;
1429 
1430     return false;
1431   }
1432 
1433   if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1434     // For an unknown address space, this usually means that this is for some
1435     // reason being used for pure arithmetic, and not based on some addressing
1436     // computation. We don't have instructions that compute pointers with any
1437     // addressing modes, so treat them as having no offset like flat
1438     // instructions.
1439     return isLegalFlatAddressingMode(AM);
1440   }
1441 
1442   // Assume a user alias of global for unknown address spaces.
1443   return isLegalGlobalAddressingMode(AM);
1444 }
1445 
1446 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1447                                         const MachineFunction &MF) const {
1448   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1449     return (MemVT.getSizeInBits() <= 4 * 32);
1450   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1451     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1452     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1453   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1454     return (MemVT.getSizeInBits() <= 2 * 32);
1455   }
1456   return true;
1457 }
1458 
1459 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1460     unsigned Size, unsigned AddrSpace, Align Alignment,
1461     MachineMemOperand::Flags Flags, unsigned *IsFast) const {
1462   if (IsFast)
1463     *IsFast = 0;
1464 
1465   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1466       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1467     // Check if alignment requirements for ds_read/write instructions are
1468     // disabled.
1469     if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1470       return false;
1471 
1472     Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
1473     if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1474         Alignment < RequiredAlignment)
1475       return false;
1476 
1477     // Either, the alignment requirements are "enabled", or there is an
1478     // unaligned LDS access related hardware bug though alignment requirements
1479     // are "disabled". In either case, we need to check for proper alignment
1480     // requirements.
1481     //
1482     switch (Size) {
1483     case 64:
1484       // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1485       // address is negative, then the instruction is incorrectly treated as
1486       // out-of-bounds even if base + offsets is in bounds. Split vectorized
1487       // loads here to avoid emitting ds_read2_b32. We may re-combine the
1488       // load later in the SILoadStoreOptimizer.
1489       if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1490         return false;
1491 
1492       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1493       // can do a 4 byte aligned, 8 byte access in a single operation using
1494       // ds_read2/write2_b32 with adjacent offsets.
1495       RequiredAlignment = Align(4);
1496 
1497       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1498         // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1499         // ds_write2_b32 depending on the alignment. In either case with either
1500         // alignment there is no faster way of doing this.
1501 
1502         // The numbers returned here and below are not additive, it is a 'speed
1503         // rank'. They are just meant to be compared to decide if a certain way
1504         // of lowering an operation is faster than another. For that purpose
1505         // naturally aligned operation gets it bitsize to indicate that "it
1506         // operates with a speed comparable to N-bit wide load". With the full
1507         // alignment ds128 is slower than ds96 for example. If underaligned it
1508         // is comparable to a speed of a single dword access, which would then
1509         // mean 32 < 128 and it is faster to issue a wide load regardless.
1510         // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a
1511         // wider load which will not be aligned anymore the latter is slower.
1512         if (IsFast)
1513           *IsFast = (Alignment >= RequiredAlignment) ? 64
1514                     : (Alignment < Align(4))         ? 32
1515                                                      : 1;
1516         return true;
1517       }
1518 
1519       break;
1520     case 96:
1521       if (!Subtarget->hasDS96AndDS128())
1522         return false;
1523 
1524       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1525       // gfx8 and older.
1526 
1527       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1528         // Naturally aligned access is fastest. However, also report it is Fast
1529         // if memory is aligned less than DWORD. A narrow load or store will be
1530         // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1531         // be more of them, so overall we will pay less penalty issuing a single
1532         // instruction.
1533 
1534         // See comment on the values above.
1535         if (IsFast)
1536           *IsFast = (Alignment >= RequiredAlignment) ? 96
1537                     : (Alignment < Align(4))         ? 32
1538                                                      : 1;
1539         return true;
1540       }
1541 
1542       break;
1543     case 128:
1544       if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1545         return false;
1546 
1547       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1548       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1549       // single operation using ds_read2/write2_b64.
1550       RequiredAlignment = Align(8);
1551 
1552       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1553         // Naturally aligned access is fastest. However, also report it is Fast
1554         // if memory is aligned less than DWORD. A narrow load or store will be
1555         // be equally slow as a single ds_read_b128/ds_write_b128, but there
1556         // will be more of them, so overall we will pay less penalty issuing a
1557         // single instruction.
1558 
1559         // See comment on the values above.
1560         if (IsFast)
1561           *IsFast = (Alignment >= RequiredAlignment) ? 128
1562                     : (Alignment < Align(4))         ? 32
1563                                                      : 1;
1564         return true;
1565       }
1566 
1567       break;
1568     default:
1569       if (Size > 32)
1570         return false;
1571 
1572       break;
1573     }
1574 
1575     // See comment on the values above.
1576     // Note that we have a single-dword or sub-dword here, so if underaligned
1577     // it is a slowest possible access, hence returned value is 0.
1578     if (IsFast)
1579       *IsFast = (Alignment >= RequiredAlignment) ? Size : 0;
1580 
1581     return Alignment >= RequiredAlignment ||
1582            Subtarget->hasUnalignedDSAccessEnabled();
1583   }
1584 
1585   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1586     bool AlignedBy4 = Alignment >= Align(4);
1587     if (IsFast)
1588       *IsFast = AlignedBy4;
1589 
1590     return AlignedBy4 ||
1591            Subtarget->enableFlatScratch() ||
1592            Subtarget->hasUnalignedScratchAccess();
1593   }
1594 
1595   // FIXME: We have to be conservative here and assume that flat operations
1596   // will access scratch.  If we had access to the IR function, then we
1597   // could determine if any private memory was used in the function.
1598   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1599       !Subtarget->hasUnalignedScratchAccess()) {
1600     bool AlignedBy4 = Alignment >= Align(4);
1601     if (IsFast)
1602       *IsFast = AlignedBy4;
1603 
1604     return AlignedBy4;
1605   }
1606 
1607   // So long as they are correct, wide global memory operations perform better
1608   // than multiple smaller memory ops -- even when misaligned
1609   if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) {
1610     if (IsFast)
1611       *IsFast = Size;
1612 
1613     return Alignment >= Align(4) ||
1614            Subtarget->hasUnalignedBufferAccessEnabled();
1615   }
1616 
1617   // Smaller than dword value must be aligned.
1618   if (Size < 32)
1619     return false;
1620 
1621   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1622   // byte-address are ignored, thus forcing Dword alignment.
1623   // This applies to private, global, and constant memory.
1624   if (IsFast)
1625     *IsFast = 1;
1626 
1627   return Size >= 32 && Alignment >= Align(4);
1628 }
1629 
1630 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1631     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1632     unsigned *IsFast) const {
1633   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1634                                             Alignment, Flags, IsFast);
1635 }
1636 
1637 EVT SITargetLowering::getOptimalMemOpType(
1638     const MemOp &Op, const AttributeList &FuncAttributes) const {
1639   // FIXME: Should account for address space here.
1640 
1641   // The default fallback uses the private pointer size as a guess for a type to
1642   // use. Make sure we switch these to 64-bit accesses.
1643 
1644   if (Op.size() >= 16 &&
1645       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1646     return MVT::v4i32;
1647 
1648   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1649     return MVT::v2i32;
1650 
1651   // Use the default.
1652   return MVT::Other;
1653 }
1654 
1655 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1656   const MemSDNode *MemNode = cast<MemSDNode>(N);
1657   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1658 }
1659 
1660 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1661   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1662          AS == AMDGPUAS::PRIVATE_ADDRESS;
1663 }
1664 
1665 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1666                                            unsigned DestAS) const {
1667   // Flat -> private/local is a simple truncate.
1668   // Flat -> global is no-op
1669   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1670     return true;
1671 
1672   const GCNTargetMachine &TM =
1673       static_cast<const GCNTargetMachine &>(getTargetMachine());
1674   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1675 }
1676 
1677 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1678   const MemSDNode *MemNode = cast<MemSDNode>(N);
1679 
1680   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1681 }
1682 
1683 TargetLoweringBase::LegalizeTypeAction
1684 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1685   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1686       VT.getScalarType().bitsLE(MVT::i16))
1687     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1688   return TargetLoweringBase::getPreferredVectorAction(VT);
1689 }
1690 
1691 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1692                                                          Type *Ty) const {
1693   // FIXME: Could be smarter if called for vector constants.
1694   return true;
1695 }
1696 
1697 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1698                                                unsigned Index) const {
1699   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1700     return false;
1701 
1702   // TODO: Add more cases that are cheap.
1703   return Index == 0;
1704 }
1705 
1706 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1707   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1708     switch (Op) {
1709     case ISD::LOAD:
1710     case ISD::STORE:
1711 
1712     // These operations are done with 32-bit instructions anyway.
1713     case ISD::AND:
1714     case ISD::OR:
1715     case ISD::XOR:
1716     case ISD::SELECT:
1717       // TODO: Extensions?
1718       return true;
1719     default:
1720       return false;
1721     }
1722   }
1723 
1724   // SimplifySetCC uses this function to determine whether or not it should
1725   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1726   if (VT == MVT::i1 && Op == ISD::SETCC)
1727     return false;
1728 
1729   return TargetLowering::isTypeDesirableForOp(Op, VT);
1730 }
1731 
1732 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1733                                                    const SDLoc &SL,
1734                                                    SDValue Chain,
1735                                                    uint64_t Offset) const {
1736   const DataLayout &DL = DAG.getDataLayout();
1737   MachineFunction &MF = DAG.getMachineFunction();
1738   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1739 
1740   const ArgDescriptor *InputPtrReg;
1741   const TargetRegisterClass *RC;
1742   LLT ArgTy;
1743   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1744 
1745   std::tie(InputPtrReg, RC, ArgTy) =
1746       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1747 
1748   // We may not have the kernarg segment argument if we have no kernel
1749   // arguments.
1750   if (!InputPtrReg)
1751     return DAG.getConstant(0, SL, PtrVT);
1752 
1753   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1754   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1755     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1756 
1757   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1758 }
1759 
1760 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1761                                             const SDLoc &SL) const {
1762   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1763                                                FIRST_IMPLICIT);
1764   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1765 }
1766 
1767 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
1768                                          const SDLoc &SL) const {
1769 
1770   Function &F = DAG.getMachineFunction().getFunction();
1771   std::optional<uint32_t> KnownSize =
1772       AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
1773   if (KnownSize.has_value())
1774     return DAG.getConstant(*KnownSize, SL, MVT::i32);
1775   return SDValue();
1776 }
1777 
1778 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1779                                          const SDLoc &SL, SDValue Val,
1780                                          bool Signed,
1781                                          const ISD::InputArg *Arg) const {
1782   // First, if it is a widened vector, narrow it.
1783   if (VT.isVector() &&
1784       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1785     EVT NarrowedVT =
1786         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1787                          VT.getVectorNumElements());
1788     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1789                       DAG.getConstant(0, SL, MVT::i32));
1790   }
1791 
1792   // Then convert the vector elements or scalar value.
1793   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1794       VT.bitsLT(MemVT)) {
1795     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1796     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1797   }
1798 
1799   if (MemVT.isFloatingPoint())
1800     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1801   else if (Signed)
1802     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1803   else
1804     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1805 
1806   return Val;
1807 }
1808 
1809 SDValue SITargetLowering::lowerKernargMemParameter(
1810     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1811     uint64_t Offset, Align Alignment, bool Signed,
1812     const ISD::InputArg *Arg) const {
1813   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1814 
1815   // Try to avoid using an extload by loading earlier than the argument address,
1816   // and extracting the relevant bits. The load should hopefully be merged with
1817   // the previous argument.
1818   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1819     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1820     int64_t AlignDownOffset = alignDown(Offset, 4);
1821     int64_t OffsetDiff = Offset - AlignDownOffset;
1822 
1823     EVT IntVT = MemVT.changeTypeToInteger();
1824 
1825     // TODO: If we passed in the base kernel offset we could have a better
1826     // alignment than 4, but we don't really need it.
1827     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1828     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1829                                MachineMemOperand::MODereferenceable |
1830                                    MachineMemOperand::MOInvariant);
1831 
1832     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1833     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1834 
1835     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1836     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1837     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1838 
1839 
1840     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1841   }
1842 
1843   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1844   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1845                              MachineMemOperand::MODereferenceable |
1846                                  MachineMemOperand::MOInvariant);
1847 
1848   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1849   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1850 }
1851 
1852 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1853                                               const SDLoc &SL, SDValue Chain,
1854                                               const ISD::InputArg &Arg) const {
1855   MachineFunction &MF = DAG.getMachineFunction();
1856   MachineFrameInfo &MFI = MF.getFrameInfo();
1857 
1858   if (Arg.Flags.isByVal()) {
1859     unsigned Size = Arg.Flags.getByValSize();
1860     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1861     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1862   }
1863 
1864   unsigned ArgOffset = VA.getLocMemOffset();
1865   unsigned ArgSize = VA.getValVT().getStoreSize();
1866 
1867   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1868 
1869   // Create load nodes to retrieve arguments from the stack.
1870   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1871   SDValue ArgValue;
1872 
1873   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1874   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1875   MVT MemVT = VA.getValVT();
1876 
1877   switch (VA.getLocInfo()) {
1878   default:
1879     break;
1880   case CCValAssign::BCvt:
1881     MemVT = VA.getLocVT();
1882     break;
1883   case CCValAssign::SExt:
1884     ExtType = ISD::SEXTLOAD;
1885     break;
1886   case CCValAssign::ZExt:
1887     ExtType = ISD::ZEXTLOAD;
1888     break;
1889   case CCValAssign::AExt:
1890     ExtType = ISD::EXTLOAD;
1891     break;
1892   }
1893 
1894   ArgValue = DAG.getExtLoad(
1895     ExtType, SL, VA.getLocVT(), Chain, FIN,
1896     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1897     MemVT);
1898   return ArgValue;
1899 }
1900 
1901 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1902   const SIMachineFunctionInfo &MFI,
1903   EVT VT,
1904   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1905   const ArgDescriptor *Reg;
1906   const TargetRegisterClass *RC;
1907   LLT Ty;
1908 
1909   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1910   if (!Reg) {
1911     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1912       // It's possible for a kernarg intrinsic call to appear in a kernel with
1913       // no allocated segment, in which case we do not add the user sgpr
1914       // argument, so just return null.
1915       return DAG.getConstant(0, SDLoc(), VT);
1916     }
1917 
1918     // It's undefined behavior if a function marked with the amdgpu-no-*
1919     // attributes uses the corresponding intrinsic.
1920     return DAG.getUNDEF(VT);
1921   }
1922 
1923   return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg);
1924 }
1925 
1926 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1927                                CallingConv::ID CallConv,
1928                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1929                                FunctionType *FType,
1930                                SIMachineFunctionInfo *Info) {
1931   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1932     const ISD::InputArg *Arg = &Ins[I];
1933 
1934     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1935            "vector type argument should have been split");
1936 
1937     // First check if it's a PS input addr.
1938     if (CallConv == CallingConv::AMDGPU_PS &&
1939         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1940       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1941 
1942       // Inconveniently only the first part of the split is marked as isSplit,
1943       // so skip to the end. We only want to increment PSInputNum once for the
1944       // entire split argument.
1945       if (Arg->Flags.isSplit()) {
1946         while (!Arg->Flags.isSplitEnd()) {
1947           assert((!Arg->VT.isVector() ||
1948                   Arg->VT.getScalarSizeInBits() == 16) &&
1949                  "unexpected vector split in ps argument type");
1950           if (!SkipArg)
1951             Splits.push_back(*Arg);
1952           Arg = &Ins[++I];
1953         }
1954       }
1955 
1956       if (SkipArg) {
1957         // We can safely skip PS inputs.
1958         Skipped.set(Arg->getOrigArgIndex());
1959         ++PSInputNum;
1960         continue;
1961       }
1962 
1963       Info->markPSInputAllocated(PSInputNum);
1964       if (Arg->Used)
1965         Info->markPSInputEnabled(PSInputNum);
1966 
1967       ++PSInputNum;
1968     }
1969 
1970     Splits.push_back(*Arg);
1971   }
1972 }
1973 
1974 // Allocate special inputs passed in VGPRs.
1975 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1976                                                       MachineFunction &MF,
1977                                                       const SIRegisterInfo &TRI,
1978                                                       SIMachineFunctionInfo &Info) const {
1979   const LLT S32 = LLT::scalar(32);
1980   MachineRegisterInfo &MRI = MF.getRegInfo();
1981 
1982   if (Info.hasWorkItemIDX()) {
1983     Register Reg = AMDGPU::VGPR0;
1984     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1985 
1986     CCInfo.AllocateReg(Reg);
1987     unsigned Mask = (Subtarget->hasPackedTID() &&
1988                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1989     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1990   }
1991 
1992   if (Info.hasWorkItemIDY()) {
1993     assert(Info.hasWorkItemIDX());
1994     if (Subtarget->hasPackedTID()) {
1995       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1996                                                         0x3ff << 10));
1997     } else {
1998       unsigned Reg = AMDGPU::VGPR1;
1999       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2000 
2001       CCInfo.AllocateReg(Reg);
2002       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
2003     }
2004   }
2005 
2006   if (Info.hasWorkItemIDZ()) {
2007     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
2008     if (Subtarget->hasPackedTID()) {
2009       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
2010                                                         0x3ff << 20));
2011     } else {
2012       unsigned Reg = AMDGPU::VGPR2;
2013       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2014 
2015       CCInfo.AllocateReg(Reg);
2016       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
2017     }
2018   }
2019 }
2020 
2021 // Try to allocate a VGPR at the end of the argument list, or if no argument
2022 // VGPRs are left allocating a stack slot.
2023 // If \p Mask is is given it indicates bitfield position in the register.
2024 // If \p Arg is given use it with new ]p Mask instead of allocating new.
2025 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
2026                                          ArgDescriptor Arg = ArgDescriptor()) {
2027   if (Arg.isSet())
2028     return ArgDescriptor::createArg(Arg, Mask);
2029 
2030   ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
2031   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
2032   if (RegIdx == ArgVGPRs.size()) {
2033     // Spill to stack required.
2034     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
2035 
2036     return ArgDescriptor::createStack(Offset, Mask);
2037   }
2038 
2039   unsigned Reg = ArgVGPRs[RegIdx];
2040   Reg = CCInfo.AllocateReg(Reg);
2041   assert(Reg != AMDGPU::NoRegister);
2042 
2043   MachineFunction &MF = CCInfo.getMachineFunction();
2044   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
2045   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
2046   return ArgDescriptor::createRegister(Reg, Mask);
2047 }
2048 
2049 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
2050                                              const TargetRegisterClass *RC,
2051                                              unsigned NumArgRegs) {
2052   ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32);
2053   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
2054   if (RegIdx == ArgSGPRs.size())
2055     report_fatal_error("ran out of SGPRs for arguments");
2056 
2057   unsigned Reg = ArgSGPRs[RegIdx];
2058   Reg = CCInfo.AllocateReg(Reg);
2059   assert(Reg != AMDGPU::NoRegister);
2060 
2061   MachineFunction &MF = CCInfo.getMachineFunction();
2062   MF.addLiveIn(Reg, RC);
2063   return ArgDescriptor::createRegister(Reg);
2064 }
2065 
2066 // If this has a fixed position, we still should allocate the register in the
2067 // CCInfo state. Technically we could get away with this for values passed
2068 // outside of the normal argument range.
2069 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
2070                                        const TargetRegisterClass *RC,
2071                                        MCRegister Reg) {
2072   Reg = CCInfo.AllocateReg(Reg);
2073   assert(Reg != AMDGPU::NoRegister);
2074   MachineFunction &MF = CCInfo.getMachineFunction();
2075   MF.addLiveIn(Reg, RC);
2076 }
2077 
2078 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2079   if (Arg) {
2080     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2081                                Arg.getRegister());
2082   } else
2083     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2084 }
2085 
2086 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2087   if (Arg) {
2088     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2089                                Arg.getRegister());
2090   } else
2091     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2092 }
2093 
2094 /// Allocate implicit function VGPR arguments at the end of allocated user
2095 /// arguments.
2096 void SITargetLowering::allocateSpecialInputVGPRs(
2097   CCState &CCInfo, MachineFunction &MF,
2098   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2099   const unsigned Mask = 0x3ff;
2100   ArgDescriptor Arg;
2101 
2102   if (Info.hasWorkItemIDX()) {
2103     Arg = allocateVGPR32Input(CCInfo, Mask);
2104     Info.setWorkItemIDX(Arg);
2105   }
2106 
2107   if (Info.hasWorkItemIDY()) {
2108     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2109     Info.setWorkItemIDY(Arg);
2110   }
2111 
2112   if (Info.hasWorkItemIDZ())
2113     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2114 }
2115 
2116 /// Allocate implicit function VGPR arguments in fixed registers.
2117 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2118   CCState &CCInfo, MachineFunction &MF,
2119   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2120   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2121   if (!Reg)
2122     report_fatal_error("failed to allocated VGPR for implicit arguments");
2123 
2124   const unsigned Mask = 0x3ff;
2125   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2126   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2127   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2128 }
2129 
2130 void SITargetLowering::allocateSpecialInputSGPRs(
2131   CCState &CCInfo,
2132   MachineFunction &MF,
2133   const SIRegisterInfo &TRI,
2134   SIMachineFunctionInfo &Info) const {
2135   auto &ArgInfo = Info.getArgInfo();
2136 
2137   // TODO: Unify handling with private memory pointers.
2138   if (Info.hasDispatchPtr())
2139     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2140 
2141   const Module *M = MF.getFunction().getParent();
2142   if (Info.hasQueuePtr() &&
2143       AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5)
2144     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2145 
2146   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2147   // constant offset from the kernarg segment.
2148   if (Info.hasImplicitArgPtr())
2149     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2150 
2151   if (Info.hasDispatchID())
2152     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2153 
2154   // flat_scratch_init is not applicable for non-kernel functions.
2155 
2156   if (Info.hasWorkGroupIDX())
2157     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2158 
2159   if (Info.hasWorkGroupIDY())
2160     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2161 
2162   if (Info.hasWorkGroupIDZ())
2163     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2164 
2165   if (Info.hasLDSKernelId())
2166     allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
2167 }
2168 
2169 // Allocate special inputs passed in user SGPRs.
2170 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2171                                             MachineFunction &MF,
2172                                             const SIRegisterInfo &TRI,
2173                                             SIMachineFunctionInfo &Info) const {
2174   if (Info.hasImplicitBufferPtr()) {
2175     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2176     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2177     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2178   }
2179 
2180   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2181   if (Info.hasPrivateSegmentBuffer()) {
2182     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2183     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2184     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2185   }
2186 
2187   if (Info.hasDispatchPtr()) {
2188     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2189     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2190     CCInfo.AllocateReg(DispatchPtrReg);
2191   }
2192 
2193   const Module *M = MF.getFunction().getParent();
2194   if (Info.hasQueuePtr() &&
2195       AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
2196     Register QueuePtrReg = Info.addQueuePtr(TRI);
2197     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2198     CCInfo.AllocateReg(QueuePtrReg);
2199   }
2200 
2201   if (Info.hasKernargSegmentPtr()) {
2202     MachineRegisterInfo &MRI = MF.getRegInfo();
2203     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2204     CCInfo.AllocateReg(InputPtrReg);
2205 
2206     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2207     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2208   }
2209 
2210   if (Info.hasDispatchID()) {
2211     Register DispatchIDReg = Info.addDispatchID(TRI);
2212     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2213     CCInfo.AllocateReg(DispatchIDReg);
2214   }
2215 
2216   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2217     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2218     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2219     CCInfo.AllocateReg(FlatScratchInitReg);
2220   }
2221 
2222   if (Info.hasLDSKernelId()) {
2223     Register Reg = Info.addLDSKernelId();
2224     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2225     CCInfo.AllocateReg(Reg);
2226   }
2227 
2228   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2229   // these from the dispatch pointer.
2230 }
2231 
2232 // Allocate special input registers that are initialized per-wave.
2233 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2234                                            MachineFunction &MF,
2235                                            SIMachineFunctionInfo &Info,
2236                                            CallingConv::ID CallConv,
2237                                            bool IsShader) const {
2238   bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
2239   if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
2240     // Note: user SGPRs are handled by the front-end for graphics shaders
2241     // Pad up the used user SGPRs with dead inputs.
2242 
2243     // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately
2244     // before enabling architected SGPRs for workgroup IDs.
2245     assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget");
2246 
2247     unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2248     // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2249     // rely on it to reach 16 since if we end up having no stack usage, it will
2250     // not really be added.
2251     unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
2252                                       Info.hasWorkGroupIDY() +
2253                                       Info.hasWorkGroupIDZ() +
2254                                       Info.hasWorkGroupInfo();
2255     for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2256       Register Reg = Info.addReservedUserSGPR();
2257       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2258       CCInfo.AllocateReg(Reg);
2259     }
2260   }
2261 
2262   if (Info.hasWorkGroupIDX()) {
2263     Register Reg = Info.addWorkGroupIDX(HasArchitectedSGPRs);
2264     if (!HasArchitectedSGPRs)
2265       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2266 
2267     CCInfo.AllocateReg(Reg);
2268   }
2269 
2270   if (Info.hasWorkGroupIDY()) {
2271     Register Reg = Info.addWorkGroupIDY(HasArchitectedSGPRs);
2272     if (!HasArchitectedSGPRs)
2273       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2274 
2275     CCInfo.AllocateReg(Reg);
2276   }
2277 
2278   if (Info.hasWorkGroupIDZ()) {
2279     Register Reg = Info.addWorkGroupIDZ(HasArchitectedSGPRs);
2280     if (!HasArchitectedSGPRs)
2281       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2282 
2283     CCInfo.AllocateReg(Reg);
2284   }
2285 
2286   if (Info.hasWorkGroupInfo()) {
2287     Register Reg = Info.addWorkGroupInfo();
2288     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2289     CCInfo.AllocateReg(Reg);
2290   }
2291 
2292   if (Info.hasPrivateSegmentWaveByteOffset()) {
2293     // Scratch wave offset passed in system SGPR.
2294     unsigned PrivateSegmentWaveByteOffsetReg;
2295 
2296     if (IsShader) {
2297       PrivateSegmentWaveByteOffsetReg =
2298         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2299 
2300       // This is true if the scratch wave byte offset doesn't have a fixed
2301       // location.
2302       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2303         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2304         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2305       }
2306     } else
2307       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2308 
2309     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2310     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2311   }
2312 
2313   assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
2314          Info.getNumPreloadedSGPRs() >= 16);
2315 }
2316 
2317 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2318                                      MachineFunction &MF,
2319                                      const SIRegisterInfo &TRI,
2320                                      SIMachineFunctionInfo &Info) {
2321   // Now that we've figured out where the scratch register inputs are, see if
2322   // should reserve the arguments and use them directly.
2323   MachineFrameInfo &MFI = MF.getFrameInfo();
2324   bool HasStackObjects = MFI.hasStackObjects();
2325   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2326 
2327   // Record that we know we have non-spill stack objects so we don't need to
2328   // check all stack objects later.
2329   if (HasStackObjects)
2330     Info.setHasNonSpillStackObjects(true);
2331 
2332   // Everything live out of a block is spilled with fast regalloc, so it's
2333   // almost certain that spilling will be required.
2334   if (TM.getOptLevel() == CodeGenOpt::None)
2335     HasStackObjects = true;
2336 
2337   // For now assume stack access is needed in any callee functions, so we need
2338   // the scratch registers to pass in.
2339   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2340 
2341   if (!ST.enableFlatScratch()) {
2342     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2343       // If we have stack objects, we unquestionably need the private buffer
2344       // resource. For the Code Object V2 ABI, this will be the first 4 user
2345       // SGPR inputs. We can reserve those and use them directly.
2346 
2347       Register PrivateSegmentBufferReg =
2348           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2349       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2350     } else {
2351       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2352       // We tentatively reserve the last registers (skipping the last registers
2353       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2354       // we'll replace these with the ones immediately after those which were
2355       // really allocated. In the prologue copies will be inserted from the
2356       // argument to these reserved registers.
2357 
2358       // Without HSA, relocations are used for the scratch pointer and the
2359       // buffer resource setup is always inserted in the prologue. Scratch wave
2360       // offset is still in an input SGPR.
2361       Info.setScratchRSrcReg(ReservedBufferReg);
2362     }
2363   }
2364 
2365   MachineRegisterInfo &MRI = MF.getRegInfo();
2366 
2367   // For entry functions we have to set up the stack pointer if we use it,
2368   // whereas non-entry functions get this "for free". This means there is no
2369   // intrinsic advantage to using S32 over S34 in cases where we do not have
2370   // calls but do need a frame pointer (i.e. if we are requested to have one
2371   // because frame pointer elimination is disabled). To keep things simple we
2372   // only ever use S32 as the call ABI stack pointer, and so using it does not
2373   // imply we need a separate frame pointer.
2374   //
2375   // Try to use s32 as the SP, but move it if it would interfere with input
2376   // arguments. This won't work with calls though.
2377   //
2378   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2379   // registers.
2380   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2381     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2382   } else {
2383     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2384 
2385     if (MFI.hasCalls())
2386       report_fatal_error("call in graphics shader with too many input SGPRs");
2387 
2388     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2389       if (!MRI.isLiveIn(Reg)) {
2390         Info.setStackPtrOffsetReg(Reg);
2391         break;
2392       }
2393     }
2394 
2395     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2396       report_fatal_error("failed to find register for SP");
2397   }
2398 
2399   // hasFP should be accurate for entry functions even before the frame is
2400   // finalized, because it does not rely on the known stack size, only
2401   // properties like whether variable sized objects are present.
2402   if (ST.getFrameLowering()->hasFP(MF)) {
2403     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2404   }
2405 }
2406 
2407 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2408   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2409   return !Info->isEntryFunction();
2410 }
2411 
2412 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2413 
2414 }
2415 
2416 void SITargetLowering::insertCopiesSplitCSR(
2417   MachineBasicBlock *Entry,
2418   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2419   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2420 
2421   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2422   if (!IStart)
2423     return;
2424 
2425   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2426   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2427   MachineBasicBlock::iterator MBBI = Entry->begin();
2428   for (const MCPhysReg *I = IStart; *I; ++I) {
2429     const TargetRegisterClass *RC = nullptr;
2430     if (AMDGPU::SReg_64RegClass.contains(*I))
2431       RC = &AMDGPU::SGPR_64RegClass;
2432     else if (AMDGPU::SReg_32RegClass.contains(*I))
2433       RC = &AMDGPU::SGPR_32RegClass;
2434     else
2435       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2436 
2437     Register NewVR = MRI->createVirtualRegister(RC);
2438     // Create copy from CSR to a virtual register.
2439     Entry->addLiveIn(*I);
2440     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2441       .addReg(*I);
2442 
2443     // Insert the copy-back instructions right before the terminator.
2444     for (auto *Exit : Exits)
2445       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2446               TII->get(TargetOpcode::COPY), *I)
2447         .addReg(NewVR);
2448   }
2449 }
2450 
2451 SDValue SITargetLowering::LowerFormalArguments(
2452     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2453     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2454     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2455   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2456 
2457   MachineFunction &MF = DAG.getMachineFunction();
2458   const Function &Fn = MF.getFunction();
2459   FunctionType *FType = MF.getFunction().getFunctionType();
2460   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2461 
2462   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2463     DiagnosticInfoUnsupported NoGraphicsHSA(
2464         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2465     DAG.getContext()->diagnose(NoGraphicsHSA);
2466     return DAG.getEntryNode();
2467   }
2468 
2469   SmallVector<ISD::InputArg, 16> Splits;
2470   SmallVector<CCValAssign, 16> ArgLocs;
2471   BitVector Skipped(Ins.size());
2472   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2473                  *DAG.getContext());
2474 
2475   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2476   bool IsKernel = AMDGPU::isKernel(CallConv);
2477   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2478 
2479   if (IsGraphics) {
2480     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2481            !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() &&
2482            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2483            !Info->hasWorkItemIDZ());
2484     if (!Subtarget->enableFlatScratch())
2485       assert(!Info->hasFlatScratchInit());
2486     if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs())
2487       assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2488              !Info->hasWorkGroupIDZ());
2489   }
2490 
2491   if (CallConv == CallingConv::AMDGPU_PS) {
2492     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2493 
2494     // At least one interpolation mode must be enabled or else the GPU will
2495     // hang.
2496     //
2497     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2498     // set PSInputAddr, the user wants to enable some bits after the compilation
2499     // based on run-time states. Since we can't know what the final PSInputEna
2500     // will look like, so we shouldn't do anything here and the user should take
2501     // responsibility for the correct programming.
2502     //
2503     // Otherwise, the following restrictions apply:
2504     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2505     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2506     //   enabled too.
2507     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2508         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2509       CCInfo.AllocateReg(AMDGPU::VGPR0);
2510       CCInfo.AllocateReg(AMDGPU::VGPR1);
2511       Info->markPSInputAllocated(0);
2512       Info->markPSInputEnabled(0);
2513     }
2514     if (Subtarget->isAmdPalOS()) {
2515       // For isAmdPalOS, the user does not enable some bits after compilation
2516       // based on run-time states; the register values being generated here are
2517       // the final ones set in hardware. Therefore we need to apply the
2518       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2519       // a bit is set in PSInputAddr but not PSInputEnable is where the
2520       // frontend set up an input arg for a particular interpolation mode, but
2521       // nothing uses that input arg. Really we should have an earlier pass
2522       // that removes such an arg.)
2523       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2524       if ((PsInputBits & 0x7F) == 0 ||
2525           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2526         Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
2527     }
2528   } else if (IsKernel) {
2529     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2530   } else {
2531     Splits.append(Ins.begin(), Ins.end());
2532   }
2533 
2534   if (IsEntryFunc) {
2535     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2536     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2537   } else if (!IsGraphics) {
2538     // For the fixed ABI, pass workitem IDs in the last argument register.
2539     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2540   }
2541 
2542   if (IsKernel) {
2543     analyzeFormalArgumentsCompute(CCInfo, Ins);
2544   } else {
2545     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2546     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2547   }
2548 
2549   SmallVector<SDValue, 16> Chains;
2550 
2551   // FIXME: This is the minimum kernel argument alignment. We should improve
2552   // this to the maximum alignment of the arguments.
2553   //
2554   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2555   // kern arg offset.
2556   const Align KernelArgBaseAlign = Align(16);
2557 
2558   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2559     const ISD::InputArg &Arg = Ins[i];
2560     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2561       InVals.push_back(DAG.getUNDEF(Arg.VT));
2562       continue;
2563     }
2564 
2565     CCValAssign &VA = ArgLocs[ArgIdx++];
2566     MVT VT = VA.getLocVT();
2567 
2568     if (IsEntryFunc && VA.isMemLoc()) {
2569       VT = Ins[i].VT;
2570       EVT MemVT = VA.getLocVT();
2571 
2572       const uint64_t Offset = VA.getLocMemOffset();
2573       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2574 
2575       if (Arg.Flags.isByRef()) {
2576         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2577 
2578         const GCNTargetMachine &TM =
2579             static_cast<const GCNTargetMachine &>(getTargetMachine());
2580         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2581                                     Arg.Flags.getPointerAddrSpace())) {
2582           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2583                                      Arg.Flags.getPointerAddrSpace());
2584         }
2585 
2586         InVals.push_back(Ptr);
2587         continue;
2588       }
2589 
2590       SDValue Arg = lowerKernargMemParameter(
2591         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2592       Chains.push_back(Arg.getValue(1));
2593 
2594       auto *ParamTy =
2595         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2596       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2597           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2598                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2599         // On SI local pointers are just offsets into LDS, so they are always
2600         // less than 16-bits.  On CI and newer they could potentially be
2601         // real pointers, so we can't guarantee their size.
2602         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2603                           DAG.getValueType(MVT::i16));
2604       }
2605 
2606       InVals.push_back(Arg);
2607       continue;
2608     } else if (!IsEntryFunc && VA.isMemLoc()) {
2609       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2610       InVals.push_back(Val);
2611       if (!Arg.Flags.isByVal())
2612         Chains.push_back(Val.getValue(1));
2613       continue;
2614     }
2615 
2616     assert(VA.isRegLoc() && "Parameter must be in a register!");
2617 
2618     Register Reg = VA.getLocReg();
2619     const TargetRegisterClass *RC = nullptr;
2620     if (AMDGPU::VGPR_32RegClass.contains(Reg))
2621       RC = &AMDGPU::VGPR_32RegClass;
2622     else if (AMDGPU::SGPR_32RegClass.contains(Reg))
2623       RC = &AMDGPU::SGPR_32RegClass;
2624     else
2625       llvm_unreachable("Unexpected register class in LowerFormalArguments!");
2626     EVT ValVT = VA.getValVT();
2627 
2628     Reg = MF.addLiveIn(Reg, RC);
2629     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2630 
2631     if (Arg.Flags.isSRet()) {
2632       // The return object should be reasonably addressable.
2633 
2634       // FIXME: This helps when the return is a real sret. If it is a
2635       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2636       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2637       unsigned NumBits
2638         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2639       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2640         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2641     }
2642 
2643     // If this is an 8 or 16-bit value, it is really passed promoted
2644     // to 32 bits. Insert an assert[sz]ext to capture this, then
2645     // truncate to the right size.
2646     switch (VA.getLocInfo()) {
2647     case CCValAssign::Full:
2648       break;
2649     case CCValAssign::BCvt:
2650       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2651       break;
2652     case CCValAssign::SExt:
2653       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2654                         DAG.getValueType(ValVT));
2655       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2656       break;
2657     case CCValAssign::ZExt:
2658       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2659                         DAG.getValueType(ValVT));
2660       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2661       break;
2662     case CCValAssign::AExt:
2663       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2664       break;
2665     default:
2666       llvm_unreachable("Unknown loc info!");
2667     }
2668 
2669     InVals.push_back(Val);
2670   }
2671 
2672   // Start adding system SGPRs.
2673   if (IsEntryFunc) {
2674     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2675   } else {
2676     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2677     if (!IsGraphics)
2678       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2679   }
2680 
2681   auto &ArgUsageInfo =
2682     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2683   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2684 
2685   unsigned StackArgSize = CCInfo.getStackSize();
2686   Info->setBytesInStackArgArea(StackArgSize);
2687 
2688   return Chains.empty() ? Chain :
2689     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2690 }
2691 
2692 // TODO: If return values can't fit in registers, we should return as many as
2693 // possible in registers before passing on stack.
2694 bool SITargetLowering::CanLowerReturn(
2695   CallingConv::ID CallConv,
2696   MachineFunction &MF, bool IsVarArg,
2697   const SmallVectorImpl<ISD::OutputArg> &Outs,
2698   LLVMContext &Context) const {
2699   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2700   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2701   // for shaders. Vector types should be explicitly handled by CC.
2702   if (AMDGPU::isEntryFunctionCC(CallConv))
2703     return true;
2704 
2705   SmallVector<CCValAssign, 16> RVLocs;
2706   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2707   if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)))
2708     return false;
2709 
2710   // We must use the stack if return would require unavailable registers.
2711   unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
2712   unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
2713   for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
2714     if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
2715       return false;
2716 
2717   return true;
2718 }
2719 
2720 SDValue
2721 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2722                               bool isVarArg,
2723                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2724                               const SmallVectorImpl<SDValue> &OutVals,
2725                               const SDLoc &DL, SelectionDAG &DAG) const {
2726   MachineFunction &MF = DAG.getMachineFunction();
2727   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2728 
2729   if (AMDGPU::isKernel(CallConv)) {
2730     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2731                                              OutVals, DL, DAG);
2732   }
2733 
2734   bool IsShader = AMDGPU::isShader(CallConv);
2735 
2736   Info->setIfReturnsVoid(Outs.empty());
2737   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2738 
2739   // CCValAssign - represent the assignment of the return value to a location.
2740   SmallVector<CCValAssign, 48> RVLocs;
2741   SmallVector<ISD::OutputArg, 48> Splits;
2742 
2743   // CCState - Info about the registers and stack slots.
2744   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2745                  *DAG.getContext());
2746 
2747   // Analyze outgoing return values.
2748   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2749 
2750   SDValue Glue;
2751   SmallVector<SDValue, 48> RetOps;
2752   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2753 
2754   // Copy the result values into the output registers.
2755   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2756        ++I, ++RealRVLocIdx) {
2757     CCValAssign &VA = RVLocs[I];
2758     assert(VA.isRegLoc() && "Can only return in registers!");
2759     // TODO: Partially return in registers if return values don't fit.
2760     SDValue Arg = OutVals[RealRVLocIdx];
2761 
2762     // Copied from other backends.
2763     switch (VA.getLocInfo()) {
2764     case CCValAssign::Full:
2765       break;
2766     case CCValAssign::BCvt:
2767       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2768       break;
2769     case CCValAssign::SExt:
2770       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2771       break;
2772     case CCValAssign::ZExt:
2773       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2774       break;
2775     case CCValAssign::AExt:
2776       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2777       break;
2778     default:
2779       llvm_unreachable("Unknown loc info!");
2780     }
2781 
2782     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
2783     Glue = Chain.getValue(1);
2784     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2785   }
2786 
2787   // FIXME: Does sret work properly?
2788   if (!Info->isEntryFunction()) {
2789     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2790     const MCPhysReg *I =
2791       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2792     if (I) {
2793       for (; *I; ++I) {
2794         if (AMDGPU::SReg_64RegClass.contains(*I))
2795           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2796         else if (AMDGPU::SReg_32RegClass.contains(*I))
2797           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2798         else
2799           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2800       }
2801     }
2802   }
2803 
2804   // Update chain and glue.
2805   RetOps[0] = Chain;
2806   if (Glue.getNode())
2807     RetOps.push_back(Glue);
2808 
2809   unsigned Opc = AMDGPUISD::ENDPGM;
2810   if (!IsWaveEnd)
2811     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE;
2812   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2813 }
2814 
2815 SDValue SITargetLowering::LowerCallResult(
2816     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
2817     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2818     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2819     SDValue ThisVal) const {
2820   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2821 
2822   // Assign locations to each value returned by this call.
2823   SmallVector<CCValAssign, 16> RVLocs;
2824   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2825                  *DAG.getContext());
2826   CCInfo.AnalyzeCallResult(Ins, RetCC);
2827 
2828   // Copy all of the result registers out of their specified physreg.
2829   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2830     CCValAssign VA = RVLocs[i];
2831     SDValue Val;
2832 
2833     if (VA.isRegLoc()) {
2834       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue);
2835       Chain = Val.getValue(1);
2836       InGlue = Val.getValue(2);
2837     } else if (VA.isMemLoc()) {
2838       report_fatal_error("TODO: return values in memory");
2839     } else
2840       llvm_unreachable("unknown argument location type");
2841 
2842     switch (VA.getLocInfo()) {
2843     case CCValAssign::Full:
2844       break;
2845     case CCValAssign::BCvt:
2846       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2847       break;
2848     case CCValAssign::ZExt:
2849       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2850                         DAG.getValueType(VA.getValVT()));
2851       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2852       break;
2853     case CCValAssign::SExt:
2854       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2855                         DAG.getValueType(VA.getValVT()));
2856       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2857       break;
2858     case CCValAssign::AExt:
2859       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2860       break;
2861     default:
2862       llvm_unreachable("Unknown loc info!");
2863     }
2864 
2865     InVals.push_back(Val);
2866   }
2867 
2868   return Chain;
2869 }
2870 
2871 // Add code to pass special inputs required depending on used features separate
2872 // from the explicit user arguments present in the IR.
2873 void SITargetLowering::passSpecialInputs(
2874     CallLoweringInfo &CLI,
2875     CCState &CCInfo,
2876     const SIMachineFunctionInfo &Info,
2877     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2878     SmallVectorImpl<SDValue> &MemOpChains,
2879     SDValue Chain) const {
2880   // If we don't have a call site, this was a call inserted by
2881   // legalization. These can never use special inputs.
2882   if (!CLI.CB)
2883     return;
2884 
2885   SelectionDAG &DAG = CLI.DAG;
2886   const SDLoc &DL = CLI.DL;
2887   const Function &F = DAG.getMachineFunction().getFunction();
2888 
2889   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2890   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2891 
2892   const AMDGPUFunctionArgInfo *CalleeArgInfo
2893     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2894   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2895     auto &ArgUsageInfo =
2896       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2897     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2898   }
2899 
2900   // TODO: Unify with private memory register handling. This is complicated by
2901   // the fact that at least in kernels, the input argument is not necessarily
2902   // in the same location as the input.
2903   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2904                              StringLiteral> ImplicitAttrs[] = {
2905     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2906     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2907     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2908     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2909     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2910     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2911     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"},
2912     {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"},
2913   };
2914 
2915   for (auto Attr : ImplicitAttrs) {
2916     const ArgDescriptor *OutgoingArg;
2917     const TargetRegisterClass *ArgRC;
2918     LLT ArgTy;
2919 
2920     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2921 
2922     // If the callee does not use the attribute value, skip copying the value.
2923     if (CLI.CB->hasFnAttr(Attr.second))
2924       continue;
2925 
2926     std::tie(OutgoingArg, ArgRC, ArgTy) =
2927         CalleeArgInfo->getPreloadedValue(InputID);
2928     if (!OutgoingArg)
2929       continue;
2930 
2931     const ArgDescriptor *IncomingArg;
2932     const TargetRegisterClass *IncomingArgRC;
2933     LLT Ty;
2934     std::tie(IncomingArg, IncomingArgRC, Ty) =
2935         CallerArgInfo.getPreloadedValue(InputID);
2936     assert(IncomingArgRC == ArgRC);
2937 
2938     // All special arguments are ints for now.
2939     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2940     SDValue InputReg;
2941 
2942     if (IncomingArg) {
2943       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2944     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2945       // The implicit arg ptr is special because it doesn't have a corresponding
2946       // input for kernels, and is computed from the kernarg segment pointer.
2947       InputReg = getImplicitArgPtr(DAG, DL);
2948     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
2949       std::optional<uint32_t> Id =
2950           AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
2951       if (Id.has_value()) {
2952         InputReg = DAG.getConstant(*Id, DL, ArgVT);
2953       } else {
2954         InputReg = DAG.getUNDEF(ArgVT);
2955       }
2956     } else {
2957       // We may have proven the input wasn't needed, although the ABI is
2958       // requiring it. We just need to allocate the register appropriately.
2959       InputReg = DAG.getUNDEF(ArgVT);
2960     }
2961 
2962     if (OutgoingArg->isRegister()) {
2963       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2964       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2965         report_fatal_error("failed to allocate implicit input argument");
2966     } else {
2967       unsigned SpecialArgOffset =
2968           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2969       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2970                                               SpecialArgOffset);
2971       MemOpChains.push_back(ArgStore);
2972     }
2973   }
2974 
2975   // Pack workitem IDs into a single register or pass it as is if already
2976   // packed.
2977   const ArgDescriptor *OutgoingArg;
2978   const TargetRegisterClass *ArgRC;
2979   LLT Ty;
2980 
2981   std::tie(OutgoingArg, ArgRC, Ty) =
2982       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2983   if (!OutgoingArg)
2984     std::tie(OutgoingArg, ArgRC, Ty) =
2985         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2986   if (!OutgoingArg)
2987     std::tie(OutgoingArg, ArgRC, Ty) =
2988         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2989   if (!OutgoingArg)
2990     return;
2991 
2992   const ArgDescriptor *IncomingArgX = std::get<0>(
2993       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2994   const ArgDescriptor *IncomingArgY = std::get<0>(
2995       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2996   const ArgDescriptor *IncomingArgZ = std::get<0>(
2997       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2998 
2999   SDValue InputReg;
3000   SDLoc SL;
3001 
3002   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
3003   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
3004   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
3005 
3006   // If incoming ids are not packed we need to pack them.
3007   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
3008       NeedWorkItemIDX) {
3009     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
3010       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
3011     } else {
3012       InputReg = DAG.getConstant(0, DL, MVT::i32);
3013     }
3014   }
3015 
3016   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
3017       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
3018     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
3019     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
3020                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
3021     InputReg = InputReg.getNode() ?
3022                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
3023   }
3024 
3025   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
3026       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
3027     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
3028     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
3029                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
3030     InputReg = InputReg.getNode() ?
3031                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
3032   }
3033 
3034   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3035     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3036       // We're in a situation where the outgoing function requires the workitem
3037       // ID, but the calling function does not have it (e.g a graphics function
3038       // calling a C calling convention function). This is illegal, but we need
3039       // to produce something.
3040       InputReg = DAG.getUNDEF(MVT::i32);
3041     } else {
3042       // Workitem ids are already packed, any of present incoming arguments
3043       // will carry all required fields.
3044       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
3045         IncomingArgX ? *IncomingArgX :
3046         IncomingArgY ? *IncomingArgY :
3047         *IncomingArgZ, ~0u);
3048       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
3049     }
3050   }
3051 
3052   if (OutgoingArg->isRegister()) {
3053     if (InputReg)
3054       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3055 
3056     CCInfo.AllocateReg(OutgoingArg->getRegister());
3057   } else {
3058     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
3059     if (InputReg) {
3060       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
3061                                               SpecialArgOffset);
3062       MemOpChains.push_back(ArgStore);
3063     }
3064   }
3065 }
3066 
3067 static bool canGuaranteeTCO(CallingConv::ID CC) {
3068   return CC == CallingConv::Fast;
3069 }
3070 
3071 /// Return true if we might ever do TCO for calls with this calling convention.
3072 static bool mayTailCallThisCC(CallingConv::ID CC) {
3073   switch (CC) {
3074   case CallingConv::C:
3075   case CallingConv::AMDGPU_Gfx:
3076     return true;
3077   default:
3078     return canGuaranteeTCO(CC);
3079   }
3080 }
3081 
3082 bool SITargetLowering::isEligibleForTailCallOptimization(
3083     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
3084     const SmallVectorImpl<ISD::OutputArg> &Outs,
3085     const SmallVectorImpl<SDValue> &OutVals,
3086     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3087   if (!mayTailCallThisCC(CalleeCC))
3088     return false;
3089 
3090   // For a divergent call target, we need to do a waterfall loop over the
3091   // possible callees which precludes us from using a simple jump.
3092   if (Callee->isDivergent())
3093     return false;
3094 
3095   MachineFunction &MF = DAG.getMachineFunction();
3096   const Function &CallerF = MF.getFunction();
3097   CallingConv::ID CallerCC = CallerF.getCallingConv();
3098   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3099   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3100 
3101   // Kernels aren't callable, and don't have a live in return address so it
3102   // doesn't make sense to do a tail call with entry functions.
3103   if (!CallerPreserved)
3104     return false;
3105 
3106   bool CCMatch = CallerCC == CalleeCC;
3107 
3108   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3109     if (canGuaranteeTCO(CalleeCC) && CCMatch)
3110       return true;
3111     return false;
3112   }
3113 
3114   // TODO: Can we handle var args?
