1//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// TableGen definitions for instructions which are available on R600 family 10// GPUs. 11// 12//===----------------------------------------------------------------------===// 13 14include "R600InstrFormats.td" 15 16// FIXME: Should not be arbitrarily split from other R600 inst classes. 17class R600WrapperInst <dag outs, dag ins, string asm = "", list<dag> pattern = []> : 18 AMDGPUInst<outs, ins, asm, pattern>, PredicateControl { 19 let SubtargetPredicate = isR600toCayman; 20 let Namespace = "R600"; 21} 22 23 24class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern = []> : 25 InstR600 <outs, ins, asm, pattern, NullALU> { 26 27} 28 29def MEMxi : Operand<iPTR> { 30 let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index); 31 let PrintMethod = "printMemOperand"; 32} 33 34def MEMrr : Operand<iPTR> { 35 let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index); 36} 37 38// Operands for non-registers 39 40class InstFlag<string PM = "printOperand", int Default = 0> 41 : OperandWithDefaultOps <i32, (ops (i32 Default))> { 42 let PrintMethod = PM; 43} 44 45// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers 46def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))>; 47def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> { 48 let PrintMethod = "printBankSwizzle"; 49} 50 51def LITERAL : InstFlag<"printLiteral">; 52 53def WRITE : InstFlag <"printWrite", 1>; 54def OMOD : InstFlag <"printOMOD">; 55def REL : InstFlag <"printRel">; 56def CLAMP : InstFlag <"printClamp">; 57def NEG : InstFlag <"printNeg">; 58def ABS : InstFlag <"printAbs">; 59def UEM : InstFlag <"printUpdateExecMask">; 60def UP : InstFlag <"printUpdatePred">; 61 62// XXX: The r600g finalizer in Mesa expects last to be one in most cases. 63// Once we start using the packetizer in this backend we should have this 64// default to 0. 65def LAST : InstFlag<"printLast", 1>; 66def RSel : Operand<i32> { 67 let PrintMethod = "printRSel"; 68} 69def CT: Operand<i32> { 70 let PrintMethod = "printCT"; 71} 72 73def FRAMEri : Operand<iPTR> { 74 let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index); 75} 76 77def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>; 78def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>; 79def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>; 80def ADDRIndirect : ComplexPattern<iPTR, 2, "SelectADDRIndirect", [], []>; 81 82 83def R600_Pred : PredicateOperand<i32, (ops R600_Predicate), 84 (ops PRED_SEL_OFF)>; 85 86let isTerminator = 1, isReturn = 1, hasCtrlDep = 1, 87 usesCustomInserter = 1, Namespace = "R600" in { 88 def RETURN : ILFormat<(outs), (ins variable_ops), 89 "RETURN", [(AMDGPUendpgm)] 90 >; 91} 92 93let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { 94 95// Class for instructions with only one source register. 96// If you add new ins to this instruction, make sure they are listed before 97// $literal, because the backend currently assumes that the last operand is 98// a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in 99// R600Defines.h, R600InstrInfo::buildDefaultInstruction(), 100// and R600InstrInfo::getOperandIdx(). 101class R600_1OP <bits<11> inst, string opName, list<dag> pattern, 102 InstrItinClass itin = AnyALU> : 103 InstR600 <(outs R600_Reg32:$dst), 104 (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, 105 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, 106 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, 107 BANK_SWIZZLE:$bank_swizzle), 108 !strconcat(" ", opName, 109 "$clamp $last $dst$write$dst_rel$omod, " 110 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " 111 "$pred_sel $bank_swizzle"), 112 pattern, 113 itin>, 114 R600ALU_Word0, 115 R600ALU_Word1_OP2 <inst> { 116 117 let src1 = 0; 118 let src1_rel = 0; 119 let src1_neg = 0; 120 let src1_abs = 0; 121 let update_exec_mask = 0; 122 let update_pred = 0; 123 let HasNativeOperands = 1; 124 let Op1 = 1; 125 let ALUInst = 1; 126 let DisableEncoding = "$literal"; 127 let UseNamedOperandTable = 1; 128 129 let Inst{31-0} = Word0; 130 let Inst{63-32} = Word1; 131} 132 133class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node, 134 InstrItinClass itin = AnyALU> : 135 R600_1OP <inst, opName, 136 [(set R600_Reg32:$dst, (node R600_Reg32:$src0))], itin 137>; 138 139// If you add or change the operands for R600_2OP instructions, you must 140// also update the R600Op2OperandIndex::ROI enum in R600Defines.h, 141// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx(). 