3115   if (IsVarArg)
3116     return false;
3117 
3118   for (const Argument &Arg : CallerF.args()) {
3119     if (Arg.hasByValAttr())
3120       return false;
3121   }
3122 
3123   LLVMContext &Ctx = *DAG.getContext();
3124 
3125   // Check that the call results are passed in the same way.
3126   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3127                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3128                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3129     return false;
3130 
3131   // The callee has to preserve all registers the caller needs to preserve.
3132   if (!CCMatch) {
3133     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3134     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3135       return false;
3136   }
3137 
3138   // Nothing more to check if the callee is taking no arguments.
3139   if (Outs.empty())
3140     return true;
3141 
3142   SmallVector<CCValAssign, 16> ArgLocs;
3143   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3144 
3145   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3146 
3147   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3148   // If the stack arguments for this call do not fit into our own save area then
3149   // the call cannot be made tail.
3150   // TODO: Is this really necessary?
3151   if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea())
3152     return false;
3153 
3154   const MachineRegisterInfo &MRI = MF.getRegInfo();
3155   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3156 }
3157 
3158 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3159   if (!CI->isTailCall())
3160     return false;
3161 
3162   const Function *ParentFn = CI->getParent()->getParent();
3163   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3164     return false;
3165   return true;
3166 }
3167 
3168 // The wave scratch offset register is used as the global base pointer.
3169 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3170                                     SmallVectorImpl<SDValue> &InVals) const {
3171   SelectionDAG &DAG = CLI.DAG;
3172   const SDLoc &DL = CLI.DL;
3173   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3174   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3175   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3176   SDValue Chain = CLI.Chain;
3177   SDValue Callee = CLI.Callee;
3178   bool &IsTailCall = CLI.IsTailCall;
3179   CallingConv::ID CallConv = CLI.CallConv;
3180   bool IsVarArg = CLI.IsVarArg;
3181   bool IsSibCall = false;
3182   bool IsThisReturn = false;
3183   MachineFunction &MF = DAG.getMachineFunction();
3184 
3185   if (Callee.isUndef() || isNullConstant(Callee)) {
3186     if (!CLI.IsTailCall) {
3187       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3188         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3189     }
3190 
3191     return Chain;
3192   }
3193 
3194   if (IsVarArg) {
3195     return lowerUnhandledCall(CLI, InVals,
3196                               "unsupported call to variadic function ");
3197   }
3198 
3199   if (!CLI.CB)
3200     report_fatal_error("unsupported libcall legalization");
3201 
3202   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3203     return lowerUnhandledCall(CLI, InVals,
3204                               "unsupported required tail call to function ");
3205   }
3206 
3207   if (IsTailCall) {
3208     IsTailCall = isEligibleForTailCallOptimization(
3209       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3210     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3211       report_fatal_error("failed to perform tail call elimination on a call "
3212                          "site marked musttail");
3213     }
3214 
3215     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3216 
3217     // A sibling call is one where we're under the usual C ABI and not planning
3218     // to change that but can still do a tail call:
3219     if (!TailCallOpt && IsTailCall)
3220       IsSibCall = true;
3221 
3222     if (IsTailCall)
3223       ++NumTailCalls;
3224   }
3225 
3226   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3227   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3228   SmallVector<SDValue, 8> MemOpChains;
3229 
3230   // Analyze operands of the call, assigning locations to each operand.
3231   SmallVector<CCValAssign, 16> ArgLocs;
3232   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3233   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3234 
3235   if (CallConv != CallingConv::AMDGPU_Gfx) {
3236     // With a fixed ABI, allocate fixed registers before user arguments.
3237     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3238   }
3239 
3240   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3241 
3242   // Get a count of how many bytes are to be pushed on the stack.
3243   unsigned NumBytes = CCInfo.getStackSize();
3244 
3245   if (IsSibCall) {
3246     // Since we're not changing the ABI to make this a tail call, the memory
3247     // operands are already available in the caller's incoming argument space.
3248     NumBytes = 0;
3249   }
3250 
3251   // FPDiff is the byte offset of the call's argument area from the callee's.
3252   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3253   // by this amount for a tail call. In a sibling call it must be 0 because the
3254   // caller will deallocate the entire stack and the callee still expects its
3255   // arguments to begin at SP+0. Completely unused for non-tail calls.
3256   int32_t FPDiff = 0;
3257   MachineFrameInfo &MFI = MF.getFrameInfo();
3258 
3259   // Adjust the stack pointer for the new arguments...
3260   // These operations are automatically eliminated by the prolog/epilog pass
3261   if (!IsSibCall) {
3262     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3263 
3264     if (!Subtarget->enableFlatScratch()) {
3265       SmallVector<SDValue, 4> CopyFromChains;
3266 
3267       // In the HSA case, this should be an identity copy.
3268       SDValue ScratchRSrcReg
3269         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3270       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3271       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3272       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3273     }
3274   }
3275 
3276   MVT PtrVT = MVT::i32;
3277 
3278   // Walk the register/memloc assignments, inserting copies/loads.
3279   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3280     CCValAssign &VA = ArgLocs[i];
3281     SDValue Arg = OutVals[i];
3282 
3283     // Promote the value if needed.
3284     switch (VA.getLocInfo()) {
3285     case CCValAssign::Full:
3286       break;
3287     case CCValAssign::BCvt:
3288       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3289       break;
3290     case CCValAssign::ZExt:
3291       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3292       break;
3293     case CCValAssign::SExt:
3294       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3295       break;
3296     case CCValAssign::AExt:
3297       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3298       break;
3299     case CCValAssign::FPExt:
3300       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3301       break;
3302     default:
3303       llvm_unreachable("Unknown loc info!");
3304     }
3305 
3306     if (VA.isRegLoc()) {
3307       RegsToPass.push_back(std::pair(VA.getLocReg(), Arg));
3308     } else {
3309       assert(VA.isMemLoc());
3310 
3311       SDValue DstAddr;
3312       MachinePointerInfo DstInfo;
3313 
3314       unsigned LocMemOffset = VA.getLocMemOffset();
3315       int32_t Offset = LocMemOffset;
3316 
3317       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3318       MaybeAlign Alignment;
3319 
3320       if (IsTailCall) {
3321         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3322         unsigned OpSize = Flags.isByVal() ?
3323           Flags.getByValSize() : VA.getValVT().getStoreSize();
3324 
3325         // FIXME: We can have better than the minimum byval required alignment.
3326         Alignment =
3327             Flags.isByVal()
3328                 ? Flags.getNonZeroByValAlign()
3329                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3330 
3331         Offset = Offset + FPDiff;
3332         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3333 
3334         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3335         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3336 
3337         // Make sure any stack arguments overlapping with where we're storing
3338         // are loaded before this eventual operation. Otherwise they'll be
3339         // clobbered.
3340 
3341         // FIXME: Why is this really necessary? This seems to just result in a
3342         // lot of code to copy the stack and write them back to the same
3343         // locations, which are supposed to be immutable?
3344         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3345       } else {
3346         // Stores to the argument stack area are relative to the stack pointer.
3347         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3348                                         MVT::i32);
3349         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3350         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3351         Alignment =
3352             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3353       }
3354 
3355       if (Outs[i].Flags.isByVal()) {
3356         SDValue SizeNode =
3357             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3358         SDValue Cpy =
3359             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3360                           Outs[i].Flags.getNonZeroByValAlign(),
3361                           /*isVol = */ false, /*AlwaysInline = */ true,
3362                           /*isTailCall = */ false, DstInfo,
3363                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3364 
3365         MemOpChains.push_back(Cpy);
3366       } else {
3367         SDValue Store =
3368             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3369         MemOpChains.push_back(Store);
3370       }
3371     }
3372   }
3373 
3374   if (!MemOpChains.empty())
3375     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3376 
3377   // Build a sequence of copy-to-reg nodes chained together with token chain
3378   // and flag operands which copy the outgoing args into the appropriate regs.
3379   SDValue InGlue;
3380   for (auto &RegToPass : RegsToPass) {
3381     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3382                              RegToPass.second, InGlue);
3383     InGlue = Chain.getValue(1);
3384   }
3385 
3386 
3387   // We don't usually want to end the call-sequence here because we would tidy
3388   // the frame up *after* the call, however in the ABI-changing tail-call case
3389   // we've carefully laid out the parameters so that when sp is reset they'll be
3390   // in the correct location.
3391   if (IsTailCall && !IsSibCall) {
3392     Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
3393     InGlue = Chain.getValue(1);
3394   }
3395 
3396   std::vector<SDValue> Ops;
3397   Ops.push_back(Chain);
3398   Ops.push_back(Callee);
3399   // Add a redundant copy of the callee global which will not be legalized, as
3400   // we need direct access to the callee later.
3401   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3402     const GlobalValue *GV = GSD->getGlobal();
3403     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3404   } else {
3405     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3406   }
3407 
3408   if (IsTailCall) {
3409     // Each tail call may have to adjust the stack by a different amount, so
3410     // this information must travel along with the operation for eventual
3411     // consumption by emitEpilogue.
3412     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3413   }
3414 
3415   // Add argument registers to the end of the list so that they are known live
3416   // into the call.
3417   for (auto &RegToPass : RegsToPass) {
3418     Ops.push_back(DAG.getRegister(RegToPass.first,
3419                                   RegToPass.second.getValueType()));
3420   }
3421 
3422   // Add a register mask operand representing the call-preserved registers.
3423 
3424   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3425   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3426   assert(Mask && "Missing call preserved mask for calling convention");
3427   Ops.push_back(DAG.getRegisterMask(Mask));
3428 
3429   if (InGlue.getNode())
3430     Ops.push_back(InGlue);
3431 
3432   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3433 
3434   // If we're doing a tall call, use a TC_RETURN here rather than an
3435   // actual call instruction.
3436   if (IsTailCall) {
3437     MFI.setHasTailCall();
3438     unsigned OPC = CallConv == CallingConv::AMDGPU_Gfx ?
3439                    AMDGPUISD::TC_RETURN_GFX : AMDGPUISD::TC_RETURN;
3440     return DAG.getNode(OPC, DL, NodeTys, Ops);
3441   }
3442 
3443   // Returns a chain and a flag for retval copy to use.
3444   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3445   Chain = Call.getValue(0);
3446   InGlue = Call.getValue(1);
3447 
3448   uint64_t CalleePopBytes = NumBytes;
3449   Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL);
3450   if (!Ins.empty())
3451     InGlue = Chain.getValue(1);
3452 
3453   // Handle result values, copying them out of physregs into vregs that we
3454   // return.
3455   return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
3456                          InVals, IsThisReturn,
3457                          IsThisReturn ? OutVals[0] : SDValue());
3458 }
3459 
3460 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3461 // except for applying the wave size scale to the increment amount.
3462 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3463     SDValue Op, SelectionDAG &DAG) const {
3464   const MachineFunction &MF = DAG.getMachineFunction();
3465   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3466 
3467   SDLoc dl(Op);
3468   EVT VT = Op.getValueType();
3469   SDValue Tmp1 = Op;
3470   SDValue Tmp2 = Op.getValue(1);
3471   SDValue Tmp3 = Op.getOperand(2);
3472   SDValue Chain = Tmp1.getOperand(0);
3473 
3474   Register SPReg = Info->getStackPtrOffsetReg();
3475 
3476   // Chain the dynamic stack allocation so that it doesn't modify the stack
3477   // pointer when other instructions are using the stack.
3478   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3479 
3480   SDValue Size  = Tmp2.getOperand(1);
3481   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3482   Chain = SP.getValue(1);
3483   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3484   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3485   const TargetFrameLowering *TFL = ST.getFrameLowering();
3486   unsigned Opc =
3487     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3488     ISD::ADD : ISD::SUB;
3489 
3490   SDValue ScaledSize = DAG.getNode(
3491       ISD::SHL, dl, VT, Size,
3492       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3493 
3494   Align StackAlign = TFL->getStackAlign();
3495   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3496   if (Alignment && *Alignment > StackAlign) {
3497     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3498                        DAG.getConstant(-(uint64_t)Alignment->value()
3499                                            << ST.getWavefrontSizeLog2(),
3500                                        dl, VT));
3501   }
3502 
3503   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3504   Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
3505 
3506   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3507 }
3508 
3509 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3510                                                   SelectionDAG &DAG) const {
3511   // We only handle constant sizes here to allow non-entry block, static sized
3512   // allocas. A truly dynamic value is more difficult to support because we
3513   // don't know if the size value is uniform or not. If the size isn't uniform,
3514   // we would need to do a wave reduction to get the maximum size to know how
3515   // much to increment the uniform stack pointer.
3516   SDValue Size = Op.getOperand(1);
3517   if (isa<ConstantSDNode>(Size))
3518       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3519 
3520   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3521 }
3522 
3523 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3524                                              const MachineFunction &MF) const {
3525   Register Reg = StringSwitch<Register>(RegName)
3526     .Case("m0", AMDGPU::M0)
3527     .Case("exec", AMDGPU::EXEC)
3528     .Case("exec_lo", AMDGPU::EXEC_LO)
3529     .Case("exec_hi", AMDGPU::EXEC_HI)
3530     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3531     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3532     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3533     .Default(Register());
3534 
3535   if (Reg == AMDGPU::NoRegister) {
3536     report_fatal_error(Twine("invalid register name \""
3537                              + StringRef(RegName)  + "\"."));
3538 
3539   }
3540 
3541   if (!Subtarget->hasFlatScrRegister() &&
3542        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3543     report_fatal_error(Twine("invalid register \""
3544                              + StringRef(RegName)  + "\" for subtarget."));
3545   }
3546 
3547   switch (Reg) {
3548   case AMDGPU::M0:
3549   case AMDGPU::EXEC_LO:
3550   case AMDGPU::EXEC_HI:
3551   case AMDGPU::FLAT_SCR_LO:
3552   case AMDGPU::FLAT_SCR_HI:
3553     if (VT.getSizeInBits() == 32)
3554       return Reg;
3555     break;
3556   case AMDGPU::EXEC:
3557   case AMDGPU::FLAT_SCR:
3558     if (VT.getSizeInBits() == 64)
3559       return Reg;
3560     break;
3561   default:
3562     llvm_unreachable("missing register type checking");
3563   }
3564 
3565   report_fatal_error(Twine("invalid type for register \""
3566                            + StringRef(RegName) + "\"."));
3567 }
3568 
3569 // If kill is not the last instruction, split the block so kill is always a
3570 // proper terminator.
3571 MachineBasicBlock *
3572 SITargetLowering::splitKillBlock(MachineInstr &MI,
3573                                  MachineBasicBlock *BB) const {
3574   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3575   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3576   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3577   return SplitBB;
3578 }
3579 
3580 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3581 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3582 // be the first instruction in the remainder block.
3583 //
3584 /// \returns { LoopBody, Remainder }
3585 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3586 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3587   MachineFunction *MF = MBB.getParent();
3588   MachineBasicBlock::iterator I(&MI);
3589 
3590   // To insert the loop we need to split the block. Move everything after this
3591   // point to a new block, and insert a new empty block between the two.
3592   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3593   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3594   MachineFunction::iterator MBBI(MBB);
3595   ++MBBI;
3596 
3597   MF->insert(MBBI, LoopBB);
3598   MF->insert(MBBI, RemainderBB);
3599 
3600   LoopBB->addSuccessor(LoopBB);
3601   LoopBB->addSuccessor(RemainderBB);
3602 
3603   // Move the rest of the block into a new block.
3604   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3605 
3606   if (InstInLoop) {
3607     auto Next = std::next(I);
3608 
3609     // Move instruction to loop body.
3610     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3611 
3612     // Move the rest of the block.
3613     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3614   } else {
3615     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3616   }
3617 
3618   MBB.addSuccessor(LoopBB);
3619 
3620   return std::pair(LoopBB, RemainderBB);
3621 }
3622 
3623 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3624 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3625   MachineBasicBlock *MBB = MI.getParent();
3626   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3627   auto I = MI.getIterator();
3628   auto E = std::next(I);
3629 
3630   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3631     .addImm(0);
3632 
3633   MIBundleBuilder Bundler(*MBB, I, E);
3634   finalizeBundle(*MBB, Bundler.begin());
3635 }
3636 
3637 MachineBasicBlock *
3638 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3639                                          MachineBasicBlock *BB) const {
3640   const DebugLoc &DL = MI.getDebugLoc();
3641 
3642   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3643 
3644   MachineBasicBlock *LoopBB;
3645   MachineBasicBlock *RemainderBB;
3646   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3647 
3648   // Apparently kill flags are only valid if the def is in the same block?
3649   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3650     Src->setIsKill(false);
3651 
3652   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3653 
3654   MachineBasicBlock::iterator I = LoopBB->end();
3655 
3656   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3657     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3658 
3659   // Clear TRAP_STS.MEM_VIOL
3660   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3661     .addImm(0)
3662     .addImm(EncodedReg);
3663 
3664   bundleInstWithWaitcnt(MI);
3665 
3666   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3667 
3668   // Load and check TRAP_STS.MEM_VIOL
3669   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3670     .addImm(EncodedReg);
3671 
3672   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3673   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3674     .addReg(Reg, RegState::Kill)
3675     .addImm(0);
3676   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3677     .addMBB(LoopBB);
3678 
3679   return RemainderBB;
3680 }
3681 
3682 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3683 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3684 // will only do one iteration. In the worst case, this will loop 64 times.
3685 //
3686 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3687 static MachineBasicBlock::iterator
3688 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3689                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3690                        const DebugLoc &DL, const MachineOperand &Idx,
3691                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3692                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3693                        Register &SGPRIdxReg) {
3694 
3695   MachineFunction *MF = OrigBB.getParent();
3696   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3697   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3698   MachineBasicBlock::iterator I = LoopBB.begin();
3699 
3700   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3701   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3702   Register NewExec = MRI.createVirtualRegister(BoolRC);
3703   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3704   Register CondReg = MRI.createVirtualRegister(BoolRC);
3705 
3706   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3707     .addReg(InitReg)
3708     .addMBB(&OrigBB)
3709     .addReg(ResultReg)
3710     .addMBB(&LoopBB);
3711 
3712   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3713     .addReg(InitSaveExecReg)
3714     .addMBB(&OrigBB)
3715     .addReg(NewExec)
3716     .addMBB(&LoopBB);
3717 
3718   // Read the next variant <- also loop target.
3719   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3720       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3721 
3722   // Compare the just read M0 value to all possible Idx values.
3723   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3724       .addReg(CurrentIdxReg)
3725       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3726 
3727   // Update EXEC, save the original EXEC value to VCC.
3728   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3729                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3730           NewExec)
3731     .addReg(CondReg, RegState::Kill);
3732 
3733   MRI.setSimpleHint(NewExec, CondReg);
3734 
3735   if (UseGPRIdxMode) {
3736     if (Offset == 0) {
3737       SGPRIdxReg = CurrentIdxReg;
3738     } else {
3739       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3740       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3741           .addReg(CurrentIdxReg, RegState::Kill)
3742           .addImm(Offset);
3743     }
3744   } else {
3745     // Move index from VCC into M0
3746     if (Offset == 0) {
3747       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3748         .addReg(CurrentIdxReg, RegState::Kill);
3749     } else {
3750       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3751         .addReg(CurrentIdxReg, RegState::Kill)
3752         .addImm(Offset);
3753     }
3754   }
3755 
3756   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3757   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3758   MachineInstr *InsertPt =
3759     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3760                                                   : AMDGPU::S_XOR_B64_term), Exec)
3761       .addReg(Exec)
3762       .addReg(NewExec);
3763 
3764   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3765   // s_cbranch_scc0?
3766 
3767   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3768   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3769     .addMBB(&LoopBB);
3770 
3771   return InsertPt->getIterator();
3772 }
3773 
3774 // This has slightly sub-optimal regalloc when the source vector is killed by
3775 // the read. The register allocator does not understand that the kill is
3776 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3777 // subregister from it, using 1 more VGPR than necessary. This was saved when
3778 // this was expanded after register allocation.
3779 static MachineBasicBlock::iterator
3780 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3781                unsigned InitResultReg, unsigned PhiReg, int Offset,
3782                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3783   MachineFunction *MF = MBB.getParent();
3784   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3785   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3786   MachineRegisterInfo &MRI = MF->getRegInfo();
3787   const DebugLoc &DL = MI.getDebugLoc();
3788   MachineBasicBlock::iterator I(&MI);
3789 
3790   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3791   Register DstReg = MI.getOperand(0).getReg();
3792   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3793   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3794   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3795   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3796 
3797   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3798 
3799   // Save the EXEC mask
3800   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3801     .addReg(Exec);
3802 
3803   MachineBasicBlock *LoopBB;
3804   MachineBasicBlock *RemainderBB;
3805   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3806 
3807   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3808 
3809   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3810                                       InitResultReg, DstReg, PhiReg, TmpExec,
3811                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3812 
3813   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3814   MachineFunction::iterator MBBI(LoopBB);
3815   ++MBBI;
3816   MF->insert(MBBI, LandingPad);
3817   LoopBB->removeSuccessor(RemainderBB);
3818   LandingPad->addSuccessor(RemainderBB);
3819   LoopBB->addSuccessor(LandingPad);
3820   MachineBasicBlock::iterator First = LandingPad->begin();
3821   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3822     .addReg(SaveExec);
3823 
3824   return InsPt;
3825 }
3826 
3827 // Returns subreg index, offset
3828 static std::pair<unsigned, int>
3829 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3830                             const TargetRegisterClass *SuperRC,
3831                             unsigned VecReg,
3832                             int Offset) {
3833   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3834 
3835   // Skip out of bounds offsets, or else we would end up using an undefined
3836   // register.
3837   if (Offset >= NumElts || Offset < 0)
3838     return std::pair(AMDGPU::sub0, Offset);
3839 
3840   return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3841 }
3842 
3843 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3844                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3845                                  int Offset) {
3846   MachineBasicBlock *MBB = MI.getParent();
3847   const DebugLoc &DL = MI.getDebugLoc();
3848   MachineBasicBlock::iterator I(&MI);
3849 
3850   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3851 
3852   assert(Idx->getReg() != AMDGPU::NoRegister);
3853 
3854   if (Offset == 0) {
3855     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3856   } else {
3857     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3858         .add(*Idx)
3859         .addImm(Offset);
3860   }
3861 }
3862 
3863 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3864                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3865                                    int Offset) {
3866   MachineBasicBlock *MBB = MI.getParent();
3867   const DebugLoc &DL = MI.getDebugLoc();
3868   MachineBasicBlock::iterator I(&MI);
3869 
3870   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3871 
3872   if (Offset == 0)
3873     return Idx->getReg();
3874 
3875   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3876   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3877       .add(*Idx)
3878       .addImm(Offset);
3879   return Tmp;
3880 }
3881 
3882 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3883                                           MachineBasicBlock &MBB,
3884                                           const GCNSubtarget &ST) {
3885   const SIInstrInfo *TII = ST.getInstrInfo();
3886   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3887   MachineFunction *MF = MBB.getParent();
3888   MachineRegisterInfo &MRI = MF->getRegInfo();
3889 
3890   Register Dst = MI.getOperand(0).getReg();
3891   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3892   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3893   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3894 
3895   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3896   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3897 
3898   unsigned SubReg;
3899   std::tie(SubReg, Offset)
3900     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3901 
3902   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3903 
3904   // Check for a SGPR index.
3905   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3906     MachineBasicBlock::iterator I(&MI);
3907     const DebugLoc &DL = MI.getDebugLoc();
3908 
3909     if (UseGPRIdxMode) {
3910       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3911       // to avoid interfering with other uses, so probably requires a new
3912       // optimization pass.
3913       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3914 
3915       const MCInstrDesc &GPRIDXDesc =
3916           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3917       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3918           .addReg(SrcReg)
3919           .addReg(Idx)
3920           .addImm(SubReg);
3921     } else {
3922       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3923 
3924       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3925         .addReg(SrcReg, 0, SubReg)
3926         .addReg(SrcReg, RegState::Implicit);
3927     }
3928 
3929     MI.eraseFromParent();
3930 
3931     return &MBB;
3932   }
3933 
3934   // Control flow needs to be inserted if indexing with a VGPR.
3935   const DebugLoc &DL = MI.getDebugLoc();
3936   MachineBasicBlock::iterator I(&MI);
3937 
3938   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3939   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3940 
3941   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3942 
3943   Register SGPRIdxReg;
3944   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3945                               UseGPRIdxMode, SGPRIdxReg);
3946 
3947   MachineBasicBlock *LoopBB = InsPt->getParent();
3948 
3949   if (UseGPRIdxMode) {
3950     const MCInstrDesc &GPRIDXDesc =
3951         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3952 
3953     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3954         .addReg(SrcReg)
3955         .addReg(SGPRIdxReg)
3956         .addImm(SubReg);
3957   } else {
3958     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3959       .addReg(SrcReg, 0, SubReg)
3960       .addReg(SrcReg, RegState::Implicit);
3961   }
3962 
3963   MI.eraseFromParent();
3964 
3965   return LoopBB;
3966 }
3967 
3968 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3969                                           MachineBasicBlock &MBB,
3970                                           const GCNSubtarget &ST) {
3971   const SIInstrInfo *TII = ST.getInstrInfo();
3972   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3973   MachineFunction *MF = MBB.getParent();
3974   MachineRegisterInfo &MRI = MF->getRegInfo();
3975 
3976   Register Dst = MI.getOperand(0).getReg();
3977   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3978   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3979   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3980   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3981   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3982   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3983 
3984   // This can be an immediate, but will be folded later.
3985   assert(Val->getReg());
3986 
3987   unsigned SubReg;
3988   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3989                                                          SrcVec->getReg(),
3990                                                          Offset);
3991   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3992 
3993   if (Idx->getReg() == AMDGPU::NoRegister) {
3994     MachineBasicBlock::iterator I(&MI);
3995     const DebugLoc &DL = MI.getDebugLoc();
3996 
3997     assert(Offset == 0);
3998 
3999     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
4000         .add(*SrcVec)
4001         .add(*Val)
4002         .addImm(SubReg);
4003 
4004     MI.eraseFromParent();
4005     return &MBB;
4006   }
4007 
4008   // Check for a SGPR index.
4009   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4010     MachineBasicBlock::iterator I(&MI);
4011     const DebugLoc &DL = MI.getDebugLoc();
4012 
4013     if (UseGPRIdxMode) {
4014       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
4015 
4016       const MCInstrDesc &GPRIDXDesc =
4017           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4018       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
4019           .addReg(SrcVec->getReg())
4020           .add(*Val)
4021           .addReg(Idx)
4022           .addImm(SubReg);
4023     } else {
4024       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
4025 
4026       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4027           TRI.getRegSizeInBits(*VecRC), 32, false);
4028       BuildMI(MBB, I, DL, MovRelDesc, Dst)
4029           .addReg(SrcVec->getReg())
4030           .add(*Val)
4031           .addImm(SubReg);
4032     }
4033     MI.eraseFromParent();
4034     return &MBB;
4035   }
4036 
4037   // Control flow needs to be inserted if indexing with a VGPR.
4038   if (Val->isReg())
4039     MRI.clearKillFlags(Val->getReg());
4040 
4041   const DebugLoc &DL = MI.getDebugLoc();
4042 
4043   Register PhiReg = MRI.createVirtualRegister(VecRC);
4044 
4045   Register SGPRIdxReg;
4046   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
4047                               UseGPRIdxMode, SGPRIdxReg);
4048   MachineBasicBlock *LoopBB = InsPt->getParent();
4049 
4050   if (UseGPRIdxMode) {
4051     const MCInstrDesc &GPRIDXDesc =
4052         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4053 
4054     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
4055         .addReg(PhiReg)
4056         .add(*Val)
4057         .addReg(SGPRIdxReg)
4058         .addImm(AMDGPU::sub0);
4059   } else {
4060     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4061         TRI.getRegSizeInBits(*VecRC), 32, false);
4062     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
4063         .addReg(PhiReg)
4064         .add(*Val)
4065         .addImm(AMDGPU::sub0);
4066   }
4067 
4068   MI.eraseFromParent();
4069   return LoopBB;
4070 }
4071 
4072 static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI,
4073                                           MachineBasicBlock &BB,
4074                                           const GCNSubtarget &ST,
4075                                           unsigned Opc) {
4076   MachineRegisterInfo &MRI = BB.getParent()->getRegInfo();
4077   const SIRegisterInfo *TRI = ST.getRegisterInfo();
4078   const DebugLoc &DL = MI.getDebugLoc();
4079   const SIInstrInfo *TII = ST.getInstrInfo();
4080 
4081   // Reduction operations depend on whether the input operand is SGPR or VGPR.
4082   Register SrcReg = MI.getOperand(1).getReg();
4083   bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg));
4084   Register DstReg = MI.getOperand(0).getReg();
4085   MachineBasicBlock *RetBB = nullptr;
4086   if (isSGPR) {
4087     // These operations with a uniform value i.e. SGPR are idempotent.
4088     // Reduced value will be same as given sgpr.
4089     BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg);
4090     RetBB = &BB;
4091   } else {
4092     // TODO: Implement DPP Strategy and switch based on immediate strategy
4093     // operand. For now, for all the cases (default, Iterative and DPP we use
4094     // iterative approach by default.)
4095 
4096     // To reduce the VGPR using iterative approach, we need to iterate
4097     // over all the active lanes. Lowering consists of ComputeLoop,
4098     // which iterate over only active lanes. We use copy of EXEC register
4099     // as induction variable and every active lane modifies it using bitset0
4100     // so that we will get the next active lane for next iteration.
4101     MachineBasicBlock::iterator I = BB.end();
4102     Register SrcReg = MI.getOperand(1).getReg();
4103 
4104     // Create Control flow for loop
4105     // Split MI's Machine Basic block into For loop
4106     auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true);
4107 
4108     // Create virtual registers required for lowering.
4109     const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass();
4110     const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg);
4111     Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass);
4112     Register InitalValReg = MRI.createVirtualRegister(DstRegClass);
4113 
4114     Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass);
4115     Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
4116     Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
4117 
4118     Register FF1Reg = MRI.createVirtualRegister(DstRegClass);
4119     Register LaneValueReg = MRI.createVirtualRegister(DstRegClass);
4120 
4121     bool IsWave32 = ST.isWave32();
4122     unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4123     unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4124 
4125     // Create initail values of induction variable from Exec, Accumulator and
4126     // insert branch instr to newly created ComputeBlockk
4127     uint32_t InitalValue =
4128         (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0;
4129     auto TmpSReg =
4130         BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg);
4131     BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg)
4132         .addImm(InitalValue);
4133     BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop);
4134 
4135     // Start constructing ComputeLoop
4136     I = ComputeLoop->end();
4137     auto Accumulator =
4138         BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg)
4139             .addReg(InitalValReg)
4140             .addMBB(&BB);
4141     auto ActiveBits =
4142         BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg)
4143             .addReg(TmpSReg->getOperand(0).getReg())
4144             .addMBB(&BB);
4145 
4146     // Perform the computations
4147     unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
4148     auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg)
4149                    .addReg(ActiveBits->getOperand(0).getReg());
4150     auto LaneValue = BuildMI(*ComputeLoop, I, DL,
4151                              TII->get(AMDGPU::V_READLANE_B32), LaneValueReg)
4152                          .addReg(SrcReg)
4153                          .addReg(FF1->getOperand(0).getReg());
4154     auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
4155                               .addReg(Accumulator->getOperand(0).getReg())
4156                               .addReg(LaneValue->getOperand(0).getReg());
4157 
4158     // Manipulate the iterator to get the next active lane
4159     unsigned BITSETOpc =
4160         IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
4161     auto NewActiveBits =
4162         BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg)
4163             .addReg(FF1->getOperand(0).getReg())
4164             .addReg(ActiveBits->getOperand(0).getReg());
4165 
4166     // Add phi nodes
4167     Accumulator.addReg(NewAccumulator->getOperand(0).getReg())
4168         .addMBB(ComputeLoop);
4169     ActiveBits.addReg(NewActiveBits->getOperand(0).getReg())
4170         .addMBB(ComputeLoop);
4171 
4172     // Creating branching
4173     unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
4174     BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc))
4175         .addReg(NewActiveBits->getOperand(0).getReg())
4176         .addImm(0);
4177     BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4178         .addMBB(ComputeLoop);
4179 
4180     RetBB = ComputeEnd;
4181   }
4182   MI.eraseFromParent();
4183   return RetBB;
4184 }
4185 
4186 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
4187   MachineInstr &MI, MachineBasicBlock *BB) const {
4188 
4189   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4190   MachineFunction *MF = BB->getParent();
4191   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
4192 
4193   switch (MI.getOpcode()) {
4194   case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
4195     return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32);
4196   case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
4197     return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32);
4198   case AMDGPU::S_UADDO_PSEUDO:
4199   case AMDGPU::S_USUBO_PSEUDO: {
4200     const DebugLoc &DL = MI.getDebugLoc();
4201     MachineOperand &Dest0 = MI.getOperand(0);
4202     MachineOperand &Dest1 = MI.getOperand(1);
4203     MachineOperand &Src0 = MI.getOperand(2);
4204     MachineOperand &Src1 = MI.getOperand(3);
4205 
4206     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4207                        ? AMDGPU::S_ADD_I32
4208                        : AMDGPU::S_SUB_I32;
4209     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4210 
4211     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4212         .addImm(1)
4213         .addImm(0);
4214 
4215     MI.eraseFromParent();
4216     return BB;
4217   }
4218   case AMDGPU::S_ADD_U64_PSEUDO:
4219   case AMDGPU::S_SUB_U64_PSEUDO: {
4220     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4221     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4222     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4223     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4224     const DebugLoc &DL = MI.getDebugLoc();
4225 
4226     MachineOperand &Dest = MI.getOperand(0);
4227     MachineOperand &Src0 = MI.getOperand(1);
4228     MachineOperand &Src1 = MI.getOperand(2);
4229 
4230     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4231     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4232 
4233     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4234         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4235     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4236         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4237 
4238     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4239         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4240     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4241         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4242 
4243     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4244 
4245     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4246     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4247     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4248     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4249     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4250         .addReg(DestSub0)
4251         .addImm(AMDGPU::sub0)
4252         .addReg(DestSub1)
4253         .addImm(AMDGPU::sub1);
4254     MI.eraseFromParent();
4255     return BB;
4256   }
4257   case AMDGPU::V_ADD_U64_PSEUDO:
4258   case AMDGPU::V_SUB_U64_PSEUDO: {
4259     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4260     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4261     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4262     const DebugLoc &DL = MI.getDebugLoc();
4263 
4264     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4265 
4266     MachineOperand &Dest = MI.getOperand(0);
4267     MachineOperand &Src0 = MI.getOperand(1);
4268     MachineOperand &Src1 = MI.getOperand(2);
4269 
4270     if (IsAdd && ST.hasLshlAddB64()) {
4271       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4272                          Dest.getReg())
4273                      .add(Src0)
4274                      .addImm(0)
4275                      .add(Src1);
4276       TII->legalizeOperands(*Add);
4277       MI.eraseFromParent();
4278       return BB;
4279     }
4280 
4281     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4282 
4283     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4284     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4285 
4286     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4287     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4288 
4289     const TargetRegisterClass *Src0RC = Src0.isReg()
4290                                             ? MRI.getRegClass(Src0.getReg())
4291                                             : &AMDGPU::VReg_64RegClass;
4292     const TargetRegisterClass *Src1RC = Src1.isReg()
4293                                             ? MRI.getRegClass(Src1.getReg())
4294                                             : &AMDGPU::VReg_64RegClass;
4295 
4296     const TargetRegisterClass *Src0SubRC =
4297         TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
4298     const TargetRegisterClass *Src1SubRC =
4299         TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
4300 
4301     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4302         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4303     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4304         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4305 
4306     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4307         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4308     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4309         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4310 
4311     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4312     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4313                                .addReg(CarryReg, RegState::Define)
4314                                .add(SrcReg0Sub0)
4315                                .add(SrcReg1Sub0)
4316                                .addImm(0); // clamp bit
4317 
4318     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4319     MachineInstr *HiHalf =
4320         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4321             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4322             .add(SrcReg0Sub1)
4323             .add(SrcReg1Sub1)
4324             .addReg(CarryReg, RegState::Kill)
4325             .addImm(0); // clamp bit
4326 
4327     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4328         .addReg(DestSub0)
4329         .addImm(AMDGPU::sub0)
4330         .addReg(DestSub1)
4331         .addImm(AMDGPU::sub1);
4332     TII->legalizeOperands(*LoHalf);
4333     TII->legalizeOperands(*HiHalf);
4334     MI.eraseFromParent();
4335     return BB;
4336   }
4337   case AMDGPU::S_ADD_CO_PSEUDO:
4338   case AMDGPU::S_SUB_CO_PSEUDO: {
4339     // This pseudo has a chance to be selected
4340     // only from uniform add/subcarry node. All the VGPR operands
4341     // therefore assumed to be splat vectors.
4342     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4343     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4344     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4345     MachineBasicBlock::iterator MII = MI;
4346     const DebugLoc &DL = MI.getDebugLoc();
4347     MachineOperand &Dest = MI.getOperand(0);
4348     MachineOperand &CarryDest = MI.getOperand(1);
4349     MachineOperand &Src0 = MI.getOperand(2);
4350     MachineOperand &Src1 = MI.getOperand(3);
4351     MachineOperand &Src2 = MI.getOperand(4);
4352     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4353                        ? AMDGPU::S_ADDC_U32
4354                        : AMDGPU::S_SUBB_U32;
4355     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4356       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4357       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4358           .addReg(Src0.getReg());
4359       Src0.setReg(RegOp0);
4360     }
4361     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4362       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4363       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4364           .addReg(Src1.getReg());
4365       Src1.setReg(RegOp1);
4366     }
4367     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4368     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4369       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4370           .addReg(Src2.getReg());
4371       Src2.setReg(RegOp2);
4372     }
4373 
4374     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4375     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4376     assert(WaveSize == 64 || WaveSize == 32);
4377 
4378     if (WaveSize == 64) {
4379       if (ST.hasScalarCompareEq64()) {
4380         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4381             .addReg(Src2.getReg())
4382             .addImm(0);
4383       } else {
4384         const TargetRegisterClass *SubRC =
4385             TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
4386         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4387             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4388         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4389             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4390         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4391 
4392         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4393             .add(Src2Sub0)
4394             .add(Src2Sub1);
4395 
4396         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4397             .addReg(Src2_32, RegState::Kill)
4398             .addImm(0);
4399       }
4400     } else {
4401       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4402           .addReg(Src2.getReg())
4403           .addImm(0);
4404     }
4405 
4406     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4407 
4408     unsigned SelOpc =
4409         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4410 
4411     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4412         .addImm(-1)
4413         .addImm(0);
4414 
4415     MI.eraseFromParent();
4416     return BB;
4417   }
4418   case AMDGPU::SI_INIT_M0: {
4419     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4420             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4421         .add(MI.getOperand(0));
4422     MI.eraseFromParent();
4423     return BB;
4424   }
4425   case AMDGPU::GET_GROUPSTATICSIZE: {
4426     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4427            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4428     DebugLoc DL = MI.getDebugLoc();
4429     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4430         .add(MI.getOperand(0))
4431         .addImm(MFI->getLDSSize());
4432     MI.eraseFromParent();
4433     return BB;
4434   }
4435   case AMDGPU::SI_INDIRECT_SRC_V1:
4436   case AMDGPU::SI_INDIRECT_SRC_V2:
4437   case AMDGPU::SI_INDIRECT_SRC_V4:
4438   case AMDGPU::SI_INDIRECT_SRC_V8:
4439   case AMDGPU::SI_INDIRECT_SRC_V9:
4440   case AMDGPU::SI_INDIRECT_SRC_V10:
4441   case AMDGPU::SI_INDIRECT_SRC_V11:
4442   case AMDGPU::SI_INDIRECT_SRC_V12:
4443   case AMDGPU::SI_INDIRECT_SRC_V16:
4444   case AMDGPU::SI_INDIRECT_SRC_V32:
4445     return emitIndirectSrc(MI, *BB, *getSubtarget());
4446   case AMDGPU::SI_INDIRECT_DST_V1:
4447   case AMDGPU::SI_INDIRECT_DST_V2:
4448   case AMDGPU::SI_INDIRECT_DST_V4:
4449   case AMDGPU::SI_INDIRECT_DST_V8:
4450   case AMDGPU::SI_INDIRECT_DST_V9:
4451   case AMDGPU::SI_INDIRECT_DST_V10:
4452   case AMDGPU::SI_INDIRECT_DST_V11:
4453   case AMDGPU::SI_INDIRECT_DST_V12:
4454   case AMDGPU::SI_INDIRECT_DST_V16:
4455   case AMDGPU::SI_INDIRECT_DST_V32:
4456     return emitIndirectDst(MI, *BB, *getSubtarget());
4457   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4458   case AMDGPU::SI_KILL_I1_PSEUDO:
4459     return splitKillBlock(MI, BB);
4460   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4461     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4462     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4463     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4464 
4465     Register Dst = MI.getOperand(0).getReg();
4466     Register Src0 = MI.getOperand(1).getReg();
4467     Register Src1 = MI.getOperand(2).getReg();
4468     const DebugLoc &DL = MI.getDebugLoc();
4469     Register SrcCond = MI.getOperand(3).getReg();
4470 
4471     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4472     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4473     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4474     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4475 
4476     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4477       .addReg(SrcCond);
4478     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4479       .addImm(0)
4480       .addReg(Src0, 0, AMDGPU::sub0)
4481       .addImm(0)
4482       .addReg(Src1, 0, AMDGPU::sub0)
4483       .addReg(SrcCondCopy);
4484     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4485       .addImm(0)
4486       .addReg(Src0, 0, AMDGPU::sub1)
4487       .addImm(0)
4488       .addReg(Src1, 0, AMDGPU::sub1)
4489       .addReg(SrcCondCopy);
4490 
4491     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4492       .addReg(DstLo)
4493       .addImm(AMDGPU::sub0)
4494       .addReg(DstHi)
4495       .addImm(AMDGPU::sub1);
4496     MI.eraseFromParent();
4497     return BB;
4498   }
4499   case AMDGPU::SI_BR_UNDEF: {
4500     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4501     const DebugLoc &DL = MI.getDebugLoc();
4502     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4503                            .add(MI.getOperand(0));
4504     Br->getOperand(1).setIsUndef(); // read undef SCC
4505     MI.eraseFromParent();
4506     return BB;
4507   }
4508   case AMDGPU::ADJCALLSTACKUP:
4509   case AMDGPU::ADJCALLSTACKDOWN: {
4510     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4511     MachineInstrBuilder MIB(*MF, &MI);
4512     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4513        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4514     return BB;
4515   }
4516   case AMDGPU::SI_CALL_ISEL: {
4517     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4518     const DebugLoc &DL = MI.getDebugLoc();
4519 
4520     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4521 
4522     MachineInstrBuilder MIB;
4523     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4524 
4525     for (const MachineOperand &MO : MI.operands())
4526       MIB.add(MO);
4527 
4528     MIB.cloneMemRefs(MI);
4529     MI.eraseFromParent();
4530     return BB;
4531   }
4532   case AMDGPU::V_ADD_CO_U32_e32:
4533   case AMDGPU::V_SUB_CO_U32_e32:
4534   case AMDGPU::V_SUBREV_CO_U32_e32: {
4535     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4536     const DebugLoc &DL = MI.getDebugLoc();
4537     unsigned Opc = MI.getOpcode();
4538 
4539     bool NeedClampOperand = false;
4540     if (TII->pseudoToMCOpcode(Opc) == -1) {
4541       Opc = AMDGPU::getVOPe64(Opc);
4542       NeedClampOperand = true;
4543     }
4544 
4545     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4546     if (TII->isVOP3(*I)) {
4547       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4548       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4549       I.addReg(TRI->getVCC(), RegState::Define);
4550     }
4551     I.add(MI.getOperand(1))
4552      .add(MI.getOperand(2));
4553     if (NeedClampOperand)
4554       I.addImm(0); // clamp bit for e64 encoding
4555 
4556     TII->legalizeOperands(*I);
4557 
4558     MI.eraseFromParent();
4559     return BB;
4560   }
4561   case AMDGPU::V_ADDC_U32_e32:
4562   case AMDGPU::V_SUBB_U32_e32:
4563   case AMDGPU::V_SUBBREV_U32_e32:
4564     // These instructions have an implicit use of vcc which counts towards the
4565     // constant bus limit.
4566     TII->legalizeOperands(MI);
4567     return BB;
4568   case AMDGPU::DS_GWS_INIT:
4569   case AMDGPU::DS_GWS_SEMA_BR:
4570   case AMDGPU::DS_GWS_BARRIER:
4571     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
4572     [[fallthrough]];
4573   case AMDGPU::DS_GWS_SEMA_V:
4574   case AMDGPU::DS_GWS_SEMA_P:
4575   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4576     // A s_waitcnt 0 is required to be the instruction immediately following.
4577     if (getSubtarget()->hasGWSAutoReplay()) {
4578       bundleInstWithWaitcnt(MI);
4579       return BB;
4580     }
4581 
4582     return emitGWSMemViolTestLoop(MI, BB);
4583   case AMDGPU::S_SETREG_B32: {
4584     // Try to optimize cases that only set the denormal mode or rounding mode.
4585     //
4586     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4587     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4588     // instead.
4589     //
4590     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4591     // allow you to have a no side effect instruction in the output of a
4592     // sideeffecting pattern.
4593     unsigned ID, Offset, Width;
4594     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4595     if (ID != AMDGPU::Hwreg::ID_MODE)
4596       return BB;
4597 
4598     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4599     const unsigned SetMask = WidthMask << Offset;
4600 
4601     if (getSubtarget()->hasDenormModeInst()) {
4602       unsigned SetDenormOp = 0;
4603       unsigned SetRoundOp = 0;
4604 
4605       // The dedicated instructions can only set the whole denorm or round mode
4606       // at once, not a subset of bits in either.
4607       if (SetMask ==
4608           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4609         // If this fully sets both the round and denorm mode, emit the two
4610         // dedicated instructions for these.
4611         SetRoundOp = AMDGPU::S_ROUND_MODE;
4612         SetDenormOp = AMDGPU::S_DENORM_MODE;
4613       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4614         SetRoundOp = AMDGPU::S_ROUND_MODE;
4615       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4616         SetDenormOp = AMDGPU::S_DENORM_MODE;
4617       }
4618 
4619       if (SetRoundOp || SetDenormOp) {
4620         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4621         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4622         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4623           unsigned ImmVal = Def->getOperand(1).getImm();
4624           if (SetRoundOp) {
4625             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4626                 .addImm(ImmVal & 0xf);
4627 
4628             // If we also have the denorm mode, get just the denorm mode bits.
4629             ImmVal >>= 4;
4630           }
4631 
4632           if (SetDenormOp) {
4633             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4634                 .addImm(ImmVal & 0xf);
4635           }
4636 
4637           MI.eraseFromParent();
4638           return BB;
4639         }
4640       }
4641     }
4642 
4643     // If only FP bits are touched, used the no side effects pseudo.
4644     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4645                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4646       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4647 
4648     return BB;
4649   }
4650   case AMDGPU::S_INVERSE_BALLOT_U32:
4651   case AMDGPU::S_INVERSE_BALLOT_U64: {
4652     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4653     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4654     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4655     const DebugLoc &DL = MI.getDebugLoc();
4656     const Register DstReg = MI.getOperand(0).getReg();
4657     Register MaskReg = MI.getOperand(1).getReg();
4658 
4659     const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg);
4660 
4661     if (IsVALU) {
4662       MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI);
4663     }
4664 
4665     BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg);
4666     MI.eraseFromParent();
4667     return BB;
4668   }
4669   case AMDGPU::ENDPGM_TRAP: {
4670     const DebugLoc &DL = MI.getDebugLoc();
4671     if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) {
4672       MI.setDesc(TII->get(AMDGPU::S_ENDPGM));
4673       MI.addOperand(MachineOperand::CreateImm(0));
4674       return BB;
4675     }
4676 
4677     // We need a block split to make the real endpgm a terminator. We also don't
4678     // want to break phis in successor blocks, so we can't just delete to the
4679     // end of the block.
4680 
4681     MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
4682     MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
4683     MF->push_back(TrapBB);
4684     BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM))
4685       .addImm(0);
4686     BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
4687       .addMBB(TrapBB);
4688 
4689     BB->addSuccessor(TrapBB);
4690     MI.eraseFromParent();
4691     return SplitBB;
4692   }
4693   default:
4694     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4695   }
4696 }
4697 
4698 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const {
4699   switch (Op.getValue(0).getSimpleValueType().SimpleTy) {
4700   case MVT::f32:
4701     return Subtarget->hasAtomicFaddRtnInsts();
4702   case MVT::v2f16:
4703   case MVT::f64:
4704     return Subtarget->hasGFX90AInsts();
4705   default:
4706     return false;
4707   }
4708 }
4709 
4710 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4711   // This currently forces unfolding various combinations of fsub into fma with
4712   // free fneg'd operands. As long as we have fast FMA (controlled by
4713   // isFMAFasterThanFMulAndFAdd), we should perform these.
4714 
4715   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4716   // most of these combines appear to be cycle neutral but save on instruction
4717   // count / code size.
4718   return true;
4719 }
4720 
4721 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4722 
4723 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4724                                          EVT VT) const {
4725   if (!VT.isVector()) {
4726     return MVT::i1;
4727   }
4728   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4729 }
4730 
4731 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4732   // TODO: Should i16 be used always if legal? For now it would force VALU
4733   // shifts.
4734   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4735 }
4736 
4737 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4738   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4739              ? Ty.changeElementSize(16)
4740              : Ty.changeElementSize(32);
4741 }
4742 
4743 // Answering this is somewhat tricky and depends on the specific device which
4744 // have different rates for fma or all f64 operations.
4745 //
4746 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4747 // regardless of which device (although the number of cycles differs between
4748 // devices), so it is always profitable for f64.
4749 //
4750 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4751 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4752 // which we can always do even without fused FP ops since it returns the same
4753 // result as the separate operations and since it is always full
4754 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4755 // however does not support denormals, so we do report fma as faster if we have
4756 // a fast fma device and require denormals.
4757 //
4758 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4759                                                   EVT VT) const {
4760   VT = VT.getScalarType();
4761 
4762   switch (VT.getSimpleVT().SimpleTy) {
4763   case MVT::f32: {
4764     // If mad is not available this depends only on if f32 fma is full rate.
4765     if (!Subtarget->hasMadMacF32Insts())
4766       return Subtarget->hasFastFMAF32();
4767 
4768     // Otherwise f32 mad is always full rate and returns the same result as
4769     // the separate operations so should be preferred over fma.
4770     // However does not support denormals.
4771     if (!denormalModeIsFlushAllF32(MF))
4772       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4773 
4774     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4775     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4776   }
4777   case MVT::f64:
4778     return true;
4779   case MVT::f16:
4780     return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF);
4781   default:
4782     break;
4783   }
4784 
4785   return false;
4786 }
4787 
4788 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4789                                                   LLT Ty) const {
4790   switch (Ty.getScalarSizeInBits()) {
4791   case 16:
4792     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4793   case 32:
4794     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4795   case 64:
4796     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4797   default:
4798     break;
4799   }
4800 
4801   return false;
4802 }
4803 
4804 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4805   if (!Ty.isScalar())
4806     return false;
4807 
4808   if (Ty.getScalarSizeInBits() == 16)
4809     return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF());
4810   if (Ty.getScalarSizeInBits() == 32)
4811     return Subtarget->hasMadMacF32Insts() &&
4812            denormalModeIsFlushAllF32(*MI.getMF());
4813 
4814   return false;
4815 }
4816 
4817 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4818                                    const SDNode *N) const {
4819   // TODO: Check future ftz flag
4820   // v_mad_f32/v_mac_f32 do not support denormals.
4821   EVT VT = N->getValueType(0);
4822   if (VT == MVT::f32)
4823     return Subtarget->hasMadMacF32Insts() &&
4824            denormalModeIsFlushAllF32(DAG.getMachineFunction());
4825   if (VT == MVT::f16) {
4826     return Subtarget->hasMadF16() &&
4827            denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
4828   }
4829 
4830   return false;
4831 }
4832 
4833 //===----------------------------------------------------------------------===//
4834 // Custom DAG Lowering Operations
4835 //===----------------------------------------------------------------------===//
4836 
4837 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4838 // wider vector type is legal.
4839 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4840                                              SelectionDAG &DAG) const {
4841   unsigned Opc = Op.getOpcode();
4842   EVT VT = Op.getValueType();
4843   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4844          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
4845          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4846          VT == MVT::v32f32);
4847 
4848   SDValue Lo, Hi;
4849   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4850 
4851   SDLoc SL(Op);
4852   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4853                              Op->getFlags());
4854   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4855                              Op->getFlags());
4856 
4857   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4858 }
4859 
4860 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4861 // wider vector type is legal.
4862 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4863                                               SelectionDAG &DAG) const {
4864   unsigned Opc = Op.getOpcode();
4865   EVT VT = Op.getValueType();
4866   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4867          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
4868          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4869          VT == MVT::v32f32);
4870 
4871   SDValue Lo0, Hi0;
4872   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4873   SDValue Lo1, Hi1;
4874   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4875 
4876   SDLoc SL(Op);
4877 
4878   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4879                              Op->getFlags());
4880   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4881                              Op->getFlags());
4882 
4883   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4884 }
4885 
4886 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4887                                               SelectionDAG &DAG) const {
4888   unsigned Opc = Op.getOpcode();
4889   EVT VT = Op.getValueType();
4890   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4891          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
4892          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4893          VT == MVT::v32f32);
4894 
4895   SDValue Lo0, Hi0;
4896   SDValue Op0 = Op.getOperand(0);
4897   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4898                            ? DAG.SplitVectorOperand(Op.getNode(), 0)
4899                            : std::pair(Op0, Op0);
4900   SDValue Lo1, Hi1;
4901   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4902   SDValue Lo2, Hi2;
4903   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4904 
4905   SDLoc SL(Op);
4906   auto ResVT = DAG.GetSplitDestVTs(VT);
4907 
4908   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4909                              Op->getFlags());
4910   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4911                              Op->getFlags());
4912 
4913   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4914 }
4915 
4916 
4917 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4918   switch (Op.getOpcode()) {
4919   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4920   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4921   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4922   case ISD::LOAD: {
4923     SDValue Result = LowerLOAD(Op, DAG);
4924     assert((!Result.getNode() ||
4925             Result.getNode()->getNumValues() == 2) &&
4926            "Load should return a value and a chain");
4927     return Result;
4928   }
4929   case ISD::FSQRT:
4930     if (Op.getValueType() == MVT::f64)
4931       return lowerFSQRTF64(Op, DAG);
4932     return SDValue();
4933   case ISD::FSIN:
4934   case ISD::FCOS:
4935     return LowerTrig(Op, DAG);
4936   case ISD::SELECT: return LowerSELECT(Op, DAG);
4937   case ISD::FDIV: return LowerFDIV(Op, DAG);
4938   case ISD::FFREXP: return LowerFFREXP(Op, DAG);
4939   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4940   case ISD::STORE: return LowerSTORE(Op, DAG);
4941   case ISD::GlobalAddress: {
4942     MachineFunction &MF = DAG.getMachineFunction();
4943     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4944     return LowerGlobalAddress(MFI, Op, DAG);
4945   }
4946   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4947   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4948   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4949   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4950   case ISD::INSERT_SUBVECTOR:
4951     return lowerINSERT_SUBVECTOR(Op, DAG);
4952   case ISD::INSERT_VECTOR_ELT:
4953     return lowerINSERT_VECTOR_ELT(Op, DAG);
4954   case ISD::EXTRACT_VECTOR_ELT:
4955     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4956   case ISD::VECTOR_SHUFFLE:
4957     return lowerVECTOR_SHUFFLE(Op, DAG);
4958   case ISD::SCALAR_TO_VECTOR:
4959     return lowerSCALAR_TO_VECTOR(Op, DAG);
4960   case ISD::BUILD_VECTOR:
4961     return lowerBUILD_VECTOR(Op, DAG);
4962   case ISD::FP_ROUND:
4963   case ISD::STRICT_FP_ROUND:
4964     return lowerFP_ROUND(Op, DAG);
4965   case ISD::FPTRUNC_ROUND: {
4966     unsigned Opc;
4967     SDLoc DL(Op);
4968 
4969     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4970       return SDValue();
4971 
4972     // Get the rounding mode from the last operand
4973     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4974     if (RoundMode == (int)RoundingMode::TowardPositive)
4975       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4976     else if (RoundMode == (int)RoundingMode::TowardNegative)
4977       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4978     else
4979       return SDValue();
4980 
4981     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4982   }
4983   case ISD::TRAP:
4984     return lowerTRAP(Op, DAG);
4985   case ISD::DEBUGTRAP:
4986     return lowerDEBUGTRAP(Op, DAG);
4987   case ISD::FABS:
4988   case ISD::FNEG:
4989   case ISD::FCANONICALIZE:
4990   case ISD::BSWAP:
4991     return splitUnaryVectorOp(Op, DAG);
4992   case ISD::FMINNUM:
4993   case ISD::FMAXNUM:
4994     return lowerFMINNUM_FMAXNUM(Op, DAG);
4995   case ISD::FLDEXP:
4996   case ISD::STRICT_FLDEXP:
4997     return lowerFLDEXP(Op, DAG);
4998   case ISD::FMA:
4999     return splitTernaryVectorOp(Op, DAG);
5000   case ISD::FP_TO_SINT:
5001   case ISD::FP_TO_UINT:
5002     return LowerFP_TO_INT(Op, DAG);
5003   case ISD::SHL:
5004   case ISD::SRA:
5005   case ISD::SRL:
5006   case ISD::ADD:
5007   case ISD::SUB:
5008   case ISD::MUL:
5009   case ISD::SMIN:
5010   case ISD::SMAX:
5011   case ISD::UMIN:
5012   case ISD::UMAX:
5013   case ISD::FADD:
5014   case ISD::FMUL:
5015   case ISD::FMINNUM_IEEE:
5016   case ISD::FMAXNUM_IEEE:
5017   case ISD::UADDSAT:
5018   case ISD::USUBSAT:
5019   case ISD::SADDSAT:
5020   case ISD::SSUBSAT:
5021     return splitBinaryVectorOp(Op, DAG);
5022   case ISD::SMULO:
5023   case ISD::UMULO:
5024     return lowerXMULO(Op, DAG);
5025   case ISD::SMUL_LOHI:
5026   case ISD::UMUL_LOHI:
5027     return lowerXMUL_LOHI(Op, DAG);
5028   case ISD::DYNAMIC_STACKALLOC:
5029     return LowerDYNAMIC_STACKALLOC(Op, DAG);
5030   }
5031   return SDValue();
5032 }
5033 
5034 // Used for D16: Casts the result of an instruction into the right vector,
5035 // packs values if loads return unpacked values.
5036 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
5037                                        const SDLoc &DL,
5038                                        SelectionDAG &DAG, bool Unpacked) {
5039   if (!LoadVT.isVector())
5040     return Result;
5041 
5042   // Cast back to the original packed type or to a larger type that is a
5043   // multiple of 32 bit for D16. Widening the return type is a required for
5044   // legalization.
5045   EVT FittingLoadVT = LoadVT;
5046   if ((LoadVT.getVectorNumElements() % 2) == 1) {
5047     FittingLoadVT =
5048         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
5049                          LoadVT.getVectorNumElements() + 1);
5050   }
5051 
5052   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
5053     // Truncate to v2i16/v4i16.
5054     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
5055 
5056     // Workaround legalizer not scalarizing truncate after vector op
5057     // legalization but not creating intermediate vector trunc.
5058     SmallVector<SDValue, 4> Elts;
5059     DAG.ExtractVectorElements(Result, Elts);
5060     for (SDValue &Elt : Elts)
5061       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
5062 
5063     // Pad illegal v1i16/v3fi6 to v4i16
5064     if ((LoadVT.getVectorNumElements() % 2) == 1)
5065       Elts.push_back(DAG.getUNDEF(MVT::i16));
5066 
5067     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
5068 
5069     // Bitcast to original type (v2f16/v4f16).
5070     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
5071   }
5072 
5073   // Cast back to the original packed type.
5074   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
5075 }
5076 
5077 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
5078                                               MemSDNode *M,
5079                                               SelectionDAG &DAG,
5080                                               ArrayRef<SDValue> Ops,
5081                                               bool IsIntrinsic) const {
5082   SDLoc DL(M);
5083 
5084   bool Unpacked = Subtarget->hasUnpackedD16VMem();
5085   EVT LoadVT = M->getValueType(0);
5086 
5087   EVT EquivLoadVT = LoadVT;
5088   if (LoadVT.isVector()) {
5089     if (Unpacked) {
5090       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
5091                                      LoadVT.getVectorNumElements());
5092     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
5093       // Widen v3f16 to legal type
5094       EquivLoadVT =
5095           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
5096                            LoadVT.getVectorNumElements() + 1);
5097     }
5098   }
5099 
5100   // Change from v4f16/v2f16 to EquivLoadVT.
5101   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
5102 
5103   SDValue Load
5104     = DAG.getMemIntrinsicNode(
5105       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
5106       VTList, Ops, M->getMemoryVT(),
5107       M->getMemOperand());
5108 
5109   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
5110 
5111   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
5112 }
5113 
5114 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
5115                                              SelectionDAG &DAG,
5116                                              ArrayRef<SDValue> Ops) const {
5117   SDLoc DL(M);
5118   EVT LoadVT = M->getValueType(0);
5119   EVT EltType = LoadVT.getScalarType();
5120   EVT IntVT = LoadVT.changeTypeToInteger();
5121 
5122   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
5123 
5124   assert(M->getNumValues() == 2 || M->getNumValues() == 3);
5125   bool IsTFE = M->getNumValues() == 3;
5126 
5127   unsigned Opc;
5128   if (IsFormat) {
5129     Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE
5130                 : AMDGPUISD::BUFFER_LOAD_FORMAT;
5131   } else {
5132     // TODO: Support non-format TFE loads.
5133     if (IsTFE)
5134       return SDValue();
5135     Opc = AMDGPUISD::BUFFER_LOAD;
5136   }
5137 
5138   if (IsD16) {
5139     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
5140   }
5141 
5142   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
5143   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
5144     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
5145 
5146   if (isTypeLegal(LoadVT)) {
5147     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
5148                                M->getMemOperand(), DAG);
5149   }
5150 
5151   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
5152   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
5153   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
5154                                         M->getMemOperand(), DAG);
5155   return DAG.getMergeValues(
5156       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
5157       DL);
5158 }
5159 
5160 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
5161                                   SDNode *N, SelectionDAG &DAG) {
5162   EVT VT = N->getValueType(0);
5163   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
5164   unsigned CondCode = CD->getZExtValue();
5165   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
5166     return DAG.getUNDEF(VT);
5167 
5168   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
5169 
5170   SDValue LHS = N->getOperand(1);
5171   SDValue RHS = N->getOperand(2);
5172 
5173   SDLoc DL(N);
5174 
5175   EVT CmpVT = LHS.getValueType();
5176   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
5177     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
5178       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5179     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
5180     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
5181   }
5182 
5183   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
5184 
5185   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
5186   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
5187 
5188   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
5189                               DAG.getCondCode(CCOpcode));
5190   if (VT.bitsEq(CCVT))
5191     return SetCC;
5192   return DAG.getZExtOrTrunc(SetCC, DL, VT);
5193 }
5194 
5195 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
5196                                   SDNode *N, SelectionDAG &DAG) {
5197   EVT VT = N->getValueType(0);
5198   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
5199 
5200   unsigned CondCode = CD->getZExtValue();
5201   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
5202     return DAG.getUNDEF(VT);
5203 
5204   SDValue Src0 = N->getOperand(1);
5205   SDValue Src1 = N->getOperand(2);
5206   EVT CmpVT = Src0.getValueType();
5207   SDLoc SL(N);
5208 
5209   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
5210     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
5211     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
5212   }
5213 
5214   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
5215   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
5216   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
5217   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
5218   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
5219                               Src1, DAG.getCondCode(CCOpcode));
5220   if (VT.bitsEq(CCVT))
5221     return SetCC;
5222   return DAG.getZExtOrTrunc(SetCC, SL, VT);
5223 }
5224 
5225 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
5226                                     SelectionDAG &DAG) {
5227   EVT VT = N->getValueType(0);
5228   SDValue Src = N->getOperand(1);
5229   SDLoc SL(N);
5230 
5231   if (Src.getOpcode() == ISD::SETCC) {
5232     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
5233     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
5234                        Src.getOperand(1), Src.getOperand(2));
5235   }
5236   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
5237     // (ballot 0) -> 0
5238     if (Arg->isZero())
5239       return DAG.getConstant(0, SL, VT);
5240 
5241     // (ballot 1) -> EXEC/EXEC_LO
5242     if (Arg->isOne()) {
5243       Register Exec;
5244       if (VT.getScalarSizeInBits() == 32)
5245         Exec = AMDGPU::EXEC_LO;
5246       else if (VT.getScalarSizeInBits() == 64)
5247         Exec = AMDGPU::EXEC;
5248       else
5249         return SDValue();
5250 
5251       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
5252     }
5253   }
5254 
5255   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
5256   // ISD::SETNE)
5257   return DAG.getNode(
5258       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
5259       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
5260 }
5261 
5262 void SITargetLowering::ReplaceNodeResults(SDNode *N,
5263                                           SmallVectorImpl<SDValue> &Results,
5264                                           SelectionDAG &DAG) const {
5265   switch (N->getOpcode()) {
5266   case ISD::INSERT_VECTOR_ELT: {
5267     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
5268       Results.push_back(Res);
5269     return;
5270   }
5271   case ISD::EXTRACT_VECTOR_ELT: {
5272     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
5273       Results.push_back(Res);
5274     return;
5275   }
5276   case ISD::INTRINSIC_WO_CHAIN: {
5277     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5278     switch (IID) {
5279     case Intrinsic::amdgcn_make_buffer_rsrc:
5280       Results.push_back(lowerPointerAsRsrcIntrin(N, DAG));
5281       return;
5282     case Intrinsic::amdgcn_cvt_pkrtz: {
5283       SDValue Src0 = N->getOperand(1);
5284       SDValue Src1 = N->getOperand(2);
5285       SDLoc SL(N);
5286       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
5287                                 Src0, Src1);
5288       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
5289       return;
5290     }
5291     case Intrinsic::amdgcn_cvt_pknorm_i16:
5292     case Intrinsic::amdgcn_cvt_pknorm_u16:
5293     case Intrinsic::amdgcn_cvt_pk_i16:
5294     case Intrinsic::amdgcn_cvt_pk_u16: {
5295       SDValue Src0 = N->getOperand(1);
5296       SDValue Src1 = N->getOperand(2);
5297       SDLoc SL(N);
5298       unsigned Opcode;
5299 
5300       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5301         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5302       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5303         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5304       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5305         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5306       else
5307         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5308 
5309       EVT VT = N->getValueType(0);
5310       if (isTypeLegal(VT))
5311         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5312       else {
5313         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5314         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5315       }
5316       return;
5317     }
5318     }
5319     break;
5320   }
5321   case ISD::INTRINSIC_W_CHAIN: {
5322     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5323       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5324         // FIXME: Hacky
5325         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5326           Results.push_back(Res.getOperand(I));
5327         }
5328       } else {
5329         Results.push_back(Res);
5330         Results.push_back(Res.getValue(1));
5331       }
5332       return;
5333     }
5334 
5335     break;
5336   }
5337   case ISD::SELECT: {
5338     SDLoc SL(N);
5339     EVT VT = N->getValueType(0);
5340     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5341     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5342     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5343 
5344     EVT SelectVT = NewVT;
5345     if (NewVT.bitsLT(MVT::i32)) {
5346       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5347       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5348       SelectVT = MVT::i32;
5349     }
5350 
5351     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5352                                     N->getOperand(0), LHS, RHS);
5353 
5354     if (NewVT != SelectVT)
5355       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5356     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5357     return;
5358   }
5359   case ISD::FNEG: {
5360     if (N->getValueType(0) != MVT::v2f16)
5361       break;
5362 
5363     SDLoc SL(N);
5364     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5365 
5366     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5367                              BC,
5368                              DAG.getConstant(0x80008000, SL, MVT::i32));
5369     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5370     return;
5371   }
5372   case ISD::FABS: {
5373     if (N->getValueType(0) != MVT::v2f16)
5374       break;
5375 
5376     SDLoc SL(N);
5377     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5378 
5379     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5380                              BC,
5381                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5382     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5383     return;
5384   }
5385   default:
5386     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
5387     break;
5388   }
5389 }
5390 
5391 /// Helper function for LowerBRCOND
5392 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5393 
5394   SDNode *Parent = Value.getNode();
5395   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5396        I != E; ++I) {
5397 
5398     if (I.getUse().get() != Value)
5399       continue;
5400 
5401     if (I->getOpcode() == Opcode)
5402       return *I;
5403   }
5404   return nullptr;
5405 }
5406 
5407 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5408   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5409     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5410     case Intrinsic::amdgcn_if:
5411       return AMDGPUISD::IF;
5412     case Intrinsic::amdgcn_else:
5413       return AMDGPUISD::ELSE;
5414     case Intrinsic::amdgcn_loop:
5415       return AMDGPUISD::LOOP;
5416     case Intrinsic::amdgcn_end_cf:
5417       llvm_unreachable("should not occur");
5418     default:
5419       return 0;
5420     }
5421   }
5422 
5423   // break, if_break, else_break are all only used as inputs to loop, not
5424   // directly as branch conditions.
5425   return 0;
5426 }
5427 
5428 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5429   const Triple &TT = getTargetMachine().getTargetTriple();
5430   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5431           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5432          AMDGPU::shouldEmitConstantsToTextSection(TT);
5433 }
5434 
5435 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5436   // FIXME: Either avoid relying on address space here or change the default
5437   // address space for functions to avoid the explicit check.
5438   return (GV->getValueType()->isFunctionTy() ||
5439           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5440          !shouldEmitFixup(GV) &&
5441          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5442 }
5443 
5444 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5445   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5446 }
5447 
5448 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5449   if (!GV->hasExternalLinkage())
5450     return true;
5451 
5452   const auto OS = getTargetMachine().getTargetTriple().getOS();
5453   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5454 }
5455 
5456 /// This transforms the control flow intrinsics to get the branch destination as
5457 /// last parameter, also switches branch target with BR if the need arise
5458 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5459                                       SelectionDAG &DAG) const {
5460   SDLoc DL(BRCOND);
5461 
5462   SDNode *Intr = BRCOND.getOperand(1).getNode();
5463   SDValue Target = BRCOND.getOperand(2);
5464   SDNode *BR = nullptr;
5465   SDNode *SetCC = nullptr;
5466 
5467   if (Intr->getOpcode() == ISD::SETCC) {
5468     // As long as we negate the condition everything is fine
5469     SetCC = Intr;
5470     Intr = SetCC->getOperand(0).getNode();
5471 
5472   } else {
5473     // Get the target from BR if we don't negate the condition
5474     BR = findUser(BRCOND, ISD::BR);
5475     assert(BR && "brcond missing unconditional branch user");
5476     Target = BR->getOperand(1);
5477   }
5478 
5479   unsigned CFNode = isCFIntrinsic(Intr);
5480   if (CFNode == 0) {
5481     // This is a uniform branch so we don't need to legalize.
5482     return BRCOND;
5483   }
5484 
5485   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5486                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5487 
5488   assert(!SetCC ||
5489         (SetCC->getConstantOperandVal(1) == 1 &&
5490          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5491                                                              ISD::SETNE));
5492 
5493   // operands of the new intrinsic call
5494   SmallVector<SDValue, 4> Ops;
5495   if (HaveChain)
5496     Ops.push_back(BRCOND.getOperand(0));
5497 
5498   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5499   Ops.push_back(Target);
5500 
5501   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5502 
5503   // build the new intrinsic call
5504   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5505 
5506   if (!HaveChain) {
5507     SDValue Ops[] =  {
5508       SDValue(Result, 0),
5509       BRCOND.getOperand(0)
5510     };
5511 
5512     Result = DAG.getMergeValues(Ops, DL).getNode();
5513   }
5514 
5515   if (BR) {
5516     // Give the branch instruction our target
5517     SDValue Ops[] = {
5518       BR->getOperand(0),
5519       BRCOND.getOperand(2)
5520     };
5521     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5522     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5523   }
5524 
5525   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5526 
5527   // Copy the intrinsic results to registers
5528   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5529     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5530     if (!CopyToReg)
5531       continue;
5532 
5533     Chain = DAG.getCopyToReg(
5534       Chain, DL,
5535       CopyToReg->getOperand(1),
5536       SDValue(Result, i - 1),
5537       SDValue());
5538 
5539     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5540   }
5541 
5542   // Remove the old intrinsic from the chain
5543   DAG.ReplaceAllUsesOfValueWith(
5544     SDValue(Intr, Intr->getNumValues() - 1),
5545     Intr->getOperand(0));
5546 
5547   return Chain;
5548 }
5549 
5550 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5551                                           SelectionDAG &DAG) const {
5552   MVT VT = Op.getSimpleValueType();
5553   SDLoc DL(Op);
5554   // Checking the depth
5555   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5556     return DAG.getConstant(0, DL, VT);
5557 
5558   MachineFunction &MF = DAG.getMachineFunction();
5559   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5560   // Check for kernel and shader functions
5561   if (Info->isEntryFunction())
5562     return DAG.getConstant(0, DL, VT);
5563 
5564   MachineFrameInfo &MFI = MF.getFrameInfo();
5565   // There is a call to @llvm.returnaddress in this function
5566   MFI.setReturnAddressIsTaken(true);
5567 
5568   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5569   // Get the return address reg and mark it as an implicit live-in
5570   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5571 
5572   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5573 }
5574 
5575 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5576                                             SDValue Op,
5577                                             const SDLoc &DL,
5578                                             EVT VT) const {
5579   return Op.getValueType().bitsLE(VT) ?
5580       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5581     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5582                 DAG.getTargetConstant(0, DL, MVT::i32));
5583 }
5584 
5585 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5586   assert(Op.getValueType() == MVT::f16 &&
5587          "Do not know how to custom lower FP_ROUND for non-f16 type");
5588 
5589   SDValue Src = Op.getOperand(0);
5590   EVT SrcVT = Src.getValueType();
5591   if (SrcVT != MVT::f64)
5592     return Op;
5593 
5594   // TODO: Handle strictfp
5595   if (Op.getOpcode() != ISD::FP_ROUND)
5596     return Op;
5597 
5598   SDLoc DL(Op);
5599 
5600   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5601   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5602   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5603 }
5604 
5605 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5606                                                SelectionDAG &DAG) const {
5607   EVT VT = Op.getValueType();
5608   const MachineFunction &MF = DAG.getMachineFunction();
5609   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5610   bool IsIEEEMode = Info->getMode().IEEE;
5611 
5612   // FIXME: Assert during selection that this is only selected for
5613   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5614   // mode functions, but this happens to be OK since it's only done in cases
5615   // where there is known no sNaN.
5616   if (IsIEEEMode)
5617     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5618 
5619   if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16)
5620     return splitBinaryVectorOp(Op, DAG);
5621   return Op;
5622 }
5623 
5624 SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const {
5625   bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP;
5626   EVT VT = Op.getValueType();
5627   assert(VT == MVT::f16);
5628 
5629   SDValue Exp = Op.getOperand(IsStrict ? 2 : 1);
5630   EVT ExpVT = Exp.getValueType();
5631   if (ExpVT == MVT::i16)
5632     return Op;
5633 
5634   SDLoc DL(Op);
5635 
5636   // Correct the exponent type for f16 to i16.
5637   // Clamp the range of the exponent to the instruction's range.
5638 
5639   // TODO: This should be a generic narrowing legalization, and can easily be
5640   // for GlobalISel.
5641 
5642   SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT);
5643   SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp);
5644 
5645   SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT);
5646   SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp);
5647 
5648   SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp);
5649 
5650   if (IsStrict) {
5651     return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other},
5652                        {Op.getOperand(0), Op.getOperand(1), TruncExp});
5653   }
5654 
5655   return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp);
5656 }
5657 
5658 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5659   EVT VT = Op.getValueType();
5660   SDLoc SL(Op);
5661   SDValue LHS = Op.getOperand(0);
5662   SDValue RHS = Op.getOperand(1);
5663   bool isSigned = Op.getOpcode() == ISD::SMULO;
5664 
5665   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5666     const APInt &C = RHSC->getAPIntValue();
5667     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5668     if (C.isPowerOf2()) {
5669       // smulo(x, signed_min) is same as umulo(x, signed_min).
5670       bool UseArithShift = isSigned && !C.isMinSignedValue();
5671       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5672       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5673       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5674           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5675                       SL, VT, Result, ShiftAmt),
5676           LHS, ISD::SETNE);
5677       return DAG.getMergeValues({ Result, Overflow }, SL);
5678     }
5679   }
5680 
5681   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5682   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5683                             SL, VT, LHS, RHS);
5684 
5685   SDValue Sign = isSigned
5686     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5687                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5688     : DAG.getConstant(0, SL, VT);
5689   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5690 
5691   return DAG.getMergeValues({ Result, Overflow }, SL);
5692 }
5693 
5694 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5695   if (Op->isDivergent()) {
5696     // Select to V_MAD_[IU]64_[IU]32.
5697     return Op;
5698   }
5699   if (Subtarget->hasSMulHi()) {
5700     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5701     return SDValue();
5702   }
5703   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5704   // calculate the high part, so we might as well do the whole thing with
5705   // V_MAD_[IU]64_[IU]32.
5706   return Op;
5707 }
5708 
5709 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5710   if (!Subtarget->isTrapHandlerEnabled() ||
5711       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5712     return lowerTrapEndpgm(Op, DAG);
5713 
5714   const Module *M = DAG.getMachineFunction().getFunction().getParent();
5715   unsigned CodeObjectVersion = AMDGPU::getCodeObjectVersion(*M);
5716   if (CodeObjectVersion <= AMDGPU::AMDHSA_COV3)
5717     return lowerTrapHsaQueuePtr(Op, DAG);
5718 
5719   return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) :
5720          lowerTrapHsaQueuePtr(Op, DAG);
5721 }
5722 
5723 SDValue SITargetLowering::lowerTrapEndpgm(
5724     SDValue Op, SelectionDAG &DAG) const {
5725   SDLoc SL(Op);
5726   SDValue Chain = Op.getOperand(0);
5727   return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain);
5728 }
5729 
5730 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
5731     const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
5732   MachineFunction &MF = DAG.getMachineFunction();
5733   uint64_t Offset = getImplicitParameterOffset(MF, Param);
5734   SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
5735   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5736   return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
5737                      MachineMemOperand::MODereferenceable |
5738                          MachineMemOperand::MOInvariant);
5739 }
5740 
5741 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5742     SDValue Op, SelectionDAG &DAG) const {
5743   SDLoc SL(Op);
5744   SDValue Chain = Op.getOperand(0);
5745 
5746   SDValue QueuePtr;
5747   // For code object version 5, QueuePtr is passed through implicit kernarg.
5748   const Module *M = DAG.getMachineFunction().getFunction().getParent();
5749   if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
5750     QueuePtr =
5751         loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
5752   } else {
5753     MachineFunction &MF = DAG.getMachineFunction();
5754     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5755     Register UserSGPR = Info->getQueuePtrUserSGPR();
5756 
5757     if (UserSGPR == AMDGPU::NoRegister) {
5758       // We probably are in a function incorrectly marked with
5759       // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
5760       // trap, so just use a null pointer.
5761       QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5762     } else {
5763       QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
5764                                       MVT::i64);
5765     }
5766   }
5767 
5768   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5769   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5770                                    QueuePtr, SDValue());
5771 
5772   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5773   SDValue Ops[] = {
5774     ToReg,
5775     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5776     SGPR01,
5777     ToReg.getValue(1)
5778   };
5779   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5780 }
5781 
5782 SDValue SITargetLowering::lowerTrapHsa(
5783     SDValue Op, SelectionDAG &DAG) const {
5784   SDLoc SL(Op);
5785   SDValue Chain = Op.getOperand(0);
5786 
5787   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5788   SDValue Ops[] = {
5789     Chain,
5790     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5791   };
5792   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5793 }
5794 
5795 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5796   SDLoc SL(Op);
5797   SDValue Chain = Op.getOperand(0);
5798   MachineFunction &MF = DAG.getMachineFunction();
5799 
5800   if (!Subtarget->isTrapHandlerEnabled() ||
5801       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5802     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5803                                      "debugtrap handler not supported",
5804                                      Op.getDebugLoc(),
5805                                      DS_Warning);
5806     LLVMContext &Ctx = MF.getFunction().getContext();
5807     Ctx.diagnose(NoTrap);
5808     return Chain;
5809   }
5810 
5811   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5812   SDValue Ops[] = {
5813     Chain,
5814     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5815   };
5816   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5817 }
5818 
5819 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5820                                              SelectionDAG &DAG) const {
5821   if (Subtarget->hasApertureRegs()) {
5822     const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS)
5823                                        ? AMDGPU::SRC_SHARED_BASE
5824                                        : AMDGPU::SRC_PRIVATE_BASE;
5825     // Note: this feature (register) is broken. When used as a 32-bit operand,
5826     // it returns a wrong value (all zeroes?). The real value is in the upper 32
5827     // bits.
5828     //
5829     // To work around the issue, directly emit a 64 bit mov from this register
5830     // then extract the high bits. Note that this shouldn't even result in a
5831     // shift being emitted and simply become a pair of registers (e.g.):
5832     //    s_mov_b64 s[6:7], src_shared_base
5833     //    v_mov_b32_e32 v1, s7
5834     //
5835     // FIXME: It would be more natural to emit a CopyFromReg here, but then copy
5836     // coalescing would kick in and it would think it's okay to use the "HI"
5837     // subregister directly (instead of extracting the HI 32 bits) which is an
5838     // artificial (unusable) register.
5839     //  Register TableGen definitions would need an overhaul to get rid of the
5840     //  artificial "HI" aperture registers and prevent this kind of issue from
5841     //  happening.
5842     SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64,
5843                                      DAG.getRegister(ApertureRegNo, MVT::i64));
5844     return DAG.getNode(
5845         ISD::TRUNCATE, DL, MVT::i32,
5846         DAG.getNode(ISD::SRL, DL, MVT::i64,
5847                     {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)}));
5848   }
5849 
5850   // For code object version 5, private_base and shared_base are passed through
5851   // implicit kernargs.
5852   const Module *M = DAG.getMachineFunction().getFunction().getParent();
5853   if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
5854     ImplicitParameter Param =
5855         (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
5856     return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
5857   }
5858 
5859   MachineFunction &MF = DAG.getMachineFunction();
5860   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5861   Register UserSGPR = Info->getQueuePtrUserSGPR();
5862   if (UserSGPR == AMDGPU::NoRegister) {
5863     // We probably are in a function incorrectly marked with
5864     // amdgpu-no-queue-ptr. This is undefined.
5865     return DAG.getUNDEF(MVT::i32);
5866   }
5867 
5868   SDValue QueuePtr = CreateLiveInRegister(
5869     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5870 
5871   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5872   // private_segment_aperture_base_hi.
5873   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5874 
5875   SDValue Ptr =
5876       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5877 
5878   // TODO: Use custom target PseudoSourceValue.
5879   // TODO: We should use the value from the IR intrinsic call, but it might not
5880   // be available and how do we get it?
5881   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5882   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5883                      commonAlignment(Align(64), StructOffset),
5884                      MachineMemOperand::MODereferenceable |
5885                          MachineMemOperand::MOInvariant);
5886 }
5887 
5888 /// Return true if the value is a known valid address, such that a null check is
5889 /// not necessary.
5890 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5891                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5892   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5893       isa<BasicBlockSDNode>(Val))
5894     return true;
5895 
5896   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5897     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5898 
5899   // TODO: Search through arithmetic, handle arguments and loads
5900   // marked nonnull.
5901   return false;
5902 }
5903 
5904 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5905                                              SelectionDAG &DAG) const {
5906   SDLoc SL(Op);
5907   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5908 
5909   SDValue Src = ASC->getOperand(0);
5910   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5911   unsigned SrcAS = ASC->getSrcAddressSpace();
5912 
5913   const AMDGPUTargetMachine &TM =
5914     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5915 
5916   // flat -> local/private
5917   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5918     unsigned DestAS = ASC->getDestAddressSpace();
5919 
5920     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5921         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5922       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5923 
5924       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5925         return Ptr;
5926 
5927       unsigned NullVal = TM.getNullPointerValue(DestAS);
5928       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5929       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5930 
5931       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5932                          SegmentNullPtr);
5933     }
5934   }
5935 
5936   // local/private -> flat
5937   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5938     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5939         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5940 
5941       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5942       SDValue CvtPtr =
5943           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5944       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5945 
5946       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5947         return CvtPtr;
5948 
5949       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5950       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5951 
5952       SDValue NonNull
5953         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5954 
5955       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5956                          FlatNullPtr);
5957     }
5958   }
5959 
5960   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5961       Op.getValueType() == MVT::i64) {
5962     const SIMachineFunctionInfo *Info =
5963         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5964     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5965     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5966     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5967   }
5968 
5969   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5970       Src.getValueType() == MVT::i64)
5971     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5972 
5973   // global <-> flat are no-ops and never emitted.
5974 
5975   const MachineFunction &MF = DAG.getMachineFunction();
5976   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5977     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5978   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5979 
5980   return DAG.getUNDEF(ASC->getValueType(0));
5981 }
5982 
5983 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5984 // the small vector and inserting them into the big vector. That is better than
5985 // the default expansion of doing it via a stack slot. Even though the use of
5986 // the stack slot would be optimized away afterwards, the stack slot itself
5987 // remains.
5988 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5989                                                 SelectionDAG &DAG) const {
5990   SDValue Vec = Op.getOperand(0);
5991   SDValue Ins = Op.getOperand(1);
5992   SDValue Idx = Op.getOperand(2);
5993   EVT VecVT = Vec.getValueType();
5994   EVT InsVT = Ins.getValueType();
5995   EVT EltVT = VecVT.getVectorElementType();
5996   unsigned InsNumElts = InsVT.getVectorNumElements();
5997   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5998   SDLoc SL(Op);
5999 
6000   if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) {
6001     // Insert 32-bit registers at a time.
6002     assert(InsNumElts % 2 == 0 && "expect legal vector types");
6003 
6004     unsigned VecNumElts = VecVT.getVectorNumElements();
6005     EVT NewVecVT =
6006         EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2);
6007     EVT NewInsVT = InsNumElts == 2 ? MVT::i32
6008                                    : EVT::getVectorVT(*DAG.getContext(),
6009                                                       MVT::i32, InsNumElts / 2);
6010 
6011     Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec);
6012     Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins);
6013 
6014     for (unsigned I = 0; I != InsNumElts / 2; ++I) {
6015       SDValue Elt;
6016       if (InsNumElts == 2) {
6017         Elt = Ins;
6018       } else {
6019         Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins,
6020                           DAG.getConstant(I, SL, MVT::i32));
6021       }
6022       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt,
6023                         DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32));
6024     }
6025 
6026     return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec);
6027   }
6028 
6029   for (unsigned I = 0; I != InsNumElts; ++I) {
6030     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
6031                               DAG.getConstant(I, SL, MVT::i32));
6032     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
6033                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
6034   }
6035   return Vec;
6036 }
6037 
6038 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
6039                                                  SelectionDAG &DAG) const {
6040   SDValue Vec = Op.getOperand(0);
6041   SDValue InsVal = Op.getOperand(1);
6042   SDValue Idx = Op.getOperand(2);
6043   EVT VecVT = Vec.getValueType();
6044   EVT EltVT = VecVT.getVectorElementType();
6045   unsigned VecSize = VecVT.getSizeInBits();
6046   unsigned EltSize = EltVT.getSizeInBits();
6047   SDLoc SL(Op);
6048 
6049   // Specially handle the case of v4i16 with static indexing.
6050   unsigned NumElts = VecVT.getVectorNumElements();
6051   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
6052   if (NumElts == 4 && EltSize == 16 && KIdx) {
6053     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
6054 
6055     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
6056                                  DAG.getConstant(0, SL, MVT::i32));
6057     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
6058                                  DAG.getConstant(1, SL, MVT::i32));
6059 
6060     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
6061     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
6062 
6063     unsigned Idx = KIdx->getZExtValue();
6064     bool InsertLo = Idx < 2;
6065     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
6066       InsertLo ? LoVec : HiVec,
6067       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
6068       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
6069 
6070     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
6071 
6072     SDValue Concat = InsertLo ?
6073       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
6074       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
6075 
6076     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
6077   }
6078 
6079   // Static indexing does not lower to stack access, and hence there is no need
6080   // for special custom lowering to avoid stack access.
6081   if (isa<ConstantSDNode>(Idx))
6082     return SDValue();
6083 
6084   // Avoid stack access for dynamic indexing by custom lowering to
6085   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
6086 
6087   assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
6088 
6089   MVT IntVT = MVT::getIntegerVT(VecSize);
6090 
6091   // Convert vector index to bit-index and get the required bit mask.
6092   assert(isPowerOf2_32(EltSize));
6093   const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
6094   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
6095   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
6096   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
6097                             DAG.getConstant(EltMask, SL, IntVT), ScaledIdx);
6098 
6099   // 1. Create a congruent vector with the target value in each element.
6100   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
6101                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
6102 
6103   // 2. Mask off all other indicies except the required index within (1).
6104   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
6105 
6106   // 3. Mask off the required index within the target vector.
6107   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
6108   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
6109                             DAG.getNOT(SL, BFM, IntVT), BCVec);
6110 
6111   // 4. Get (2) and (3) ORed into the target vector.
6112   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
6113 
6114   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
6115 }
6116 
6117 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
6118                                                   SelectionDAG &DAG) const {
6119   SDLoc SL(Op);
6120 
6121   EVT ResultVT = Op.getValueType();
6122   SDValue Vec = Op.getOperand(0);
6123   SDValue Idx = Op.getOperand(1);
6124   EVT VecVT = Vec.getValueType();
6125   unsigned VecSize = VecVT.getSizeInBits();
6126   EVT EltVT = VecVT.getVectorElementType();
6127 
6128   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
6129 
6130   // Make sure we do any optimizations that will make it easier to fold
6131   // source modifiers before obscuring it with bit operations.
6132 
6133   // XXX - Why doesn't this get called when vector_shuffle is expanded?
6134   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
6135     return Combined;
6136 
6137   if (VecSize == 128 || VecSize == 256) {
6138     SDValue Lo, Hi;
6139     EVT LoVT, HiVT;
6140     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
6141 
6142     if (VecSize == 128) {
6143       SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
6144       Lo = DAG.getBitcast(LoVT,
6145                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6146                                       DAG.getConstant(0, SL, MVT::i32)));
6147       Hi = DAG.getBitcast(HiVT,
6148                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6149                                       DAG.getConstant(1, SL, MVT::i32)));
6150     } else {
6151       assert(VecSize == 256);
6152 
6153       SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
6154       SDValue Parts[4];
6155       for (unsigned P = 0; P < 4; ++P) {
6156         Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6157                                DAG.getConstant(P, SL, MVT::i32));
6158       }
6159 
6160       Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
6161                                             Parts[0], Parts[1]));
6162       Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
6163                                             Parts[2], Parts[3]));
6164     }
6165 
6166     EVT IdxVT = Idx.getValueType();
6167     unsigned NElem = VecVT.getVectorNumElements();
6168     assert(isPowerOf2_32(NElem));
6169     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
6170     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
6171     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
6172     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
6173   }
6174 
6175   assert(VecSize <= 64);
6176 
6177   MVT IntVT = MVT::getIntegerVT(VecSize);
6178 
6179   // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
6180   SDValue VecBC = peekThroughBitcasts(Vec);
6181   if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6182     SDValue Src = VecBC.getOperand(0);
6183     Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
6184     Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
6185   }
6186 
6187   unsigned EltSize = EltVT.getSizeInBits();
6188   assert(isPowerOf2_32(EltSize));
6189 
6190   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
6191 
6192   // Convert vector index to bit-index (* EltSize)
6193   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
6194 
6195   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
6196   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
6197 
6198   if (ResultVT == MVT::f16) {
6199     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
6200     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
6201   }
6202 
6203   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
6204 }
6205 
6206 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
6207   assert(Elt % 2 == 0);
6208   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
6209 }
6210 
6211 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
6212                                               SelectionDAG &DAG) const {
6213   SDLoc SL(Op);
6214   EVT ResultVT = Op.getValueType();
6215   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
6216 
6217   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
6218   EVT EltVT = PackVT.getVectorElementType();
6219   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
6220 
6221   // vector_shuffle <0,1,6,7> lhs, rhs
6222   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
6223   //
6224   // vector_shuffle <6,7,2,3> lhs, rhs
6225   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
6226   //
6227   // vector_shuffle <6,7,0,1> lhs, rhs
6228   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
6229 
6230   // Avoid scalarizing when both halves are reading from consecutive elements.
6231   SmallVector<SDValue, 4> Pieces;
6232   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
6233     if (elementPairIsContiguous(SVN->getMask(), I)) {
6234       const int Idx = SVN->getMaskElt(I);
6235       int VecIdx = Idx < SrcNumElts ? 0 : 1;
6236       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
6237       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
6238                                     PackVT, SVN->getOperand(VecIdx),
6239                                     DAG.getConstant(EltIdx, SL, MVT::i32));
6240       Pieces.push_back(SubVec);
6241     } else {
6242       const int Idx0 = SVN->getMaskElt(I);
6243       const int Idx1 = SVN->getMaskElt(I + 1);
6244       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
6245       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
6246       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
6247       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
6248 
6249       SDValue Vec0 = SVN->getOperand(VecIdx0);
6250       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6251                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
6252 
6253       SDValue Vec1 = SVN->getOperand(VecIdx1);
6254       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6255                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
6256       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
6257     }
6258   }
6259 
6260   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
6261 }
6262 
6263 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
6264                                                 SelectionDAG &DAG) const {
6265   SDValue SVal = Op.getOperand(0);
6266   EVT ResultVT = Op.getValueType();
6267   EVT SValVT = SVal.getValueType();
6268   SDValue UndefVal = DAG.getUNDEF(SValVT);
6269   SDLoc SL(Op);
6270 
6271   SmallVector<SDValue, 8> VElts;
6272   VElts.push_back(SVal);
6273   for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
6274     VElts.push_back(UndefVal);
6275 
6276   return DAG.getBuildVector(ResultVT, SL, VElts);
6277 }
6278 
6279 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
6280                                             SelectionDAG &DAG) const {
6281   SDLoc SL(Op);
6282   EVT VT = Op.getValueType();
6283 
6284   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6285       VT == MVT::v8i16 || VT == MVT::v8f16) {
6286     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
6287                                   VT.getVectorNumElements() / 2);
6288     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
6289 
6290     // Turn into pair of packed build_vectors.
6291     // TODO: Special case for constants that can be materialized with s_mov_b64.
6292     SmallVector<SDValue, 4> LoOps, HiOps;
6293     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
6294       LoOps.push_back(Op.getOperand(I));
6295       HiOps.push_back(Op.getOperand(I + E));
6296     }
6297     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
6298     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
6299 
6300     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
6301     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
6302 
6303     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
6304                                        { CastLo, CastHi });
6305     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
6306   }
6307 
6308   if (VT == MVT::v16i16 || VT == MVT::v16f16) {
6309     EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
6310                                      VT.getVectorNumElements() / 4);
6311     MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
6312 
6313     SmallVector<SDValue, 4> Parts[4];
6314     for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) {
6315       for (unsigned P = 0; P < 4; ++P)
6316         Parts[P].push_back(Op.getOperand(I + P * E));
6317     }
6318     SDValue Casts[4];
6319     for (unsigned P = 0; P < 4; ++P) {
6320       SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
6321       Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
6322     }
6323 
6324     SDValue Blend =
6325         DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts);
6326     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
6327   }
6328 
6329   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
6330   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
6331 
6332   SDValue Lo = Op.getOperand(0);
6333   SDValue Hi = Op.getOperand(1);
6334 
6335   // Avoid adding defined bits with the zero_extend.
6336   if (Hi.isUndef()) {
6337     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
6338     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
6339     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
6340   }
6341 
6342   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
6343   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
6344 
6345   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
6346                               DAG.getConstant(16, SL, MVT::i32));
6347   if (Lo.isUndef())
6348     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
6349 
6350   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
6351   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
6352 
6353   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
6354   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
6355 }
6356 
6357 bool
6358 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6359   // We can fold offsets for anything that doesn't require a GOT relocation.
6360   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
6361           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
6362           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
6363          !shouldEmitGOTReloc(GA->getGlobal());
6364 }
6365 
6366 static SDValue
6367 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
6368                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
6369                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
6370   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
6371   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
6372   // lowered to the following code sequence:
6373   //
6374   // For constant address space:
6375   //   s_getpc_b64 s[0:1]
6376   //   s_add_u32 s0, s0, $symbol
6377   //   s_addc_u32 s1, s1, 0
6378   //
6379   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
6380   //   a fixup or relocation is emitted to replace $symbol with a literal
6381   //   constant, which is a pc-relative offset from the encoding of the $symbol
6382   //   operand to the global variable.
6383   //
6384   // For global address space:
6385   //   s_getpc_b64 s[0:1]
6386   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
6387   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
6388   //
6389   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
6390   //   fixups or relocations are emitted to replace $symbol@*@lo and
6391   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
6392   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
6393   //   operand to the global variable.
6394   //
6395   // What we want here is an offset from the value returned by s_getpc
6396   // (which is the address of the s_add_u32 instruction) to the global
6397   // variable, but since the encoding of $symbol starts 4 bytes after the start
6398   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
6399   // small. This requires us to add 4 to the global variable offset in order to
6400   // compute the correct address. Similarly for the s_addc_u32 instruction, the
6401   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
6402   // instruction.
6403   SDValue PtrLo =
6404       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
6405   SDValue PtrHi;
6406   if (GAFlags == SIInstrInfo::MO_NONE) {
6407     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
6408   } else {
6409     PtrHi =
6410         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
6411   }
6412   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
6413 }
6414 
6415 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
6416                                              SDValue Op,
6417                                              SelectionDAG &DAG) const {
6418   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
6419   SDLoc DL(GSD);
6420   EVT PtrVT = Op.getValueType();
6421 
6422   const GlobalValue *GV = GSD->getGlobal();
6423   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6424        shouldUseLDSConstAddress(GV)) ||
6425       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
6426       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
6427     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6428         GV->hasExternalLinkage()) {
6429       Type *Ty = GV->getValueType();
6430       // HIP uses an unsized array `extern __shared__ T s[]` or similar
6431       // zero-sized type in other languages to declare the dynamic shared
6432       // memory which size is not known at the compile time. They will be
6433       // allocated by the runtime and placed directly after the static
6434       // allocated ones. They all share the same offset.
6435       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
6436         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
6437         // Adjust alignment for that dynamic shared memory array.
6438         Function &F = DAG.getMachineFunction().getFunction();
6439         MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV));
6440         return SDValue(
6441             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
6442       }
6443     }
6444     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
6445   }
6446 
6447   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
6448     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
6449                                             SIInstrInfo::MO_ABS32_LO);
6450     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
6451   }
6452 
6453   if (shouldEmitFixup(GV))
6454     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6455   else if (shouldEmitPCReloc(GV))
6456     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6457                                    SIInstrInfo::MO_REL32);
6458 
6459   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6460                                             SIInstrInfo::MO_GOTPCREL32);
6461 
6462   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6463   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6464   const DataLayout &DataLayout = DAG.getDataLayout();
6465   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6466   MachinePointerInfo PtrInfo
6467     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6468 
6469   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6470                      MachineMemOperand::MODereferenceable |
6471                          MachineMemOperand::MOInvariant);
6472 }
6473 
6474 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6475                                    const SDLoc &DL, SDValue V) const {
6476   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6477   // the destination register.
6478   //
6479   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6480   // so we will end up with redundant moves to m0.
6481   //
6482   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6483 
6484   // A Null SDValue creates a glue result.
6485   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6486                                   V, Chain);
6487   return SDValue(M0, 0);
6488 }
6489 
6490 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6491                                                  SDValue Op,
6492                                                  MVT VT,
6493                                                  unsigned Offset) const {
6494   SDLoc SL(Op);
6495   SDValue Param = lowerKernargMemParameter(
6496       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6497   // The local size values will have the hi 16-bits as zero.