142class R600_2OP <bits<11> inst, string opName, list<dag> pattern, 143 InstrItinClass itin = AnyALU> : 144 InstR600 <(outs R600_Reg32:$dst), 145 (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write, 146 OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, 147 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, 148 R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel, 149 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, 150 BANK_SWIZZLE:$bank_swizzle), 151 !strconcat(" ", opName, 152 "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, " 153 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " 154 "$src1_neg$src1_abs$src1$src1_abs$src1_rel, " 155 "$pred_sel $bank_swizzle"), 156 pattern, 157 itin>, 158 R600ALU_Word0, 159 R600ALU_Word1_OP2 <inst> { 160 161 let HasNativeOperands = 1; 162 let Op2 = 1; 163 let ALUInst = 1; 164 let DisableEncoding = "$literal"; 165 let UseNamedOperandTable = 1; 166 167 let Inst{31-0} = Word0; 168 let Inst{63-32} = Word1; 169} 170 171class R600_2OP_Helper <bits<11> inst, string opName, 172 SDPatternOperator node = null_frag, 173 InstrItinClass itin = AnyALU> : 174 R600_2OP <inst, opName, 175 [(set R600_Reg32:$dst, (node R600_Reg32:$src0, 176 R600_Reg32:$src1))], itin 177>; 178 179// If you add our change the operands for R600_3OP instructions, you must 180// also update the R600Op3OperandIndex::ROI enum in R600Defines.h, 181// R600InstrInfo::buildDefaultInstruction(), and 182// R600InstrInfo::getOperandIdx(). 183class R600_3OP <bits<5> inst, string opName, list<dag> pattern, 184 InstrItinClass itin = AnyALU> : 185 InstR600 <(outs R600_Reg32:$dst), 186 (ins REL:$dst_rel, CLAMP:$clamp, 187 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel, 188 R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel, 189 R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel, 190 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, 191 BANK_SWIZZLE:$bank_swizzle), 192 !strconcat(" ", opName, "$clamp $last $dst$dst_rel, " 193 "$src0_neg$src0$src0_rel, " 194 "$src1_neg$src1$src1_rel, " 195 "$src2_neg$src2$src2_rel, " 196 "$pred_sel" 197 "$bank_swizzle"), 198 pattern, 199 itin>, 200 R600ALU_Word0, 201 R600ALU_Word1_OP3<inst>{ 202 203 let HasNativeOperands = 1; 204 let DisableEncoding = "$literal"; 205 let Op3 = 1; 206 let UseNamedOperandTable = 1; 207 let ALUInst = 1; 208 209 let Inst{31-0} = Word0; 210 let Inst{63-32} = Word1; 211} 212 213} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0 214 215class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask, 216 dag outs, dag ins, string asm, list<dag> pattern> : 217 InstR600ISA <outs, ins, asm, pattern>, 218 CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF { 219 220 let rat_id = ratid; 221 let rat_inst = ratinst; 222 let rim = 0; 223 // XXX: Have a separate instruction for non-indexed writes. 224 let type = 1; 225 let rw_rel = 0; 226 let elem_size = 0; 227 228 let array_size = 0; 229 let comp_mask = mask; 230 let burst_count = 0; 231 let vpm = 0; 232 let cf_inst = cfinst; 233 let mark = 0; 234 let barrier = 1; 235 236 let Inst{31-0} = Word0; 237 let Inst{63-32} = Word1; 238 let IsExport = 1; 239 240} 241 242class VTX_READ <string name, dag outs, list<dag> pattern> 243 : InstR600ISA <outs, (ins MEMxi:$src_gpr, i8imm:$buffer_id), !strconcat(" ", name, ", #$buffer_id"), pattern>, 244 VTX_WORD1_GPR { 245 246 // Static fields 247 let DST_REL = 0; 248 // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL, 249 // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored, 250 // however, based on my testing if USE_CONST_FIELDS is set, then all 251 // these fields need to be set to 0. 