6498   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6499                      DAG.getValueType(VT));
6500 }
6501 
6502 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6503                                         EVT VT) {
6504   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6505                                       "non-hsa intrinsic with hsa target",
6506                                       DL.getDebugLoc());
6507   DAG.getContext()->diagnose(BadIntrin);
6508   return DAG.getUNDEF(VT);
6509 }
6510 
6511 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6512                                          EVT VT) {
6513   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6514                                       "intrinsic not supported on subtarget",
6515                                       DL.getDebugLoc());
6516   DAG.getContext()->diagnose(BadIntrin);
6517   return DAG.getUNDEF(VT);
6518 }
6519 
6520 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6521                                     ArrayRef<SDValue> Elts) {
6522   assert(!Elts.empty());
6523   MVT Type;
6524   unsigned NumElts = Elts.size();
6525 
6526   if (NumElts <= 12) {
6527     Type = MVT::getVectorVT(MVT::f32, NumElts);
6528   } else {
6529     assert(Elts.size() <= 16);
6530     Type = MVT::v16f32;
6531     NumElts = 16;
6532   }
6533 
6534   SmallVector<SDValue, 16> VecElts(NumElts);
6535   for (unsigned i = 0; i < Elts.size(); ++i) {
6536     SDValue Elt = Elts[i];
6537     if (Elt.getValueType() != MVT::f32)
6538       Elt = DAG.getBitcast(MVT::f32, Elt);
6539     VecElts[i] = Elt;
6540   }
6541   for (unsigned i = Elts.size(); i < NumElts; ++i)
6542     VecElts[i] = DAG.getUNDEF(MVT::f32);
6543 
6544   if (NumElts == 1)
6545     return VecElts[0];
6546   return DAG.getBuildVector(Type, DL, VecElts);
6547 }
6548 
6549 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6550                               SDValue Src, int ExtraElts) {
6551   EVT SrcVT = Src.getValueType();
6552 
6553   SmallVector<SDValue, 8> Elts;
6554 
6555   if (SrcVT.isVector())
6556     DAG.ExtractVectorElements(Src, Elts);
6557   else
6558     Elts.push_back(Src);
6559 
6560   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6561   while (ExtraElts--)
6562     Elts.push_back(Undef);
6563 
6564   return DAG.getBuildVector(CastVT, DL, Elts);
6565 }
6566 
6567 // Re-construct the required return value for a image load intrinsic.
6568 // This is more complicated due to the optional use TexFailCtrl which means the required
6569 // return type is an aggregate
6570 static SDValue constructRetValue(SelectionDAG &DAG,
6571                                  MachineSDNode *Result,
6572                                  ArrayRef<EVT> ResultTypes,
6573                                  bool IsTexFail, bool Unpacked, bool IsD16,
6574                                  int DMaskPop, int NumVDataDwords,
6575                                  const SDLoc &DL) {
6576   // Determine the required return type. This is the same regardless of IsTexFail flag
6577   EVT ReqRetVT = ResultTypes[0];
6578   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6579   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6580     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6581 
6582   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6583     DMaskPop : (DMaskPop + 1) / 2;
6584 
6585   MVT DataDwordVT = NumDataDwords == 1 ?
6586     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6587 
6588   MVT MaskPopVT = MaskPopDwords == 1 ?
6589     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6590 
6591   SDValue Data(Result, 0);
6592   SDValue TexFail;
6593 
6594   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6595     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6596     if (MaskPopVT.isVector()) {
6597       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6598                          SDValue(Result, 0), ZeroIdx);
6599     } else {
6600       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6601                          SDValue(Result, 0), ZeroIdx);
6602     }
6603   }
6604 
6605   if (DataDwordVT.isVector())
6606     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6607                           NumDataDwords - MaskPopDwords);
6608 
6609   if (IsD16)
6610     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6611 
6612   EVT LegalReqRetVT = ReqRetVT;
6613   if (!ReqRetVT.isVector()) {
6614     if (!Data.getValueType().isInteger())
6615       Data = DAG.getNode(ISD::BITCAST, DL,
6616                          Data.getValueType().changeTypeToInteger(), Data);
6617     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6618   } else {
6619     // We need to widen the return vector to a legal type
6620     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6621         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6622       LegalReqRetVT =
6623           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6624                            ReqRetVT.getVectorNumElements() + 1);
6625     }
6626   }
6627   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6628 
6629   if (IsTexFail) {
6630     TexFail =
6631         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6632                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6633 
6634     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6635   }
6636 
6637   if (Result->getNumValues() == 1)
6638     return Data;
6639 
6640   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6641 }
6642 
6643 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6644                          SDValue *LWE, bool &IsTexFail) {
6645   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6646 
6647   uint64_t Value = TexFailCtrlConst->getZExtValue();
6648   if (Value) {
6649     IsTexFail = true;
6650   }
6651 
6652   SDLoc DL(TexFailCtrlConst);
6653   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6654   Value &= ~(uint64_t)0x1;
6655   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6656   Value &= ~(uint64_t)0x2;
6657 
6658   return Value == 0;
6659 }
6660 
6661 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6662                                       MVT PackVectorVT,
6663                                       SmallVectorImpl<SDValue> &PackedAddrs,
6664                                       unsigned DimIdx, unsigned EndIdx,
6665                                       unsigned NumGradients) {
6666   SDLoc DL(Op);
6667   for (unsigned I = DimIdx; I < EndIdx; I++) {
6668     SDValue Addr = Op.getOperand(I);
6669 
6670     // Gradients are packed with undef for each coordinate.
6671     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6672     // 1D: undef,dx/dh; undef,dx/dv
6673     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6674     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6675     if (((I + 1) >= EndIdx) ||
6676         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6677                                          I == DimIdx + NumGradients - 1))) {
6678       if (Addr.getValueType() != MVT::i16)
6679         Addr = DAG.getBitcast(MVT::i16, Addr);
6680       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6681     } else {
6682       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6683       I++;
6684     }
6685     Addr = DAG.getBitcast(MVT::f32, Addr);
6686     PackedAddrs.push_back(Addr);
6687   }
6688 }
6689 
6690 SDValue SITargetLowering::lowerImage(SDValue Op,
6691                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6692                                      SelectionDAG &DAG, bool WithChain) const {
6693   SDLoc DL(Op);
6694   MachineFunction &MF = DAG.getMachineFunction();
6695   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6696   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6697       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6698   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6699   unsigned IntrOpcode = Intr->BaseOpcode;
6700   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6701   bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
6702 
6703   SmallVector<EVT, 3> ResultTypes(Op->values());
6704   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6705   bool IsD16 = false;
6706   bool IsG16 = false;
6707   bool IsA16 = false;
6708   SDValue VData;
6709   int NumVDataDwords;
6710   bool AdjustRetType = false;
6711 
6712   // Offset of intrinsic arguments
6713   const unsigned ArgOffset = WithChain ? 2 : 1;
6714 
6715   unsigned DMask;
6716   unsigned DMaskLanes = 0;
6717 
6718   if (BaseOpcode->Atomic) {
6719     VData = Op.getOperand(2);
6720 
6721     bool Is64Bit = VData.getValueType() == MVT::i64;
6722     if (BaseOpcode->AtomicX2) {
6723       SDValue VData2 = Op.getOperand(3);
6724       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6725                                  {VData, VData2});
6726       if (Is64Bit)
6727         VData = DAG.getBitcast(MVT::v4i32, VData);
6728 
6729       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6730       DMask = Is64Bit ? 0xf : 0x3;
6731       NumVDataDwords = Is64Bit ? 4 : 2;
6732     } else {
6733       DMask = Is64Bit ? 0x3 : 0x1;
6734       NumVDataDwords = Is64Bit ? 2 : 1;
6735     }
6736   } else {
6737     auto *DMaskConst =
6738         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6739     DMask = DMaskConst->getZExtValue();
6740     DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask);
6741 
6742     if (BaseOpcode->Store) {
6743       VData = Op.getOperand(2);
6744 
6745       MVT StoreVT = VData.getSimpleValueType();
6746       if (StoreVT.getScalarType() == MVT::f16) {
6747         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6748           return Op; // D16 is unsupported for this instruction
6749 
6750         IsD16 = true;
6751         VData = handleD16VData(VData, DAG, true);
6752       }
6753 
6754       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6755     } else {
6756       // Work out the num dwords based on the dmask popcount and underlying type
6757       // and whether packing is supported.
6758       MVT LoadVT = ResultTypes[0].getSimpleVT();
6759       if (LoadVT.getScalarType() == MVT::f16) {
6760         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6761           return Op; // D16 is unsupported for this instruction
6762 
6763         IsD16 = true;
6764       }
6765 
6766       // Confirm that the return type is large enough for the dmask specified
6767       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6768           (!LoadVT.isVector() && DMaskLanes > 1))
6769           return Op;
6770 
6771       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6772       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6773       // instructions.
6774       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6775           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6776         NumVDataDwords = (DMaskLanes + 1) / 2;
6777       else
6778         NumVDataDwords = DMaskLanes;
6779 
6780       AdjustRetType = true;
6781     }
6782   }
6783 
6784   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6785   SmallVector<SDValue, 4> VAddrs;
6786 
6787   // Check for 16 bit addresses or derivatives and pack if true.
6788   MVT VAddrVT =
6789       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6790   MVT VAddrScalarVT = VAddrVT.getScalarType();
6791   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6792   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6793 
6794   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6795   VAddrScalarVT = VAddrVT.getScalarType();
6796   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6797   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6798 
6799   // Push back extra arguments.
6800   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6801     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6802       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6803       // Special handling of bias when A16 is on. Bias is of type half but
6804       // occupies full 32-bit.
6805       SDValue Bias = DAG.getBuildVector(
6806           MVT::v2f16, DL,
6807           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6808       VAddrs.push_back(Bias);
6809     } else {
6810       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6811              "Bias needs to be converted to 16 bit in A16 mode");
6812       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6813     }
6814   }
6815 
6816   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6817     // 16 bit gradients are supported, but are tied to the A16 control
6818     // so both gradients and addresses must be 16 bit
6819     LLVM_DEBUG(
6820         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6821                   "require 16 bit args for both gradients and addresses");
6822     return Op;
6823   }
6824 
6825   if (IsA16) {
6826     if (!ST->hasA16()) {
6827       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6828                            "support 16 bit addresses\n");
6829       return Op;
6830     }
6831   }
6832 
6833   // We've dealt with incorrect input so we know that if IsA16, IsG16
6834   // are set then we have to compress/pack operands (either address,
6835   // gradient or both)
6836   // In the case where a16 and gradients are tied (no G16 support) then we
6837   // have already verified that both IsA16 and IsG16 are true
6838   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6839     // Activate g16
6840     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6841         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6842     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6843   }
6844 
6845   // Add gradients (packed or unpacked)
6846   if (IsG16) {
6847     // Pack the gradients
6848     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6849     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6850                               ArgOffset + Intr->GradientStart,
6851                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6852   } else {
6853     for (unsigned I = ArgOffset + Intr->GradientStart;
6854          I < ArgOffset + Intr->CoordStart; I++)
6855       VAddrs.push_back(Op.getOperand(I));
6856   }
6857 
6858   // Add addresses (packed or unpacked)
6859   if (IsA16) {
6860     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6861                               ArgOffset + Intr->CoordStart, VAddrEnd,
6862                               0 /* No gradients */);
6863   } else {
6864     // Add uncompressed address
6865     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6866       VAddrs.push_back(Op.getOperand(I));
6867   }
6868 
6869   // If the register allocator cannot place the address registers contiguously
6870   // without introducing moves, then using the non-sequential address encoding
6871   // is always preferable, since it saves VALU instructions and is usually a
6872   // wash in terms of code size or even better.
6873   //
6874   // However, we currently have no way of hinting to the register allocator that
6875   // MIMG addresses should be placed contiguously when it is possible to do so,
6876   // so force non-NSA for the common 2-address case as a heuristic.
6877   //
6878   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6879   // allocation when possible.
6880   //
6881   // Partial NSA is allowed on GFX11 where the final register is a contiguous
6882   // set of the remaining addresses.
6883   const unsigned NSAMaxSize = ST->getNSAMaxSize();
6884   const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding();
6885   const bool UseNSA = ST->hasNSAEncoding() &&
6886                       VAddrs.size() >= ST->getNSAThreshold(MF) &&
6887                       (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding);
6888   const bool UsePartialNSA =
6889       UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize;
6890 
6891   SDValue VAddr;
6892   if (UsePartialNSA) {
6893     VAddr = getBuildDwordsVector(DAG, DL,
6894                                  ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
6895   }
6896   else if (!UseNSA) {
6897     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6898   }
6899 
6900   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6901   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6902   SDValue Unorm;
6903   if (!BaseOpcode->Sampler) {
6904     Unorm = True;
6905   } else {
6906     auto UnormConst =
6907         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6908 
6909     Unorm = UnormConst->getZExtValue() ? True : False;
6910   }
6911 
6912   SDValue TFE;
6913   SDValue LWE;
6914   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6915   bool IsTexFail = false;
6916   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6917     return Op;
6918 
6919   if (IsTexFail) {
6920     if (!DMaskLanes) {
6921       // Expecting to get an error flag since TFC is on - and dmask is 0
6922       // Force dmask to be at least 1 otherwise the instruction will fail
6923       DMask = 0x1;
6924       DMaskLanes = 1;
6925       NumVDataDwords = 1;
6926     }
6927     NumVDataDwords += 1;
6928     AdjustRetType = true;
6929   }
6930 
6931   // Has something earlier tagged that the return type needs adjusting
6932   // This happens if the instruction is a load or has set TexFailCtrl flags
6933   if (AdjustRetType) {
6934     // NumVDataDwords reflects the true number of dwords required in the return type
6935     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6936       // This is a no-op load. This can be eliminated
6937       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6938       if (isa<MemSDNode>(Op))
6939         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6940       return Undef;
6941     }
6942 
6943     EVT NewVT = NumVDataDwords > 1 ?
6944                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6945                 : MVT::i32;
6946 
6947     ResultTypes[0] = NewVT;
6948     if (ResultTypes.size() == 3) {
6949       // Original result was aggregate type used for TexFailCtrl results
6950       // The actual instruction returns as a vector type which has now been
6951       // created. Remove the aggregate result.
6952       ResultTypes.erase(&ResultTypes[1]);
6953     }
6954   }
6955 
6956   unsigned CPol = cast<ConstantSDNode>(
6957       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6958   if (BaseOpcode->Atomic)
6959     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6960   if (CPol & ~AMDGPU::CPol::ALL)
6961     return Op;
6962 
6963   SmallVector<SDValue, 26> Ops;
6964   if (BaseOpcode->Store || BaseOpcode->Atomic)
6965     Ops.push_back(VData); // vdata
6966   if (UsePartialNSA) {
6967     append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1));
6968     Ops.push_back(VAddr);
6969   }
6970   else if (UseNSA)
6971     append_range(Ops, VAddrs);
6972   else
6973     Ops.push_back(VAddr);
6974   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6975   if (BaseOpcode->Sampler)
6976     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6977   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6978   if (IsGFX10Plus)
6979     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6980   Ops.push_back(Unorm);
6981   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6982   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6983                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6984   if (IsGFX10Plus)
6985     Ops.push_back(IsA16 ? True : False);
6986   if (!Subtarget->hasGFX90AInsts()) {
6987     Ops.push_back(TFE); //tfe
6988   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6989     report_fatal_error("TFE is not supported on this GPU");
6990   }
6991   Ops.push_back(LWE); // lwe
6992   if (!IsGFX10Plus)
6993     Ops.push_back(DimInfo->DA ? True : False);
6994   if (BaseOpcode->HasD16)
6995     Ops.push_back(IsD16 ? True : False);
6996   if (isa<MemSDNode>(Op))
6997     Ops.push_back(Op.getOperand(0)); // chain
6998 
6999   int NumVAddrDwords =
7000       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
7001   int Opcode = -1;
7002 
7003   if (IsGFX11Plus) {
7004     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
7005                                    UseNSA ? AMDGPU::MIMGEncGfx11NSA
7006                                           : AMDGPU::MIMGEncGfx11Default,
7007                                    NumVDataDwords, NumVAddrDwords);
7008   } else if (IsGFX10Plus) {
7009     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
7010                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
7011                                           : AMDGPU::MIMGEncGfx10Default,
7012                                    NumVDataDwords, NumVAddrDwords);
7013   } else {
7014     if (Subtarget->hasGFX90AInsts()) {
7015       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
7016                                      NumVDataDwords, NumVAddrDwords);
7017       if (Opcode == -1)
7018         report_fatal_error(
7019             "requested image instruction is not supported on this GPU");
7020     }
7021     if (Opcode == -1 &&
7022         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
7023       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
7024                                      NumVDataDwords, NumVAddrDwords);
7025     if (Opcode == -1)
7026       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
7027                                      NumVDataDwords, NumVAddrDwords);
7028   }
7029   if (Opcode == -1)
7030     return Op;
7031 
7032   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
7033   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
7034     MachineMemOperand *MemRef = MemOp->getMemOperand();
7035     DAG.setNodeMemRefs(NewNode, {MemRef});
7036   }
7037 
7038   if (BaseOpcode->AtomicX2) {
7039     SmallVector<SDValue, 1> Elt;
7040     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
7041     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
7042   }
7043   if (BaseOpcode->Store)
7044     return SDValue(NewNode, 0);
7045   return constructRetValue(DAG, NewNode,
7046                            OrigResultTypes, IsTexFail,
7047                            Subtarget->hasUnpackedD16VMem(), IsD16,
7048                            DMaskLanes, NumVDataDwords, DL);
7049 }
7050 
7051 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
7052                                        SDValue Offset, SDValue CachePolicy,
7053                                        SelectionDAG &DAG) const {
7054   MachineFunction &MF = DAG.getMachineFunction();
7055 
7056   const DataLayout &DataLayout = DAG.getDataLayout();
7057   Align Alignment =
7058       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
7059 
7060   MachineMemOperand *MMO = MF.getMachineMemOperand(
7061       MachinePointerInfo(),
7062       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
7063           MachineMemOperand::MOInvariant,
7064       VT.getStoreSize(), Alignment);
7065 
7066   if (!Offset->isDivergent()) {
7067     SDValue Ops[] = {
7068         Rsrc,
7069         Offset, // Offset
7070         CachePolicy
7071     };
7072 
7073     // Widen vec3 load to vec4.
7074     if (VT.isVector() && VT.getVectorNumElements() == 3) {
7075       EVT WidenedVT =
7076           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
7077       auto WidenedOp = DAG.getMemIntrinsicNode(
7078           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
7079           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
7080       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
7081                                    DAG.getVectorIdxConstant(0, DL));
7082       return Subvector;
7083     }
7084 
7085     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
7086                                    DAG.getVTList(VT), Ops, VT, MMO);
7087   }
7088 
7089   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
7090   // assume that the buffer is unswizzled.
7091   SmallVector<SDValue, 4> Loads;
7092   unsigned NumLoads = 1;
7093   MVT LoadVT = VT.getSimpleVT();
7094   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
7095   assert((LoadVT.getScalarType() == MVT::i32 ||
7096           LoadVT.getScalarType() == MVT::f32));
7097 
7098   if (NumElts == 8 || NumElts == 16) {
7099     NumLoads = NumElts / 4;
7100     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
7101   }
7102 
7103   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
7104   SDValue Ops[] = {
7105       DAG.getEntryNode(),                               // Chain
7106       Rsrc,                                             // rsrc
7107       DAG.getConstant(0, DL, MVT::i32),                 // vindex
7108       {},                                               // voffset
7109       {},                                               // soffset
7110       {},                                               // offset
7111       CachePolicy,                                      // cachepolicy
7112       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
7113   };
7114 
7115   // Use the alignment to ensure that the required offsets will fit into the
7116   // immediate offsets.
7117   setBufferOffsets(Offset, DAG, &Ops[3],
7118                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
7119 
7120   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
7121   for (unsigned i = 0; i < NumLoads; ++i) {
7122     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
7123     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
7124                                         LoadVT, MMO, DAG));
7125   }
7126 
7127   if (NumElts == 8 || NumElts == 16)
7128     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
7129 
7130   return Loads[0];
7131 }
7132 
7133 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
7134                                           unsigned Dim,
7135                                           const ArgDescriptor &Arg) const {
7136   SDLoc SL(Op);
7137   MachineFunction &MF = DAG.getMachineFunction();
7138   unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
7139   if (MaxID == 0)
7140     return DAG.getConstant(0, SL, MVT::i32);
7141 
7142   SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
7143                                SDLoc(DAG.getEntryNode()), Arg);
7144 
7145   // Don't bother inserting AssertZext for packed IDs since we're emitting the
7146   // masking operations anyway.
7147   //
7148   // TODO: We could assert the top bit is 0 for the source copy.
7149   if (Arg.isMasked())
7150     return Val;
7151 
7152   // Preserve the known bits after expansion to a copy.
7153   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID));
7154   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
7155                      DAG.getValueType(SmallVT));
7156 }
7157 
7158 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7159                                                   SelectionDAG &DAG) const {
7160   MachineFunction &MF = DAG.getMachineFunction();
7161   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
7162 
7163   EVT VT = Op.getValueType();
7164   SDLoc DL(Op);
7165   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7166 
7167   // TODO: Should this propagate fast-math-flags?
7168 
7169   switch (IntrinsicID) {
7170   case Intrinsic::amdgcn_implicit_buffer_ptr: {
7171     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
7172       return emitNonHSAIntrinsicError(DAG, DL, VT);
7173     return getPreloadedValue(DAG, *MFI, VT,
7174                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
7175   }
7176   case Intrinsic::amdgcn_dispatch_ptr:
7177   case Intrinsic::amdgcn_queue_ptr: {
7178     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
7179       DiagnosticInfoUnsupported BadIntrin(
7180           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
7181           DL.getDebugLoc());
7182       DAG.getContext()->diagnose(BadIntrin);
7183       return DAG.getUNDEF(VT);
7184     }
7185 
7186     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
7187       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
7188     return getPreloadedValue(DAG, *MFI, VT, RegID);
7189   }
7190   case Intrinsic::amdgcn_implicitarg_ptr: {
7191     if (MFI->isEntryFunction())
7192       return getImplicitArgPtr(DAG, DL);
7193     return getPreloadedValue(DAG, *MFI, VT,
7194                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
7195   }
7196   case Intrinsic::amdgcn_kernarg_segment_ptr: {
7197     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
7198       // This only makes sense to call in a kernel, so just lower to null.
7199       return DAG.getConstant(0, DL, VT);
7200     }
7201 
7202     return getPreloadedValue(DAG, *MFI, VT,
7203                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
7204   }
7205   case Intrinsic::amdgcn_dispatch_id: {
7206     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
7207   }
7208   case Intrinsic::amdgcn_rcp:
7209     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
7210   case Intrinsic::amdgcn_rsq:
7211     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
7212   case Intrinsic::amdgcn_rsq_legacy:
7213     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
7214       return emitRemovedIntrinsicError(DAG, DL, VT);
7215     return SDValue();
7216   case Intrinsic::amdgcn_rcp_legacy:
7217     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
7218       return emitRemovedIntrinsicError(DAG, DL, VT);
7219     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
7220   case Intrinsic::amdgcn_rsq_clamp: {
7221     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
7222       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
7223 
7224     Type *Type = VT.getTypeForEVT(*DAG.getContext());
7225     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
7226     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
7227 
7228     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
7229     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
7230                               DAG.getConstantFP(Max, DL, VT));
7231     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
7232                        DAG.getConstantFP(Min, DL, VT));
7233   }
7234   case Intrinsic::r600_read_ngroups_x:
7235     if (Subtarget->isAmdHsaOS())
7236       return emitNonHSAIntrinsicError(DAG, DL, VT);
7237 
7238     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
7239                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
7240                                     false);
7241   case Intrinsic::r600_read_ngroups_y:
7242     if (Subtarget->isAmdHsaOS())
7243       return emitNonHSAIntrinsicError(DAG, DL, VT);
7244 
7245     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
7246                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
7247                                     false);
7248   case Intrinsic::r600_read_ngroups_z:
7249     if (Subtarget->isAmdHsaOS())
7250       return emitNonHSAIntrinsicError(DAG, DL, VT);
7251 
7252     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
7253                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
7254                                     false);
7255   case Intrinsic::r600_read_global_size_x:
7256     if (Subtarget->isAmdHsaOS())
7257       return emitNonHSAIntrinsicError(DAG, DL, VT);
7258 
7259     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
7260                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
7261                                     Align(4), false);
7262   case Intrinsic::r600_read_global_size_y:
7263     if (Subtarget->isAmdHsaOS())
7264       return emitNonHSAIntrinsicError(DAG, DL, VT);
7265 
7266     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
7267                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
7268                                     Align(4), false);
7269   case Intrinsic::r600_read_global_size_z:
7270     if (Subtarget->isAmdHsaOS())
7271       return emitNonHSAIntrinsicError(DAG, DL, VT);
7272 
7273     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
7274                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
7275                                     Align(4), false);
7276   case Intrinsic::r600_read_local_size_x:
7277     if (Subtarget->isAmdHsaOS())
7278       return emitNonHSAIntrinsicError(DAG, DL, VT);
7279 
7280     return lowerImplicitZextParam(DAG, Op, MVT::i16,
7281                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
7282   case Intrinsic::r600_read_local_size_y:
7283     if (Subtarget->isAmdHsaOS())
7284       return emitNonHSAIntrinsicError(DAG, DL, VT);
7285 
7286     return lowerImplicitZextParam(DAG, Op, MVT::i16,
7287                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
7288   case Intrinsic::r600_read_local_size_z:
7289     if (Subtarget->isAmdHsaOS())
7290       return emitNonHSAIntrinsicError(DAG, DL, VT);
7291 
7292     return lowerImplicitZextParam(DAG, Op, MVT::i16,
7293                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
7294   case Intrinsic::amdgcn_workgroup_id_x:
7295     return getPreloadedValue(DAG, *MFI, VT,
7296                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
7297   case Intrinsic::amdgcn_workgroup_id_y:
7298     return getPreloadedValue(DAG, *MFI, VT,
7299                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
7300   case Intrinsic::amdgcn_workgroup_id_z:
7301     return getPreloadedValue(DAG, *MFI, VT,
7302                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
7303   case Intrinsic::amdgcn_lds_kernel_id: {
7304     if (MFI->isEntryFunction())
7305       return getLDSKernelId(DAG, DL);
7306     return getPreloadedValue(DAG, *MFI, VT,
7307                              AMDGPUFunctionArgInfo::LDS_KERNEL_ID);
7308   }
7309   case Intrinsic::amdgcn_workitem_id_x:
7310     return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
7311   case Intrinsic::amdgcn_workitem_id_y:
7312     return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
7313   case Intrinsic::amdgcn_workitem_id_z:
7314     return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
7315   case Intrinsic::amdgcn_wavefrontsize:
7316     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
7317                            SDLoc(Op), MVT::i32);
7318   case Intrinsic::amdgcn_s_buffer_load: {
7319     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7320     if (CPol & ~AMDGPU::CPol::ALL)
7321       return Op;
7322     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7323                         DAG);
7324   }
7325   case Intrinsic::amdgcn_fdiv_fast:
7326     return lowerFDIV_FAST(Op, DAG);
7327   case Intrinsic::amdgcn_sin:
7328     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
7329 
7330   case Intrinsic::amdgcn_cos:
7331     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
7332 
7333   case Intrinsic::amdgcn_mul_u24:
7334     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
7335   case Intrinsic::amdgcn_mul_i24:
7336     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
7337 
7338   case Intrinsic::amdgcn_log_clamp: {
7339     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
7340       return SDValue();
7341 
7342     return emitRemovedIntrinsicError(DAG, DL, VT);
7343   }
7344   case Intrinsic::amdgcn_ldexp:
7345     return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(1), Op.getOperand(2));
7346 
7347   case Intrinsic::amdgcn_fract:
7348     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
7349 
7350   case Intrinsic::amdgcn_class:
7351     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
7352                        Op.getOperand(1), Op.getOperand(2));
7353   case Intrinsic::amdgcn_div_fmas:
7354     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
7355                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7356                        Op.getOperand(4));
7357 
7358   case Intrinsic::amdgcn_div_fixup:
7359     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
7360                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7361 
7362   case Intrinsic::amdgcn_div_scale: {
7363     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
7364 
7365     // Translate to the operands expected by the machine instruction. The
7366     // first parameter must be the same as the first instruction.
7367     SDValue Numerator = Op.getOperand(1);
7368     SDValue Denominator = Op.getOperand(2);
7369 
7370     // Note this order is opposite of the machine instruction's operations,
7371     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
7372     // intrinsic has the numerator as the first operand to match a normal
7373     // division operation.
7374 
7375     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
7376 
7377     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
7378                        Denominator, Numerator);
7379   }
7380   case Intrinsic::amdgcn_icmp: {
7381     // There is a Pat that handles this variant, so return it as-is.
7382     if (Op.getOperand(1).getValueType() == MVT::i1 &&
7383         Op.getConstantOperandVal(2) == 0 &&
7384         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
7385       return Op;
7386     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
7387   }
7388   case Intrinsic::amdgcn_fcmp: {
7389     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
7390   }
7391   case Intrinsic::amdgcn_ballot:
7392     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
7393   case Intrinsic::amdgcn_fmed3:
7394     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
7395                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7396   case Intrinsic::amdgcn_fdot2:
7397     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
7398                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7399                        Op.getOperand(4));
7400   case Intrinsic::amdgcn_fmul_legacy:
7401     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
7402                        Op.getOperand(1), Op.getOperand(2));
7403   case Intrinsic::amdgcn_sffbh:
7404     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
7405   case Intrinsic::amdgcn_sbfe:
7406     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
7407                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7408   case Intrinsic::amdgcn_ubfe:
7409     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
7410                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7411   case Intrinsic::amdgcn_cvt_pkrtz:
7412   case Intrinsic::amdgcn_cvt_pknorm_i16:
7413   case Intrinsic::amdgcn_cvt_pknorm_u16:
7414   case Intrinsic::amdgcn_cvt_pk_i16:
7415   case Intrinsic::amdgcn_cvt_pk_u16: {
7416     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
7417     EVT VT = Op.getValueType();
7418     unsigned Opcode;
7419 
7420     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
7421       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
7422     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
7423       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
7424     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
7425       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
7426     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
7427       Opcode = AMDGPUISD::CVT_PK_I16_I32;
7428     else
7429       Opcode = AMDGPUISD::CVT_PK_U16_U32;
7430 
7431     if (isTypeLegal(VT))
7432       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
7433 
7434     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
7435                                Op.getOperand(1), Op.getOperand(2));
7436     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
7437   }
7438   case Intrinsic::amdgcn_fmad_ftz:
7439     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
7440                        Op.getOperand(2), Op.getOperand(3));
7441 
7442   case Intrinsic::amdgcn_if_break:
7443     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
7444                                       Op->getOperand(1), Op->getOperand(2)), 0);
7445 
7446   case Intrinsic::amdgcn_groupstaticsize: {
7447     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
7448     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
7449       return Op;
7450 
7451     const Module *M = MF.getFunction().getParent();
7452     const GlobalValue *GV =
7453         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
7454     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
7455                                             SIInstrInfo::MO_ABS32_LO);
7456     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7457   }
7458   case Intrinsic::amdgcn_is_shared:
7459   case Intrinsic::amdgcn_is_private: {
7460     SDLoc SL(Op);
7461     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
7462       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
7463     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
7464     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
7465                                  Op.getOperand(1));
7466 
7467     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
7468                                 DAG.getConstant(1, SL, MVT::i32));
7469     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
7470   }
7471   case Intrinsic::amdgcn_perm:
7472     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7473                        Op.getOperand(2), Op.getOperand(3));
7474   case Intrinsic::amdgcn_reloc_constant: {
7475     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7476     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7477     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7478     auto RelocSymbol = cast<GlobalVariable>(
7479         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7480     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7481                                             SIInstrInfo::MO_ABS32_LO);
7482     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7483   }
7484   default:
7485     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7486             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7487       return lowerImage(Op, ImageDimIntr, DAG, false);
7488 
7489     return Op;
7490   }
7491 }
7492 
7493 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7494                                                      SelectionDAG &DAG,
7495                                                      unsigned NewOpcode) const {
7496   SDLoc DL(Op);
7497 
7498   SDValue VData = Op.getOperand(2);
7499   SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
7500   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7501   SDValue Ops[] = {
7502       Op.getOperand(0),                      // Chain
7503       VData,                                 // vdata
7504       Rsrc,                                  // rsrc
7505       DAG.getConstant(0, DL, MVT::i32),      // vindex
7506       Offsets.first,                         // voffset
7507       Op.getOperand(5),                      // soffset
7508       Offsets.second,                        // offset
7509       Op.getOperand(6),                      // cachepolicy
7510       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7511   };
7512 
7513   auto *M = cast<MemSDNode>(Op);
7514 
7515   EVT MemVT = VData.getValueType();
7516   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7517                                  M->getMemOperand());
7518 }
7519 
7520 // Return a value to use for the idxen operand by examining the vindex operand.
7521 static unsigned getIdxEn(SDValue VIndex) {
7522   // No need to set idxen if vindex is known to be zero.
7523   return isNullConstant(VIndex) ? 0 : 1;
7524 }
7525 
7526 SDValue
7527 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7528                                                 unsigned NewOpcode) const {
7529   SDLoc DL(Op);
7530 
7531   SDValue VData = Op.getOperand(2);
7532   SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
7533   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7534   SDValue Ops[] = {
7535       Op.getOperand(0),                      // Chain
7536       VData,                                 // vdata
7537       Rsrc,                                  // rsrc
7538       Op.getOperand(4),                      // vindex
7539       Offsets.first,                         // voffset
7540       Op.getOperand(6),                      // soffset
7541       Offsets.second,                        // offset
7542       Op.getOperand(7),                      // cachepolicy
7543       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7544   };
7545 
7546   auto *M = cast<MemSDNode>(Op);
7547 
7548   EVT MemVT = VData.getValueType();
7549   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7550                                  M->getMemOperand());
7551 }
7552 
7553 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7554                                                  SelectionDAG &DAG) const {
7555   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7556   SDLoc DL(Op);
7557 
7558   switch (IntrID) {
7559   case Intrinsic::amdgcn_ds_ordered_add:
7560   case Intrinsic::amdgcn_ds_ordered_swap: {
7561     MemSDNode *M = cast<MemSDNode>(Op);
7562     SDValue Chain = M->getOperand(0);
7563     SDValue M0 = M->getOperand(2);
7564     SDValue Value = M->getOperand(3);
7565     unsigned IndexOperand = M->getConstantOperandVal(7);
7566     unsigned WaveRelease = M->getConstantOperandVal(8);
7567     unsigned WaveDone = M->getConstantOperandVal(9);
7568 
7569     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7570     IndexOperand &= ~0x3f;
7571     unsigned CountDw = 0;
7572 
7573     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7574       CountDw = (IndexOperand >> 24) & 0xf;
7575       IndexOperand &= ~(0xf << 24);
7576 
7577       if (CountDw < 1 || CountDw > 4) {
7578         report_fatal_error(
7579             "ds_ordered_count: dword count must be between 1 and 4");
7580       }
7581     }
7582 
7583     if (IndexOperand)
7584       report_fatal_error("ds_ordered_count: bad index operand");
7585 
7586     if (WaveDone && !WaveRelease)
7587       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7588 
7589     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7590     unsigned ShaderType =
7591         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7592     unsigned Offset0 = OrderedCountIndex << 2;
7593     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
7594 
7595     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7596       Offset1 |= (CountDw - 1) << 6;
7597 
7598     if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
7599       Offset1 |= ShaderType << 2;
7600 
7601     unsigned Offset = Offset0 | (Offset1 << 8);
7602 
7603     SDValue Ops[] = {
7604       Chain,
7605       Value,
7606       DAG.getTargetConstant(Offset, DL, MVT::i16),
7607       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7608     };
7609     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7610                                    M->getVTList(), Ops, M->getMemoryVT(),
7611                                    M->getMemOperand());
7612   }
7613   case Intrinsic::amdgcn_ds_fadd: {
7614     MemSDNode *M = cast<MemSDNode>(Op);
7615     unsigned Opc;
7616     switch (IntrID) {
7617     case Intrinsic::amdgcn_ds_fadd:
7618       Opc = ISD::ATOMIC_LOAD_FADD;
7619       break;
7620     }
7621 
7622     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7623                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7624                          M->getMemOperand());
7625   }
7626   case Intrinsic::amdgcn_ds_fmin:
7627   case Intrinsic::amdgcn_ds_fmax: {
7628     MemSDNode *M = cast<MemSDNode>(Op);
7629     unsigned Opc;
7630     switch (IntrID) {
7631     case Intrinsic::amdgcn_ds_fmin:
7632       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7633       break;
7634     case Intrinsic::amdgcn_ds_fmax:
7635       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7636       break;
7637     default:
7638       llvm_unreachable("Unknown intrinsic!");
7639     }
7640     SDValue Ops[] = {
7641       M->getOperand(0), // Chain
7642       M->getOperand(2), // Ptr
7643       M->getOperand(3)  // Value
7644     };
7645 
7646     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7647                                    M->getMemoryVT(), M->getMemOperand());
7648   }
7649   case Intrinsic::amdgcn_buffer_load:
7650   case Intrinsic::amdgcn_buffer_load_format: {
7651     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7652     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7653     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7654     SDValue Ops[] = {
7655       Op.getOperand(0), // Chain
7656       Op.getOperand(2), // rsrc
7657       Op.getOperand(3), // vindex
7658       SDValue(),        // voffset -- will be set by setBufferOffsets
7659       SDValue(),        // soffset -- will be set by setBufferOffsets
7660       SDValue(),        // offset -- will be set by setBufferOffsets
7661       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7662       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7663     };
7664     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7665 
7666     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7667         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7668 
7669     EVT VT = Op.getValueType();
7670     EVT IntVT = VT.changeTypeToInteger();
7671     auto *M = cast<MemSDNode>(Op);
7672     EVT LoadVT = Op.getValueType();
7673 
7674     if (LoadVT.getScalarType() == MVT::f16)
7675       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7676                                  M, DAG, Ops);
7677 
7678     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7679     if (LoadVT.getScalarType() == MVT::i8 ||
7680         LoadVT.getScalarType() == MVT::i16)
7681       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7682 
7683     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7684                                M->getMemOperand(), DAG);
7685   }
7686   case Intrinsic::amdgcn_raw_buffer_load:
7687   case Intrinsic::amdgcn_raw_ptr_buffer_load:
7688   case Intrinsic::amdgcn_raw_buffer_load_format:
7689   case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
7690     const bool IsFormat =
7691         IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
7692         IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
7693 
7694     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
7695     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7696     SDValue Ops[] = {
7697         Op.getOperand(0),                      // Chain
7698         Rsrc,                                  // rsrc
7699         DAG.getConstant(0, DL, MVT::i32),      // vindex
7700         Offsets.first,                         // voffset
7701         Op.getOperand(4),                      // soffset
7702         Offsets.second,                        // offset
7703         Op.getOperand(5),                      // cachepolicy, swizzled buffer
7704         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7705     };
7706 
7707     auto *M = cast<MemSDNode>(Op);
7708     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7709   }
7710   case Intrinsic::amdgcn_struct_buffer_load:
7711   case Intrinsic::amdgcn_struct_ptr_buffer_load:
7712   case Intrinsic::amdgcn_struct_buffer_load_format:
7713   case Intrinsic::amdgcn_struct_ptr_buffer_load_format: {
7714     const bool IsFormat =
7715         IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
7716         IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
7717 
7718     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
7719     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7720     SDValue Ops[] = {
7721         Op.getOperand(0),                      // Chain
7722         Rsrc,                                  // rsrc
7723         Op.getOperand(3),                      // vindex
7724         Offsets.first,                         // voffset
7725         Op.getOperand(5),                      // soffset
7726         Offsets.second,                        // offset
7727         Op.getOperand(6),                      // cachepolicy, swizzled buffer
7728         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7729     };
7730 
7731     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7732   }
7733   case Intrinsic::amdgcn_tbuffer_load: {
7734     MemSDNode *M = cast<MemSDNode>(Op);
7735     EVT LoadVT = Op.getValueType();
7736 
7737     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7738     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7739     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7740     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7741     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7742     SDValue Ops[] = {
7743       Op.getOperand(0),  // Chain
7744       Op.getOperand(2),  // rsrc
7745       Op.getOperand(3),  // vindex
7746       Op.getOperand(4),  // voffset
7747       Op.getOperand(5),  // soffset
7748       Op.getOperand(6),  // offset
7749       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7750       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7751       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7752     };
7753 
7754     if (LoadVT.getScalarType() == MVT::f16)
7755       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7756                                  M, DAG, Ops);
7757     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7758                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7759                                DAG);
7760   }
7761   case Intrinsic::amdgcn_raw_tbuffer_load:
7762   case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
7763     MemSDNode *M = cast<MemSDNode>(Op);
7764     EVT LoadVT = Op.getValueType();
7765     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
7766     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7767 
7768     SDValue Ops[] = {
7769         Op.getOperand(0),                      // Chain
7770         Rsrc,                                  // rsrc
7771         DAG.getConstant(0, DL, MVT::i32),      // vindex
7772         Offsets.first,                         // voffset
7773         Op.getOperand(4),                      // soffset
7774         Offsets.second,                        // offset
7775         Op.getOperand(5),                      // format
7776         Op.getOperand(6),                      // cachepolicy, swizzled buffer
7777         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7778     };
7779 
7780     if (LoadVT.getScalarType() == MVT::f16)
7781       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7782                                  M, DAG, Ops);
7783     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7784                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7785                                DAG);
7786   }
7787   case Intrinsic::amdgcn_struct_tbuffer_load:
7788   case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
7789     MemSDNode *M = cast<MemSDNode>(Op);
7790     EVT LoadVT = Op.getValueType();
7791     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
7792     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7793 
7794     SDValue Ops[] = {
7795         Op.getOperand(0),                      // Chain
7796         Rsrc,                                  // rsrc
7797         Op.getOperand(3),                      // vindex
7798         Offsets.first,                         // voffset
7799         Op.getOperand(5),                      // soffset
7800         Offsets.second,                        // offset
7801         Op.getOperand(6),                      // format
7802         Op.getOperand(7),                      // cachepolicy, swizzled buffer
7803         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7804     };
7805 
7806     if (LoadVT.getScalarType() == MVT::f16)
7807       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7808                                  M, DAG, Ops);
7809     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7810                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7811                                DAG);
7812   }
7813   case Intrinsic::amdgcn_buffer_atomic_swap:
7814   case Intrinsic::amdgcn_buffer_atomic_add:
7815   case Intrinsic::amdgcn_buffer_atomic_sub:
7816   case Intrinsic::amdgcn_buffer_atomic_csub:
7817   case Intrinsic::amdgcn_buffer_atomic_smin:
7818   case Intrinsic::amdgcn_buffer_atomic_umin:
7819   case Intrinsic::amdgcn_buffer_atomic_smax:
7820   case Intrinsic::amdgcn_buffer_atomic_umax:
7821   case Intrinsic::amdgcn_buffer_atomic_and:
7822   case Intrinsic::amdgcn_buffer_atomic_or:
7823   case Intrinsic::amdgcn_buffer_atomic_xor:
7824   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7825     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7826     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7827     SDValue Ops[] = {
7828       Op.getOperand(0), // Chain
7829       Op.getOperand(2), // vdata
7830       Op.getOperand(3), // rsrc
7831       Op.getOperand(4), // vindex
7832       SDValue(),        // voffset -- will be set by setBufferOffsets
7833       SDValue(),        // soffset -- will be set by setBufferOffsets
7834       SDValue(),        // offset -- will be set by setBufferOffsets
7835       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7836       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7837     };
7838     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7839 
7840     EVT VT = Op.getValueType();
7841 
7842     auto *M = cast<MemSDNode>(Op);
7843     unsigned Opcode = 0;
7844 
7845     switch (IntrID) {
7846     case Intrinsic::amdgcn_buffer_atomic_swap:
7847       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7848       break;
7849     case Intrinsic::amdgcn_buffer_atomic_add:
7850       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7851       break;
7852     case Intrinsic::amdgcn_buffer_atomic_sub:
7853       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7854       break;
7855     case Intrinsic::amdgcn_buffer_atomic_csub:
7856       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7857       break;
7858     case Intrinsic::amdgcn_buffer_atomic_smin:
7859       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7860       break;
7861     case Intrinsic::amdgcn_buffer_atomic_umin:
7862       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7863       break;
7864     case Intrinsic::amdgcn_buffer_atomic_smax:
7865       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7866       break;
7867     case Intrinsic::amdgcn_buffer_atomic_umax:
7868       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7869       break;
7870     case Intrinsic::amdgcn_buffer_atomic_and:
7871       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7872       break;
7873     case Intrinsic::amdgcn_buffer_atomic_or:
7874       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7875       break;
7876     case Intrinsic::amdgcn_buffer_atomic_xor:
7877       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7878       break;
7879     case Intrinsic::amdgcn_buffer_atomic_fadd:
7880       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7881       break;
7882     default:
7883       llvm_unreachable("unhandled atomic opcode");
7884     }
7885 
7886     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7887                                    M->getMemOperand());
7888   }
7889   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7890   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
7891     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7892   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7893   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
7894     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7895   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7896   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
7897     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7898   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7899   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
7900     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7901   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7902   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
7903     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7904   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7905   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
7906     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7907   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7908   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
7909     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7910   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7911   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
7912     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7913   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7914   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
7915     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7916   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7917   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
7918     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7919   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7920   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
7921     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7922   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7923   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
7924     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7925   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7926   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
7927     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7928   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7929   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
7930     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7931   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7932   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
7933     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7934   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7935   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
7936     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7937   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7938   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
7939     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7940   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7941   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
7942     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7943   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7944   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
7945     return lowerStructBufferAtomicIntrin(Op, DAG,
7946                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7947   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7948   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
7949     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7950   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7951   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
7952     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7953   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7954   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
7955     return lowerStructBufferAtomicIntrin(Op, DAG,
7956                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7957   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7958   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
7959     return lowerStructBufferAtomicIntrin(Op, DAG,
7960                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7961   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7962   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
7963     return lowerStructBufferAtomicIntrin(Op, DAG,
7964                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7965   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7966   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
7967     return lowerStructBufferAtomicIntrin(Op, DAG,
7968                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7969   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7970   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
7971     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7972   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7973   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
7974     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7975   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7976   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
7977     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7978   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7979   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
7980     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7981   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7982   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
7983     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7984 
7985   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7986     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7987     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7988     SDValue Ops[] = {
7989       Op.getOperand(0), // Chain
7990       Op.getOperand(2), // src
7991       Op.getOperand(3), // cmp
7992       Op.getOperand(4), // rsrc
7993       Op.getOperand(5), // vindex
7994       SDValue(),        // voffset -- will be set by setBufferOffsets
7995       SDValue(),        // soffset -- will be set by setBufferOffsets
7996       SDValue(),        // offset -- will be set by setBufferOffsets
7997       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7998       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7999     };
8000     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
8001 
8002     EVT VT = Op.getValueType();
8003     auto *M = cast<MemSDNode>(Op);
8004 
8005     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
8006                                    Op->getVTList(), Ops, VT, M->getMemOperand());
8007   }
8008   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
8009   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
8010     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG);
8011     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8012     SDValue Ops[] = {
8013         Op.getOperand(0),                      // Chain
8014         Op.getOperand(2),                      // src
8015         Op.getOperand(3),                      // cmp
8016         Rsrc,                                  // rsrc
8017         DAG.getConstant(0, DL, MVT::i32),      // vindex
8018         Offsets.first,                         // voffset
8019         Op.getOperand(6),                      // soffset
8020         Offsets.second,                        // offset
8021         Op.getOperand(7),                      // cachepolicy
8022         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8023     };
8024     EVT VT = Op.getValueType();
8025     auto *M = cast<MemSDNode>(Op);
8026 
8027     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
8028                                    Op->getVTList(), Ops, VT, M->getMemOperand());
8029   }
8030   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
8031   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
8032     SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG);
8033     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
8034     SDValue Ops[] = {
8035         Op.getOperand(0),                      // Chain
8036         Op.getOperand(2),                      // src
8037         Op.getOperand(3),                      // cmp
8038         Rsrc,                                  // rsrc
8039         Op.getOperand(5),                      // vindex
8040         Offsets.first,                         // voffset
8041         Op.getOperand(7),                      // soffset
8042         Offsets.second,                        // offset
8043         Op.getOperand(8),                      // cachepolicy
8044         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8045     };
8046     EVT VT = Op.getValueType();
8047     auto *M = cast<MemSDNode>(Op);
8048 
8049     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
8050                                    Op->getVTList(), Ops, VT, M->getMemOperand());
8051   }
8052   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
8053     MemSDNode *M = cast<MemSDNode>(Op);
8054     SDValue NodePtr = M->getOperand(2);
8055     SDValue RayExtent = M->getOperand(3);
8056     SDValue RayOrigin = M->getOperand(4);
8057     SDValue RayDir = M->getOperand(5);
8058     SDValue RayInvDir = M->getOperand(6);
8059     SDValue TDescr = M->getOperand(7);
8060 
8061     assert(NodePtr.getValueType() == MVT::i32 ||
8062            NodePtr.getValueType() == MVT::i64);
8063     assert(RayDir.getValueType() == MVT::v3f16 ||
8064            RayDir.getValueType() == MVT::v3f32);
8065 
8066     if (!Subtarget->hasGFX10_AEncoding()) {
8067       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
8068       return SDValue();
8069     }
8070 
8071     const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
8072     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
8073     const bool Is64 = NodePtr.getValueType() == MVT::i64;
8074     const unsigned NumVDataDwords = 4;
8075     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
8076     const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
8077     const bool UseNSA =
8078         Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize();
8079     const unsigned BaseOpcodes[2][2] = {
8080         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
8081         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
8082          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
8083     int Opcode;
8084     if (UseNSA) {
8085       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
8086                                      IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA
8087                                                  : AMDGPU::MIMGEncGfx10NSA,
8088                                      NumVDataDwords, NumVAddrDwords);
8089     } else {
8090       Opcode =
8091           AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
8092                                 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default
8093                                             : AMDGPU::MIMGEncGfx10Default,
8094                                 NumVDataDwords, NumVAddrDwords);
8095     }
8096     assert(Opcode != -1);
8097 
8098     SmallVector<SDValue, 16> Ops;
8099 
8100     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
8101       SmallVector<SDValue, 3> Lanes;
8102       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
8103       if (Lanes[0].getValueSizeInBits() == 32) {
8104         for (unsigned I = 0; I < 3; ++I)
8105           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
8106       } else {
8107         if (IsAligned) {
8108           Ops.push_back(
8109             DAG.getBitcast(MVT::i32,
8110                            DAG.getBuildVector(MVT::v2f16, DL,
8111                                               { Lanes[0], Lanes[1] })));
8112           Ops.push_back(Lanes[2]);
8113         } else {
8114           SDValue Elt0 = Ops.pop_back_val();
8115           Ops.push_back(
8116             DAG.getBitcast(MVT::i32,
8117                            DAG.getBuildVector(MVT::v2f16, DL,
8118                                               { Elt0, Lanes[0] })));
8119           Ops.push_back(
8120             DAG.getBitcast(MVT::i32,
8121                            DAG.getBuildVector(MVT::v2f16, DL,
8122                                               { Lanes[1], Lanes[2] })));
8123         }
8124       }
8125     };
8126 
8127     if (UseNSA && IsGFX11Plus) {
8128       Ops.push_back(NodePtr);
8129       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
8130       Ops.push_back(RayOrigin);
8131       if (IsA16) {
8132         SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
8133         DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
8134         DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
8135         for (unsigned I = 0; I < 3; ++I) {
8136           MergedLanes.push_back(DAG.getBitcast(
8137               MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
8138                                            {DirLanes[I], InvDirLanes[I]})));
8139         }
8140         Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
8141       } else {
8142         Ops.push_back(RayDir);
8143         Ops.push_back(RayInvDir);
8144       }
8145     } else {
8146       if (Is64)
8147         DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
8148                                   2);
8149       else
8150         Ops.push_back(NodePtr);
8151 
8152       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
8153       packLanes(RayOrigin, true);
8154       packLanes(RayDir, true);
8155       packLanes(RayInvDir, false);
8156     }
8157 
8158     if (!UseNSA) {
8159       // Build a single vector containing all the operands so far prepared.
8160       if (NumVAddrDwords > 12) {
8161         SDValue Undef = DAG.getUNDEF(MVT::i32);
8162         Ops.append(16 - Ops.size(), Undef);
8163       }
8164       assert(Ops.size() >= 8 && Ops.size() <= 12);
8165       SDValue MergedOps = DAG.getBuildVector(
8166           MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops);
8167       Ops.clear();
8168       Ops.push_back(MergedOps);
8169     }
8170 
8171     Ops.push_back(TDescr);
8172     Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1));
8173     Ops.push_back(M->getChain());
8174 
8175     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
8176     MachineMemOperand *MemRef = M->getMemOperand();
8177     DAG.setNodeMemRefs(NewNode, {MemRef});
8178     return SDValue(NewNode, 0);
8179   }
8180   case Intrinsic::amdgcn_global_atomic_fmin:
8181   case Intrinsic::amdgcn_global_atomic_fmax:
8182   case Intrinsic::amdgcn_flat_atomic_fmin:
8183   case Intrinsic::amdgcn_flat_atomic_fmax: {
8184     MemSDNode *M = cast<MemSDNode>(Op);
8185     SDValue Ops[] = {
8186       M->getOperand(0), // Chain
8187       M->getOperand(2), // Ptr
8188       M->getOperand(3)  // Value
8189     };
8190     unsigned Opcode = 0;
8191     switch (IntrID) {
8192     case Intrinsic::amdgcn_global_atomic_fmin:
8193     case Intrinsic::amdgcn_flat_atomic_fmin: {
8194       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
8195       break;
8196     }
8197     case Intrinsic::amdgcn_global_atomic_fmax:
8198     case Intrinsic::amdgcn_flat_atomic_fmax: {
8199       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
8200       break;
8201     }
8202     default:
8203       llvm_unreachable("unhandled atomic opcode");
8204     }
8205     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
8206                                    M->getVTList(), Ops, M->getMemoryVT(),
8207                                    M->getMemOperand());
8208   }
8209   default:
8210 
8211     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8212             AMDGPU::getImageDimIntrinsicInfo(IntrID))
8213       return lowerImage(Op, ImageDimIntr, DAG, true);
8214 
8215     return SDValue();
8216   }
8217 }
8218 
8219 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
8220 // dwordx4 if on SI and handle TFE loads.
8221 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
8222                                               SDVTList VTList,
8223                                               ArrayRef<SDValue> Ops, EVT MemVT,
8224                                               MachineMemOperand *MMO,
8225                                               SelectionDAG &DAG) const {
8226   LLVMContext &C = *DAG.getContext();
8227   MachineFunction &MF = DAG.getMachineFunction();
8228   EVT VT = VTList.VTs[0];
8229 
8230   assert(VTList.NumVTs == 2 || VTList.NumVTs == 3);
8231   bool IsTFE = VTList.NumVTs == 3;
8232   if (IsTFE) {
8233     unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32);
8234     unsigned NumOpDWords = NumValueDWords + 1;
8235     EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords);
8236     SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]);
8237     MachineMemOperand *OpDWordsMMO =
8238         MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4);
8239     SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops,
8240                                      OpDWordsVT, OpDWordsMMO, DAG);
8241     SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
8242                                  DAG.getVectorIdxConstant(NumValueDWords, DL));
8243     SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
8244     SDValue ValueDWords =
8245         NumValueDWords == 1
8246             ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx)
8247             : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
8248                           EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op,
8249                           ZeroIdx);
8250     SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords);
8251     return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
8252   }
8253 
8254   if (!Subtarget->hasDwordx3LoadStores() &&
8255       (VT == MVT::v3i32 || VT == MVT::v3f32)) {
8256     EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4);
8257     EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4);
8258     MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16);
8259     SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
8260     SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
8261                                          WidenedMemVT, WidenedMMO);
8262     SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op,
8263                                 DAG.getVectorIdxConstant(0, DL));
8264     return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL);
8265   }
8266 
8267   return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO);
8268 }
8269 
8270 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
8271                                          bool ImageStore) const {
8272   EVT StoreVT = VData.getValueType();
8273 
8274   // No change for f16 and legal vector D16 types.
8275   if (!StoreVT.isVector())
8276     return VData;
8277 
8278   SDLoc DL(VData);
8279   unsigned NumElements = StoreVT.getVectorNumElements();
8280 
8281   if (Subtarget->hasUnpackedD16VMem()) {
8282     // We need to unpack the packed data to store.
8283     EVT IntStoreVT = StoreVT.changeTypeToInteger();
8284     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
8285 
8286     EVT EquivStoreVT =
8287         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
8288     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
8289     return DAG.UnrollVectorOp(ZExt.getNode());
8290   }
8291 
8292   // The sq block of gfx8.1 does not estimate register use correctly for d16
8293   // image store instructions. The data operand is computed as if it were not a
8294   // d16 image instruction.
8295   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
8296     // Bitcast to i16
8297     EVT IntStoreVT = StoreVT.changeTypeToInteger();
8298     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
8299 
8300     // Decompose into scalars
8301     SmallVector<SDValue, 4> Elts;
8302     DAG.ExtractVectorElements(IntVData, Elts);
8303 
8304     // Group pairs of i16 into v2i16 and bitcast to i32
8305     SmallVector<SDValue, 4> PackedElts;
8306     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
8307       SDValue Pair =
8308           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
8309       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
8310       PackedElts.push_back(IntPair);
8311     }
8312     if ((NumElements % 2) == 1) {
8313       // Handle v3i16
8314       unsigned I = Elts.size() / 2;
8315       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
8316                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
8317       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
8318       PackedElts.push_back(IntPair);
8319     }
8320 
8321     // Pad using UNDEF
8322     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
8323 
8324     // Build final vector
8325     EVT VecVT =
8326         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
8327     return DAG.getBuildVector(VecVT, DL, PackedElts);
8328   }
8329 
8330   if (NumElements == 3) {
8331     EVT IntStoreVT =
8332         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
8333     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
8334 
8335     EVT WidenedStoreVT = EVT::getVectorVT(
8336         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
8337     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
8338                                          WidenedStoreVT.getStoreSizeInBits());
8339     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
8340     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
8341   }
8342 
8343   assert(isTypeLegal(StoreVT));
8344   return VData;
8345 }
8346 
8347 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8348                                               SelectionDAG &DAG) const {
8349   SDLoc DL(Op);
8350   SDValue Chain = Op.getOperand(0);
8351   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8352   MachineFunction &MF = DAG.getMachineFunction();
8353 
8354   switch (IntrinsicID) {
8355   case Intrinsic::amdgcn_exp_compr: {
8356     if (!Subtarget->hasCompressedExport()) {
8357       DiagnosticInfoUnsupported BadIntrin(
8358           DAG.getMachineFunction().getFunction(),
8359           "intrinsic not supported on subtarget", DL.getDebugLoc());
8360       DAG.getContext()->diagnose(BadIntrin);
8361     }
8362     SDValue Src0 = Op.getOperand(4);
8363     SDValue Src1 = Op.getOperand(5);
8364     // Hack around illegal type on SI by directly selecting it.
8365     if (isTypeLegal(Src0.getValueType()))
8366       return SDValue();
8367 
8368     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
8369     SDValue Undef = DAG.getUNDEF(MVT::f32);
8370     const SDValue Ops[] = {
8371       Op.getOperand(2), // tgt
8372       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
8373       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
8374       Undef, // src2
8375       Undef, // src3
8376       Op.getOperand(7), // vm
8377       DAG.getTargetConstant(1, DL, MVT::i1), // compr
8378       Op.getOperand(3), // en
8379       Op.getOperand(0) // Chain
8380     };
8381 
8382     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
8383     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
8384   }
8385   case Intrinsic::amdgcn_s_barrier: {
8386     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
8387       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
8388       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
8389       if (WGSize <= ST.getWavefrontSize())
8390         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
8391                                           Op.getOperand(0)), 0);
8392     }
8393     return SDValue();
8394   };
8395   case Intrinsic::amdgcn_tbuffer_store: {
8396     SDValue VData = Op.getOperand(2);
8397     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8398     if (IsD16)
8399       VData = handleD16VData(VData, DAG);
8400     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
8401     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
8402     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
8403     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
8404     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8405     SDValue Ops[] = {
8406       Chain,
8407       VData,             // vdata
8408       Op.getOperand(3),  // rsrc
8409       Op.getOperand(4),  // vindex
8410       Op.getOperand(5),  // voffset
8411       Op.getOperand(6),  // soffset
8412       Op.getOperand(7),  // offset
8413       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
8414       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8415       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8416     };
8417     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8418                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8419     MemSDNode *M = cast<MemSDNode>(Op);
8420     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8421                                    M->getMemoryVT(), M->getMemOperand());
8422   }
8423 
8424   case Intrinsic::amdgcn_struct_tbuffer_store:
8425   case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
8426     SDValue VData = Op.getOperand(2);
8427     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8428     if (IsD16)
8429       VData = handleD16VData(VData, DAG);
8430     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8431     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8432     SDValue Ops[] = {
8433         Chain,
8434         VData,                                 // vdata
8435         Rsrc,                                  // rsrc
8436         Op.getOperand(4),                      // vindex
8437         Offsets.first,                         // voffset
8438         Op.getOperand(6),                      // soffset
8439         Offsets.second,                        // offset
8440         Op.getOperand(7),                      // format
8441         Op.getOperand(8),                      // cachepolicy, swizzled buffer
8442         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8443     };
8444     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8445                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8446     MemSDNode *M = cast<MemSDNode>(Op);
8447     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8448                                    M->getMemoryVT(), M->getMemOperand());
8449   }
8450 
8451   case Intrinsic::amdgcn_raw_tbuffer_store:
8452   case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
8453     SDValue VData = Op.getOperand(2);
8454     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8455     if (IsD16)
8456       VData = handleD16VData(VData, DAG);
8457     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8458     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8459     SDValue Ops[] = {
8460         Chain,
8461         VData,                                 // vdata
8462         Rsrc,                                  // rsrc
8463         DAG.getConstant(0, DL, MVT::i32),      // vindex
8464         Offsets.first,                         // voffset
8465         Op.getOperand(5),                      // soffset
8466         Offsets.second,                        // offset
8467         Op.getOperand(6),                      // format
8468         Op.getOperand(7),                      // cachepolicy, swizzled buffer
8469         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8470     };
8471     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8472                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8473     MemSDNode *M = cast<MemSDNode>(Op);
8474     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8475                                    M->getMemoryVT(), M->getMemOperand());
8476   }
8477 
8478   case Intrinsic::amdgcn_buffer_store:
8479   case Intrinsic::amdgcn_buffer_store_format: {
8480     SDValue VData = Op.getOperand(2);
8481     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8482     if (IsD16)
8483       VData = handleD16VData(VData, DAG);
8484     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
8485     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
8486     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8487     SDValue Ops[] = {
8488       Chain,
8489       VData,
8490       Op.getOperand(3), // rsrc
8491       Op.getOperand(4), // vindex
8492       SDValue(), // voffset -- will be set by setBufferOffsets
8493       SDValue(), // soffset -- will be set by setBufferOffsets
8494       SDValue(), // offset -- will be set by setBufferOffsets
8495       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8496       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8497     };
8498     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8499 
8500     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8501                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8502     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8503     MemSDNode *M = cast<MemSDNode>(Op);
8504 
8505     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8506     EVT VDataType = VData.getValueType().getScalarType();
8507     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8508       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8509 
8510     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8511                                    M->getMemoryVT(), M->getMemOperand());
8512   }
8513 
8514   case Intrinsic::amdgcn_raw_buffer_store:
8515   case Intrinsic::amdgcn_raw_ptr_buffer_store:
8516   case Intrinsic::amdgcn_raw_buffer_store_format:
8517   case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
8518     const bool IsFormat =
8519         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
8520         IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
8521 
8522     SDValue VData = Op.getOperand(2);
8523     EVT VDataVT = VData.getValueType();
8524     EVT EltType = VDataVT.getScalarType();
8525     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8526     if (IsD16) {
8527       VData = handleD16VData(VData, DAG);
8528       VDataVT = VData.getValueType();
8529     }
8530 
8531     if (!isTypeLegal(VDataVT)) {
8532       VData =
8533           DAG.getNode(ISD::BITCAST, DL,
8534                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8535     }
8536 
8537     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8538     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8539     SDValue Ops[] = {
8540         Chain,
8541         VData,
8542         Rsrc,
8543         DAG.getConstant(0, DL, MVT::i32),      // vindex
8544         Offsets.first,                         // voffset
8545         Op.getOperand(5),                      // soffset
8546         Offsets.second,                        // offset
8547         Op.getOperand(6),                      // cachepolicy, swizzled buffer
8548         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8549     };
8550     unsigned Opc =
8551         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8552     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8553     MemSDNode *M = cast<MemSDNode>(Op);
8554 
8555     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8556     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8557       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8558 
8559     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8560                                    M->getMemoryVT(), M->getMemOperand());
8561   }
8562 
8563   case Intrinsic::amdgcn_struct_buffer_store:
8564   case Intrinsic::amdgcn_struct_ptr_buffer_store:
8565   case Intrinsic::amdgcn_struct_buffer_store_format:
8566   case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
8567     const bool IsFormat =
8568         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
8569         IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
8570 
8571     SDValue VData = Op.getOperand(2);
8572     EVT VDataVT = VData.getValueType();
8573     EVT EltType = VDataVT.getScalarType();
8574     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8575 
8576     if (IsD16) {
8577       VData = handleD16VData(VData, DAG);
8578       VDataVT = VData.getValueType();
8579     }
8580 
8581     if (!isTypeLegal(VDataVT)) {
8582       VData =
8583           DAG.getNode(ISD::BITCAST, DL,
8584                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8585     }
8586 
8587     auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8588     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8589     SDValue Ops[] = {
8590         Chain,
8591         VData,
8592         Rsrc,
8593         Op.getOperand(4),                      // vindex
8594         Offsets.first,                         // voffset
8595         Op.getOperand(6),                      // soffset
8596         Offsets.second,                        // offset
8597         Op.getOperand(7),                      // cachepolicy, swizzled buffer
8598         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8599     };
8600     unsigned Opc =
8601         !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8602     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8603     MemSDNode *M = cast<MemSDNode>(Op);
8604 
8605     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8606     EVT VDataType = VData.getValueType().getScalarType();
8607     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8608       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8609 
8610     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8611                                    M->getMemoryVT(), M->getMemOperand());
8612   }
8613   case Intrinsic::amdgcn_raw_buffer_load_lds:
8614   case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
8615   case Intrinsic::amdgcn_struct_buffer_load_lds:
8616   case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
8617     unsigned Opc;
8618     bool HasVIndex =
8619         IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
8620         IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
8621     unsigned OpOffset = HasVIndex ? 1 : 0;
8622     SDValue VOffset = Op.getOperand(5 + OpOffset);
8623     auto CVOffset = dyn_cast<ConstantSDNode>(VOffset);
8624     bool HasVOffset = !CVOffset || !CVOffset->isZero();
8625     unsigned Size = Op->getConstantOperandVal(4);
8626 
8627     switch (Size) {
8628     default:
8629       return SDValue();
8630     case 1:
8631       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
8632                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
8633                       : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
8634                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
8635       break;
8636     case 2:
8637       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
8638                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
8639                       : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
8640                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
8641       break;
8642     case 4:
8643       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
8644                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
8645                       : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
8646                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
8647       break;
8648     }
8649 
8650     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8651 
8652     SmallVector<SDValue, 8> Ops;
8653 
8654     if (HasVIndex && HasVOffset)
8655       Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
8656                                        { Op.getOperand(5), // VIndex
8657                                          VOffset }));
8658     else if (HasVIndex)
8659       Ops.push_back(Op.getOperand(5));
8660     else if (HasVOffset)
8661       Ops.push_back(VOffset);
8662 
8663     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
8664     Ops.push_back(Rsrc);
8665     Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
8666     Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
8667     unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
8668     Ops.push_back(
8669       DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
8670     Ops.push_back(
8671       DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8));          // swz
8672     Ops.push_back(M0Val.getValue(0)); // Chain
8673     Ops.push_back(M0Val.getValue(1)); // Glue
8674 
8675     auto *M = cast<MemSDNode>(Op);
8676     MachineMemOperand *LoadMMO = M->getMemOperand();
8677     // Don't set the offset value here because the pointer points to the base of
8678     // the buffer.
8679     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8680 
8681     MachinePointerInfo StorePtrI = LoadPtrI;
8682     StorePtrI.V = nullptr;
8683     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8684 
8685     auto F = LoadMMO->getFlags() &
8686              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8687     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8688                                       Size, LoadMMO->getBaseAlign());
8689 
8690     MachineMemOperand *StoreMMO =
8691         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8692                                 sizeof(int32_t), LoadMMO->getBaseAlign());
8693 
8694     auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
8695     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8696 
8697     return SDValue(Load, 0);
8698   }
8699   case Intrinsic::amdgcn_global_load_lds: {
8700     unsigned Opc;
8701     unsigned Size = Op->getConstantOperandVal(4);
8702     switch (Size) {
8703     default:
8704       return SDValue();
8705     case 1:
8706       Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
8707       break;
8708     case 2:
8709       Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
8710       break;
8711     case 4:
8712       Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
8713       break;
8714     }
8715 
8716     auto *M = cast<MemSDNode>(Op);
8717     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8718 
8719     SmallVector<SDValue, 6> Ops;
8720 
8721     SDValue Addr = Op.getOperand(2); // Global ptr
8722     SDValue VOffset;
8723     // Try to split SAddr and VOffset. Global and LDS pointers share the same
8724     // immediate offset, so we cannot use a regular SelectGlobalSAddr().
8725     if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
8726       SDValue LHS = Addr.getOperand(0);
8727       SDValue RHS = Addr.getOperand(1);
8728 
8729       if (LHS->isDivergent())
8730         std::swap(LHS, RHS);
8731 
8732       if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
8733           RHS.getOperand(0).getValueType() == MVT::i32) {
8734         // add (i64 sgpr), (zero_extend (i32 vgpr))
8735         Addr = LHS;
8736         VOffset = RHS.getOperand(0);
8737       }
8738     }
8739 
8740     Ops.push_back(Addr);
8741     if (!Addr->isDivergent()) {
8742       Opc = AMDGPU::getGlobalSaddrOp(Opc);
8743       if (!VOffset)
8744         VOffset = SDValue(
8745             DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
8746                                DAG.getTargetConstant(0, DL, MVT::i32)), 0);
8747       Ops.push_back(VOffset);
8748     }
8749 
8750     Ops.push_back(Op.getOperand(5));  // Offset
8751     Ops.push_back(Op.getOperand(6));  // CPol
8752     Ops.push_back(M0Val.getValue(0)); // Chain
8753     Ops.push_back(M0Val.getValue(1)); // Glue
8754 
8755     MachineMemOperand *LoadMMO = M->getMemOperand();
8756     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8757     LoadPtrI.Offset = Op->getConstantOperandVal(5);
8758     MachinePointerInfo StorePtrI = LoadPtrI;
8759     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
8760     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8761     auto F = LoadMMO->getFlags() &
8762              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8763     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8764                                       Size, LoadMMO->getBaseAlign());
8765     MachineMemOperand *StoreMMO =
8766         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8767                                 sizeof(int32_t), Align(4));
8768 
8769     auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
8770     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8771 
8772     return SDValue(Load, 0);
8773   }
8774   case Intrinsic::amdgcn_end_cf:
8775     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8776                                       Op->getOperand(2), Chain), 0);
8777 
8778   default: {
8779     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8780             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8781       return lowerImage(Op, ImageDimIntr, DAG, true);
8782 
8783     return Op;
8784   }
8785   }
8786 }
8787 
8788 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8789 // offset (the offset that is included in bounds checking and swizzling, to be
8790 // split between the instruction's voffset and immoffset fields) and soffset
8791 // (the offset that is excluded from bounds checking and swizzling, to go in
8792 // the instruction's soffset field).  This function takes the first kind of
8793 // offset and figures out how to split it between voffset and immoffset.
8794 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8795     SDValue Offset, SelectionDAG &DAG) const {
8796   SDLoc DL(Offset);
8797   const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset();
8798   SDValue N0 = Offset;
8799   ConstantSDNode *C1 = nullptr;
8800 
8801   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8802     N0 = SDValue();
8803   else if (DAG.isBaseWithConstantOffset(N0)) {
8804     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8805     N0 = N0.getOperand(0);
8806   }
8807 
8808   if (C1) {
8809     unsigned ImmOffset = C1->getZExtValue();
8810     // If the immediate value is too big for the immoffset field, put only bits
8811     // that would normally fit in the immoffset field. The remaining value that
8812     // is copied/added for the voffset field is a large power of 2, and it
8813     // stands more chance of being CSEd with the copy/add for another similar
8814     // load/store.
8815     // However, do not do that rounding down if that is a negative
8816     // number, as it appears to be illegal to have a negative offset in the
8817     // vgpr, even if adding the immediate offset makes it positive.
8818     unsigned Overflow = ImmOffset & ~MaxImm;
8819     ImmOffset -= Overflow;
8820     if ((int32_t)Overflow < 0) {
8821       Overflow += ImmOffset;
8822       ImmOffset = 0;
8823     }
8824     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8825     if (Overflow) {
8826       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8827       if (!N0)
8828         N0 = OverflowVal;
8829       else {
8830         SDValue Ops[] = { N0, OverflowVal };
8831         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8832       }
8833     }
8834   }
8835   if (!N0)
8836     N0 = DAG.getConstant(0, DL, MVT::i32);
8837   if (!C1)
8838     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8839   return {N0, SDValue(C1, 0)};
8840 }
8841 
8842 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8843 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8844 // pointed to by Offsets.
8845 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8846                                         SelectionDAG &DAG, SDValue *Offsets,
8847                                         Align Alignment) const {
8848   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8849   SDLoc DL(CombinedOffset);
8850   if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8851     uint32_t Imm = C->getZExtValue();
8852     uint32_t SOffset, ImmOffset;
8853     if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
8854       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8855       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8856       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8857       return;
8858     }
8859   }
8860   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8861     SDValue N0 = CombinedOffset.getOperand(0);
8862     SDValue N1 = CombinedOffset.getOperand(1);
8863     uint32_t SOffset, ImmOffset;
8864     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8865     if (Offset >= 0 &&
8866         TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) {
8867       Offsets[0] = N0;
8868       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8869       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8870       return;
8871     }
8872   }
8873   Offsets[0] = CombinedOffset;
8874   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8875   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8876 }
8877 
8878 SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer,
8879                                                 SelectionDAG &DAG) const {
8880   if (!MaybePointer.getValueType().isScalarInteger())
8881     return MaybePointer;
8882 
8883   SDLoc DL(MaybePointer);
8884 
8885   SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer);
8886   return Rsrc;
8887 }
8888 
8889 // Wrap a global or flat pointer into a buffer intrinsic using the flags
8890 // specified in the intrinsic.
8891 SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op,
8892                                                    SelectionDAG &DAG) const {
8893   SDLoc Loc(Op);
8894 
8895   SDValue Pointer = Op->getOperand(1);
8896   SDValue Stride = Op->getOperand(2);
8897   SDValue NumRecords = Op->getOperand(3);
8898   SDValue Flags = Op->getOperand(4);
8899 
8900   auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
8901   SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32);
8902   SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask);
8903   std::optional<uint32_t> ConstStride = std::nullopt;
8904   if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride))
8905     ConstStride = ConstNode->getZExtValue();
8906 
8907   SDValue NewHighHalf = Masked;
8908   if (!ConstStride || *ConstStride != 0) {
8909     SDValue ShiftedStride;
8910     if (ConstStride) {
8911       ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32);
8912     } else {
8913       SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32);
8914       ShiftedStride =
8915           DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride,
8916                       DAG.getShiftAmountConstant(16, MVT::i32, Loc));
8917     }
8918     NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride);
8919   }
8920 
8921   SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf,
8922                              NewHighHalf, NumRecords, Flags);
8923   SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
8924   return RsrcPtr;
8925 }
8926 
8927 // Handle 8 bit and 16 bit buffer loads
8928 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8929                                                      EVT LoadVT, SDLoc DL,
8930                                                      ArrayRef<SDValue> Ops,
8931                                                      MemSDNode *M) const {
8932   EVT IntVT = LoadVT.changeTypeToInteger();
8933   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8934          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8935 
8936   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8937   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8938                                                Ops, IntVT,
8939                                                M->getMemOperand());
8940   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8941   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8942 
8943   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8944 }
8945 
8946 // Handle 8 bit and 16 bit buffer stores
8947 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8948                                                       EVT VDataType, SDLoc DL,
8949                                                       SDValue Ops[],
8950                                                       MemSDNode *M) const {
8951   if (VDataType == MVT::f16)
8952     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8953 
8954   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8955   Ops[1] = BufferStoreExt;
8956   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8957                                  AMDGPUISD::BUFFER_STORE_SHORT;
8958   ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9);
8959   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8960                                      M->getMemOperand());
8961 }
8962 
8963 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8964                                  ISD::LoadExtType ExtType, SDValue Op,
8965                                  const SDLoc &SL, EVT VT) {
8966   if (VT.bitsLT(Op.getValueType()))
8967     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8968 
8969   switch (ExtType) {
8970   case ISD::SEXTLOAD:
8971     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8972   case ISD::ZEXTLOAD:
8973     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8974   case ISD::EXTLOAD:
8975     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8976   case ISD::NON_EXTLOAD:
8977     return Op;
8978   }
8979 
8980   llvm_unreachable("invalid ext type");
8981 }
8982 
8983 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8984   SelectionDAG &DAG = DCI.DAG;
8985   if (Ld->getAlign() < Align(4) || Ld->isDivergent())
8986     return SDValue();
8987 
8988   // FIXME: Constant loads should all be marked invariant.
8989   unsigned AS = Ld->getAddressSpace();
8990   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8991       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8992       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8993     return SDValue();
8994 
8995   // Don't do this early, since it may interfere with adjacent load merging for
8996   // illegal types. We can avoid losing alignment information for exotic types
8997   // pre-legalize.
8998   EVT MemVT = Ld->getMemoryVT();
8999   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
9000       MemVT.getSizeInBits() >= 32)
9001     return SDValue();
9002 
9003   SDLoc SL(Ld);
9004 
9005   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
9006          "unexpected vector extload");
9007 
9008   // TODO: Drop only high part of range.
9009   SDValue Ptr = Ld->getBasePtr();
9010   SDValue NewLoad = DAG.getLoad(
9011       ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
9012       Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
9013       Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
9014       nullptr); // Drop ranges
9015 
9016   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
9017   if (MemVT.isFloatingPoint()) {
9018     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
9019            "unexpected fp extload");
9020     TruncVT = MemVT.changeTypeToInteger();
9021   }
9022 
9023   SDValue Cvt = NewLoad;
9024   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
9025     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
9026                       DAG.getValueType(TruncVT));
9027   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
9028              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
9029     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
9030   } else {
9031     assert(Ld->getExtensionType() == ISD::EXTLOAD);
9032   }
9033 
9034   EVT VT = Ld->getValueType(0);
9035   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
9036 
9037   DCI.AddToWorklist(Cvt.getNode());
9038 
9039   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
9040   // the appropriate extension from the 32-bit load.
9041   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
9042   DCI.AddToWorklist(Cvt.getNode());
9043 
9044   // Handle conversion back to floating point if necessary.
9045   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
9046 
9047   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
9048 }
9049 
9050 static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO,
9051                                           const SIMachineFunctionInfo &Info) {
9052   // TODO: Should check if the address can definitely not access stack.
9053   if (Info.isEntryFunction())
9054     return Info.hasFlatScratchInit();
9055   return true;
9056 }
9057 
9058 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
9059   SDLoc DL(Op);
9060   LoadSDNode *Load = cast<LoadSDNode>(Op);
9061   ISD::LoadExtType ExtType = Load->getExtensionType();
9062   EVT MemVT = Load->getMemoryVT();
9063 
9064   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
9065     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
9066       return SDValue();
9067 
9068     // FIXME: Copied from PPC
9069     // First, load into 32 bits, then truncate to 1 bit.
9070 
9071     SDValue Chain = Load->getChain();
9072     SDValue BasePtr = Load->getBasePtr();
9073     MachineMemOperand *MMO = Load->getMemOperand();
9074 
9075     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
9076 
9077     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
9078                                    BasePtr, RealMemVT, MMO);
9079 
9080     if (!MemVT.isVector()) {
9081       SDValue Ops[] = {
9082         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
9083         NewLD.getValue(1)
9084       };
9085 
9086       return DAG.getMergeValues(Ops, DL);
9087     }
9088 
9089     SmallVector<SDValue, 3> Elts;
9090     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
9091       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
9092                                 DAG.getConstant(I, DL, MVT::i32));
9093 
9094       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
9095     }
9096 
9097     SDValue Ops[] = {
9098       DAG.getBuildVector(MemVT, DL, Elts),
9099       NewLD.getValue(1)
9100     };
9101 
9102     return DAG.getMergeValues(Ops, DL);
9103   }
9104 
9105   if (!MemVT.isVector())
9106     return SDValue();
9107 
9108   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
9109          "Custom lowering for non-i32 vectors hasn't been implemented.");
9110 
9111   Align Alignment = Load->getAlign();
9112   unsigned AS = Load->getAddressSpace();
9113   if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
9114       Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
9115     return SplitVectorLoad(Op, DAG);
9116   }
9117 
9118   MachineFunction &MF = DAG.getMachineFunction();
9119   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
9120   // If there is a possibility that flat instruction access scratch memory
9121   // then we need to use the same legalization rules we use for private.
9122   if (AS == AMDGPUAS::FLAT_ADDRESS &&
9123       !Subtarget->hasMultiDwordFlatScratchAddressing())
9124     AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ?
9125          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
9126 
9127   unsigned NumElements = MemVT.getVectorNumElements();
9128 
9129   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
9130       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
9131     if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
9132       if (MemVT.isPow2VectorType())
9133         return SDValue();
9134       return WidenOrSplitVectorLoad(Op, DAG);
9135     }
9136     // Non-uniform loads will be selected to MUBUF instructions, so they
9137     // have the same legalization requirements as global and private
9138     // loads.
9139     //
9140   }
9141 
9142   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
9143       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
9144       AS == AMDGPUAS::GLOBAL_ADDRESS) {
9145     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
9146         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
9147         Alignment >= Align(4) && NumElements < 32) {
9148       if (MemVT.isPow2VectorType())
9149         return SDValue();
9150       return WidenOrSplitVectorLoad(Op, DAG);
9151     }
9152     // Non-uniform loads will be selected to MUBUF instructions, so they
9153     // have the same legalization requirements as global and private
9154     // loads.
9155     //
9156   }
9157   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
9158       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
9159       AS == AMDGPUAS::GLOBAL_ADDRESS ||
9160       AS == AMDGPUAS::FLAT_ADDRESS) {
9161     if (NumElements > 4)
9162       return SplitVectorLoad(Op, DAG);
9163     // v3 loads not supported on SI.
9164     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9165       return WidenOrSplitVectorLoad(Op, DAG);
9166 
9167     // v3 and v4 loads are supported for private and global memory.
9168     return SDValue();
9169   }
9170   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9171     // Depending on the setting of the private_element_size field in the
9172     // resource descriptor, we can only make private accesses up to a certain
9173     // size.
9174     switch (Subtarget->getMaxPrivateElementSize()) {
9175     case 4: {
9176       SDValue Ops[2];
9177       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
9178       return DAG.getMergeValues(Ops, DL);
9179     }
9180     case 8:
9181       if (NumElements > 2)
9182         return SplitVectorLoad(Op, DAG);
9183       return SDValue();
9184     case 16:
9185       // Same as global/flat
9186       if (NumElements > 4)
9187         return SplitVectorLoad(Op, DAG);
9188       // v3 loads not supported on SI.
9189       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9190         return WidenOrSplitVectorLoad(Op, DAG);
9191 
9192       return SDValue();
9193     default:
9194       llvm_unreachable("unsupported private_element_size");
9195     }
9196   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9197     unsigned Fast = 0;
9198     auto Flags = Load->getMemOperand()->getFlags();
9199     if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
9200                                            Load->getAlign(), Flags, &Fast) &&
9201         Fast > 1)
9202       return SDValue();
9203 
9204     if (MemVT.isVector())
9205       return SplitVectorLoad(Op, DAG);
9206   }
9207 
9208   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9209                                       MemVT, *Load->getMemOperand())) {
9210     SDValue Ops[2];
9211     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
9212     return DAG.getMergeValues(Ops, DL);
9213   }
9214 
9215   return SDValue();
9216 }
9217 
9218 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9219   EVT VT = Op.getValueType();
9220   if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
9221     return splitTernaryVectorOp(Op, DAG);
9222 
9223   assert(VT.getSizeInBits() == 64);
9224 
9225   SDLoc DL(Op);
9226   SDValue Cond = Op.getOperand(0);
9227 
9228   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
9229   SDValue One = DAG.getConstant(1, DL, MVT::i32);
9230 
9231   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
9232   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
9233 
9234   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
9235   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
9236 
9237   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
9238 
9239   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
9240   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
9241 
9242   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
9243 
9244   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
9245   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
9246 }
9247 
9248 // Catch division cases where we can use shortcuts with rcp and rsq
9249 // instructions.
9250 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
9251                                               SelectionDAG &DAG) const {
9252   SDLoc SL(Op);
9253   SDValue LHS = Op.getOperand(0);
9254   SDValue RHS = Op.getOperand(1);
9255   EVT VT = Op.getValueType();
9256   const SDNodeFlags Flags = Op->getFlags();
9257 
9258   bool AllowInaccurateRcp = Flags.hasApproximateFuncs() ||
9259                             DAG.getTarget().Options.UnsafeFPMath;
9260 
9261   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
9262     // Without !fpmath accuracy information, we can't do more because we don't
9263     // know exactly whether rcp is accurate enough to meet !fpmath requirement.
9264     // f16 is always accurate enough
9265     if (!AllowInaccurateRcp && VT != MVT::f16)
9266       return SDValue();
9267 
9268     if (CLHS->isExactlyValue(1.0)) {
9269       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
9270       // the CI documentation has a worst case error of 1 ulp.
9271       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
9272       // use it as long as we aren't trying to use denormals.
9273       //
9274       // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp.
9275 
9276       // 1.0 / sqrt(x) -> rsq(x)
9277 
9278       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
9279       // error seems really high at 2^29 ULP.
9280 
9281       // XXX - do we need afn for this or is arcp sufficent?
9282       if (RHS.getOpcode() == ISD::FSQRT)
9283         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
9284 
9285       // 1.0 / x -> rcp(x)
9286       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
9287     }
9288 
9289     // Same as for 1.0, but expand the sign out of the constant.
9290     if (CLHS->isExactlyValue(-1.0)) {
9291       // -1.0 / x -> rcp (fneg x)
9292       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9293       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
9294     }
9295   }
9296 
9297   // For f16 require arcp only.
9298   // For f32 require afn+arcp.
9299   if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal()))
9300     return SDValue();
9301 
9302   // Turn into multiply by the reciprocal.
9303   // x / y -> x * (1.0 / y)
9304   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
9305   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
9306 }
9307 
9308 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
9309                                                 SelectionDAG &DAG) const {
9310   SDLoc SL(Op);
9311   SDValue X = Op.getOperand(0);
9312   SDValue Y = Op.getOperand(1);
9313   EVT VT = Op.getValueType();
9314   const SDNodeFlags Flags = Op->getFlags();
9315 
9316   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
9317                             DAG.getTarget().Options.UnsafeFPMath;
9318   if (!AllowInaccurateDiv)
9319     return SDValue();
9320 
9321   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
9322   SDValue One = DAG.getConstantFP(1.0, SL, VT);
9323 
9324   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
9325   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
9326 
9327   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
9328   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
9329   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
9330   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
9331   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
9332   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
9333 }
9334 
9335 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
9336                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
9337                           SDNodeFlags Flags) {
9338   if (GlueChain->getNumValues() <= 1) {
9339     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
9340   }
9341 
9342   assert(GlueChain->getNumValues() == 3);
9343 
9344   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
9345   switch (Opcode) {
9346   default: llvm_unreachable("no chain equivalent for opcode");
9347   case ISD::FMUL:
9348     Opcode = AMDGPUISD::FMUL_W_CHAIN;
9349     break;
9350   }
9351 
9352   return DAG.getNode(Opcode, SL, VTList,
9353                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
9354                      Flags);
9355 }
9356 
9357 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
9358                            EVT VT, SDValue A, SDValue B, SDValue C,
9359                            SDValue GlueChain, SDNodeFlags Flags) {
9360   if (GlueChain->getNumValues() <= 1) {
9361     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
9362   }
9363 
9364   assert(GlueChain->getNumValues() == 3);
9365 
9366   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
9367   switch (Opcode) {
9368   default: llvm_unreachable("no chain equivalent for opcode");
9369   case ISD::FMA:
9370     Opcode = AMDGPUISD::FMA_W_CHAIN;
9371     break;
9372   }
9373 
9374   return DAG.getNode(Opcode, SL, VTList,
9375                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
9376                      Flags);
9377 }
9378 
9379 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
9380   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
9381     return FastLowered;
9382 
9383   SDLoc SL(Op);
9384   SDValue Src0 = Op.getOperand(0);
9385   SDValue Src1 = Op.getOperand(1);
9386 
9387   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
9388   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
9389 
9390   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
9391   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
9392 
9393   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
9394   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
9395 
9396   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
9397 }
9398 
9399 // Faster 2.5 ULP division that does not support denormals.
9400 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
9401   SDNodeFlags Flags = Op->getFlags();
9402   SDLoc SL(Op);
9403   SDValue LHS = Op.getOperand(1);
9404   SDValue RHS = Op.getOperand(2);
9405 
9406   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags);
9407 
9408   const APFloat K0Val(0x1p+96f);
9409   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
9410 
9411   const APFloat K1Val(0x1p-32f);
9412   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
9413 
9414   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
9415 
9416   EVT SetCCVT =
9417     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
9418 
9419   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
9420 
9421   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags);
9422 
9423   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags);
9424 
9425   // rcp does not support denormals.
9426   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags);
9427 
9428   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags);
9429 
9430   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags);
9431 }
9432 
9433 // Returns immediate value for setting the F32 denorm mode when using the
9434 // S_DENORM_MODE instruction.
9435 static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG,
9436                                     const SIMachineFunctionInfo *Info,
9437                                     const GCNSubtarget *ST) {
9438   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
9439   uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue();
9440   uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
9441   return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32);
9442 }
9443 
9444 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
9445   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
9446     return FastLowered;
9447 
9448   // The selection matcher assumes anything with a chain selecting to a
9449   // mayRaiseFPException machine instruction. Since we're introducing a chain
9450   // here, we need to explicitly report nofpexcept for the regular fdiv
9451   // lowering.
9452   SDNodeFlags Flags = Op->getFlags();
9453   Flags.setNoFPExcept(true);
9454 
9455   SDLoc SL(Op);
9456   SDValue LHS = Op.getOperand(0);
9457   SDValue RHS = Op.getOperand(1);
9458 
9459   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
9460 
9461   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
9462 
9463   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
9464                                           {RHS, RHS, LHS}, Flags);
9465   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
9466                                         {LHS, RHS, LHS}, Flags);
9467 
9468   // Denominator is scaled to not be denormal, so using rcp is ok.
9469   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
9470                                   DenominatorScaled, Flags);
9471   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
9472                                      DenominatorScaled, Flags);
9473 
9474   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
9475                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
9476                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
9477   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
9478 
9479   const MachineFunction &MF = DAG.getMachineFunction();
9480   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9481   const DenormalMode DenormMode = Info->getMode().FP32Denormals;
9482 
9483   const bool HasFP32Denormals = DenormMode == DenormalMode::getIEEE();
9484 
9485   if (!HasFP32Denormals) {
9486     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
9487     // lowering. The chain dependence is insufficient, and we need glue. We do
9488     // not need the glue variants in a strictfp function.
9489 
9490     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
9491 
9492     SDNode *EnableDenorm;
9493     if (Subtarget->hasDenormModeInst()) {
9494       const SDValue EnableDenormValue =
9495           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget);
9496 
9497       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
9498                                  DAG.getEntryNode(), EnableDenormValue).getNode();
9499     } else {
9500       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
9501                                                         SL, MVT::i32);
9502       EnableDenorm =
9503           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
9504                              {EnableDenormValue, BitField, DAG.getEntryNode()});
9505     }
9506 
9507     SDValue Ops[3] = {
9508       NegDivScale0,
9509       SDValue(EnableDenorm, 0),
9510       SDValue(EnableDenorm, 1)
9511     };
9512 
9513     NegDivScale0 = DAG.getMergeValues(Ops, SL);
9514   }
9515 
9516   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
9517                              ApproxRcp, One, NegDivScale0, Flags);
9518 
9519   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
9520                              ApproxRcp, Fma0, Flags);
9521 
9522   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
9523                            Fma1, Fma1, Flags);
9524 
9525   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
9526                              NumeratorScaled, Mul, Flags);
9527 
9528   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
9529                              Fma2, Fma1, Mul, Fma2, Flags);
9530 
9531   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
9532                              NumeratorScaled, Fma3, Flags);
9533 
9534   if (!HasFP32Denormals) {
9535     // FIXME: This mishandles dynamic denormal mode. We need to query the
9536     // current mode and restore the original.
9537 
9538     SDNode *DisableDenorm;
9539     if (Subtarget->hasDenormModeInst()) {
9540       const SDValue DisableDenormValue = getSPDenormModeValue(
9541           FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget);
9542 
9543       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
9544                                   Fma4.getValue(1), DisableDenormValue,
9545                                   Fma4.getValue(2)).getNode();
9546     } else {
9547       const SDValue DisableDenormValue =
9548           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
9549 
9550       DisableDenorm = DAG.getMachineNode(
9551           AMDGPU::S_SETREG_B32, SL, MVT::Other,
9552           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
9553     }
9554 
9555     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
9556                                       SDValue(DisableDenorm, 0), DAG.getRoot());
9557     DAG.setRoot(OutputChain);
9558   }
9559 
9560   SDValue Scale = NumeratorScaled.getValue(1);
9561   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
9562                              {Fma4, Fma1, Fma3, Scale}, Flags);
9563 
9564   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
9565 }
9566 
9567 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
9568   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
9569     return FastLowered;
9570 
9571   SDLoc SL(Op);
9572   SDValue X = Op.getOperand(0);
9573   SDValue Y = Op.getOperand(1);
9574 
9575   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
9576 
9577   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
9578 
9579   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
9580 
9581   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
9582 
9583   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
9584 
9585   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
9586 
9587   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
9588 
9589   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
9590 
9591   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
9592 
9593   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
9594   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
9595 
9596   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
9597                              NegDivScale0, Mul, DivScale1);
9598 
9599   SDValue Scale;
9600 
9601   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
9602     // Workaround a hardware bug on SI where the condition output from div_scale
9603     // is not usable.
9604 
9605     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
9606 
9607     // Figure out if the scale to use for div_fmas.
9608     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
9609     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
9610     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
9611     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
9612 
9613     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
9614     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
9615 
9616     SDValue Scale0Hi
9617       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
9618     SDValue Scale1Hi
9619       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
9620 
9621     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
9622     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
9623     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
9624   } else {
9625     Scale = DivScale1.getValue(1);
9626   }
9627 
9628   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
9629                              Fma4, Fma3, Mul, Scale);
9630 
9631   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
9632 }
9633 
9634 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
9635   EVT VT = Op.getValueType();
9636 
9637   if (VT == MVT::f32)
9638     return LowerFDIV32(Op, DAG);
9639 
9640   if (VT == MVT::f64)
9641     return LowerFDIV64(Op, DAG);
9642 
9643   if (VT == MVT::f16)
9644     return LowerFDIV16(Op, DAG);
9645 
9646   llvm_unreachable("Unexpected type for fdiv");
9647 }
9648 
9649 SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const {
9650   SDLoc dl(Op);
9651   SDValue Val = Op.getOperand(0);
9652   EVT VT = Val.getValueType();
9653   EVT ResultExpVT = Op->getValueType(1);
9654   EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
9655 
9656   SDValue Mant = DAG.getNode(
9657       ISD::INTRINSIC_WO_CHAIN, dl, VT,
9658       DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val);
9659 
9660   SDValue Exp = DAG.getNode(
9661       ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT,
9662       DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val);
9663 
9664   if (Subtarget->hasFractBug()) {
9665     SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val);
9666     SDValue Inf = DAG.getConstantFP(
9667         APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT);
9668 
9669     SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT);
9670     SDValue Zero = DAG.getConstant(0, dl, InstrExpVT);
9671     Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero);
9672     Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val);
9673   }
9674 
9675   SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT);
9676   return DAG.getMergeValues({Mant, CastExp}, dl);
9677 }
9678 
9679 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
9680   SDLoc DL(Op);
9681   StoreSDNode *Store = cast<StoreSDNode>(Op);
9682   EVT VT = Store->getMemoryVT();
9683 
9684   if (VT == MVT::i1) {
9685     return DAG.getTruncStore(Store->getChain(), DL,
9686        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
9687        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
9688   }
9689 
9690   assert(VT.isVector() &&
9691          Store->getValue().getValueType().getScalarType() == MVT::i32);
9692 
9693   unsigned AS = Store->getAddressSpace();
9694   if (Subtarget->hasLDSMisalignedBug() &&
9695       AS == AMDGPUAS::FLAT_ADDRESS &&
9696       Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
9697     return SplitVectorStore(Op, DAG);
9698   }
9699 
9700   MachineFunction &MF = DAG.getMachineFunction();
9701   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
9702   // If there is a possibility that flat instruction access scratch memory
9703   // then we need to use the same legalization rules we use for private.
9704   if (AS == AMDGPUAS::FLAT_ADDRESS &&
9705       !Subtarget->hasMultiDwordFlatScratchAddressing())
9706     AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ?
9707          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
9708 
9709   unsigned NumElements = VT.getVectorNumElements();
9710   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
9711       AS == AMDGPUAS::FLAT_ADDRESS) {
9712     if (NumElements > 4)
9713       return SplitVectorStore(Op, DAG);
9714     // v3 stores not supported on SI.
9715     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9716       return SplitVectorStore(Op, DAG);
9717 
9718     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9719                                         VT, *Store->getMemOperand()))
9720       return expandUnalignedStore(Store, DAG);
9721 
9722     return SDValue();
9723   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9724     switch (Subtarget->getMaxPrivateElementSize()) {
9725     case 4:
9726       return scalarizeVectorStore(Store, DAG);
9727     case 8:
9728       if (NumElements > 2)
9729         return SplitVectorStore(Op, DAG);
9730       return SDValue();
9731     case 16:
9732       if (NumElements > 4 ||
9733           (NumElements == 3 && !Subtarget->enableFlatScratch()))
9734         return SplitVectorStore(Op, DAG);
9735       return SDValue();
9736     default:
9737       llvm_unreachable("unsupported private_element_size");
9738     }
9739   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9740     unsigned Fast = 0;
9741     auto Flags = Store->getMemOperand()->getFlags();
9742     if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
9743                                            Store->getAlign(), Flags, &Fast) &&
9744         Fast > 1)
9745       return SDValue();
9746 
9747     if (VT.isVector())
9748       return SplitVectorStore(Op, DAG);
9749 
9750     return expandUnalignedStore(Store, DAG);
9751   }
9752 
9753   // Probably an invalid store. If so we'll end up emitting a selection error.
9754   return SDValue();
9755 }
9756 
9757 SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const {
9758   // For double type, the SQRT and RSQ instructions don't have required
9759   // precision, we apply Goldschmidt's algorithm to improve the result:
9760   //
9761   //   y0 = rsq(x)
9762   //   g0 = x * y0
9763   //   h0 = 0.5 * y0
9764   //
9765   //   r0 = 0.5 - h0 * g0
9766   //   g1 = g0 * r0 + g0
9767   //   h1 = h0 * r0 + h0
9768   //
9769   //   r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1
9770   //   g2 = g1 * r1 + g1     g2 = d0 * h1 + g1
9771   //   h2 = h1 * r1 + h1
9772   //
9773   //   r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2
9774   //   g3 = g2 * r2 + g2     g3 = d1 * h1 + g2
9775   //
9776   //   sqrt(x) = g3
9777 
9778   SDNodeFlags Flags = Op->getFlags();
9779 
9780   SDLoc DL(Op);
9781 
9782   SDValue X = Op.getOperand(0);
9783   SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64);
9784 
9785   SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT);
9786 
9787   SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32);
9788 
9789   // Scale up input if it is too small.
9790   SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32);
9791   SDValue ScaleUp =
9792       DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt);
9793   SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags);
9794 
9795   SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX);
9796 
9797   SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY);
9798 
9799   SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64);
9800   SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half);
9801 
9802   SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0);
9803   SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half);
9804 
9805   SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0);
9806 
9807   SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0);
9808 
9809   SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1);
9810   SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX);
9811 
9812   SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1);
9813 
9814   SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2);
9815   SDValue SqrtD1 =
9816       DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX);
9817 
9818   SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2);
9819 
9820   SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32);
9821   SDValue ScaleDown =
9822       DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt);
9823   SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags);
9824 
9825   // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check
9826   // with finite only or nsz because rsq(+/-0) = +/-inf
9827 
9828   // TODO: Check for DAZ and expand to subnormals
9829   SDValue IsZeroOrInf =
9830       DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
9831                   DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
9832 
9833   // If x is +INF, +0, or -0, use its original value
9834   return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet,
9835                      Flags);
9836 }
9837 
9838 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9839   SDLoc DL(Op);
9840   EVT VT = Op.getValueType();
9841   SDValue Arg = Op.getOperand(0);
9842   SDValue TrigVal;
9843 
9844   // Propagate fast-math flags so that the multiply we introduce can be folded
9845   // if Arg is already the result of a multiply by constant.