252 let USE_CONST_FIELDS = 0; 253 let NUM_FORMAT_ALL = 1; 254 let FORMAT_COMP_ALL = 0; 255 let SRF_MODE_ALL = 0; 256 257 let Inst{63-32} = Word1; 258 // LLVM can only encode 64-bit instructions, so these fields are manually 259 // encoded in R600CodeEmitter 260 // 261 // bits<16> OFFSET; 262 // bits<2> ENDIAN_SWAP = 0; 263 // bits<1> CONST_BUF_NO_STRIDE = 0; 264 // bits<1> MEGA_FETCH = 0; 265 // bits<1> ALT_CONST = 0; 266 // bits<2> BUFFER_INDEX_MODE = 0; 267 268 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding 269 // is done in R600CodeEmitter 270 // 271 // Inst{79-64} = OFFSET; 272 // Inst{81-80} = ENDIAN_SWAP; 273 // Inst{82} = CONST_BUF_NO_STRIDE; 274 // Inst{83} = MEGA_FETCH; 275 // Inst{84} = ALT_CONST; 276 // Inst{86-85} = BUFFER_INDEX_MODE; 277 // Inst{95-86} = 0; Reserved 278 279 // VTX_WORD3 (Padding) 280 // 281 // Inst{127-96} = 0; 282 283 let VTXInst = 1; 284} 285 286// Legacy. 287def atomic_cmp_swap_global_noret : PatFrag< 288 (ops node:$ptr, node:$cmp, node:$value), 289 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), 290 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; 291 292def atomic_cmp_swap_global_ret : PatFrag< 293 (ops node:$ptr, node:$cmp, node:$value), 294 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), 295 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; 296 297def mskor_global : PatFrag<(ops node:$val, node:$ptr), 298 (AMDGPUstore_mskor node:$val, node:$ptr), [{ 299 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 300}]>; 301 302// FIXME: These are deprecated 303class AZExtLoadBase <SDPatternOperator ld_node>: PatFrag<(ops node:$ptr), 304 (ld_node node:$ptr), [{ 305 LoadSDNode *L = cast<LoadSDNode>(N); 306 return L->getExtensionType() == ISD::ZEXTLOAD || 307 L->getExtensionType() == ISD::EXTLOAD; 308}]>; 309 310def az_extload : AZExtLoadBase <unindexedload>; 311 312def az_extloadi8 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ 313 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8; 314}]>; 315 316def az_extloadi16 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ 317 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16; 318}]>; 319 320def az_extloadi32 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ 321 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32; 322}]>; 323 324let AddressSpaces = LoadAddress_local.AddrSpaces in { 325def az_extloadi8_local : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr)>; 326def az_extloadi16_local : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr)>; 327} 328 329class LoadParamFrag <PatFrag load_type> : PatFrag < 330 (ops node:$ptr), (load_type node:$ptr), 331 [{ return isConstantLoad(cast<LoadSDNode>(N), 0) || 332 (cast<LoadSDNode>(N)->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS); }] 333>; 334 335def vtx_id3_az_extloadi8 : LoadParamFrag<az_extloadi8>; 336def vtx_id3_az_extloadi16 : LoadParamFrag<az_extloadi16>; 337def vtx_id3_load : LoadParamFrag<load>; 338 339class LoadVtxId1 <PatFrag load> : PatFrag < 340 (ops node:$ptr), (load node:$ptr), [{ 341 const MemSDNode *LD = cast<MemSDNode>(N); 342 return LD->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 343 (LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS && 344 !isa<GlobalValue>(getUnderlyingObject( 345 LD->getMemOperand()->getValue()))); 346}]>; 347 348def vtx_id1_az_extloadi8 : LoadVtxId1 <az_extloadi8>; 349def vtx_id1_az_extloadi16 : LoadVtxId1 <az_extloadi16>; 350def vtx_id1_load : LoadVtxId1 <load>; 351 352class LoadVtxId2 <PatFrag load> : PatFrag < 353 (ops node:$ptr), (load node:$ptr), [{ 354 const MemSDNode *LD = cast<MemSDNode>(N); 355 return LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS && 356 isa<GlobalValue>(getUnderlyingObject( 357 LD->getMemOperand()->getValue())); 358}]>; 359 360def vtx_id2_az_extloadi8 : LoadVtxId2 <az_extloadi8>; 361def vtx_id2_az_extloadi16 : LoadVtxId2 <az_extloadi16>; 362def vtx_id2_load : LoadVtxId2 <load>; 363 364//===----------------------------------------------------------------------===// 365// R600 SDNodes 366//===----------------------------------------------------------------------===// 367 368let Namespace = "R600" in { 369 370def INTERP_PAIR_XY : AMDGPUShaderInst < 371 (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1), 372 (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), 373 "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1", 374 []>; 375 376def INTERP_PAIR_ZW : AMDGPUShaderInst < 377 (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1), 378 (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), 379 "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1", 380 []>; 381 382} 383 384def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS", 385 SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, 386 [SDNPVariadic] 387>; 388 389def DOT4 : SDNode<"AMDGPUISD::DOT4", 390 SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>, 391 SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>, 392 SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>, 393 [] 394>; 395 396def COS_HW : SDNode<"AMDGPUISD::COS_HW", 397 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]> 398>; 399 400def SIN_HW : SDNode<"AMDGPUISD::SIN_HW", 401 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]> 402>; 403 404def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>; 405 406def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>; 407 408multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> { 409def : R600Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR, 410 (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw), 411 (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz), 412 (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z), 413 (i32 imm:$DST_SEL_W), 414 (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID), 415 (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z), 416 (i32 imm:$COORD_TYPE_W)), 417 (inst R600_Reg128:$SRC_GPR, 418 imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw, 419 imm:$offsetx, imm:$offsety, imm:$offsetz, 420 imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z, 421 imm:$DST_SEL_W, 422 imm:$RESOURCE_ID, imm:$SAMPLER_ID, 423 imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z, 424 imm:$COORD_TYPE_W)>; 425} 426 427//===----------------------------------------------------------------------===// 428// Interpolation Instructions 429//===----------------------------------------------------------------------===// 430 431let Namespace = "R600" in { 432 433def INTERP_VEC_LOAD : AMDGPUShaderInst < 434 (outs R600_Reg128:$dst), 435 (ins i32imm:$src0), 436 "INTERP_LOAD $src0 : $dst">; 437 438} 439 440def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> { 441 let bank_swizzle = 5; 442} 443 444def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> { 445 let bank_swizzle = 5; 446} 447 448def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>; 449 450//===----------------------------------------------------------------------===// 451// Export Instructions 452//===----------------------------------------------------------------------===// 453 454class ExportWord0 { 455 field bits<32> Word0; 456 457 bits<13> arraybase; 458 bits<2> type; 459 bits<7> gpr; 460 bits<2> elem_size; 461 462 let Word0{12-0} = arraybase; 463 let Word0{14-13} = type; 464 let Word0{21-15} = gpr; 465 let Word0{22} = 0; // RW_REL 466 let Word0{29-23} = 0; // INDEX_GPR 467 let Word0{31-30} = elem_size; 468} 469 470class ExportSwzWord1 { 471 field bits<32> Word1; 472 473 bits<3> sw_x; 474 bits<3> sw_y; 475 bits<3> sw_z; 476 bits<3> sw_w; 477 bits<1> eop; 478 bits<8> inst; 479 480 let Word1{2-0} = sw_x; 481 let Word1{5-3} = sw_y; 482 let Word1{8-6} = sw_z; 483 let Word1{11-9} = sw_w; 484} 485 486class ExportBufWord1 { 487 field bits<32> Word1; 488 489 bits<12> arraySize; 490 bits<4> compMask; 491 bits<1> eop; 492 bits<8> inst; 493 494 let Word1{11-0} = arraySize; 495 let Word1{15-12} = compMask; 496} 497 498multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> { 499 def : R600Pat<(R600_EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type), 500 (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)), 501 (ExportInst R600_Reg128:$src, imm:$type, imm:$base, 502 imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0) 503 >; 504 505} 506 507multiclass SteamOutputExportPattern<Instruction ExportInst, 508 bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> { 509// Stream0 510 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), 511 (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)), 512 (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 513 4095, imm:$mask, buf0inst, 0)>; 514// Stream1 515 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), 516 (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)), 