9846   auto Flags = Op->getFlags();
9847 
9848   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9849 
9850   if (Subtarget->hasTrigReducedRange()) {
9851     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9852     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9853   } else {
9854     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9855   }
9856 
9857   switch (Op.getOpcode()) {
9858   case ISD::FCOS:
9859     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9860   case ISD::FSIN:
9861     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9862   default:
9863     llvm_unreachable("Wrong trig opcode");
9864   }
9865 }
9866 
9867 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9868   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9869   assert(AtomicNode->isCompareAndSwap());
9870   unsigned AS = AtomicNode->getAddressSpace();
9871 
9872   // No custom lowering required for local address space
9873   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9874     return Op;
9875 
9876   // Non-local address space requires custom lowering for atomic compare
9877   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9878   SDLoc DL(Op);
9879   SDValue ChainIn = Op.getOperand(0);
9880   SDValue Addr = Op.getOperand(1);
9881   SDValue Old = Op.getOperand(2);
9882   SDValue New = Op.getOperand(3);
9883   EVT VT = Op.getValueType();
9884   MVT SimpleVT = VT.getSimpleVT();
9885   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9886 
9887   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9888   SDValue Ops[] = { ChainIn, Addr, NewOld };
9889 
9890   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9891                                  Ops, VT, AtomicNode->getMemOperand());
9892 }
9893 
9894 //===----------------------------------------------------------------------===//
9895 // Custom DAG optimizations
9896 //===----------------------------------------------------------------------===//
9897 
9898 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9899                                                      DAGCombinerInfo &DCI) const {
9900   EVT VT = N->getValueType(0);
9901   EVT ScalarVT = VT.getScalarType();
9902   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9903     return SDValue();
9904 
9905   SelectionDAG &DAG = DCI.DAG;
9906   SDLoc DL(N);
9907 
9908   SDValue Src = N->getOperand(0);
9909   EVT SrcVT = Src.getValueType();
9910 
9911   // TODO: We could try to match extracting the higher bytes, which would be
9912   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9913   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9914   // about in practice.
9915   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9916     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9917       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9918       DCI.AddToWorklist(Cvt.getNode());
9919 
9920       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9921       if (ScalarVT != MVT::f32) {
9922         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9923                           DAG.getTargetConstant(0, DL, MVT::i32));
9924       }
9925       return Cvt;
9926     }
9927   }
9928 
9929   return SDValue();
9930 }
9931 
9932 SDValue SITargetLowering::performFCopySignCombine(SDNode *N,
9933                                                   DAGCombinerInfo &DCI) const {
9934   SDValue MagnitudeOp = N->getOperand(0);
9935   SDValue SignOp = N->getOperand(1);
9936   SelectionDAG &DAG = DCI.DAG;
9937   SDLoc DL(N);
9938 
9939   // f64 fcopysign is really an f32 copysign on the high bits, so replace the
9940   // lower half with a copy.
9941   // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y)
9942   if (MagnitudeOp.getValueType() == MVT::f64) {
9943     SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp);
9944     SDValue MagLo =
9945       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
9946                   DAG.getConstant(0, DL, MVT::i32));
9947     SDValue MagHi =
9948       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
9949                   DAG.getConstant(1, DL, MVT::i32));
9950 
9951     SDValue HiOp =
9952       DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp);
9953 
9954     SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp);
9955 
9956     return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector);
9957   }
9958 
9959   if (SignOp.getValueType() != MVT::f64)
9960     return SDValue();
9961 
9962   // Reduce width of sign operand, we only need the highest bit.
9963   //
9964   // fcopysign f64:x, f64:y ->
9965   //   fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1)
9966   // TODO: In some cases it might make sense to go all the way to f16.
9967   SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp);
9968   SDValue SignAsF32 =
9969       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector,
9970                   DAG.getConstant(1, DL, MVT::i32));
9971 
9972   return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0),
9973                      SignAsF32);
9974 }
9975 
9976 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9977 // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no
9978 // bits
9979 
9980 // This is a variant of
9981 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9982 //
9983 // The normal DAG combiner will do this, but only if the add has one use since
9984 // that would increase the number of instructions.
9985 //
9986 // This prevents us from seeing a constant offset that can be folded into a
9987 // memory instruction's addressing mode. If we know the resulting add offset of
9988 // a pointer can be folded into an addressing offset, we can replace the pointer
9989 // operand with the add of new constant offset. This eliminates one of the uses,
9990 // and may allow the remaining use to also be simplified.
9991 //
9992 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9993                                                unsigned AddrSpace,
9994                                                EVT MemVT,
9995                                                DAGCombinerInfo &DCI) const {
9996   SDValue N0 = N->getOperand(0);
9997   SDValue N1 = N->getOperand(1);
9998 
9999   // We only do this to handle cases where it's profitable when there are
10000   // multiple uses of the add, so defer to the standard combine.
10001   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
10002       N0->hasOneUse())
10003     return SDValue();
10004 
10005   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
10006   if (!CN1)
10007     return SDValue();
10008 
10009   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10010   if (!CAdd)
10011     return SDValue();
10012 
10013   SelectionDAG &DAG = DCI.DAG;
10014 
10015   if (N0->getOpcode() == ISD::OR &&
10016       !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1)))
10017     return SDValue();
10018 
10019   // If the resulting offset is too large, we can't fold it into the
10020   // addressing mode offset.
10021   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
10022   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
10023 
10024   AddrMode AM;
10025   AM.HasBaseReg = true;
10026   AM.BaseOffs = Offset.getSExtValue();
10027   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
10028     return SDValue();
10029 
10030   SDLoc SL(N);
10031   EVT VT = N->getValueType(0);
10032 
10033   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
10034   SDValue COffset = DAG.getConstant(Offset, SL, VT);
10035 
10036   SDNodeFlags Flags;
10037   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
10038                           (N0.getOpcode() == ISD::OR ||
10039                            N0->getFlags().hasNoUnsignedWrap()));
10040 
10041   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
10042 }
10043 
10044 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
10045 /// by the chain and intrinsic ID. Theoretically we would also need to check the
10046 /// specific intrinsic, but they all place the pointer operand first.
10047 static unsigned getBasePtrIndex(const MemSDNode *N) {
10048   switch (N->getOpcode()) {
10049   case ISD::STORE:
10050   case ISD::INTRINSIC_W_CHAIN:
10051   case ISD::INTRINSIC_VOID:
10052     return 2;
10053   default:
10054     return 1;
10055   }
10056 }
10057 
10058 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
10059                                                   DAGCombinerInfo &DCI) const {
10060   SelectionDAG &DAG = DCI.DAG;
10061   SDLoc SL(N);
10062 
10063   unsigned PtrIdx = getBasePtrIndex(N);
10064   SDValue Ptr = N->getOperand(PtrIdx);
10065 
10066   // TODO: We could also do this for multiplies.
10067   if (Ptr.getOpcode() == ISD::SHL) {
10068     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
10069                                           N->getMemoryVT(), DCI);
10070     if (NewPtr) {
10071       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
10072 
10073       NewOps[PtrIdx] = NewPtr;
10074       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
10075     }
10076   }
10077 
10078   return SDValue();
10079 }
10080 
10081 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
10082   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
10083          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
10084          (Opc == ISD::XOR && Val == 0);
10085 }
10086 
10087 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
10088 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
10089 // integer combine opportunities since most 64-bit operations are decomposed
10090 // this way.  TODO: We won't want this for SALU especially if it is an inline
10091 // immediate.
10092 SDValue SITargetLowering::splitBinaryBitConstantOp(
10093   DAGCombinerInfo &DCI,
10094   const SDLoc &SL,
10095   unsigned Opc, SDValue LHS,
10096   const ConstantSDNode *CRHS) const {
10097   uint64_t Val = CRHS->getZExtValue();
10098   uint32_t ValLo = Lo_32(Val);
10099   uint32_t ValHi = Hi_32(Val);
10100   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10101 
10102     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
10103          bitOpWithConstantIsReducible(Opc, ValHi)) ||
10104         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
10105     // If we need to materialize a 64-bit immediate, it will be split up later
10106     // anyway. Avoid creating the harder to understand 64-bit immediate
10107     // materialization.
10108     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
10109   }
10110 
10111   return SDValue();
10112 }
10113 
10114 // Returns true if argument is a boolean value which is not serialized into
10115 // memory or argument and does not require v_cndmask_b32 to be deserialized.
10116 static bool isBoolSGPR(SDValue V) {
10117   if (V.getValueType() != MVT::i1)
10118     return false;
10119   switch (V.getOpcode()) {
10120   default:
10121     break;
10122   case ISD::SETCC:
10123   case AMDGPUISD::FP_CLASS:
10124     return true;
10125   case ISD::AND:
10126   case ISD::OR:
10127   case ISD::XOR:
10128     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
10129   }
10130   return false;
10131 }
10132 
10133 // If a constant has all zeroes or all ones within each byte return it.
10134 // Otherwise return 0.
10135 static uint32_t getConstantPermuteMask(uint32_t C) {
10136   // 0xff for any zero byte in the mask
10137   uint32_t ZeroByteMask = 0;
10138   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
10139   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
10140   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
10141   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
10142   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
10143   if ((NonZeroByteMask & C) != NonZeroByteMask)
10144     return 0; // Partial bytes selected.
10145   return C;
10146 }
10147 
10148 // Check if a node selects whole bytes from its operand 0 starting at a byte
10149 // boundary while masking the rest. Returns select mask as in the v_perm_b32
10150 // or -1 if not succeeded.
10151 // Note byte select encoding:
10152 // value 0-3 selects corresponding source byte;
10153 // value 0xc selects zero;
10154 // value 0xff selects 0xff.
10155 static uint32_t getPermuteMask(SDValue V) {
10156   assert(V.getValueSizeInBits() == 32);
10157 
10158   if (V.getNumOperands() != 2)
10159     return ~0;
10160 
10161   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
10162   if (!N1)
10163     return ~0;
10164 
10165   uint32_t C = N1->getZExtValue();
10166 
10167   switch (V.getOpcode()) {
10168   default:
10169     break;
10170   case ISD::AND:
10171     if (uint32_t ConstMask = getConstantPermuteMask(C))
10172       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
10173     break;
10174 
10175   case ISD::OR:
10176     if (uint32_t ConstMask = getConstantPermuteMask(C))
10177       return (0x03020100 & ~ConstMask) | ConstMask;
10178     break;
10179 
10180   case ISD::SHL:
10181     if (C % 8)
10182       return ~0;
10183 
10184     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
10185 
10186   case ISD::SRL:
10187     if (C % 8)
10188       return ~0;
10189 
10190     return uint32_t(0x0c0c0c0c03020100ull >> C);
10191   }
10192 
10193   return ~0;
10194 }
10195 
10196 SDValue SITargetLowering::performAndCombine(SDNode *N,
10197                                             DAGCombinerInfo &DCI) const {
10198   if (DCI.isBeforeLegalize())
10199     return SDValue();
10200 
10201   SelectionDAG &DAG = DCI.DAG;
10202   EVT VT = N->getValueType(0);
10203   SDValue LHS = N->getOperand(0);
10204   SDValue RHS = N->getOperand(1);
10205 
10206 
10207   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
10208   if (VT == MVT::i64 && CRHS) {
10209     if (SDValue Split
10210         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
10211       return Split;
10212   }
10213 
10214   if (CRHS && VT == MVT::i32) {
10215     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
10216     // nb = number of trailing zeroes in mask
10217     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
10218     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
10219     uint64_t Mask = CRHS->getZExtValue();
10220     unsigned Bits = llvm::popcount(Mask);
10221     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
10222         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
10223       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
10224         unsigned Shift = CShift->getZExtValue();
10225         unsigned NB = CRHS->getAPIntValue().countr_zero();
10226         unsigned Offset = NB + Shift;
10227         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
10228           SDLoc SL(N);
10229           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
10230                                     LHS->getOperand(0),
10231                                     DAG.getConstant(Offset, SL, MVT::i32),
10232                                     DAG.getConstant(Bits, SL, MVT::i32));
10233           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10234           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
10235                                     DAG.getValueType(NarrowVT));
10236           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
10237                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
10238           return Shl;
10239         }
10240       }
10241     }
10242 
10243     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
10244     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
10245         isa<ConstantSDNode>(LHS.getOperand(2))) {
10246       uint32_t Sel = getConstantPermuteMask(Mask);
10247       if (!Sel)
10248         return SDValue();
10249 
10250       // Select 0xc for all zero bytes
10251       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
10252       SDLoc DL(N);
10253       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
10254                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
10255     }
10256   }
10257 
10258   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
10259   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
10260   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
10261     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
10262     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
10263 
10264     SDValue X = LHS.getOperand(0);
10265     SDValue Y = RHS.getOperand(0);
10266     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X ||
10267         !isTypeLegal(X.getValueType()))
10268       return SDValue();
10269 
10270     if (LCC == ISD::SETO) {
10271       if (X != LHS.getOperand(1))
10272         return SDValue();
10273 
10274       if (RCC == ISD::SETUNE) {
10275         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
10276         if (!C1 || !C1->isInfinity() || C1->isNegative())
10277           return SDValue();
10278 
10279         const uint32_t Mask = SIInstrFlags::N_NORMAL |
10280                               SIInstrFlags::N_SUBNORMAL |
10281                               SIInstrFlags::N_ZERO |
10282                               SIInstrFlags::P_ZERO |
10283                               SIInstrFlags::P_SUBNORMAL |
10284                               SIInstrFlags::P_NORMAL;
10285 
10286         static_assert(((~(SIInstrFlags::S_NAN |
10287                           SIInstrFlags::Q_NAN |
10288                           SIInstrFlags::N_INFINITY |
10289                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
10290                       "mask not equal");
10291 
10292         SDLoc DL(N);
10293         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
10294                            X, DAG.getConstant(Mask, DL, MVT::i32));
10295       }
10296     }
10297   }
10298 
10299   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
10300     std::swap(LHS, RHS);
10301 
10302   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
10303       RHS.hasOneUse()) {
10304     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
10305     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
10306     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
10307     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10308     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
10309         (RHS.getOperand(0) == LHS.getOperand(0) &&
10310          LHS.getOperand(0) == LHS.getOperand(1))) {
10311       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
10312       unsigned NewMask = LCC == ISD::SETO ?
10313         Mask->getZExtValue() & ~OrdMask :
10314         Mask->getZExtValue() & OrdMask;
10315 
10316       SDLoc DL(N);
10317       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
10318                          DAG.getConstant(NewMask, DL, MVT::i32));
10319     }
10320   }
10321 
10322   if (VT == MVT::i32 &&
10323       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
10324     // and x, (sext cc from i1) => select cc, x, 0
10325     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
10326       std::swap(LHS, RHS);
10327     if (isBoolSGPR(RHS.getOperand(0)))
10328       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
10329                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
10330   }
10331 
10332   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
10333   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10334   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
10335       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
10336     uint32_t LHSMask = getPermuteMask(LHS);
10337     uint32_t RHSMask = getPermuteMask(RHS);
10338     if (LHSMask != ~0u && RHSMask != ~0u) {
10339       // Canonicalize the expression in an attempt to have fewer unique masks
10340       // and therefore fewer registers used to hold the masks.
10341       if (LHSMask > RHSMask) {
10342         std::swap(LHSMask, RHSMask);
10343         std::swap(LHS, RHS);
10344       }
10345 
10346       // Select 0xc for each lane used from source operand. Zero has 0xc mask
10347       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
10348       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
10349       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
10350 
10351       // Check of we need to combine values from two sources within a byte.
10352       if (!(LHSUsedLanes & RHSUsedLanes) &&
10353           // If we select high and lower word keep it for SDWA.
10354           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
10355           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
10356         // Each byte in each mask is either selector mask 0-3, or has higher
10357         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
10358         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
10359         // mask which is not 0xff wins. By anding both masks we have a correct
10360         // result except that 0x0c shall be corrected to give 0x0c only.
10361         uint32_t Mask = LHSMask & RHSMask;
10362         for (unsigned I = 0; I < 32; I += 8) {
10363           uint32_t ByteSel = 0xff << I;
10364           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
10365             Mask &= (0x0c << I) & 0xffffffff;
10366         }
10367 
10368         // Add 4 to each active LHS lane. It will not affect any existing 0xff
10369         // or 0x0c.
10370         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
10371         SDLoc DL(N);
10372 
10373         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
10374                            LHS.getOperand(0), RHS.getOperand(0),
10375                            DAG.getConstant(Sel, DL, MVT::i32));
10376       }
10377     }
10378   }
10379 
10380   return SDValue();
10381 }
10382 
10383 // A key component of v_perm is a mapping between byte position of the src
10384 // operands, and the byte position of the dest. To provide such, we need: 1. the
10385 // node that provides x byte of the dest of the OR, and 2. the byte of the node
10386 // used to provide that x byte. calculateByteProvider finds which node provides
10387 // a certain byte of the dest of the OR, and calculateSrcByte takes that node,
10388 // and finds an ultimate src and byte position For example: The supported
10389 // LoadCombine pattern for vector loads is as follows
10390 //                                t1
10391 //                                or
10392 //                      /                  \
10393 //                      t2                 t3
10394 //                     zext                shl
10395 //                      |                   |     \
10396 //                     t4                  t5     16
10397 //                     or                 anyext
10398 //                 /        \               |
10399 //                t6        t7             t8
10400 //               srl        shl             or
10401 //            /    |      /     \         /     \
10402 //           t9   t10    t11   t12      t13    t14
10403 //         trunc*  8    trunc*  8      and     and
10404 //           |            |          /    |     |    \
10405 //          t15          t16        t17  t18   t19   t20
10406 //                                trunc*  255   srl   -256
10407 //                                   |         /   \
10408 //                                  t15       t15  16
10409 //
10410 // *In this example, the truncs are from i32->i16
10411 //
10412 // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3
10413 // respectively. calculateSrcByte would find (given node) -> ultimate src &
10414 // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3.
10415 // After finding the mapping, we can combine the tree into vperm t15, t16,
10416 // 0x05000407
10417 
10418 // Find the source and byte position from a node.
10419 // \p DestByte is the byte position of the dest of the or that the src
10420 // ultimately provides. \p SrcIndex is the byte of the src that maps to this
10421 // dest of the or byte. \p Depth tracks how many recursive iterations we have
10422 // performed.
10423 static const std::optional<ByteProvider<SDValue>>
10424 calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0,
10425                  unsigned Depth = 0) {
10426   // We may need to recursively traverse a series of SRLs
10427   if (Depth >= 6)
10428     return std::nullopt;
10429 
10430   switch (Op->getOpcode()) {
10431   case ISD::TRUNCATE: {
10432     if (Op->getOperand(0).getScalarValueSizeInBits() != 32)
10433       return std::nullopt;
10434     return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
10435   }
10436 
10437   case ISD::SRL: {
10438     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10439     if (!ShiftOp)
10440       return std::nullopt;
10441 
10442     uint64_t BitShift = ShiftOp->getZExtValue();
10443 
10444     if (BitShift % 8 != 0)
10445       return std::nullopt;
10446 
10447     SrcIndex += BitShift / 8;
10448 
10449     return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
10450   }
10451 
10452   default: {
10453     if (Op.getScalarValueSizeInBits() != 32)
10454       return std::nullopt;
10455 
10456     return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
10457   }
10458   }
10459   llvm_unreachable("fully handled switch");
10460 }
10461 
10462 // For a byte position in the result of an Or, traverse the tree and find the
10463 // node (and the byte of the node) which ultimately provides this {Or,
10464 // BytePosition}. \p Op is the operand we are currently examining. \p Index is
10465 // the byte position of the Op that corresponds with the originally requested
10466 // byte of the Or \p Depth tracks how many recursive iterations we have
10467 // performed. \p StartingIndex is the originally requested byte of the Or
10468 static const std::optional<ByteProvider<SDValue>>
10469 calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth,
10470                       unsigned StartingIndex = 0) {
10471   // Finding Src tree of RHS of or typically requires at least 1 additional
10472   // depth
10473   if (Depth > 6)
10474     return std::nullopt;
10475 
10476   unsigned BitWidth = Op.getScalarValueSizeInBits();
10477   if (BitWidth % 8 != 0)
10478     return std::nullopt;
10479   assert(Index < BitWidth / 8 && "invalid index requested");
10480 
10481   switch (Op.getOpcode()) {
10482   case ISD::OR: {
10483     auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1,
10484                                      StartingIndex);
10485     if (!RHS)
10486       return std::nullopt;
10487     auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
10488                                      StartingIndex);
10489     if (!LHS)
10490       return std::nullopt;
10491     // A well formed Or will have two ByteProviders for each byte, one of which
10492     // is constant zero
10493     if (!LHS->isConstantZero() && !RHS->isConstantZero())
10494       return std::nullopt;
10495     if (!LHS || LHS->isConstantZero())
10496       return RHS;
10497     if (!RHS || RHS->isConstantZero())
10498       return LHS;
10499     return std::nullopt;
10500   }
10501 
10502   case ISD::AND: {
10503     auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10504     if (!BitMaskOp)
10505       return std::nullopt;
10506 
10507     uint32_t BitMask = BitMaskOp->getZExtValue();
10508     // Bits we expect for our StartingIndex
10509     uint32_t IndexMask = 0xFF << (Index * 8);
10510 
10511     if ((IndexMask & BitMask) != IndexMask) {
10512       // If the result of the and partially provides the byte, then it
10513       // is not well formatted
10514       if (IndexMask & BitMask)
10515         return std::nullopt;
10516       return ByteProvider<SDValue>::getConstantZero();
10517     }
10518 
10519     return calculateSrcByte(Op->getOperand(0), StartingIndex, Index);
10520   }
10521 
10522   case ISD::SRL: {
10523     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10524     if (!ShiftOp)
10525       return std::nullopt;
10526 
10527     uint64_t BitShift = ShiftOp->getZExtValue();
10528     if (BitShift % 8)
10529       return std::nullopt;
10530 
10531     auto BitsProvided = Op.getScalarValueSizeInBits();
10532     if (BitsProvided % 8 != 0)
10533       return std::nullopt;
10534 
10535     uint64_t BytesProvided = BitsProvided / 8;
10536     uint64_t ByteShift = BitShift / 8;
10537     // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes.
10538     // If the byte we are trying to provide (as tracked by index) falls in this
10539     // range, then the SRL provides the byte. The byte of interest of the src of
10540     // the SRL is Index + ByteShift
10541     return BytesProvided - ByteShift > Index
10542                ? calculateSrcByte(Op->getOperand(0), StartingIndex,
10543                                   Index + ByteShift)
10544                : ByteProvider<SDValue>::getConstantZero();
10545   }
10546 
10547   case ISD::SHL: {
10548     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10549     if (!ShiftOp)
10550       return std::nullopt;
10551 
10552     uint64_t BitShift = ShiftOp->getZExtValue();
10553     if (BitShift % 8 != 0)
10554       return std::nullopt;
10555     uint64_t ByteShift = BitShift / 8;
10556 
10557     // If we are shifting by an amount greater than (or equal to)
10558     // the index we are trying to provide, then it provides 0s. If not,
10559     // then this bytes are not definitively 0s, and the corresponding byte
10560     // of interest is Index - ByteShift of the src
10561     return Index < ByteShift
10562                ? ByteProvider<SDValue>::getConstantZero()
10563                : calculateByteProvider(Op.getOperand(0), Index - ByteShift,
10564                                        Depth + 1, StartingIndex);
10565   }
10566   case ISD::ANY_EXTEND:
10567   case ISD::SIGN_EXTEND:
10568   case ISD::ZERO_EXTEND: {
10569     SDValue NarrowOp = Op->getOperand(0);
10570     unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
10571     if (NarrowBitWidth % 8 != 0)
10572       return std::nullopt;
10573     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
10574 
10575     if (Index >= NarrowByteWidth)
10576       return Op.getOpcode() == ISD::ZERO_EXTEND
10577                  ? std::optional<ByteProvider<SDValue>>(
10578                        ByteProvider<SDValue>::getConstantZero())
10579                  : std::nullopt;
10580     return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex);
10581   }
10582 
10583   case ISD::TRUNCATE: {
10584     unsigned NarrowBitWidth = Op.getScalarValueSizeInBits();
10585     if (NarrowBitWidth % 8 != 0)
10586       return std::nullopt;
10587     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
10588 
10589     if (NarrowByteWidth >= Index) {
10590       return calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
10591                                    StartingIndex);
10592     }
10593 
10594     return std::nullopt;
10595   }
10596 
10597   case ISD::LOAD: {
10598     auto L = cast<LoadSDNode>(Op.getNode());
10599     unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
10600     if (NarrowBitWidth % 8 != 0)
10601       return std::nullopt;
10602     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
10603 
10604     // If the width of the load does not reach byte we are trying to provide for
10605     // and it is not a ZEXTLOAD, then the load does not provide for the byte in
10606     // question
10607     if (Index >= NarrowByteWidth) {
10608       return L->getExtensionType() == ISD::ZEXTLOAD
10609                  ? std::optional<ByteProvider<SDValue>>(
10610                        ByteProvider<SDValue>::getConstantZero())
10611                  : std::nullopt;
10612     }
10613 
10614     if (NarrowByteWidth > Index) {
10615       return calculateSrcByte(Op, StartingIndex, Index);
10616     }
10617 
10618     return std::nullopt;
10619   }
10620 
10621   case ISD::BSWAP:
10622     return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1,
10623                                  Depth + 1, StartingIndex);
10624   default: {
10625     return std::nullopt;
10626   }
10627   }
10628 
10629   llvm_unreachable("fully handled switch");
10630 }
10631 
10632 // Returns true if the Operand is a scalar and is 16 bits
10633 static bool is16BitScalarOp(SDValue &Operand) {
10634   switch (Operand.getOpcode()) {
10635   case ISD::ANY_EXTEND:
10636   case ISD::SIGN_EXTEND:
10637   case ISD::ZERO_EXTEND: {
10638     auto OpVT = Operand.getOperand(0).getValueType();
10639     return !OpVT.isVector() && OpVT.getSizeInBits() == 16;
10640   }
10641   case ISD::LOAD: {
10642     LoadSDNode *L = cast<LoadSDNode>(Operand.getNode());
10643     auto ExtType = cast<LoadSDNode>(L)->getExtensionType();
10644     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD ||
10645         ExtType == ISD::EXTLOAD) {
10646       auto MemVT = L->getMemoryVT();
10647       return !MemVT.isVector() && MemVT.getSizeInBits() == 16;
10648     }
10649     return false;
10650   }
10651   default:
10652     return false;
10653   }
10654 }
10655 
10656 // Returns true if the mask matches consecutive bytes, and the first byte
10657 // begins at a power of 2 byte offset from 0th byte
10658 static bool addresses16Bits(int Mask) {
10659   int Low8 = Mask & 0xff;
10660   int Hi8 = (Mask & 0xff00) >> 8;
10661 
10662   assert(Low8 < 8 && Hi8 < 8);
10663   // Are the bytes contiguous in the order of increasing addresses.
10664   bool IsConsecutive = (Hi8 - Low8 == 1);
10665   // Is the first byte at location that is aligned for 16 bit instructions.
10666   // A counter example is taking 2 consecutive bytes starting at the 8th bit.
10667   // In this case, we still need code to extract the 16 bit operand, so it
10668   // is better to use i8 v_perm
10669   bool Is16Aligned = !(Low8 % 2);
10670 
10671   return IsConsecutive && Is16Aligned;
10672 }
10673 
10674 // Do not lower into v_perm if the operands are actually 16 bit
10675 // and the selected bits (based on PermMask) correspond with two
10676 // easily addressable 16 bit operands.
10677 static bool hasEightBitAccesses(uint64_t PermMask, SDValue &Op,
10678                                 SDValue &OtherOp) {
10679   int Low16 = PermMask & 0xffff;
10680   int Hi16 = (PermMask & 0xffff0000) >> 16;
10681 
10682   // ByteProvider only accepts 32 bit operands
10683   assert(Op.getValueType().getSizeInBits() == 32);
10684   assert(OtherOp.getValueType().getSizeInBits() == 32);
10685 
10686   auto OpIs16Bit = is16BitScalarOp(Op);
10687   auto OtherOpIs16Bit = is16BitScalarOp(Op);
10688 
10689   // If there is a size mismatch, then we must use masking on at least one
10690   // operand
10691   if (OpIs16Bit != OtherOpIs16Bit)
10692     return true;
10693 
10694   // If both operands are 16 bit, return whether or not we cleanly address both
10695   if (is16BitScalarOp(Op) && is16BitScalarOp(OtherOp))
10696     return !addresses16Bits(Low16) || !addresses16Bits(Hi16);
10697 
10698   // Both are 32 bit operands
10699   return true;
10700 }
10701 
10702 SDValue SITargetLowering::performOrCombine(SDNode *N,
10703                                            DAGCombinerInfo &DCI) const {
10704   SelectionDAG &DAG = DCI.DAG;
10705   SDValue LHS = N->getOperand(0);
10706   SDValue RHS = N->getOperand(1);
10707 
10708   EVT VT = N->getValueType(0);
10709   if (VT == MVT::i1) {
10710     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
10711     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
10712         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
10713       SDValue Src = LHS.getOperand(0);
10714       if (Src != RHS.getOperand(0))
10715         return SDValue();
10716 
10717       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10718       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10719       if (!CLHS || !CRHS)
10720         return SDValue();
10721 
10722       // Only 10 bits are used.
10723       static const uint32_t MaxMask = 0x3ff;
10724 
10725       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
10726       SDLoc DL(N);
10727       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
10728                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
10729     }
10730 
10731     return SDValue();
10732   }
10733 
10734   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
10735   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
10736       LHS.getOpcode() == AMDGPUISD::PERM &&
10737       isa<ConstantSDNode>(LHS.getOperand(2))) {
10738     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
10739     if (!Sel)
10740       return SDValue();
10741 
10742     Sel |= LHS.getConstantOperandVal(2);
10743     SDLoc DL(N);
10744     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
10745                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
10746   }
10747 
10748   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
10749   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10750   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
10751       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
10752 
10753     // If all the uses of an or need to extract the individual elements, do not
10754     // attempt to lower into v_perm
10755     auto usesCombinedOperand = [](SDNode *OrUse) {
10756       // If we have any non-vectorized use, then it is a candidate for v_perm
10757       if (OrUse->getOpcode() != ISD::BITCAST ||
10758           !OrUse->getValueType(0).isVector())
10759         return true;
10760 
10761       // If we have any non-vectorized use, then it is a candidate for v_perm
10762       for (auto VUse : OrUse->uses()) {
10763         if (!VUse->getValueType(0).isVector())
10764           return true;
10765 
10766         // If the use of a vector is a store, then combining via a v_perm
10767         // is beneficial.
10768         // TODO -- whitelist more uses
10769         for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg})
10770           if (VUse->getOpcode() == VectorwiseOp)
10771             return true;
10772       }
10773       return false;
10774     };
10775 
10776     if (!any_of(N->uses(), usesCombinedOperand))
10777       return SDValue();
10778 
10779     uint32_t LHSMask = getPermuteMask(LHS);
10780     uint32_t RHSMask = getPermuteMask(RHS);
10781 
10782     if (LHSMask != ~0u && RHSMask != ~0u) {
10783       // Canonicalize the expression in an attempt to have fewer unique masks
10784       // and therefore fewer registers used to hold the masks.
10785       if (LHSMask > RHSMask) {
10786         std::swap(LHSMask, RHSMask);
10787         std::swap(LHS, RHS);
10788       }
10789 
10790       // Select 0xc for each lane used from source operand. Zero has 0xc mask
10791       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
10792       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
10793       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
10794 
10795       // Check of we need to combine values from two sources within a byte.
10796       if (!(LHSUsedLanes & RHSUsedLanes) &&
10797           // If we select high and lower word keep it for SDWA.
10798           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
10799           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
10800         // Kill zero bytes selected by other mask. Zero value is 0xc.
10801         LHSMask &= ~RHSUsedLanes;
10802         RHSMask &= ~LHSUsedLanes;
10803         // Add 4 to each active LHS lane
10804         LHSMask |= LHSUsedLanes & 0x04040404;
10805         // Combine masks
10806         uint32_t Sel = LHSMask | RHSMask;
10807         SDLoc DL(N);
10808 
10809         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
10810                            LHS.getOperand(0), RHS.getOperand(0),
10811                            DAG.getConstant(Sel, DL, MVT::i32));
10812       }
10813     }
10814     if (LHSMask == ~0u || RHSMask == ~0u) {
10815       SmallVector<ByteProvider<SDValue>, 8> PermNodes;
10816 
10817       // VT is known to be MVT::i32, so we need to provide 4 bytes.
10818       assert(VT == MVT::i32);
10819       for (int i = 0; i < 4; i++) {
10820         // Find the ByteProvider that provides the ith byte of the result of OR
10821         std::optional<ByteProvider<SDValue>> P =
10822             calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i);
10823         // TODO support constantZero
10824         if (!P || P->isConstantZero())
10825           return SDValue();
10826 
10827         PermNodes.push_back(*P);
10828       }
10829       if (PermNodes.size() != 4)
10830         return SDValue();
10831 
10832       int FirstSrc = 0;
10833       std::optional<int> SecondSrc;
10834       uint64_t permMask = 0x00000000;
10835       for (size_t i = 0; i < PermNodes.size(); i++) {
10836         auto PermOp = PermNodes[i];
10837         // Since the mask is applied to Src1:Src2, Src1 bytes must be offset
10838         // by sizeof(Src2) = 4
10839         int SrcByteAdjust = 4;
10840 
10841         if (!PermOp.hasSameSrc(PermNodes[FirstSrc])) {
10842           if (SecondSrc.has_value())
10843             if (!PermOp.hasSameSrc(PermNodes[*SecondSrc]))
10844               return SDValue();
10845           // Set the index of the second distinct Src node
10846           SecondSrc = i;
10847           assert(PermNodes[*SecondSrc].Src->getValueType().getSizeInBits() ==
10848                  32);
10849           SrcByteAdjust = 0;
10850         }
10851         assert(PermOp.SrcOffset + SrcByteAdjust < 8);
10852         assert(!DAG.getDataLayout().isBigEndian());
10853         permMask |= (PermOp.SrcOffset + SrcByteAdjust) << (i * 8);
10854       }
10855 
10856       SDValue Op = *PermNodes[FirstSrc].Src;
10857       SDValue OtherOp = SecondSrc.has_value() ? *PermNodes[*SecondSrc].Src
10858                                               : *PermNodes[FirstSrc].Src;
10859 
10860       // Check that we are not just extracting the bytes in order from an op
10861       if (Op == OtherOp) {
10862         int Low16 = permMask & 0xffff;
10863         int Hi16 = (permMask & 0xffff0000) >> 16;
10864 
10865         bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
10866         bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
10867 
10868         // The perm op would really just produce Op. So combine into Op
10869         if (WellFormedLow && WellFormedHi)
10870           return Op;
10871       }
10872 
10873       if (hasEightBitAccesses(permMask, Op, OtherOp)) {
10874         SDLoc DL(N);
10875         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp,
10876                            DAG.getConstant(permMask, DL, MVT::i32));
10877       }
10878     }
10879   }
10880 
10881   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
10882     return SDValue();
10883 
10884   // TODO: This could be a generic combine with a predicate for extracting the
10885   // high half of an integer being free.
10886 
10887   // (or i64:x, (zero_extend i32:y)) ->
10888   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
10889   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
10890       RHS.getOpcode() != ISD::ZERO_EXTEND)
10891     std::swap(LHS, RHS);
10892 
10893   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
10894     SDValue ExtSrc = RHS.getOperand(0);
10895     EVT SrcVT = ExtSrc.getValueType();
10896     if (SrcVT == MVT::i32) {
10897       SDLoc SL(N);
10898       SDValue LowLHS, HiBits;
10899       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
10900       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
10901 
10902       DCI.AddToWorklist(LowOr.getNode());
10903       DCI.AddToWorklist(HiBits.getNode());
10904 
10905       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
10906                                 LowOr, HiBits);
10907       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
10908     }
10909   }
10910 
10911   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
10912   if (CRHS) {
10913     if (SDValue Split
10914           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
10915                                      N->getOperand(0), CRHS))
10916       return Split;
10917   }
10918 
10919   return SDValue();
10920 }
10921 
10922 SDValue SITargetLowering::performXorCombine(SDNode *N,
10923                                             DAGCombinerInfo &DCI) const {
10924   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
10925     return RV;
10926 
10927   SDValue LHS = N->getOperand(0);
10928   SDValue RHS = N->getOperand(1);
10929 
10930   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
10931   SelectionDAG &DAG = DCI.DAG;
10932 
10933   EVT VT = N->getValueType(0);
10934   if (CRHS && VT == MVT::i64) {
10935     if (SDValue Split
10936           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
10937       return Split;
10938   }
10939 
10940   // Make sure to apply the 64-bit constant splitting fold before trying to fold
10941   // fneg-like xors into 64-bit select.
10942   if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) {
10943     // This looks like an fneg, try to fold as a source modifier.
10944     if (CRHS && CRHS->getAPIntValue().isSignMask() &&
10945         shouldFoldFNegIntoSrc(N, LHS)) {
10946       // xor (select c, a, b), 0x80000000 ->
10947       //   bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b)))
10948       SDLoc DL(N);
10949       SDValue CastLHS =
10950           DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1));
10951       SDValue CastRHS =
10952           DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2));
10953       SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS);
10954       SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS);
10955       SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32,
10956                                       LHS->getOperand(0), FNegLHS, FNegRHS);
10957       return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect);
10958     }
10959   }
10960 
10961   return SDValue();
10962 }
10963 
10964 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
10965                                                    DAGCombinerInfo &DCI) const {
10966   if (!Subtarget->has16BitInsts() ||
10967       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10968     return SDValue();
10969 
10970   EVT VT = N->getValueType(0);
10971   if (VT != MVT::i32)
10972     return SDValue();
10973 
10974   SDValue Src = N->getOperand(0);
10975   if (Src.getValueType() != MVT::i16)
10976     return SDValue();
10977 
10978   return SDValue();
10979 }
10980 
10981 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
10982                                                         DAGCombinerInfo &DCI)
10983                                                         const {
10984   SDValue Src = N->getOperand(0);
10985   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
10986 
10987   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
10988       VTSign->getVT() == MVT::i8) ||
10989       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
10990       VTSign->getVT() == MVT::i16)) &&
10991       Src.hasOneUse()) {
10992     auto *M = cast<MemSDNode>(Src);
10993     SDValue Ops[] = {
10994       Src.getOperand(0), // Chain
10995       Src.getOperand(1), // rsrc
10996       Src.getOperand(2), // vindex
10997       Src.getOperand(3), // voffset
10998       Src.getOperand(4), // soffset
10999       Src.getOperand(5), // offset
11000       Src.getOperand(6),
11001       Src.getOperand(7)
11002     };
11003     // replace with BUFFER_LOAD_BYTE/SHORT
11004     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
11005                                          Src.getOperand(0).getValueType());
11006     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
11007                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
11008     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
11009                                                           ResList,
11010                                                           Ops, M->getMemoryVT(),
11011                                                           M->getMemOperand());
11012     return DCI.DAG.getMergeValues({BufferLoadSignExt,
11013                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
11014   }
11015   return SDValue();
11016 }
11017 
11018 SDValue SITargetLowering::performClassCombine(SDNode *N,
11019                                               DAGCombinerInfo &DCI) const {
11020   SelectionDAG &DAG = DCI.DAG;
11021   SDValue Mask = N->getOperand(1);
11022 
11023   // fp_class x, 0 -> false
11024   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
11025     if (CMask->isZero())
11026       return DAG.getConstant(0, SDLoc(N), MVT::i1);
11027   }
11028 
11029   if (N->getOperand(0).isUndef())
11030     return DAG.getUNDEF(MVT::i1);
11031 
11032   return SDValue();
11033 }
11034 
11035 SDValue SITargetLowering::performRcpCombine(SDNode *N,
11036                                             DAGCombinerInfo &DCI) const {
11037   EVT VT = N->getValueType(0);
11038   SDValue N0 = N->getOperand(0);
11039 
11040   if (N0.isUndef()) {
11041     return DCI.DAG.getConstantFP(
11042         APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N),
11043         VT);
11044   }
11045 
11046   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
11047                          N0.getOpcode() == ISD::SINT_TO_FP)) {
11048     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
11049                            N->getFlags());
11050   }
11051 
11052   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
11053     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
11054                            N0.getOperand(0), N->getFlags());
11055   }
11056 
11057   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
11058 }
11059 
11060 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
11061                                        unsigned MaxDepth) const {
11062   unsigned Opcode = Op.getOpcode();
11063   if (Opcode == ISD::FCANONICALIZE)
11064     return true;
11065 
11066   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
11067     const auto &F = CFP->getValueAPF();
11068     if (F.isNaN() && F.isSignaling())
11069       return false;
11070     if (!F.isDenormal())
11071       return true;
11072 
11073     DenormalMode Mode =
11074         DAG.getMachineFunction().getDenormalMode(F.getSemantics());
11075     return Mode == DenormalMode::getIEEE();
11076   }
11077 
11078   // If source is a result of another standard FP operation it is already in
11079   // canonical form.
11080   if (MaxDepth == 0)
11081     return false;
11082 
11083   switch (Opcode) {
11084   // These will flush denorms if required.
11085   case ISD::FADD:
11086   case ISD::FSUB:
11087   case ISD::FMUL:
11088   case ISD::FCEIL:
11089   case ISD::FFLOOR:
11090   case ISD::FMA:
11091   case ISD::FMAD:
11092   case ISD::FSQRT:
11093   case ISD::FDIV:
11094   case ISD::FREM:
11095   case ISD::FP_ROUND:
11096   case ISD::FP_EXTEND:
11097   case ISD::FLDEXP:
11098   case AMDGPUISD::FMUL_LEGACY:
11099   case AMDGPUISD::FMAD_FTZ:
11100   case AMDGPUISD::RCP:
11101   case AMDGPUISD::RSQ:
11102   case AMDGPUISD::RSQ_CLAMP:
11103   case AMDGPUISD::RCP_LEGACY:
11104   case AMDGPUISD::RCP_IFLAG:
11105   case AMDGPUISD::LOG:
11106   case AMDGPUISD::EXP:
11107   case AMDGPUISD::DIV_SCALE:
11108   case AMDGPUISD::DIV_FMAS:
11109   case AMDGPUISD::DIV_FIXUP:
11110   case AMDGPUISD::FRACT:
11111   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11112   case AMDGPUISD::CVT_F32_UBYTE0:
11113   case AMDGPUISD::CVT_F32_UBYTE1:
11114   case AMDGPUISD::CVT_F32_UBYTE2:
11115   case AMDGPUISD::CVT_F32_UBYTE3:
11116     return true;
11117 
11118   // It can/will be lowered or combined as a bit operation.
11119   // Need to check their input recursively to handle.
11120   case ISD::FNEG:
11121   case ISD::FABS:
11122   case ISD::FCOPYSIGN:
11123     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
11124 
11125   case ISD::FSIN:
11126   case ISD::FCOS:
11127   case ISD::FSINCOS:
11128     return Op.getValueType().getScalarType() != MVT::f16;
11129 
11130   case ISD::FMINNUM:
11131   case ISD::FMAXNUM:
11132   case ISD::FMINNUM_IEEE:
11133   case ISD::FMAXNUM_IEEE:
11134   case AMDGPUISD::CLAMP:
11135   case AMDGPUISD::FMED3:
11136   case AMDGPUISD::FMAX3:
11137   case AMDGPUISD::FMIN3: {
11138     // FIXME: Shouldn't treat the generic operations different based these.
11139     // However, we aren't really required to flush the result from
11140     // minnum/maxnum..
11141 
11142     // snans will be quieted, so we only need to worry about denormals.
11143     if (Subtarget->supportsMinMaxDenormModes() ||
11144         // FIXME: denormalsEnabledForType is broken for dynamic
11145         denormalsEnabledForType(DAG, Op.getValueType()))
11146       return true;
11147 
11148     // Flushing may be required.
11149     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
11150     // targets need to check their input recursively.
11151 
11152     // FIXME: Does this apply with clamp? It's implemented with max.
11153     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
11154       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
11155         return false;
11156     }
11157 
11158     return true;
11159   }
11160   case ISD::SELECT: {
11161     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
11162            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
11163   }
11164   case ISD::BUILD_VECTOR: {
11165     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
11166       SDValue SrcOp = Op.getOperand(i);
11167       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
11168         return false;
11169     }
11170 
11171     return true;
11172   }
11173   case ISD::EXTRACT_VECTOR_ELT:
11174   case ISD::EXTRACT_SUBVECTOR: {
11175     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
11176   }
11177   case ISD::INSERT_VECTOR_ELT: {
11178     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
11179            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
11180   }
11181   case ISD::UNDEF:
11182     // Could be anything.
11183     return false;
11184 
11185   case ISD::BITCAST:
11186     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
11187   case ISD::TRUNCATE: {
11188     // Hack round the mess we make when legalizing extract_vector_elt
11189     if (Op.getValueType() == MVT::i16) {
11190       SDValue TruncSrc = Op.getOperand(0);
11191       if (TruncSrc.getValueType() == MVT::i32 &&
11192           TruncSrc.getOpcode() == ISD::BITCAST &&
11193           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
11194         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
11195       }
11196     }
11197     return false;
11198   }
11199   case ISD::INTRINSIC_WO_CHAIN: {
11200     unsigned IntrinsicID
11201       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11202     // TODO: Handle more intrinsics
11203     switch (IntrinsicID) {
11204     case Intrinsic::amdgcn_cvt_pkrtz:
11205     case Intrinsic::amdgcn_cubeid:
11206     case Intrinsic::amdgcn_frexp_mant:
11207     case Intrinsic::amdgcn_fdot2:
11208     case Intrinsic::amdgcn_rcp:
11209     case Intrinsic::amdgcn_rsq:
11210     case Intrinsic::amdgcn_rsq_clamp:
11211     case Intrinsic::amdgcn_rcp_legacy:
11212     case Intrinsic::amdgcn_rsq_legacy:
11213     case Intrinsic::amdgcn_trig_preop:
11214     case Intrinsic::amdgcn_log:
11215     case Intrinsic::amdgcn_exp2:
11216       return true;
11217     default:
11218       break;
11219     }
11220 
11221     [[fallthrough]];
11222   }
11223   default:
11224     // FIXME: denormalsEnabledForType is broken for dynamic
11225     return denormalsEnabledForType(DAG, Op.getValueType()) &&
11226            DAG.isKnownNeverSNaN(Op);
11227   }
11228 
11229   llvm_unreachable("invalid operation");
11230 }
11231 
11232 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
11233                                        unsigned MaxDepth) const {
11234   MachineRegisterInfo &MRI = MF.getRegInfo();
11235   MachineInstr *MI = MRI.getVRegDef(Reg);
11236   unsigned Opcode = MI->getOpcode();
11237 
11238   if (Opcode == AMDGPU::G_FCANONICALIZE)
11239     return true;
11240 
11241   std::optional<FPValueAndVReg> FCR;
11242   // Constant splat (can be padded with undef) or scalar constant.
11243   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
11244     if (FCR->Value.isSignaling())
11245       return false;
11246     if (!FCR->Value.isDenormal())
11247       return true;
11248 
11249     DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics());
11250     return Mode == DenormalMode::getIEEE();
11251   }
11252 
11253   if (MaxDepth == 0)
11254     return false;
11255 
11256   switch (Opcode) {
11257   case AMDGPU::G_FADD:
11258   case AMDGPU::G_FSUB:
11259   case AMDGPU::G_FMUL:
11260   case AMDGPU::G_FCEIL:
11261   case AMDGPU::G_FFLOOR:
11262   case AMDGPU::G_FRINT:
11263   case AMDGPU::G_FNEARBYINT:
11264   case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
11265   case AMDGPU::G_INTRINSIC_TRUNC:
11266   case AMDGPU::G_INTRINSIC_ROUNDEVEN:
11267   case AMDGPU::G_FMA:
11268   case AMDGPU::G_FMAD:
11269   case AMDGPU::G_FSQRT:
11270   case AMDGPU::G_FDIV:
11271   case AMDGPU::G_FREM:
11272   case AMDGPU::G_FPOW:
11273   case AMDGPU::G_FPEXT:
11274   case AMDGPU::G_FLOG:
11275   case AMDGPU::G_FLOG2:
11276   case AMDGPU::G_FLOG10:
11277   case AMDGPU::G_FPTRUNC:
11278   case AMDGPU::G_AMDGPU_RCP_IFLAG:
11279   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
11280   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
11281   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
11282   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
11283     return true;
11284   case AMDGPU::G_FNEG:
11285   case AMDGPU::G_FABS:
11286   case AMDGPU::G_FCOPYSIGN:
11287     return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1);
11288   case AMDGPU::G_FMINNUM:
11289   case AMDGPU::G_FMAXNUM:
11290   case AMDGPU::G_FMINNUM_IEEE:
11291   case AMDGPU::G_FMAXNUM_IEEE: {
11292     if (Subtarget->supportsMinMaxDenormModes() ||
11293         // FIXME: denormalsEnabledForType is broken for dynamic
11294         denormalsEnabledForType(MRI.getType(Reg), MF))
11295       return true;
11296 
11297     [[fallthrough]];
11298   }
11299   case AMDGPU::G_BUILD_VECTOR:
11300     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
11301       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
11302         return false;
11303     return true;
11304   case AMDGPU::G_INTRINSIC:
11305     switch (MI->getIntrinsicID()) {
11306     case Intrinsic::amdgcn_fmul_legacy:
11307     case Intrinsic::amdgcn_fmad_ftz:
11308     case Intrinsic::amdgcn_sqrt:
11309     case Intrinsic::amdgcn_fmed3:
11310     case Intrinsic::amdgcn_sin:
11311     case Intrinsic::amdgcn_cos:
11312     case Intrinsic::amdgcn_log:
11313     case Intrinsic::amdgcn_exp2:
11314     case Intrinsic::amdgcn_log_clamp:
11315     case Intrinsic::amdgcn_rcp:
11316     case Intrinsic::amdgcn_rcp_legacy:
11317     case Intrinsic::amdgcn_rsq:
11318     case Intrinsic::amdgcn_rsq_clamp:
11319     case Intrinsic::amdgcn_rsq_legacy:
11320     case Intrinsic::amdgcn_div_scale:
11321     case Intrinsic::amdgcn_div_fmas:
11322     case Intrinsic::amdgcn_div_fixup:
11323     case Intrinsic::amdgcn_fract:
11324     case Intrinsic::amdgcn_ldexp:
11325     case Intrinsic::amdgcn_cvt_pkrtz:
11326     case Intrinsic::amdgcn_cubeid:
11327     case Intrinsic::amdgcn_cubema:
11328     case Intrinsic::amdgcn_cubesc:
11329     case Intrinsic::amdgcn_cubetc:
11330     case Intrinsic::amdgcn_frexp_mant:
11331     case Intrinsic::amdgcn_fdot2:
11332     case Intrinsic::amdgcn_trig_preop:
11333       return true;
11334     default:
11335       break;
11336     }
11337 
11338     [[fallthrough]];
11339   default:
11340     return false;
11341   }
11342 
11343   llvm_unreachable("invalid operation");
11344 }
11345 
11346 // Constant fold canonicalize.
11347 SDValue SITargetLowering::getCanonicalConstantFP(
11348   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
11349   // Flush denormals to 0 if not enabled.
11350   if (C.isDenormal()) {
11351     DenormalMode Mode =
11352         DAG.getMachineFunction().getDenormalMode(C.getSemantics());
11353     if (Mode == DenormalMode::getPreserveSign()) {
11354       return DAG.getConstantFP(
11355           APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT);
11356     }
11357 
11358     if (Mode != DenormalMode::getIEEE())
11359       return SDValue();
11360   }
11361 
11362   if (C.isNaN()) {
11363     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
11364     if (C.isSignaling()) {
11365       // Quiet a signaling NaN.
11366       // FIXME: Is this supposed to preserve payload bits?
11367       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
11368     }
11369 
11370     // Make sure it is the canonical NaN bitpattern.
11371     //
11372     // TODO: Can we use -1 as the canonical NaN value since it's an inline
11373     // immediate?
11374     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
11375       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
11376   }
11377 
11378   // Already canonical.
11379   return DAG.getConstantFP(C, SL, VT);
11380 }
11381 
11382 static bool vectorEltWillFoldAway(SDValue Op) {
11383   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
11384 }
11385 
11386 SDValue SITargetLowering::performFCanonicalizeCombine(
11387   SDNode *N,
11388   DAGCombinerInfo &DCI) const {
11389   SelectionDAG &DAG = DCI.DAG;
11390   SDValue N0 = N->getOperand(0);
11391   EVT VT = N->getValueType(0);
11392 
11393   // fcanonicalize undef -> qnan
11394   if (N0.isUndef()) {
11395     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
11396     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
11397   }
11398 
11399   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
11400     EVT VT = N->getValueType(0);
11401     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
11402   }
11403 
11404   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
11405   //                                                   (fcanonicalize k)
11406   //
11407   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
11408 
11409   // TODO: This could be better with wider vectors that will be split to v2f16,
11410   // and to consider uses since there aren't that many packed operations.
11411   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
11412       isTypeLegal(MVT::v2f16)) {
11413     SDLoc SL(N);
11414     SDValue NewElts[2];
11415     SDValue Lo = N0.getOperand(0);
11416     SDValue Hi = N0.getOperand(1);
11417     EVT EltVT = Lo.getValueType();
11418 
11419     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
11420       for (unsigned I = 0; I != 2; ++I) {
11421         SDValue Op = N0.getOperand(I);
11422         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
11423           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
11424                                               CFP->getValueAPF());
11425         } else if (Op.isUndef()) {
11426           // Handled below based on what the other operand is.
11427           NewElts[I] = Op;
11428         } else {
11429           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
11430         }
11431       }
11432 
11433       // If one half is undef, and one is constant, prefer a splat vector rather
11434       // than the normal qNaN. If it's a register, prefer 0.0 since that's
11435       // cheaper to use and may be free with a packed operation.
11436       if (NewElts[0].isUndef()) {
11437         if (isa<ConstantFPSDNode>(NewElts[1]))
11438           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
11439             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
11440       }
11441 
11442       if (NewElts[1].isUndef()) {
11443         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
11444           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
11445       }
11446 
11447       return DAG.getBuildVector(VT, SL, NewElts);
11448     }
11449   }
11450 
11451   unsigned SrcOpc = N0.getOpcode();
11452 
11453   // If it's free to do so, push canonicalizes further up the source, which may
11454   // find a canonical source.
11455   //
11456   // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for
11457   // sNaNs.
11458   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
11459     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
11460     if (CRHS && N0.hasOneUse()) {
11461       SDLoc SL(N);
11462       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
11463                                    N0.getOperand(0));
11464       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
11465       DCI.AddToWorklist(Canon0.getNode());
11466 
11467       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
11468     }
11469   }
11470 
11471   return isCanonicalized(DAG, N0) ? N0 : SDValue();
11472 }
11473 
11474 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
11475   switch (Opc) {
11476   case ISD::FMAXNUM:
11477   case ISD::FMAXNUM_IEEE:
11478     return AMDGPUISD::FMAX3;
11479   case ISD::SMAX:
11480     return AMDGPUISD::SMAX3;
11481   case ISD::UMAX:
11482     return AMDGPUISD::UMAX3;
11483   case ISD::FMINNUM:
11484   case ISD::FMINNUM_IEEE:
11485     return AMDGPUISD::FMIN3;
11486   case ISD::SMIN:
11487     return AMDGPUISD::SMIN3;
11488   case ISD::UMIN:
11489     return AMDGPUISD::UMIN3;
11490   default:
11491     llvm_unreachable("Not a min/max opcode");
11492   }
11493 }
11494 
11495 SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG,
11496                                                    const SDLoc &SL, SDValue Src,
11497                                                    SDValue MinVal,
11498                                                    SDValue MaxVal,
11499                                                    bool Signed) const {
11500 
11501   // med3 comes from
11502   //    min(max(x, K0), K1), K0 < K1
11503   //    max(min(x, K0), K1), K1 < K0
11504   //
11505   // "MinVal" and "MaxVal" respectively refer to the rhs of the
11506   // min/max op.
11507   ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal);
11508   ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal);
11509 
11510   if (!MinK || !MaxK)
11511     return SDValue();
11512 
11513   if (Signed) {
11514     if (MaxK->getAPIntValue().sge(MinK->getAPIntValue()))
11515       return SDValue();
11516   } else {
11517     if (MaxK->getAPIntValue().uge(MinK->getAPIntValue()))
11518       return SDValue();
11519   }
11520 
11521   EVT VT = MinK->getValueType(0);
11522   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
11523   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
11524     return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
11525 
11526   // Note: we could also extend to i32 and use i32 med3 if i16 med3 is
11527   // not available, but this is unlikely to be profitable as constants
11528   // will often need to be materialized & extended, especially on
11529   // pre-GFX10 where VOP3 instructions couldn't take literal operands.
11530   return SDValue();
11531 }
11532 
11533 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
11534   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
11535     return C;
11536 
11537   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
11538     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
11539       return C;
11540   }
11541 
11542   return nullptr;
11543 }
11544 
11545 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
11546                                                   const SDLoc &SL,
11547                                                   SDValue Op0,
11548                                                   SDValue Op1) const {
11549   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
11550   if (!K1)
11551     return SDValue();
11552 
11553   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
11554   if (!K0)
11555     return SDValue();
11556 
11557   // Ordered >= (although NaN inputs should have folded away by now).
11558   if (K0->getValueAPF() > K1->getValueAPF())
11559     return SDValue();
11560 
11561   const MachineFunction &MF = DAG.getMachineFunction();
11562   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11563 
11564   // TODO: Check IEEE bit enabled?
11565   EVT VT = Op0.getValueType();
11566   if (Info->getMode().DX10Clamp) {
11567     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
11568     // hardware fmed3 behavior converting to a min.
11569     // FIXME: Should this be allowing -0.0?
11570     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
11571       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
11572   }
11573 
11574   // med3 for f16 is only available on gfx9+, and not available for v2f16.
11575   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
11576     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
11577     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
11578     // then give the other result, which is different from med3 with a NaN
11579     // input.
11580     SDValue Var = Op0.getOperand(0);
11581     if (!DAG.isKnownNeverSNaN(Var))
11582       return SDValue();
11583 
11584     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11585 
11586     if ((!K0->hasOneUse() ||
11587          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
11588         (!K1->hasOneUse() ||
11589          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
11590       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
11591                          Var, SDValue(K0, 0), SDValue(K1, 0));
11592     }
11593   }
11594 
11595   return SDValue();
11596 }
11597 
11598 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
11599                                                DAGCombinerInfo &DCI) const {
11600   SelectionDAG &DAG = DCI.DAG;
11601 
11602   EVT VT = N->getValueType(0);
11603   unsigned Opc = N->getOpcode();
11604   SDValue Op0 = N->getOperand(0);
11605   SDValue Op1 = N->getOperand(1);
11606 
11607   // Only do this if the inner op has one use since this will just increases
11608   // register pressure for no benefit.
11609 
11610   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
11611       !VT.isVector() &&
11612       (VT == MVT::i32 || VT == MVT::f32 ||
11613        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
11614     // max(max(a, b), c) -> max3(a, b, c)
11615     // min(min(a, b), c) -> min3(a, b, c)
11616     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
11617       SDLoc DL(N);
11618       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
11619                          DL,
11620                          N->getValueType(0),
11621                          Op0.getOperand(0),
11622                          Op0.getOperand(1),
11623                          Op1);
11624     }
11625 
11626     // Try commuted.
11627     // max(a, max(b, c)) -> max3(a, b, c)
11628     // min(a, min(b, c)) -> min3(a, b, c)
11629     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
11630       SDLoc DL(N);
11631       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
11632                          DL,
11633                          N->getValueType(0),
11634                          Op0,
11635                          Op1.getOperand(0),
11636                          Op1.getOperand(1));
11637     }
11638   }
11639 
11640   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
11641   // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0)
11642   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
11643     if (SDValue Med3 = performIntMed3ImmCombine(
11644             DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true))
11645       return Med3;
11646   }
11647   if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) {
11648     if (SDValue Med3 = performIntMed3ImmCombine(
11649             DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true))
11650       return Med3;
11651   }
11652 
11653   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
11654     if (SDValue Med3 = performIntMed3ImmCombine(
11655             DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false))
11656       return Med3;
11657   }
11658   if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) {
11659     if (SDValue Med3 = performIntMed3ImmCombine(
11660             DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false))
11661       return Med3;
11662   }
11663 
11664   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
11665   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
11666        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
11667        (Opc == AMDGPUISD::FMIN_LEGACY &&
11668         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
11669       (VT == MVT::f32 || VT == MVT::f64 ||
11670        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
11671        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
11672       Op0.hasOneUse()) {
11673     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
11674       return Res;
11675   }
11676 
11677   return SDValue();
11678 }
11679 
11680 static bool isClampZeroToOne(SDValue A, SDValue B) {
11681   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
11682     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
11683       // FIXME: Should this be allowing -0.0?
11684       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
11685              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
11686     }
11687   }
11688 
11689   return false;
11690 }
11691 
11692 // FIXME: Should only worry about snans for version with chain.
11693 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
11694                                               DAGCombinerInfo &DCI) const {
11695   EVT VT = N->getValueType(0);
11696   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
11697   // NaNs. With a NaN input, the order of the operands may change the result.
11698 
11699   SelectionDAG &DAG = DCI.DAG;
11700   SDLoc SL(N);
11701 
11702   SDValue Src0 = N->getOperand(0);
11703   SDValue Src1 = N->getOperand(1);
11704   SDValue Src2 = N->getOperand(2);
11705 
11706   if (isClampZeroToOne(Src0, Src1)) {
11707     // const_a, const_b, x -> clamp is safe in all cases including signaling
11708     // nans.
11709     // FIXME: Should this be allowing -0.0?
11710     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
11711   }
11712 
11713   const MachineFunction &MF = DAG.getMachineFunction();
11714   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11715 
11716   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
11717   // handling no dx10-clamp?
11718   if (Info->getMode().DX10Clamp) {
11719     // If NaNs is clamped to 0, we are free to reorder the inputs.
11720 
11721     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
11722       std::swap(Src0, Src1);
11723 
11724     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
11725       std::swap(Src1, Src2);
11726 
11727     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
11728       std::swap(Src0, Src1);
11729 
11730     if (isClampZeroToOne(Src1, Src2))
11731       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
11732   }
11733 
11734   return SDValue();
11735 }
11736 
11737 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
11738                                                  DAGCombinerInfo &DCI) const {
11739   SDValue Src0 = N->getOperand(0);
11740   SDValue Src1 = N->getOperand(1);
11741   if (Src0.isUndef() && Src1.isUndef())
11742     return DCI.DAG.getUNDEF(N->getValueType(0));
11743   return SDValue();
11744 }
11745 
11746 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
11747 // expanded into a set of cmp/select instructions.
11748 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
11749                                                 unsigned NumElem,
11750                                                 bool IsDivergentIdx,
11751                                                 const GCNSubtarget *Subtarget) {
11752   if (UseDivergentRegisterIndexing)
11753     return false;
11754 
11755   unsigned VecSize = EltSize * NumElem;
11756 
11757   // Sub-dword vectors of size 2 dword or less have better implementation.
11758   if (VecSize <= 64 && EltSize < 32)
11759     return false;
11760 
11761   // Always expand the rest of sub-dword instructions, otherwise it will be
11762   // lowered via memory.
11763   if (EltSize < 32)
11764     return true;
11765 
11766   // Always do this if var-idx is divergent, otherwise it will become a loop.
11767   if (IsDivergentIdx)
11768     return true;
11769 
11770   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
11771   unsigned NumInsts = NumElem /* Number of compares */ +
11772                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
11773 
11774   // On some architectures (GFX9) movrel is not available and it's better
11775   // to expand.
11776   if (!Subtarget->hasMovrel())
11777     return NumInsts <= 16;
11778 
11779   // If movrel is available, use it instead of expanding for vector of 8
11780   // elements.
11781   return NumInsts <= 15;
11782 }
11783 
11784 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
11785   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
11786   if (isa<ConstantSDNode>(Idx))
11787     return false;
11788 
11789   SDValue Vec = N->getOperand(0);
11790   EVT VecVT = Vec.getValueType();
11791   EVT EltVT = VecVT.getVectorElementType();
11792   unsigned EltSize = EltVT.getSizeInBits();
11793   unsigned NumElem = VecVT.getVectorNumElements();
11794 
11795   return SITargetLowering::shouldExpandVectorDynExt(
11796       EltSize, NumElem, Idx->isDivergent(), getSubtarget());
11797 }
11798 
11799 SDValue SITargetLowering::performExtractVectorEltCombine(
11800   SDNode *N, DAGCombinerInfo &DCI) const {
11801   SDValue Vec = N->getOperand(0);
11802   SelectionDAG &DAG = DCI.DAG;
11803 
11804   EVT VecVT = Vec.getValueType();
11805   EVT VecEltVT = VecVT.getVectorElementType();
11806   EVT ResVT = N->getValueType(0);
11807 
11808   unsigned VecSize = VecVT.getSizeInBits();
11809   unsigned VecEltSize = VecEltVT.getSizeInBits();
11810 
11811   if ((Vec.getOpcode() == ISD::FNEG ||
11812        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
11813     SDLoc SL(N);
11814     SDValue Idx = N->getOperand(1);
11815     SDValue Elt =
11816         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx);
11817     return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt);
11818   }
11819 
11820   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
11821   //    =>
11822   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
11823   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
11824   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
11825   if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
11826     SDLoc SL(N);
11827     SDValue Idx = N->getOperand(1);
11828     unsigned Opc = Vec.getOpcode();
11829 
11830     switch(Opc) {
11831     default:
11832       break;
11833       // TODO: Support other binary operations.
11834     case ISD::FADD:
11835     case ISD::FSUB:
11836     case ISD::FMUL:
11837     case ISD::ADD:
11838     case ISD::UMIN:
11839     case ISD::UMAX:
11840     case ISD::SMIN:
11841     case ISD::SMAX:
11842     case ISD::FMAXNUM:
11843     case ISD::FMINNUM:
11844     case ISD::FMAXNUM_IEEE:
11845     case ISD::FMINNUM_IEEE: {
11846       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
11847                                  Vec.getOperand(0), Idx);
11848       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
11849                                  Vec.getOperand(1), Idx);
11850 
11851       DCI.AddToWorklist(Elt0.getNode());
11852       DCI.AddToWorklist(Elt1.getNode());
11853       return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags());
11854     }
11855     }
11856   }
11857 
11858   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
11859   if (shouldExpandVectorDynExt(N)) {
11860     SDLoc SL(N);
11861     SDValue Idx = N->getOperand(1);
11862     SDValue V;
11863     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
11864       SDValue IC = DAG.getVectorIdxConstant(I, SL);
11865       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC);
11866       if (I == 0)
11867         V = Elt;
11868       else
11869         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
11870     }
11871     return V;
11872   }
11873 
11874   if (!DCI.isBeforeLegalize())
11875     return SDValue();
11876 
11877   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
11878   // elements. This exposes more load reduction opportunities by replacing
11879   // multiple small extract_vector_elements with a single 32-bit extract.
11880   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
11881   if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() &&
11882       VecSize > 32 && VecSize % 32 == 0 && Idx) {
11883     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
11884 
11885     unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
11886     unsigned EltIdx = BitIndex / 32;
11887     unsigned LeftoverBitIdx = BitIndex % 32;
11888     SDLoc SL(N);
11889 
11890     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
11891     DCI.AddToWorklist(Cast.getNode());
11892 
11893     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
11894                               DAG.getConstant(EltIdx, SL, MVT::i32));
11895     DCI.AddToWorklist(Elt.getNode());
11896     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
11897                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
11898     DCI.AddToWorklist(Srl.getNode());
11899 
11900     EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger();
11901     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl);
11902     DCI.AddToWorklist(Trunc.getNode());
11903 
11904     if (VecEltVT == ResVT) {
11905       return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
11906     }
11907 
11908     assert(ResVT.isScalarInteger());
11909     return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT);
11910   }
11911 
11912   return SDValue();
11913 }
11914 
11915 SDValue
11916 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
11917                                                 DAGCombinerInfo &DCI) const {
11918   SDValue Vec = N->getOperand(0);
11919   SDValue Idx = N->getOperand(2);
11920   EVT VecVT = Vec.getValueType();
11921   EVT EltVT = VecVT.getVectorElementType();
11922 
11923   // INSERT_VECTOR_ELT (<n x e>, var-idx)
11924   // => BUILD_VECTOR n x select (e, const-idx)
11925   if (!shouldExpandVectorDynExt(N))
11926     return SDValue();
11927 
11928   SelectionDAG &DAG = DCI.DAG;
11929   SDLoc SL(N);
11930   SDValue Ins = N->getOperand(1);
11931   EVT IdxVT = Idx.getValueType();
11932 
11933   SmallVector<SDValue, 16> Ops;
11934   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
11935     SDValue IC = DAG.getConstant(I, SL, IdxVT);
11936     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
11937     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
11938     Ops.push_back(V);
11939   }
11940 
11941   return DAG.getBuildVector(VecVT, SL, Ops);
11942 }
11943 
11944 /// Return the source of an fp_extend from f16 to f32, or a converted FP
11945 /// constant.
11946 static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) {
11947   if (Src.getOpcode() == ISD::FP_EXTEND &&
11948       Src.getOperand(0).getValueType() == MVT::f16) {
11949     return Src.getOperand(0);
11950   }
11951 
11952   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) {
11953     APFloat Val = CFP->getValueAPF();
11954     bool LosesInfo = true;
11955     Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo);
11956     if (!LosesInfo)
11957       return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16);
11958   }
11959 
11960   return SDValue();
11961 }
11962 
11963 SDValue SITargetLowering::performFPRoundCombine(SDNode *N,
11964                                                 DAGCombinerInfo &DCI) const {
11965   assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
11966          "combine only useful on gfx8");
11967 
11968   SDValue TruncSrc = N->getOperand(0);
11969   EVT VT = N->getValueType(0);
11970   if (VT != MVT::f16)
11971     return SDValue();
11972 
11973   if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 ||
11974       TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse())
11975     return SDValue();
11976 
11977   SelectionDAG &DAG = DCI.DAG;
11978   SDLoc SL(N);
11979 
11980   // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3,
11981   // and expanding it with min/max saves 1 instruction vs. casting to f32 and
11982   // casting back.
11983 
11984   // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) =>
11985   // fmin(fmax(a, b), fmax(fmin(a, b), c))
11986   SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0));
11987   if (!A)
11988     return SDValue();
11989 
11990   SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1));
11991   if (!B)
11992     return SDValue();
11993 
11994   SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2));
11995   if (!C)
11996     return SDValue();
11997 
11998   // This changes signaling nan behavior. If an input is a signaling nan, it
11999   // would have been quieted by the fpext originally. We don't care because
12000   // these are unconstrained ops. If we needed to insert quieting canonicalizes
12001   // we would be worse off than just doing the promotion.
12002   SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B);
12003   SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B);
12004   SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C);
12005   return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
12006 }
12007 
12008 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
12009                                           const SDNode *N0,
12010                                           const SDNode *N1) const {
12011   EVT VT = N0->getValueType(0);
12012 
12013   // Only do this if we are not trying to support denormals. v_mad_f32 does not
12014   // support denormals ever.
12015   if (((VT == MVT::f32 &&
12016         denormalModeIsFlushAllF32(DAG.getMachineFunction())) ||
12017        (VT == MVT::f16 && Subtarget->hasMadF16() &&
12018         denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) &&
12019       isOperationLegal(ISD::FMAD, VT))
12020     return ISD::FMAD;
12021 
12022   const TargetOptions &Options = DAG.getTarget().Options;
12023   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
12024        (N0->getFlags().hasAllowContract() &&
12025         N1->getFlags().hasAllowContract())) &&
12026       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
12027     return ISD::FMA;
12028   }
12029 
12030   return 0;
12031 }
12032 
12033 // For a reassociatable opcode perform:
12034 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
12035 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
12036                                                SelectionDAG &DAG) const {
12037   EVT VT = N->getValueType(0);
12038   if (VT != MVT::i32 && VT != MVT::i64)
12039     return SDValue();
12040 
12041   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
12042     return SDValue();
12043 
12044   unsigned Opc = N->getOpcode();
12045   SDValue Op0 = N->getOperand(0);
12046   SDValue Op1 = N->getOperand(1);
12047 
12048   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
12049     return SDValue();
12050 
12051   if (Op0->isDivergent())
12052     std::swap(Op0, Op1);
12053 
12054   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
12055     return SDValue();
12056 
12057   SDValue Op2 = Op1.getOperand(1);
12058   Op1 = Op1.getOperand(0);
12059   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
12060     return SDValue();
12061 
12062   if (Op1->isDivergent())
12063     std::swap(Op1, Op2);
12064 
12065   SDLoc SL(N);
12066   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
12067   return DAG.getNode(Opc, SL, VT, Add1, Op2);
12068 }
12069 
12070 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
12071                            EVT VT,
12072                            SDValue N0, SDValue N1, SDValue N2,
12073                            bool Signed) {
12074   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
12075   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
12076   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
12077   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
12078 }
12079 
12080 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
12081 // multiplies, if any.
12082 //
12083 // Full 64-bit multiplies that feed into an addition are lowered here instead
12084 // of using the generic expansion. The generic expansion ends up with
12085 // a tree of ADD nodes that prevents us from using the "add" part of the
12086 // MAD instruction. The expansion produced here results in a chain of ADDs
12087 // instead of a tree.
12088 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
12089                                             DAGCombinerInfo &DCI) const {
12090   assert(N->getOpcode() == ISD::ADD);
12091 
12092   SelectionDAG &DAG = DCI.DAG;
12093   EVT VT = N->getValueType(0);
12094   SDLoc SL(N);
12095   SDValue LHS = N->getOperand(0);
12096   SDValue RHS = N->getOperand(1);
12097 
12098   if (VT.isVector())
12099     return SDValue();
12100 
12101   // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
12102   // result in scalar registers for uniform values.
12103   if (!N->isDivergent() && Subtarget->hasSMulHi())
12104     return SDValue();
12105 
12106   unsigned NumBits = VT.getScalarSizeInBits();
12107   if (NumBits <= 32 || NumBits > 64)
12108     return SDValue();
12109 
12110   if (LHS.getOpcode() != ISD::MUL) {
12111     assert(RHS.getOpcode() == ISD::MUL);
12112     std::swap(LHS, RHS);
12113   }
12114 
12115   // Avoid the fold if it would unduly increase the number of multiplies due to
12116   // multiple uses, except on hardware with full-rate multiply-add (which is
12117   // part of full-rate 64-bit ops).
12118   if (!Subtarget->hasFullRate64Ops()) {
12119     unsigned NumUsers = 0;
12120     for (SDNode *Use : LHS->uses()) {
12121       // There is a use that does not feed into addition, so the multiply can't
12122       // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
12123       if (Use->getOpcode() != ISD::ADD)
12124         return SDValue();
12125 
12126       // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
12127       // MUL + 3xADD + 3xADDC over 3xMAD.
12128       ++NumUsers;
12129       if (NumUsers >= 3)
12130         return SDValue();
12131     }
12132   }
12133 
12134   SDValue MulLHS = LHS.getOperand(0);
12135   SDValue MulRHS = LHS.getOperand(1);
12136   SDValue AddRHS = RHS;
12137 
12138   // Always check whether operands are small unsigned values, since that
12139   // knowledge is useful in more cases. Check for small signed values only if
12140   // doing so can unlock a shorter code sequence.
12141   bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
12142   bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
12143 
12144   bool MulSignedLo = false;
12145   if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
12146     MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
12147                   numBitsSigned(MulRHS, DAG) <= 32;
12148   }
12149 
12150   // The operands and final result all have the same number of bits. If
12151   // operands need to be extended, they can be extended with garbage. The
12152   // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
12153   // truncated away in the end.
12154   if (VT != MVT::i64) {
12155     MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
12156     MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
12157     AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
12158   }
12159 
12160   // The basic code generated is conceptually straightforward. Pseudo code:
12161   //
12162   //   accum = mad_64_32 lhs.lo, rhs.lo, accum
12163   //   accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
12164   //   accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
12165   //
12166   // The second and third lines are optional, depending on whether the factors
12167   // are {sign,zero}-extended or not.
12168   //
12169   // The actual DAG is noisier than the pseudo code, but only due to
12170   // instructions that disassemble values into low and high parts, and
12171   // assemble the final result.
12172   SDValue One = DAG.getConstant(1, SL, MVT::i32);
12173 
12174   auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
12175   auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
12176   SDValue Accum =
12177       getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
12178 
12179   if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
12180     SDValue AccumLo, AccumHi;
12181     std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32);
12182 
12183     if (!MulLHSUnsigned32) {
12184       auto MulLHSHi =
12185           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
12186       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
12187       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
12188     }
12189 
12190     if (!MulRHSUnsigned32) {
12191       auto MulRHSHi =
12192           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
12193       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
12194       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
12195     }
12196 
12197     Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
12198     Accum = DAG.getBitcast(MVT::i64, Accum);
12199   }
12200 
12201   if (VT != MVT::i64)
12202     Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
12203   return Accum;
12204 }
12205 
12206 SDValue SITargetLowering::performAddCombine(SDNode *N,
12207                                             DAGCombinerInfo &DCI) const {
12208   SelectionDAG &DAG = DCI.DAG;
12209   EVT VT = N->getValueType(0);
12210   SDLoc SL(N);
12211   SDValue LHS = N->getOperand(0);
12212   SDValue RHS = N->getOperand(1);
12213 
12214   if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
12215     if (Subtarget->hasMad64_32()) {
12216       if (SDValue Folded = tryFoldToMad64_32(N, DCI))
12217         return Folded;
12218     }
12219 
12220     return SDValue();
12221   }
12222 
12223   if (SDValue V = reassociateScalarOps(N, DAG)) {
12224     return V;
12225   }
12226 
12227   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
12228     return SDValue();
12229 
12230   // add x, zext (setcc) => uaddo_carry x, 0, setcc
12231   // add x, sext (setcc) => usubo_carry x, 0, setcc
12232   unsigned Opc = LHS.getOpcode();
12233   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
12234       Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY)
12235     std::swap(RHS, LHS);
12236 
12237   Opc = RHS.getOpcode();
12238   switch (Opc) {
12239   default: break;
12240   case ISD::ZERO_EXTEND:
12241   case ISD::SIGN_EXTEND:
12242   case ISD::ANY_EXTEND: {
12243     auto Cond = RHS.getOperand(0);
12244     // If this won't be a real VOPC output, we would still need to insert an
12245     // extra instruction anyway.
12246     if (!isBoolSGPR(Cond))
12247       break;
12248     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
12249     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
12250     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY;
12251     return DAG.getNode(Opc, SL, VTList, Args);
12252   }
12253   case ISD::UADDO_CARRY: {
12254     // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc
12255     if (!isNullConstant(RHS.getOperand(1)))
12256       break;
12257     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
12258     return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args);
12259   }
12260   }
12261   return SDValue();
12262 }
12263 
12264 SDValue SITargetLowering::performSubCombine(SDNode *N,
12265                                             DAGCombinerInfo &DCI) const {
12266   SelectionDAG &DAG = DCI.DAG;
12267   EVT VT = N->getValueType(0);
12268 
12269   if (VT != MVT::i32)
12270     return SDValue();
12271 
12272   SDLoc SL(N);
12273   SDValue LHS = N->getOperand(0);
12274   SDValue RHS = N->getOperand(1);
12275 
12276   // sub x, zext (setcc) => usubo_carry x, 0, setcc
12277   // sub x, sext (setcc) => uaddo_carry x, 0, setcc
12278   unsigned Opc = RHS.getOpcode();
12279   switch (Opc) {
12280   default: break;
12281   case ISD::ZERO_EXTEND:
12282   case ISD::SIGN_EXTEND:
12283   case ISD::ANY_EXTEND: {
12284     auto Cond = RHS.getOperand(0);
12285     // If this won't be a real VOPC output, we would still need to insert an
12286     // extra instruction anyway.
12287     if (!isBoolSGPR(Cond))
12288       break;
12289     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
12290     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
12291     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
12292     return DAG.getNode(Opc, SL, VTList, Args);
12293   }
12294   }
12295 
12296   if (LHS.getOpcode() == ISD::USUBO_CARRY) {
12297     // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc
12298     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
12299     if (!C || !C->isZero())
12300       return SDValue();
12301     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
12302     return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args);
12303   }
12304   return SDValue();
12305 }
12306 
12307 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
12308   DAGCombinerInfo &DCI) const {
12309 
12310   if (N->getValueType(0) != MVT::i32)
12311     return SDValue();
12312 
12313   if (!isNullConstant(N->getOperand(1)))
12314     return SDValue();
12315 
12316   SelectionDAG &DAG = DCI.DAG;
12317   SDValue LHS = N->getOperand(0);
12318 
12319   // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc
12320   // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc
12321   unsigned LHSOpc = LHS.getOpcode();
12322   unsigned Opc = N->getOpcode();
12323   if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) ||
12324       (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) {
12325     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
12326     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
12327   }
12328   return SDValue();
12329 }
12330 
12331 SDValue SITargetLowering::performFAddCombine(SDNode *N,
12332                                              DAGCombinerInfo &DCI) const {
12333   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
12334     return SDValue();
12335 
12336   SelectionDAG &DAG = DCI.DAG;
12337   EVT VT = N->getValueType(0);
12338 
12339   SDLoc SL(N);
12340   SDValue LHS = N->getOperand(0);
12341   SDValue RHS = N->getOperand(1);
12342 
12343   // These should really be instruction patterns, but writing patterns with
12344   // source modifiers is a pain.
12345 
12346   // fadd (fadd (a, a), b) -> mad 2.0, a, b
12347   if (LHS.getOpcode() == ISD::FADD) {
12348     SDValue A = LHS.getOperand(0);
12349     if (A == LHS.getOperand(1)) {
12350       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
12351       if (FusedOp != 0) {
12352         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
12353         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
12354       }
12355     }
12356   }
12357 
12358   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
12359   if (RHS.getOpcode() == ISD::FADD) {
12360     SDValue A = RHS.getOperand(0);
12361     if (A == RHS.getOperand(1)) {
12362       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
12363       if (FusedOp != 0) {
12364         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
12365         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
12366       }
12367     }
12368   }
12369 
12370   return SDValue();
12371 }
12372 
12373 SDValue SITargetLowering::performFSubCombine(SDNode *N,
12374                                              DAGCombinerInfo &DCI) const {
12375   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
12376     return SDValue();
12377 
12378   SelectionDAG &DAG = DCI.DAG;
12379   SDLoc SL(N);
12380   EVT VT = N->getValueType(0);
12381   assert(!VT.isVector());
12382 
12383   // Try to get the fneg to fold into the source modifier. This undoes generic
12384   // DAG combines and folds them into the mad.
12385   //
12386   // Only do this if we are not trying to support denormals. v_mad_f32 does
12387   // not support denormals ever.
12388   SDValue LHS = N->getOperand(0);
12389   SDValue RHS = N->getOperand(1);
12390   if (LHS.getOpcode() == ISD::FADD) {
12391     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
12392     SDValue A = LHS.getOperand(0);
12393     if (A == LHS.getOperand(1)) {
12394       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
12395       if (FusedOp != 0){
12396         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
12397         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
12398 
12399         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
12400       }
12401     }
12402   }
12403 
12404   if (RHS.getOpcode() == ISD::FADD) {
12405     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
12406 
12407     SDValue A = RHS.getOperand(0);
12408     if (A == RHS.getOperand(1)) {
12409       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
12410       if (FusedOp != 0){
12411         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
12412         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
12413       }
12414     }
12415   }
12416 
12417   return SDValue();
12418 }
12419 
12420 SDValue SITargetLowering::performFMACombine(SDNode *N,
12421                                             DAGCombinerInfo &DCI) const {
12422   SelectionDAG &DAG = DCI.DAG;
12423   EVT VT = N->getValueType(0);
12424   SDLoc SL(N);
12425 
12426   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
12427     return SDValue();
12428 
12429   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
12430   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
12431   SDValue Op1 = N->getOperand(0);
12432   SDValue Op2 = N->getOperand(1);
12433   SDValue FMA = N->getOperand(2);
12434 
12435   if (FMA.getOpcode() != ISD::FMA ||
12436       Op1.getOpcode() != ISD::FP_EXTEND ||
12437       Op2.getOpcode() != ISD::FP_EXTEND)
12438     return SDValue();
12439 
12440   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
12441   // regardless of the denorm mode setting. Therefore,
12442   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
12443   const TargetOptions &Options = DAG.getTarget().Options;
12444   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
12445       (N->getFlags().hasAllowContract() &&
12446        FMA->getFlags().hasAllowContract())) {
12447     Op1 = Op1.getOperand(0);
12448     Op2 = Op2.getOperand(0);
12449     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12450         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12451       return SDValue();
12452 
12453     SDValue Vec1 = Op1.getOperand(0);
12454     SDValue Idx1 = Op1.getOperand(1);
12455     SDValue Vec2 = Op2.getOperand(0);
12456 
12457     SDValue FMAOp1 = FMA.getOperand(0);
12458     SDValue FMAOp2 = FMA.getOperand(1);
12459     SDValue FMAAcc = FMA.getOperand(2);
12460 
12461     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
12462         FMAOp2.getOpcode() != ISD::FP_EXTEND)
12463       return SDValue();
12464 
12465     FMAOp1 = FMAOp1.getOperand(0);
12466     FMAOp2 = FMAOp2.getOperand(0);
12467     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12468         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12469       return SDValue();
12470 
12471     SDValue Vec3 = FMAOp1.getOperand(0);
12472     SDValue Vec4 = FMAOp2.getOperand(0);
12473     SDValue Idx2 = FMAOp1.getOperand(1);
12474 
12475     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
12476         // Idx1 and Idx2 cannot be the same.
12477         Idx1 == Idx2)
12478       return SDValue();
12479 
12480     if (Vec1 == Vec2 || Vec3 == Vec4)
12481       return SDValue();
12482 
12483     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
12484       return SDValue();
12485 
12486     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
12487         (Vec1 == Vec4 && Vec2 == Vec3)) {
12488       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
12489                          DAG.getTargetConstant(0, SL, MVT::i1));
12490     }
12491   }
12492   return SDValue();
12493 }
12494 
12495 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
12496                                               DAGCombinerInfo &DCI) const {
12497   SelectionDAG &DAG = DCI.DAG;
12498   SDLoc SL(N);
12499 
12500   SDValue LHS = N->getOperand(0);
12501   SDValue RHS = N->getOperand(1);
12502   EVT VT = LHS.getValueType();
12503   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12504 
12505   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
12506   if (!CRHS) {
12507     CRHS = dyn_cast<ConstantSDNode>(LHS);
12508     if (CRHS) {
12509       std::swap(LHS, RHS);
12510       CC = getSetCCSwappedOperands(CC);
12511     }
12512   }
12513 
12514   if (CRHS) {
12515     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
12516         isBoolSGPR(LHS.getOperand(0))) {
12517       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
12518       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
12519       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
12520       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
12521       if ((CRHS->isAllOnes() &&
12522            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
12523           (CRHS->isZero() &&
12524            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
12525         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
12526                            DAG.getConstant(-1, SL, MVT::i1));
12527       if ((CRHS->isAllOnes() &&
12528            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
12529           (CRHS->isZero() &&
12530            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
12531         return LHS.getOperand(0);
12532     }
12533 
12534     const APInt &CRHSVal = CRHS->getAPIntValue();
12535     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
12536         LHS.getOpcode() == ISD::SELECT &&
12537         isa<ConstantSDNode>(LHS.getOperand(1)) &&
12538         isa<ConstantSDNode>(LHS.getOperand(2)) &&
12539         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
12540         isBoolSGPR(LHS.getOperand(0))) {
12541       // Given CT != FT:
12542       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
12543       // setcc (select cc, CT, CF), CF, ne => cc
12544       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
12545       // setcc (select cc, CT, CF), CT, eq => cc
12546       const APInt &CT = LHS.getConstantOperandAPInt(1);
12547       const APInt &CF = LHS.getConstantOperandAPInt(2);
12548 
12549       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
12550           (CT == CRHSVal && CC == ISD::SETNE))
12551         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
12552                            DAG.getConstant(-1, SL, MVT::i1));
12553       if ((CF == CRHSVal && CC == ISD::SETNE) ||
12554           (CT == CRHSVal && CC == ISD::SETEQ))
12555         return LHS.getOperand(0);
12556     }
12557   }
12558 
12559   if (VT != MVT::f32 && VT != MVT::f64 &&
12560       (!Subtarget->has16BitInsts() || VT != MVT::f16))
12561     return SDValue();
12562 
12563   // Match isinf/isfinite pattern
12564   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
12565   // (fcmp one (fabs x), inf) -> (fp_class x,
12566   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
12567   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
12568     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
12569     if (!CRHS)
12570       return SDValue();
12571 
12572     const APFloat &APF = CRHS->getValueAPF();
12573     if (APF.isInfinity() && !APF.isNegative()) {
12574       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
12575                                  SIInstrFlags::N_INFINITY;
12576       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
12577                                     SIInstrFlags::P_ZERO |
12578                                     SIInstrFlags::N_NORMAL |
12579                                     SIInstrFlags::P_NORMAL |
12580                                     SIInstrFlags::N_SUBNORMAL |
12581                                     SIInstrFlags::P_SUBNORMAL;
12582       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
12583       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
12584                          DAG.getConstant(Mask, SL, MVT::i32));
12585     }
12586   }
12587 
12588   return SDValue();
12589 }
12590 
12591 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
12592                                                      DAGCombinerInfo &DCI) const {
12593   SelectionDAG &DAG = DCI.DAG;
12594   SDLoc SL(N);
12595   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
12596 
12597   SDValue Src = N->getOperand(0);
12598   SDValue Shift = N->getOperand(0);
12599 
12600   // TODO: Extend type shouldn't matter (assuming legal types).
12601   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
12602     Shift = Shift.getOperand(0);
12603 
12604   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
12605     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
12606     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
12607     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
12608     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
12609     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
12610     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
12611       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
12612                                  SDLoc(Shift.getOperand(0)), MVT::i32);
12613 
12614       unsigned ShiftOffset = 8 * Offset;
12615       if (Shift.getOpcode() == ISD::SHL)
12616         ShiftOffset -= C->getZExtValue();
12617       else
12618         ShiftOffset += C->getZExtValue();
12619 
12620       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
12621         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
12622                            MVT::f32, Shifted);
12623       }
12624     }
12625   }
12626 
12627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12628   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
12629   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
12630     // We simplified Src. If this node is not dead, visit it again so it is
12631     // folded properly.
12632     if (N->getOpcode() != ISD::DELETED_NODE)
12633       DCI.AddToWorklist(N);
12634     return SDValue(N, 0);
12635   }
12636 
12637   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
12638   if (SDValue DemandedSrc =
12639           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
12640     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
12641 
12642   return SDValue();
12643 }
12644 
12645 SDValue SITargetLowering::performClampCombine(SDNode *N,
12646                                               DAGCombinerInfo &DCI) const {
12647   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
12648   if (!CSrc)
12649     return SDValue();
12650 
12651   const MachineFunction &MF = DCI.DAG.getMachineFunction();
12652   const APFloat &F = CSrc->getValueAPF();
12653   APFloat Zero = APFloat::getZero(F.getSemantics());
12654   if (F < Zero ||
12655       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
12656     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
12657   }
12658 
12659   APFloat One(F.getSemantics(), "1.0");
12660   if (F > One)
12661     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
12662 
12663   return SDValue(CSrc, 0);
12664 }
12665 
12666 
12667 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
12668                                             DAGCombinerInfo &DCI) const {
12669   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
12670     return SDValue();
12671   switch (N->getOpcode()) {
12672   case ISD::ADD:
12673     return performAddCombine(N, DCI);
12674   case ISD::SUB:
12675     return performSubCombine(N, DCI);
12676   case ISD::UADDO_CARRY:
12677   case ISD::USUBO_CARRY:
12678     return performAddCarrySubCarryCombine(N, DCI);
12679   case ISD::FADD:
12680     return performFAddCombine(N, DCI);
12681   case ISD::FSUB:
12682     return performFSubCombine(N, DCI);
12683   case ISD::SETCC:
12684     return performSetCCCombine(N, DCI);
12685   case ISD::FMAXNUM:
12686   case ISD::FMINNUM:
12687   case ISD::FMAXNUM_IEEE:
12688   case ISD::FMINNUM_IEEE:
12689   case ISD::SMAX:
12690   case ISD::SMIN:
12691   case ISD::UMAX:
12692   case ISD::UMIN:
12693   case AMDGPUISD::FMIN_LEGACY:
12694   case AMDGPUISD::FMAX_LEGACY:
12695     return performMinMaxCombine(N, DCI);
12696   case ISD::FMA:
12697     return performFMACombine(N, DCI);
12698   case ISD::AND:
12699     return performAndCombine(N, DCI);
12700   case ISD::OR:
12701     return performOrCombine(N, DCI);
12702   case ISD::XOR:
12703     return performXorCombine(N, DCI);
12704   case ISD::ZERO_EXTEND:
12705     return performZeroExtendCombine(N, DCI);
12706   case ISD::SIGN_EXTEND_INREG:
12707     return performSignExtendInRegCombine(N , DCI);
12708   case AMDGPUISD::FP_CLASS:
12709     return performClassCombine(N, DCI);
12710   case ISD::FCANONICALIZE:
12711     return performFCanonicalizeCombine(N, DCI);
12712   case AMDGPUISD::RCP:
12713     return performRcpCombine(N, DCI);
12714   case ISD::FLDEXP:
12715   case AMDGPUISD::FRACT:
12716   case AMDGPUISD::RSQ:
12717   case AMDGPUISD::RCP_LEGACY:
12718   case AMDGPUISD::RCP_IFLAG:
12719   case AMDGPUISD::RSQ_CLAMP: {
12720     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
12721     SDValue Src = N->getOperand(0);
12722     if (Src.isUndef())
12723       return Src;
12724     break;
12725   }
12726   case ISD::SINT_TO_FP:
12727   case ISD::UINT_TO_FP:
12728     return performUCharToFloatCombine(N, DCI);
12729   case ISD::FCOPYSIGN:
12730     return performFCopySignCombine(N, DCI);
12731   case AMDGPUISD::CVT_F32_UBYTE0:
12732   case AMDGPUISD::CVT_F32_UBYTE1:
12733   case AMDGPUISD::CVT_F32_UBYTE2:
12734   case AMDGPUISD::CVT_F32_UBYTE3:
12735     return performCvtF32UByteNCombine(N, DCI);
12736   case AMDGPUISD::FMED3:
12737     return performFMed3Combine(N, DCI);
12738   case AMDGPUISD::CVT_PKRTZ_F16_F32:
12739     return performCvtPkRTZCombine(N, DCI);
12740   case AMDGPUISD::CLAMP:
12741     return performClampCombine(N, DCI);
12742   case ISD::SCALAR_TO_VECTOR: {
12743     SelectionDAG &DAG = DCI.DAG;
12744     EVT VT = N->getValueType(0);
12745 
12746     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
12747     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
12748       SDLoc SL(N);
12749       SDValue Src = N->getOperand(0);
12750       EVT EltVT = Src.getValueType();
12751       if (EltVT == MVT::f16)
12752         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
12753 
12754       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
12755       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
12756     }
12757 
12758     break;
12759   }
12760   case ISD::EXTRACT_VECTOR_ELT:
12761     return performExtractVectorEltCombine(N, DCI);
12762   case ISD::INSERT_VECTOR_ELT:
12763     return performInsertVectorEltCombine(N, DCI);
12764   case ISD::FP_ROUND:
12765     return performFPRoundCombine(N, DCI);
12766   case ISD::LOAD: {
12767     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
12768       return Widended;
12769     [[fallthrough]];
12770   }
12771   default: {
12772     if (!DCI.isBeforeLegalize()) {
12773       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
12774         return performMemSDNodeCombine(MemNode, DCI);
12775     }
12776 
12777     break;
12778   }
12779   }
12780 
12781   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
12782 }
12783 
12784 /// Helper function for adjustWritemask
12785 static unsigned SubIdx2Lane(unsigned Idx) {
12786   switch (Idx) {
12787   default: return ~0u;
12788   case AMDGPU::sub0: return 0;
12789   case AMDGPU::sub1: return 1;
12790   case AMDGPU::sub2: return 2;
12791   case AMDGPU::sub3: return 3;
12792   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
12793   }
12794 }
12795 
12796 /// Adjust the writemask of MIMG instructions
12797 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
12798                                           SelectionDAG &DAG) const {
12799   unsigned Opcode = Node->getMachineOpcode();
12800 
12801   // Subtract 1 because the vdata output is not a MachineSDNode operand.
12802   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
12803   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
12804     return Node; // not implemented for D16
12805 
12806   SDNode *Users[5] = { nullptr };
12807   unsigned Lane = 0;
12808   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
12809   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
12810   unsigned NewDmask = 0;
12811   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
12812   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
12813   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
12814                   Node->getConstantOperandVal(LWEIdx))
12815                      ? true
12816                      : false;
12817   unsigned TFCLane = 0;
12818   bool HasChain = Node->getNumValues() > 1;
12819 
12820   if (OldDmask == 0) {
12821     // These are folded out, but on the chance it happens don't assert.
12822     return Node;
12823   }
12824 
12825   unsigned OldBitsSet = llvm::popcount(OldDmask);
12826   // Work out which is the TFE/LWE lane if that is enabled.
12827   if (UsesTFC) {
12828     TFCLane = OldBitsSet;
12829   }
12830 
12831   // Try to figure out the used register components
12832   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
12833        I != E; ++I) {
12834 
12835     // Don't look at users of the chain.
12836     if (I.getUse().getResNo() != 0)
12837       continue;
12838 
12839     // Abort if we can't understand the usage
12840     if (!I->isMachineOpcode() ||
12841         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
12842       return Node;
12843 
12844     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
12845     // Note that subregs are packed, i.e. Lane==0 is the first bit set
12846     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
12847     // set, etc.
12848     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
12849     if (Lane == ~0u)
12850       return Node;
12851 
12852     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
12853     if (UsesTFC && Lane == TFCLane) {
12854       Users[Lane] = *I;
12855     } else {
12856       // Set which texture component corresponds to the lane.
12857       unsigned Comp;
12858       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
12859         Comp = llvm::countr_zero(Dmask);
12860         Dmask &= ~(1 << Comp);
12861       }
12862 
12863       // Abort if we have more than one user per component.
12864       if (Users[Lane])
12865         return Node;
12866 
12867       Users[Lane] = *I;
12868       NewDmask |= 1 << Comp;
12869     }
12870   }
12871 
12872   // Don't allow 0 dmask, as hardware assumes one channel enabled.
12873   bool NoChannels = !NewDmask;
12874   if (NoChannels) {
12875     if (!UsesTFC) {
12876       // No uses of the result and not using TFC. Then do nothing.
12877       return Node;
12878     }
12879     // If the original dmask has one channel - then nothing to do
12880     if (OldBitsSet == 1)
12881       return Node;
12882     // Use an arbitrary dmask - required for the instruction to work
12883     NewDmask = 1;
12884   }
12885   // Abort if there's no change
12886   if (NewDmask == OldDmask)
12887     return Node;
12888 
12889   unsigned BitsSet = llvm::popcount(NewDmask);
12890 
12891   // Check for TFE or LWE - increase the number of channels by one to account
12892   // for the extra return value
12893   // This will need adjustment for D16 if this is also included in
12894   // adjustWriteMask (this function) but at present D16 are excluded.
12895   unsigned NewChannels = BitsSet + UsesTFC;
12896 
12897   int NewOpcode =
12898       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
12899   assert(NewOpcode != -1 &&
12900          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
12901          "failed to find equivalent MIMG op");
12902 
12903   // Adjust the writemask in the node
12904   SmallVector<SDValue, 12> Ops;
12905   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
12906   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
12907   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
12908 
12909   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
12910 
12911   MVT ResultVT = NewChannels == 1 ?
12912     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
12913                            NewChannels == 5 ? 8 : NewChannels);
12914   SDVTList NewVTList = HasChain ?
12915     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
12916 
12917 
12918   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
12919                                               NewVTList, Ops);
12920 
12921   if (HasChain) {
12922     // Update chain.
12923     DAG.setNodeMemRefs(NewNode, Node->memoperands());
12924     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
12925   }
12926 
12927   if (NewChannels == 1) {
12928     assert(Node->hasNUsesOfValue(1, 0));
12929     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
12930                                       SDLoc(Node), Users[Lane]->getValueType(0),
12931                                       SDValue(NewNode, 0));
12932     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
12933     return nullptr;
12934   }
12935 
12936   // Update the users of the node with the new indices
12937   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
12938     SDNode *User = Users[i];
12939     if (!User) {
12940       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
12941       // Users[0] is still nullptr because channel 0 doesn't really have a use.
12942       if (i || !NoChannels)
12943         continue;
12944     } else {
12945       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
12946       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
12947     }
12948 
12949     switch (Idx) {
12950     default: break;
12951     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
12952     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
12953     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
12954     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
12955     }
12956   }
12957 
12958   DAG.RemoveDeadNode(Node);
12959   return nullptr;
12960 }
12961 
12962 static bool isFrameIndexOp(SDValue Op) {
12963   if (Op.getOpcode() == ISD::AssertZext)
12964     Op = Op.getOperand(0);
12965 
12966   return isa<FrameIndexSDNode>(Op);
12967 }
12968 
12969 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
12970 /// with frame index operands.
12971 /// LLVM assumes that inputs are to these instructions are registers.
12972 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
12973                                                         SelectionDAG &DAG) const {
12974   if (Node->getOpcode() == ISD::CopyToReg) {
12975     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
12976     SDValue SrcVal = Node->getOperand(2);
12977 
12978     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
12979     // to try understanding copies to physical registers.
12980     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
12981       SDLoc SL(Node);
12982       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12983       SDValue VReg = DAG.getRegister(
12984         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
12985 
12986       SDNode *Glued = Node->getGluedNode();
12987       SDValue ToVReg
12988         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
12989                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
12990       SDValue ToResultReg
12991         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
12992                            VReg, ToVReg.getValue(1));
12993       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
12994       DAG.RemoveDeadNode(Node);
12995       return ToResultReg.getNode();
12996     }
12997   }
12998 
12999   SmallVector<SDValue, 8> Ops;
13000   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
13001     if (!isFrameIndexOp(Node->getOperand(i))) {
13002       Ops.push_back(Node->getOperand(i));
13003       continue;
13004     }
13005 
13006     SDLoc DL(Node);
13007     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
13008                                      Node->getOperand(i).getValueType(),
13009                                      Node->getOperand(i)), 0));
13010   }
13011 
13012   return DAG.UpdateNodeOperands(Node, Ops);
13013 }
13014 
13015 /// Fold the instructions after selecting them.
13016 /// Returns null if users were already updated.
13017 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
13018                                           SelectionDAG &DAG) const {
13019   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13020   unsigned Opcode = Node->getMachineOpcode();
13021 
13022   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
13023       !TII->isGather4(Opcode) &&
13024       AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) {
13025     return adjustWritemask(Node, DAG);
13026   }
13027 
13028   if (Opcode == AMDGPU::INSERT_SUBREG ||
13029       Opcode == AMDGPU::REG_SEQUENCE) {
13030     legalizeTargetIndependentNode(Node, DAG);
13031     return Node;
13032   }
13033 
13034   switch (Opcode) {
13035   case AMDGPU::V_DIV_SCALE_F32_e64:
13036   case AMDGPU::V_DIV_SCALE_F64_e64: {
13037     // Satisfy the operand register constraint when one of the inputs is
13038     // undefined. Ordinarily each undef value will have its own implicit_def of
13039     // a vreg, so force these to use a single register.
13040     SDValue Src0 = Node->getOperand(1);
13041     SDValue Src1 = Node->getOperand(3);
13042     SDValue Src2 = Node->getOperand(5);
13043 
13044     if ((Src0.isMachineOpcode() &&
13045          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
13046         (Src0 == Src1 || Src0 == Src2))
13047       break;
13048 
13049     MVT VT = Src0.getValueType().getSimpleVT();
13050     const TargetRegisterClass *RC =
13051         getRegClassFor(VT, Src0.getNode()->isDivergent());
13052 
13053     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
13054     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
13055 
13056     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
13057                                       UndefReg, Src0, SDValue());
13058 
13059     // src0 must be the same register as src1 or src2, even if the value is
13060     // undefined, so make sure we don't violate this constraint.
13061     if (Src0.isMachineOpcode() &&
13062         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
13063       if (Src1.isMachineOpcode() &&
13064           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
13065         Src0 = Src1;
13066       else if (Src2.isMachineOpcode() &&
13067                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
13068         Src0 = Src2;
13069       else {
13070         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
13071         Src0 = UndefReg;
13072         Src1 = UndefReg;
13073       }
13074     } else
13075       break;
13076 
13077     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
13078     Ops[1] = Src0;
13079     Ops[3] = Src1;
13080     Ops[5] = Src2;
13081     Ops.push_back(ImpDef.getValue(1));
13082     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
13083   }
13084   default:
13085     break;
13086   }
13087 
13088   return Node;
13089 }
13090 
13091 // Any MIMG instructions that use tfe or lwe require an initialization of the
13092 // result register that will be written in the case of a memory access failure.
13093 // The required code is also added to tie this init code to the result of the
13094 // img instruction.
13095 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
13096   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13097   const SIRegisterInfo &TRI = TII->getRegisterInfo();
13098   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
13099   MachineBasicBlock &MBB = *MI.getParent();
13100 
13101   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
13102   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
13103   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
13104 
13105   if (!TFE && !LWE) // intersect_ray
13106     return;
13107 
13108   unsigned TFEVal = TFE ? TFE->getImm() : 0;
13109   unsigned LWEVal = LWE->getImm();
13110   unsigned D16Val = D16 ? D16->getImm() : 0;
13111 
13112   if (!TFEVal && !LWEVal)
13113     return;
13114 
13115   // At least one of TFE or LWE are non-zero
13116   // We have to insert a suitable initialization of the result value and
13117   // tie this to the dest of the image instruction.
13118 
13119   const DebugLoc &DL = MI.getDebugLoc();
13120 
13121   int DstIdx =
13122       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
13123 
13124   // Calculate which dword we have to initialize to 0.
13125   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
13126 
13127   // check that dmask operand is found.
13128   assert(MO_Dmask && "Expected dmask operand in instruction");
13129 
13130   unsigned dmask = MO_Dmask->getImm();
13131   // Determine the number of active lanes taking into account the
13132   // Gather4 special case
13133   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask);
13134 
13135   bool Packed = !Subtarget->hasUnpackedD16VMem();
13136 
13137   unsigned InitIdx =
13138       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
13139 
13140   // Abandon attempt if the dst size isn't large enough
13141   // - this is in fact an error but this is picked up elsewhere and
13142   // reported correctly.
13143   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
13144   if (DstSize < InitIdx)
13145     return;
13146 
13147   // Create a register for the initialization value.
13148   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
13149   unsigned NewDst = 0; // Final initialized value will be in here
13150 
13151   // If PRTStrictNull feature is enabled (the default) then initialize
13152   // all the result registers to 0, otherwise just the error indication
13153   // register (VGPRn+1)
13154   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
13155   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
13156 
13157   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
13158   for (; SizeLeft; SizeLeft--, CurrIdx++) {
13159     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
13160     // Initialize dword
13161     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
13162     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
13163       .addImm(0);
13164     // Insert into the super-reg
13165     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
13166       .addReg(PrevDst)
13167       .addReg(SubReg)
13168       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
13169 
13170     PrevDst = NewDst;
13171   }
13172 
13173   // Add as an implicit operand
13174   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
13175 
13176   // Tie the just added implicit operand to the dst
13177   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
13178 }
13179 
13180 /// Assign the register class depending on the number of
13181 /// bits set in the writemask
13182 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
13183                                                      SDNode *Node) const {
13184   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13185 
13186   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
13187 
13188   if (TII->isVOP3(MI.getOpcode())) {
13189     // Make sure constant bus requirements are respected.
13190     TII->legalizeOperandsVOP3(MRI, MI);
13191 
13192     // Prefer VGPRs over AGPRs in mAI instructions where possible.
13193     // This saves a chain-copy of registers and better balance register
13194     // use between vgpr and agpr as agpr tuples tend to be big.
13195     if (!MI.getDesc().operands().empty()) {
13196       unsigned Opc = MI.getOpcode();
13197       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
13198       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
13199                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
13200         if (I == -1)
13201           break;
13202         MachineOperand &Op = MI.getOperand(I);
13203         if (!Op.isReg() || !Op.getReg().isVirtual())
13204           continue;
13205         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
13206         if (!TRI->hasAGPRs(RC))
13207           continue;
13208         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
13209         if (!Src || !Src->isCopy() ||
13210             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
13211           continue;
13212         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
13213         // All uses of agpr64 and agpr32 can also accept vgpr except for
13214         // v_accvgpr_read, but we do not produce agpr reads during selection,
13215         // so no use checks are needed.
13216         MRI.setRegClass(Op.getReg(), NewRC);
13217       }
13218 
13219       // Resolve the rest of AV operands to AGPRs.
13220       if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
13221         if (Src2->isReg() && Src2->getReg().isVirtual()) {
13222           auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
13223           if (TRI->isVectorSuperClass(RC)) {
13224             auto *NewRC = TRI->getEquivalentAGPRClass(RC);
13225             MRI.setRegClass(Src2->getReg(), NewRC);
13226             if (Src2->isTied())
13227               MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
13228           }
13229         }
13230       }
13231     }
13232 
13233     return;
13234   }
13235 
13236   if (TII->isMIMG(MI)) {
13237     if (!MI.mayStore())
13238       AddIMGInit(MI);
13239     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
13240   }
13241 }
13242 
13243 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
13244                               uint64_t Val) {
13245   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
13246   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
13247 }
13248 
13249 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
13250                                                 const SDLoc &DL,
13251                                                 SDValue Ptr) const {
13252   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13253 
13254   // Build the half of the subregister with the constants before building the
13255   // full 128-bit register. If we are building multiple resource descriptors,
13256   // this will allow CSEing of the 2-component register.
13257   const SDValue Ops0[] = {
13258     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
13259     buildSMovImm32(DAG, DL, 0),
13260     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
13261     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
13262     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
13263   };
13264 
13265   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
13266                                                 MVT::v2i32, Ops0), 0);
13267 
13268   // Combine the constants and the pointer.
13269   const SDValue Ops1[] = {
13270     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
13271     Ptr,
13272     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
13273     SubRegHi,
13274     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
13275   };
13276 
13277   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
13278 }
13279 
13280 /// Return a resource descriptor with the 'Add TID' bit enabled
13281 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
13282 ///        of the resource descriptor) to create an offset, which is added to
13283 ///        the resource pointer.
13284 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
13285                                            SDValue Ptr, uint32_t RsrcDword1,
13286                                            uint64_t RsrcDword2And3) const {
13287   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
13288   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
13289   if (RsrcDword1) {
13290     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
13291                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
13292                     0);
13293   }
13294 
13295   SDValue DataLo = buildSMovImm32(DAG, DL,
13296                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
13297   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
13298 
13299   const SDValue Ops[] = {
13300     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
13301     PtrLo,
13302     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
13303     PtrHi,
13304     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
13305     DataLo,
13306     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
13307     DataHi,
13308     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
13309   };
13310 
13311   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
13312 }
13313 
13314 //===----------------------------------------------------------------------===//
13315 //                         SI Inline Assembly Support
13316 //===----------------------------------------------------------------------===//
13317 
13318 std::pair<unsigned, const TargetRegisterClass *>
13319 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
13320                                                StringRef Constraint,
13321                                                MVT VT) const {
13322   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
13323 
13324   const TargetRegisterClass *RC = nullptr;
13325   if (Constraint.size() == 1) {
13326     const unsigned BitWidth = VT.getSizeInBits();
13327     switch (Constraint[0]) {
13328     default:
13329       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13330     case 's':
13331     case 'r':
13332       switch (BitWidth) {
13333       case 16:
13334         RC = &AMDGPU::SReg_32RegClass;
13335         break;
13336       case 64:
13337         RC = &AMDGPU::SGPR_64RegClass;
13338         break;
13339       default:
13340         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
13341         if (!RC)
13342           return std::pair(0U, nullptr);
13343         break;
13344       }
13345       break;
13346     case 'v':
13347       switch (BitWidth) {
13348       case 16:
13349         RC = &AMDGPU::VGPR_32RegClass;
13350         break;
13351       default:
13352         RC = TRI->getVGPRClassForBitWidth(BitWidth);
13353         if (!RC)
13354           return std::pair(0U, nullptr);
13355         break;
13356       }
13357       break;
13358     case 'a':
13359       if (!Subtarget->hasMAIInsts())
13360         break;
13361       switch (BitWidth) {
13362       case 16:
13363         RC = &AMDGPU::AGPR_32RegClass;
13364         break;
13365       default:
13366         RC = TRI->getAGPRClassForBitWidth(BitWidth);
13367         if (!RC)
13368           return std::pair(0U, nullptr);
13369         break;
13370       }
13371       break;
13372     }
13373     // We actually support i128, i16 and f16 as inline parameters
13374     // even if they are not reported as legal
13375     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
13376                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
13377       return std::pair(0U, RC);
13378   }
13379 
13380   if (Constraint.startswith("{") && Constraint.endswith("}")) {
13381     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
13382     if (RegName.consume_front("v")) {
13383       RC = &AMDGPU::VGPR_32RegClass;
13384     } else if (RegName.consume_front("s")) {
13385       RC = &AMDGPU::SGPR_32RegClass;
13386     } else if (RegName.consume_front("a")) {
13387       RC = &AMDGPU::AGPR_32RegClass;
13388     }
13389 
13390     if (RC) {
13391       uint32_t Idx;
13392       if (RegName.consume_front("[")) {
13393         uint32_t End;
13394         bool Failed = RegName.consumeInteger(10, Idx);
13395         Failed |= !RegName.consume_front(":");
13396         Failed |= RegName.consumeInteger(10, End);
13397         Failed |= !RegName.consume_back("]");
13398         if (!Failed) {
13399           uint32_t Width = (End - Idx + 1) * 32;
13400           MCRegister Reg = RC->getRegister(Idx);
13401           if (SIRegisterInfo::isVGPRClass(RC))
13402             RC = TRI->getVGPRClassForBitWidth(Width);
13403           else if (SIRegisterInfo::isSGPRClass(RC))
13404             RC = TRI->getSGPRClassForBitWidth(Width);
13405           else if (SIRegisterInfo::isAGPRClass(RC))
13406             RC = TRI->getAGPRClassForBitWidth(Width);
13407           if (RC) {
13408             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
13409             return std::pair(Reg, RC);
13410           }
13411         }
13412       } else {
13413         bool Failed = RegName.getAsInteger(10, Idx);
13414         if (!Failed && Idx < RC->getNumRegs())
13415           return std::pair(RC->getRegister(Idx), RC);
13416       }
13417     }
13418   }
13419 
13420   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13421   if (Ret.first)
13422     Ret.second = TRI->getPhysRegBaseClass(Ret.first);
13423 
13424   return Ret;
13425 }
13426 
13427 static bool isImmConstraint(StringRef Constraint) {
13428   if (Constraint.size() == 1) {
13429     switch (Constraint[0]) {
13430     default: break;
13431     case 'I':
13432     case 'J':
13433     case 'A':
13434     case 'B':
13435     case 'C':
13436       return true;
13437     }
13438   } else if (Constraint == "DA" ||
13439              Constraint == "DB") {
13440     return true;
13441   }
13442   return false;
13443 }
13444 
13445 SITargetLowering::ConstraintType
13446 SITargetLowering::getConstraintType(StringRef Constraint) const {
13447   if (Constraint.size() == 1) {
13448     switch (Constraint[0]) {
13449     default: break;
13450     case 's':
13451     case 'v':
13452     case 'a':
13453       return C_RegisterClass;
13454     }
13455   }
13456   if (isImmConstraint(Constraint)) {
13457     return C_Other;
13458   }
13459   return TargetLowering::getConstraintType(Constraint);
13460 }
13461 
13462 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
13463   if (!AMDGPU::isInlinableIntLiteral(Val)) {
13464     Val = Val & maskTrailingOnes<uint64_t>(Size);
13465   }
13466   return Val;
13467 }
13468 
13469 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13470                                                     std::string &Constraint,
13471                                                     std::vector<SDValue> &Ops,
13472                                                     SelectionDAG &DAG) const {
13473   if (isImmConstraint(Constraint)) {
13474     uint64_t Val;
13475     if (getAsmOperandConstVal(Op, Val) &&
13476         checkAsmConstraintVal(Op, Constraint, Val)) {
13477       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
13478       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
13479     }
13480   } else {
13481     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13482   }
13483 }
13484 
13485 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
13486   unsigned Size = Op.getScalarValueSizeInBits();
13487   if (Size > 64)
13488     return false;
13489 
13490   if (Size == 16 && !Subtarget->has16BitInsts())
13491     return false;
13492 
13493   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13494     Val = C->getSExtValue();
13495     return true;
13496   }
13497   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
13498     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
13499     return true;
13500   }
13501   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
13502     if (Size != 16 || Op.getNumOperands() != 2)
13503       return false;
13504     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
13505       return false;
13506     if (ConstantSDNode *C = V->getConstantSplatNode()) {
13507       Val = C->getSExtValue();
13508       return true;
13509     }
13510     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
13511       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
13512       return true;
13513     }
13514   }
13515 
13516   return false;
13517 }
13518 
13519 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
13520                                              const std::string &Constraint,
13521                                              uint64_t Val) const {
13522   if (Constraint.size() == 1) {
13523     switch (Constraint[0]) {
13524     case 'I':
13525       return AMDGPU::isInlinableIntLiteral(Val);
13526     case 'J':
13527       return isInt<16>(Val);
13528     case 'A':
13529       return checkAsmConstraintValA(Op, Val);
13530     case 'B':
13531       return isInt<32>(Val);
13532     case 'C':
13533       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
13534              AMDGPU::isInlinableIntLiteral(Val);
13535     default:
13536       break;
13537     }
13538   } else if (Constraint.size() == 2) {
13539     if (Constraint == "DA") {
13540       int64_t HiBits = static_cast<int32_t>(Val >> 32);
13541       int64_t LoBits = static_cast<int32_t>(Val);
13542       return checkAsmConstraintValA(Op, HiBits, 32) &&
13543              checkAsmConstraintValA(Op, LoBits, 32);
13544     }
13545     if (Constraint == "DB") {
13546       return true;
13547     }
13548   }
13549   llvm_unreachable("Invalid asm constraint");
13550 }
13551 
13552 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
13553                                               uint64_t Val,
13554                                               unsigned MaxSize) const {
13555   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
13556   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
13557   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
13558       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
13559       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
13560     return true;
13561   }
13562   return false;
13563 }
13564 
13565 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
13566   switch (UnalignedClassID) {
13567   case AMDGPU::VReg_64RegClassID:
13568     return AMDGPU::VReg_64_Align2RegClassID;
13569   case AMDGPU::VReg_96RegClassID:
13570     return AMDGPU::VReg_96_Align2RegClassID;
13571   case AMDGPU::VReg_128RegClassID:
13572     return AMDGPU::VReg_128_Align2RegClassID;
13573   case AMDGPU::VReg_160RegClassID:
13574     return AMDGPU::VReg_160_Align2RegClassID;
13575   case AMDGPU::VReg_192RegClassID:
13576     return AMDGPU::VReg_192_Align2RegClassID;
13577   case AMDGPU::VReg_224RegClassID:
13578     return AMDGPU::VReg_224_Align2RegClassID;
13579   case AMDGPU::VReg_256RegClassID:
13580     return AMDGPU::VReg_256_Align2RegClassID;
13581   case AMDGPU::VReg_288RegClassID:
13582     return AMDGPU::VReg_288_Align2RegClassID;
13583   case AMDGPU::VReg_320RegClassID:
13584     return AMDGPU::VReg_320_Align2RegClassID;
13585   case AMDGPU::VReg_352RegClassID:
13586     return AMDGPU::VReg_352_Align2RegClassID;
13587   case AMDGPU::VReg_384RegClassID:
13588     return AMDGPU::VReg_384_Align2RegClassID;
13589   case AMDGPU::VReg_512RegClassID:
13590     return AMDGPU::VReg_512_Align2RegClassID;
13591   case AMDGPU::VReg_1024RegClassID:
13592     return AMDGPU::VReg_1024_Align2RegClassID;
13593   case AMDGPU::AReg_64RegClassID:
13594     return AMDGPU::AReg_64_Align2RegClassID;
13595   case AMDGPU::AReg_96RegClassID:
13596     return AMDGPU::AReg_96_Align2RegClassID;
13597   case AMDGPU::AReg_128RegClassID:
13598     return AMDGPU::AReg_128_Align2RegClassID;
13599   case AMDGPU::AReg_160RegClassID:
13600     return AMDGPU::AReg_160_Align2RegClassID;
13601   case AMDGPU::AReg_192RegClassID:
13602     return AMDGPU::AReg_192_Align2RegClassID;
13603   case AMDGPU::AReg_256RegClassID:
13604     return AMDGPU::AReg_256_Align2RegClassID;
13605   case AMDGPU::AReg_512RegClassID:
13606     return AMDGPU::AReg_512_Align2RegClassID;
13607   case AMDGPU::AReg_1024RegClassID:
13608     return AMDGPU::AReg_1024_Align2RegClassID;
13609   default:
13610     return -1;
13611   }
13612 }
13613 
13614 // Figure out which registers should be reserved for stack access. Only after
13615 // the function is legalized do we know all of the non-spill stack objects or if
13616 // calls are present.
13617 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
13618   MachineRegisterInfo &MRI = MF.getRegInfo();
13619   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
13620   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
13621   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
13622   const SIInstrInfo *TII = ST.getInstrInfo();
13623 
13624   if (Info->isEntryFunction()) {
13625     // Callable functions have fixed registers used for stack access.
13626     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
13627   }
13628 
13629   // TODO: Move this logic to getReservedRegs()
13630   // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling.
13631   unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
13632   Register SReg = ST.isWave32()
13633                       ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
13634                       : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2,
13635                                                      &AMDGPU::SGPR_64RegClass);
13636   Info->setSGPRForEXECCopy(SReg);
13637 
13638   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
13639                              Info->getStackPtrOffsetReg()));
13640   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
13641     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
13642 
13643   // We need to worry about replacing the default register with itself in case
13644   // of MIR testcases missing the MFI.
13645   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
13646     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
13647 
13648   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
13649     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
13650 
13651   Info->limitOccupancy(MF);
13652 
13653   if (ST.isWave32() && !MF.empty()) {
13654     for (auto &MBB : MF) {
13655       for (auto &MI : MBB) {
13656         TII->fixImplicitOperands(MI);
13657       }
13658     }
13659   }
13660 
13661   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
13662   // classes if required. Ideally the register class constraints would differ
13663   // per-subtarget, but there's no easy way to achieve that right now. This is
13664   // not a problem for VGPRs because the correctly aligned VGPR class is implied
13665   // from using them as the register class for legal types.
13666   if (ST.needsAlignedVGPRs()) {
13667     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
13668       const Register Reg = Register::index2VirtReg(I);
13669       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
13670       if (!RC)
13671         continue;
13672       int NewClassID = getAlignedAGPRClassID(RC->getID());
13673       if (NewClassID != -1)
13674         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
13675     }
13676   }
13677 
13678   TargetLoweringBase::finalizeLowering(MF);
13679 }
13680 
13681 void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13682                                                      KnownBits &Known,
13683                                                      const APInt &DemandedElts,
13684                                                      const SelectionDAG &DAG,
13685                                                      unsigned Depth) const {
13686   Known.resetAll();
13687   unsigned Opc = Op.getOpcode();
13688   switch (Opc) {
13689   case ISD::INTRINSIC_WO_CHAIN: {
13690     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13691     switch (IID) {
13692     case Intrinsic::amdgcn_mbcnt_lo:
13693     case Intrinsic::amdgcn_mbcnt_hi: {
13694       const GCNSubtarget &ST =
13695           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
13696       // These return at most the (wavefront size - 1) + src1
13697       // As long as src1 is an immediate we can calc known bits
13698       KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
13699       unsigned Src1ValBits = Src1Known.countMaxActiveBits();
13700       unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2());
13701       // Cater for potential carry
13702       MaxActiveBits += Src1ValBits ? 1 : 0;
13703       unsigned Size = Op.getValueType().getSizeInBits();
13704       if (MaxActiveBits < Size)
13705         Known.Zero.setHighBits(Size - MaxActiveBits);
13706       return;
13707     }
13708     }
13709     break;
13710   }
13711   }
13712   return AMDGPUTargetLowering::computeKnownBitsForTargetNode(
13713       Op, Known, DemandedElts, DAG, Depth);
13714 }
13715 
13716 void SITargetLowering::computeKnownBitsForFrameIndex(
13717   const int FI, KnownBits &Known, const MachineFunction &MF) const {
13718   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
13719 
13720   // Set the high bits to zero based on the maximum allowed scratch size per
13721   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
13722   // calculation won't overflow, so assume the sign bit is never set.
13723   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
13724 }
13725 
13726 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
13727                                    KnownBits &Known, unsigned Dim) {
13728   unsigned MaxValue =
13729       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
13730   Known.Zero.setHighBits(llvm::countl_zero(MaxValue));
13731 }
13732 
13733 void SITargetLowering::computeKnownBitsForTargetInstr(
13734     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
13735     const MachineRegisterInfo &MRI, unsigned Depth) const {
13736   const MachineInstr *MI = MRI.getVRegDef(R);
13737   switch (MI->getOpcode()) {
13738   case AMDGPU::G_INTRINSIC: {
13739     switch (MI->getIntrinsicID()) {
13740     case Intrinsic::amdgcn_workitem_id_x:
13741       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
13742       break;
13743     case Intrinsic::amdgcn_workitem_id_y:
13744       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
13745       break;
13746     case Intrinsic::amdgcn_workitem_id_z:
13747       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
13748       break;
13749     case Intrinsic::amdgcn_mbcnt_lo:
13750     case Intrinsic::amdgcn_mbcnt_hi: {
13751       // These return at most the wavefront size - 1.
13752       unsigned Size = MRI.getType(R).getSizeInBits();
13753       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
13754       break;
13755     }
13756     case Intrinsic::amdgcn_groupstaticsize: {
13757       // We can report everything over the maximum size as 0. We can't report
13758       // based on the actual size because we don't know if it's accurate or not
13759       // at any given point.
13760       Known.Zero.setHighBits(
13761           llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize()));
13762       break;
13763     }
13764     }
13765     break;
13766   }
13767   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
13768     Known.Zero.setHighBits(24);
13769     break;
13770   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
13771     Known.Zero.setHighBits(16);
13772     break;
13773   case AMDGPU::G_AMDGPU_SMED3:
13774   case AMDGPU::G_AMDGPU_UMED3: {
13775     auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs();
13776 
13777     KnownBits Known2;
13778     KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1);
13779     if (Known2.isUnknown())
13780       break;
13781 
13782     KnownBits Known1;
13783     KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1);
13784     if (Known1.isUnknown())
13785       break;
13786 
13787     KnownBits Known0;
13788     KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1);
13789     if (Known0.isUnknown())
13790       break;
13791 
13792     // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling.
13793     Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero;
13794     Known.One = Known0.One & Known1.One & Known2.One;
13795     break;
13796   }
13797   }
13798 }
13799 
13800 Align SITargetLowering::computeKnownAlignForTargetInstr(
13801   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
13802   unsigned Depth) const {
13803   const MachineInstr *MI = MRI.getVRegDef(R);
13804   switch (MI->getOpcode()) {
13805   case AMDGPU::G_INTRINSIC:
13806   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
13807     // FIXME: Can this move to generic code? What about the case where the call
13808     // site specifies a lower alignment?
13809     Intrinsic::ID IID = MI->getIntrinsicID();
13810     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
13811     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
13812     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
13813       return *RetAlign;
13814     return Align(1);
13815   }
13816   default:
13817     return Align(1);
13818   }
13819 }
13820 
13821 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13822   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
13823   const Align CacheLineAlign = Align(64);
13824 
13825   // Pre-GFX10 target did not benefit from loop alignment
13826   if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() ||
13827       getSubtarget()->hasInstFwdPrefetchBug())
13828     return PrefAlign;
13829 
13830   // On GFX10 I$ is 4 x 64 bytes cache lines.
13831   // By default prefetcher keeps one cache line behind and reads two ahead.
13832   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
13833   // behind and one ahead.
13834   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
13835   // If loop fits 64 bytes it always spans no more than two cache lines and
13836   // does not need an alignment.
13837   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
13838   // Else if loop is less or equal 192 bytes we need two lines behind.
13839 
13840   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13841   const MachineBasicBlock *Header = ML->getHeader();
13842   if (Header->getAlignment() != PrefAlign)
13843     return Header->getAlignment(); // Already processed.
13844 
13845   unsigned LoopSize = 0;
13846   for (const MachineBasicBlock *MBB : ML->blocks()) {
13847     // If inner loop block is aligned assume in average half of the alignment
13848     // size to be added as nops.
13849     if (MBB != Header)
13850       LoopSize += MBB->getAlignment().value() / 2;
13851 
13852     for (const MachineInstr &MI : *MBB) {
13853       LoopSize += TII->getInstSizeInBytes(MI);
13854       if (LoopSize > 192)
13855         return PrefAlign;
13856     }
13857   }
13858 
13859   if (LoopSize <= 64)
13860     return PrefAlign;
13861 
13862   if (LoopSize <= 128)
13863     return CacheLineAlign;
13864 
13865   // If any of parent loops is surrounded by prefetch instructions do not
13866   // insert new for inner loop, which would reset parent's settings.
13867   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
13868     if (MachineBasicBlock *Exit = P->getExitBlock()) {
13869       auto I = Exit->getFirstNonDebugInstr();
13870       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
13871         return CacheLineAlign;
13872     }
13873   }
13874 
13875   MachineBasicBlock *Pre = ML->getLoopPreheader();
13876   MachineBasicBlock *Exit = ML->getExitBlock();
13877 
13878   if (Pre && Exit) {
13879     auto PreTerm = Pre->getFirstTerminator();
13880     if (PreTerm == Pre->begin() ||
13881         std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
13882       BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
13883           .addImm(1); // prefetch 2 lines behind PC
13884 
13885     auto ExitHead = Exit->getFirstNonDebugInstr();
13886     if (ExitHead == Exit->end() ||
13887         ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
13888       BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
13889           .addImm(2); // prefetch 1 line behind PC
13890   }
13891 
13892   return CacheLineAlign;
13893 }
13894 
13895 LLVM_ATTRIBUTE_UNUSED
13896 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
13897   assert(N->getOpcode() == ISD::CopyFromReg);
13898   do {
13899     // Follow the chain until we find an INLINEASM node.
13900     N = N->getOperand(0).getNode();
13901     if (N->getOpcode() == ISD::INLINEASM ||
13902         N->getOpcode() == ISD::INLINEASM_BR)
13903       return true;
13904   } while (N->getOpcode() == ISD::CopyFromReg);
13905   return false;
13906 }
13907 
13908 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N,
13909                                                   FunctionLoweringInfo *FLI,
13910                                                   UniformityInfo *UA) const {
13911   switch (N->getOpcode()) {
13912   case ISD::CopyFromReg: {
13913     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
13914     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
13915     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
13916     Register Reg = R->getReg();
13917 
13918     // FIXME: Why does this need to consider isLiveIn?
13919     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
13920       return !TRI->isSGPRReg(MRI, Reg);
13921 
13922     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
13923       return UA->isDivergent(V);
13924 
13925     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
13926     return !TRI->isSGPRReg(MRI, Reg);
13927   }
13928   case ISD::LOAD: {
13929     const LoadSDNode *L = cast<LoadSDNode>(N);
13930     unsigned AS = L->getAddressSpace();
13931     // A flat load may access private memory.
13932     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
13933   }
13934   case ISD::CALLSEQ_END:
13935     return true;
13936   case ISD::INTRINSIC_WO_CHAIN:
13937     return AMDGPU::isIntrinsicSourceOfDivergence(
13938         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
13939   case ISD::INTRINSIC_W_CHAIN:
13940     return AMDGPU::isIntrinsicSourceOfDivergence(
13941         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
13942   case AMDGPUISD::ATOMIC_CMP_SWAP:
13943   case AMDGPUISD::ATOMIC_LOAD_FMIN:
13944   case AMDGPUISD::ATOMIC_LOAD_FMAX:
13945   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
13946   case AMDGPUISD::BUFFER_ATOMIC_ADD:
13947   case AMDGPUISD::BUFFER_ATOMIC_SUB:
13948   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
13949   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
13950   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
13951   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
13952   case AMDGPUISD::BUFFER_ATOMIC_AND:
13953   case AMDGPUISD::BUFFER_ATOMIC_OR:
13954   case AMDGPUISD::BUFFER_ATOMIC_XOR:
13955   case AMDGPUISD::BUFFER_ATOMIC_INC:
13956   case AMDGPUISD::BUFFER_ATOMIC_DEC:
13957   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
13958   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
13959   case AMDGPUISD::BUFFER_ATOMIC_FADD:
13960   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
13961   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
13962     // Target-specific read-modify-write atomics are sources of divergence.
13963     return true;
13964   default:
13965     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
13966       // Generic read-modify-write atomics are sources of divergence.
13967       return A->readMem() && A->writeMem();
13968     }
13969     return false;
13970   }
13971 }
13972 
13973 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
13974                                                EVT VT) const {
13975   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
13976   case MVT::f32:
13977     return !denormalModeIsFlushAllF32(DAG.getMachineFunction());
13978   case MVT::f64:
13979   case MVT::f16:
13980     return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
13981   default:
13982     return false;
13983   }
13984 }
13985 
13986 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
13987                                                MachineFunction &MF) const {
13988   switch (Ty.getScalarSizeInBits()) {
13989   case 32:
13990     return !denormalModeIsFlushAllF32(MF);
13991   case 64:
13992   case 16:
13993     return !denormalModeIsFlushAllF64F16(MF);
13994   default:
13995     return false;
13996   }
13997 }
13998 
13999 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
14000                                                     const SelectionDAG &DAG,
14001                                                     bool SNaN,
14002                                                     unsigned Depth) const {
14003   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
14004     const MachineFunction &MF = DAG.getMachineFunction();
14005     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
14006 
14007     if (Info->getMode().DX10Clamp)
14008       return true; // Clamped to 0.
14009     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
14010   }
14011 
14012   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
14013                                                             SNaN, Depth);
14014 }
14015 
14016 // Global FP atomic instructions have a hardcoded FP mode and do not support
14017 // FP32 denormals, and only support v2f16 denormals.
14018 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
14019   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
14020   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
14021   if (&Flt == &APFloat::IEEEsingle())
14022     return DenormMode == DenormalMode::getPreserveSign();
14023   return DenormMode == DenormalMode::getIEEE();
14024 }
14025 
14026 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
14027 // floating point atomic instructions. May generate more efficient code,
14028 // but may not respect rounding and denormal modes, and may give incorrect
14029 // results for certain memory destinations.
14030 bool unsafeFPAtomicsDisabled(Function *F) {
14031   return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() !=
14032          "true";
14033 }
14034 
14035 TargetLowering::AtomicExpansionKind
14036 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
14037   unsigned AS = RMW->getPointerAddressSpace();
14038   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
14039     return AtomicExpansionKind::NotAtomic;
14040 
14041   auto SSID = RMW->getSyncScopeID();
14042 
14043   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
14044     OptimizationRemarkEmitter ORE(RMW->getFunction());
14045     LLVMContext &Ctx = RMW->getFunction()->getContext();
14046     SmallVector<StringRef> SSNs;
14047     Ctx.getSyncScopeNames(SSNs);
14048     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
14049                         ? "system"
14050                         : SSNs[RMW->getSyncScopeID()];
14051     ORE.emit([&]() {
14052       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
14053              << "Hardware instruction generated for atomic "
14054              << RMW->getOperationName(RMW->getOperation())
14055              << " operation at memory scope " << MemScope
14056              << " due to an unsafe request.";
14057     });
14058     return Kind;
14059   };
14060 
14061   bool HasSystemScope =
14062       SSID == SyncScope::System ||
14063       SSID == RMW->getContext().getOrInsertSyncScopeID("one-as");
14064 
14065   switch (RMW->getOperation()) {
14066   case AtomicRMWInst::FAdd: {
14067     Type *Ty = RMW->getType();
14068 
14069     if (Ty->isHalfTy())
14070       return AtomicExpansionKind::CmpXChg;
14071 
14072     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
14073       return AtomicExpansionKind::CmpXChg;
14074 
14075     if (AMDGPU::isFlatGlobalAddrSpace(AS) &&
14076         Subtarget->hasAtomicFaddNoRtnInsts()) {
14077       if (Subtarget->hasGFX940Insts())
14078         return AtomicExpansionKind::None;
14079 
14080       if (unsafeFPAtomicsDisabled(RMW->getFunction()))
14081         return AtomicExpansionKind::CmpXChg;
14082 
14083       // Always expand system scope fp atomics.
14084       if (HasSystemScope)
14085         return AtomicExpansionKind::CmpXChg;
14086 
14087       if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) {
14088         // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+.
14089         if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
14090           return ReportUnsafeHWInst(AtomicExpansionKind::None);
14091         // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+.
14092         if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
14093           return ReportUnsafeHWInst(AtomicExpansionKind::None);
14094       }
14095 
14096       // flat atomic fadd f32: gfx940, gfx11+.
14097       if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
14098           Subtarget->hasFlatAtomicFaddF32Inst())
14099         return ReportUnsafeHWInst(AtomicExpansionKind::None);
14100 
14101       // global and flat atomic fadd f64: gfx90a, gfx940.
14102       if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts())
14103         return ReportUnsafeHWInst(AtomicExpansionKind::None);
14104 
14105       // If it is in flat address space, and the type is float, we will try to
14106       // expand it, if the target supports global and lds atomic fadd. The
14107       // reason we need that is, in the expansion, we emit the check of address
14108       // space. If it is in global address space, we emit the global atomic
14109       // fadd; if it is in shared address space, we emit the LDS atomic fadd.
14110       if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
14111           Subtarget->hasLDSFPAtomicAdd()) {
14112         if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
14113           return AtomicExpansionKind::Expand;
14114         if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
14115           return AtomicExpansionKind::Expand;
14116       }
14117 
14118       return AtomicExpansionKind::CmpXChg;
14119     }
14120 
14121     // DS FP atomics do respect the denormal mode, but the rounding mode is
14122     // fixed to round-to-nearest-even.
14123     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
14124     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
14125       if (!Ty->isDoubleTy())
14126         return AtomicExpansionKind::None;
14127 
14128       if (fpModeMatchesGlobalFPAtomicMode(RMW))
14129         return AtomicExpansionKind::None;
14130 
14131       return RMW->getFunction()
14132                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
14133                          .getValueAsString() == "true"
14134                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
14135                  : AtomicExpansionKind::CmpXChg;
14136     }
14137 
14138     return AtomicExpansionKind::CmpXChg;
14139   }
14140   case AtomicRMWInst::FMin:
14141   case AtomicRMWInst::FMax:
14142   case AtomicRMWInst::Min:
14143   case AtomicRMWInst::Max:
14144   case AtomicRMWInst::UMin:
14145   case AtomicRMWInst::UMax: {
14146     if (AMDGPU::isFlatGlobalAddrSpace(AS)) {
14147       if (RMW->getType()->isFloatTy() &&
14148           unsafeFPAtomicsDisabled(RMW->getFunction()))
14149         return AtomicExpansionKind::CmpXChg;
14150 
14151       // Always expand system scope min/max atomics.
14152       if (HasSystemScope)
14153         return AtomicExpansionKind::CmpXChg;
14154     }
14155     break;
14156   }
14157   default:
14158     break;
14159   }
14160 
14161   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
14162 }
14163 
14164 TargetLowering::AtomicExpansionKind
14165 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14166   return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
14167              ? AtomicExpansionKind::NotAtomic
14168              : AtomicExpansionKind::None;
14169 }
14170 
14171 TargetLowering::AtomicExpansionKind
14172 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14173   return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
14174              ? AtomicExpansionKind::NotAtomic
14175              : AtomicExpansionKind::None;
14176 }
14177 
14178 TargetLowering::AtomicExpansionKind
14179 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
14180   return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
14181              ? AtomicExpansionKind::NotAtomic
14182              : AtomicExpansionKind::None;
14183 }
14184 
14185 const TargetRegisterClass *
14186 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
14187   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
14188   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
14189   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
14190     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
14191                                                : &AMDGPU::SReg_32RegClass;
14192   if (!TRI->isSGPRClass(RC) && !isDivergent)
14193     return TRI->getEquivalentSGPRClass(RC);
14194   else if (TRI->isSGPRClass(RC) && isDivergent)
14195     return TRI->getEquivalentVGPRClass(RC);
14196 
14197   return RC;
14198 }
14199 
14200 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
14201 // uniform values (as produced by the mask results of control flow intrinsics)
14202 // used outside of divergent blocks. The phi users need to also be treated as
14203 // always uniform.
14204 //
14205 // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis?
14206 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
14207                       unsigned WaveSize) {
14208   // FIXME: We assume we never cast the mask results of a control flow
14209   // intrinsic.
14210   // Early exit if the type won't be consistent as a compile time hack.
14211   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
14212   if (!IT || IT->getBitWidth() != WaveSize)
14213     return false;
14214 
14215   if (!isa<Instruction>(V))
14216     return false;
14217   if (!Visited.insert(V).second)
14218     return false;
14219   bool Result = false;
14220   for (const auto *U : V->users()) {
14221     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
14222       if (V == U->getOperand(1)) {
14223         switch (Intrinsic->getIntrinsicID()) {
14224         default:
14225           Result = false;
14226           break;
14227         case Intrinsic::amdgcn_if_break:
14228         case Intrinsic::amdgcn_if:
14229         case Intrinsic::amdgcn_else:
14230           Result = true;
14231           break;
14232         }
14233       }
14234       if (V == U->getOperand(0)) {
14235         switch (Intrinsic->getIntrinsicID()) {
14236         default:
14237           Result = false;
14238           break;
14239         case Intrinsic::amdgcn_end_cf:
14240         case Intrinsic::amdgcn_loop:
14241           Result = true;
14242           break;
14243         }
14244       }
14245     } else {
14246       Result = hasCFUser(U, Visited, WaveSize);
14247     }
14248     if (Result)
14249       break;
14250   }
14251   return Result;
14252 }
14253 
14254 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
14255                                                const Value *V) const {
14256   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
14257     if (CI->isInlineAsm()) {
14258       // FIXME: This cannot give a correct answer. This should only trigger in
14259       // the case where inline asm returns mixed SGPR and VGPR results, used
14260       // outside the defining block. We don't have a specific result to
14261       // consider, so this assumes if any value is SGPR, the overall register
14262       // also needs to be SGPR.
14263       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
14264       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
14265           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
14266       for (auto &TC : TargetConstraints) {
14267         if (TC.Type == InlineAsm::isOutput) {
14268           ComputeConstraintToUse(TC, SDValue());
14269           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
14270               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
14271           if (RC && SIRI->isSGPRClass(RC))
14272             return true;
14273         }
14274       }
14275     }
14276   }
14277   SmallPtrSet<const Value *, 16> Visited;
14278   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
14279 }
14280 
14281 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
14282   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
14283   for (; I != E; ++I) {
14284     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
14285       if (getBasePtrIndex(M) == I.getOperandNo())
14286         return true;
14287     }
14288   }
14289   return false;
14290 }
14291 
14292 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
14293                                            SDValue N1) const {
14294   if (!N0.hasOneUse())
14295     return false;
14296   // Take care of the opportunity to keep N0 uniform
14297   if (N0->isDivergent() || !N1->isDivergent())
14298     return true;
14299   // Check if we have a good chance to form the memory access pattern with the
14300   // base and offset
14301   return (DAG.isBaseWithConstantOffset(N0) &&
14302           hasMemSDNodeUser(*N0->use_begin()));
14303 }
14304 
14305 bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI,
14306                                            Register N0, Register N1) const {
14307   return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks
14308 }
14309 
14310 MachineMemOperand::Flags
14311 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
14312   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
14313   if (I.getMetadata("amdgpu.noclobber"))
14314     return MONoClobber;
14315   return MachineMemOperand::MONone;
14316 }
14317 
14318 bool SITargetLowering::checkForPhysRegDependency(
14319     SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI,
14320     const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const {
14321   if (User->getOpcode() != ISD::CopyToReg)
14322     return false;
14323   if (!Def->isMachineOpcode())
14324     return false;
14325   MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def);
14326   if (!MDef)
14327     return false;
14328 
14329   unsigned ResNo = User->getOperand(Op).getResNo();
14330   if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1)
14331     return false;
14332   const MCInstrDesc &II = TII->get(MDef->getMachineOpcode());
14333   if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
14334     PhysReg = AMDGPU::SCC;
14335     const TargetRegisterClass *RC =
14336         TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
14337     Cost = RC->getCopyCost();
14338     return true;
14339   }
14340   return false;
14341 }
14342 
14343 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const {
14344   assert(Subtarget->hasAtomicFaddInsts() &&
14345          "target should have atomic fadd instructions");
14346   assert(AI->getType()->isFloatTy() &&
14347          AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS &&
14348          "generic atomicrmw expansion only supports FP32 operand in flat "
14349          "address space");
14350   assert(AI->getOperation() == AtomicRMWInst::FAdd &&
14351          "only fadd is supported for now");
14352 
14353   // Given: atomicrmw fadd ptr %addr, float %val ordering
14354   //
14355   // With this expansion we produce the following code:
14356   //   [...]
14357   //   br label %atomicrmw.check.shared
14358   //
14359   // atomicrmw.check.shared:
14360   //   %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr)
14361   //   br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private
14362   //
14363   // atomicrmw.shared:
14364   //   %cast.shared = addrspacecast ptr %addr to ptr addrspace(3)
14365   //   %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared,
14366   //                                   float %val ordering
14367   //   br label %atomicrmw.phi
14368   //
14369   // atomicrmw.check.private:
14370   //   %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr)
14371   //   br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global
14372   //
14373   // atomicrmw.private:
14374   //   %cast.private = addrspacecast ptr %addr to ptr addrspace(5)
14375   //   %loaded.private = load float, ptr addrspace(5) %cast.private
14376   //   %val.new = fadd float %loaded.private, %val
14377   //   store float %val.new, ptr addrspace(5) %cast.private
14378   //   br label %atomicrmw.phi
14379   //
14380   // atomicrmw.global:
14381   //   %cast.global = addrspacecast ptr %addr to ptr addrspace(1)
14382   //   %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global,
14383   //                                   float %val ordering
14384   //   br label %atomicrmw.phi
14385   //
14386   // atomicrmw.phi:
14387   //   %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ],
14388   //                           [ %loaded.private, %atomicrmw.private ],
14389   //                           [ %loaded.global, %atomicrmw.global ]
14390   //   br label %atomicrmw.end
14391   //
14392   // atomicrmw.end:
14393   //    [...]
14394 
14395   IRBuilder<> Builder(AI);
14396   LLVMContext &Ctx = Builder.getContext();
14397 
14398   BasicBlock *BB = Builder.GetInsertBlock();
14399   Function *F = BB->getParent();
14400   BasicBlock *ExitBB =
14401       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
14402   BasicBlock *CheckSharedBB =
14403       BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB);
14404   BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB);
14405   BasicBlock *CheckPrivateBB =
14406       BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB);
14407   BasicBlock *PrivateBB =
14408       BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB);
14409   BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB);
14410   BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB);
14411 
14412   Value *Val = AI->getValOperand();
14413   Type *ValTy = Val->getType();
14414   Value *Addr = AI->getPointerOperand();
14415 
14416   auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr,
14417                                  Value *Val) -> Value * {
14418     AtomicRMWInst *OldVal =
14419         Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(),
14420                                 AI->getOrdering(), AI->getSyncScopeID());
14421     SmallVector<std::pair<unsigned, MDNode *>> MDs;
14422     AI->getAllMetadata(MDs);
14423     for (auto &P : MDs)
14424       OldVal->setMetadata(P.first, P.second);
14425     return OldVal;
14426   };
14427 
14428   std::prev(BB->end())->eraseFromParent();
14429   Builder.SetInsertPoint(BB);
14430   Builder.CreateBr(CheckSharedBB);
14431 
14432   Builder.SetInsertPoint(CheckSharedBB);
14433   CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {},
14434                                                {Addr}, nullptr, "is.shared");
14435   Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
14436 
14437   Builder.SetInsertPoint(SharedBB);
14438   Value *CastToLocal = Builder.CreateAddrSpaceCast(
14439       Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS));
14440   Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val);
14441   Builder.CreateBr(PhiBB);
14442 
14443   Builder.SetInsertPoint(CheckPrivateBB);
14444   CallInst *IsPrivate = Builder.CreateIntrinsic(
14445       Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private");
14446   Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
14447 
14448   Builder.SetInsertPoint(PrivateBB);
14449   Value *CastToPrivate = Builder.CreateAddrSpaceCast(
14450       Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS));
14451   Value *LoadedPrivate =
14452       Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private");
14453   Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new");
14454   Builder.CreateStore(NewVal, CastToPrivate);
14455   Builder.CreateBr(PhiBB);
14456 
14457   Builder.SetInsertPoint(GlobalBB);
14458   Value *CastToGlobal = Builder.CreateAddrSpaceCast(
14459       Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS));
14460   Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val);
14461   Builder.CreateBr(PhiBB);
14462 
14463   Builder.SetInsertPoint(PhiBB);
14464   PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi");
14465   Loaded->addIncoming(LoadedShared, SharedBB);
14466   Loaded->addIncoming(LoadedPrivate, PrivateBB);
14467   Loaded->addIncoming(LoadedGlobal, GlobalBB);
14468   Builder.CreateBr(ExitBB);
14469 
14470   AI->replaceAllUsesWith(Loaded);
14471   AI->eraseFromParent();
14472 }
14473 
14474 LoadInst *
14475 SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
14476   IRBuilder<> Builder(AI);
14477   auto Order = AI->getOrdering();
14478 
14479   // The optimization removes store aspect of the atomicrmw. Therefore, cache
14480   // must be flushed if the atomic ordering had a release semantics. This is
14481   // not necessary a fence, a release fence just coincides to do that flush.
14482   // Avoid replacing of an atomicrmw with a release semantics.
14483   if (isReleaseOrStronger(Order))
14484     return nullptr;
14485 
14486   LoadInst *LI = Builder.CreateAlignedLoad(
14487       AI->getType(), AI->getPointerOperand(), AI->getAlign());
14488   LI->setAtomic(Order, AI->getSyncScopeID());
14489   LI->copyMetadata(*AI);
14490   LI->takeName(AI);
14491   AI->replaceAllUsesWith(LI);
14492   AI->eraseFromParent();
14493   return LI;
14494 }
14495