517 (ExportInst $src, 0, imm:$arraybase, 518 4095, imm:$mask, buf1inst, 0)>; 519// Stream2 520 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), 521 (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)), 522 (ExportInst $src, 0, imm:$arraybase, 523 4095, imm:$mask, buf2inst, 0)>; 524// Stream3 525 def : R600Pat<(int_r600_store_stream_output (v4f32 R600_Reg128:$src), 526 (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)), 527 (ExportInst $src, 0, imm:$arraybase, 528 4095, imm:$mask, buf3inst, 0)>; 529} 530 531// Export Instructions should not be duplicated by TailDuplication pass 532// (which assumes that duplicable instruction are affected by exec mask) 533let usesCustomInserter = 1, isNotDuplicable = 1 in { 534 535class ExportSwzInst : InstR600ISA<( 536 outs), 537 (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, 538 RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst, 539 i32imm:$eop), 540 !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"), 541 []>, ExportWord0, ExportSwzWord1 { 542 let elem_size = 3; 543 let Inst{31-0} = Word0; 544 let Inst{63-32} = Word1; 545 let IsExport = 1; 546} 547 548} // End usesCustomInserter = 1 549 550class ExportBufInst : InstR600ISA<( 551 outs), 552 (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, 553 i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop), 554 !strconcat("EXPORT", " $gpr"), 555 []>, ExportWord0, ExportBufWord1 { 556 let elem_size = 0; 557 let Inst{31-0} = Word0; 558 let Inst{63-32} = Word1; 559 let IsExport = 1; 560} 561 562//===----------------------------------------------------------------------===// 563// Control Flow Instructions 564//===----------------------------------------------------------------------===// 565 566 567def KCACHE : InstFlag<"printKCache">; 568 569class ALU_CLAUSE<bits<4> inst, string OpName> : R600WrapperInst <(outs), 570(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1, 571KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1, 572i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1, 573i32imm:$COUNT, i32imm:$Enabled), 574!strconcat(OpName, " $COUNT, @$ADDR, " 575"KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"), 576[] >, CF_ALU_WORD0, CF_ALU_WORD1 { 577 field bits<64> Inst; 578 579 let CF_INST = inst; 580 let ALT_CONST = 0; 581 let WHOLE_QUAD_MODE = 0; 582 let BARRIER = 1; 583 let isCodeGenOnly = 1; 584 let UseNamedOperandTable = 1; 585 586 let Inst{31-0} = Word0; 587 let Inst{63-32} = Word1; 588} 589 590class CF_WORD0_R600 { 591 field bits<32> Word0; 592 593 bits<32> ADDR; 594 595 let Word0 = ADDR; 596} 597 598class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : R600WrapperInst <(outs), 599ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 { 600 field bits<64> Inst; 601 bits<4> CNT; 602 603 let CF_INST = inst; 604 let BARRIER = 1; 605 let CF_CONST = 0; 606 let VALID_PIXEL_MODE = 0; 607 let COND = 0; 608 let COUNT = CNT{2-0}; 609 let CALL_COUNT = 0; 610 let COUNT_3 = CNT{3}; 611 let END_OF_PROGRAM = 0; 612 let WHOLE_QUAD_MODE = 0; 613 614 let Inst{31-0} = Word0; 615 let Inst{63-32} = Word1; 616} 617 618class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : R600WrapperInst <(outs), 619ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG { 620 field bits<64> Inst; 621 622 let CF_INST = inst; 623 let BARRIER = 1; 624 let JUMPTABLE_SEL = 0; 625 let CF_CONST = 0; 626 let VALID_PIXEL_MODE = 0; 627 let COND = 0; 628 let END_OF_PROGRAM = 0; 629 630 let Inst{31-0} = Word0; 631 let Inst{63-32} = Word1; 632} 633 634def CF_ALU : ALU_CLAUSE<8, "ALU">; 635def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">; 636def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">; 637def CF_ALU_CONTINUE : ALU_CLAUSE<13, "ALU_CONTINUE">; 638def CF_ALU_BREAK : ALU_CLAUSE<14, "ALU_BREAK">; 639def CF_ALU_ELSE_AFTER : ALU_CLAUSE<15, "ALU_ELSE_AFTER">; 640 641def FETCH_CLAUSE : R600WrapperInst <(outs), 642(ins i32imm:$addr), "Fetch clause starting at $addr:", [] > { 643 field bits<8> Inst; 644 bits<8> num; 645 let Inst = num; 646 let isCodeGenOnly = 1; 647} 648 649def ALU_CLAUSE : R600WrapperInst <(outs), 650(ins i32imm:$addr), "ALU clause starting at $addr:", [] > { 651 field bits<8> Inst; 652 bits<8> num; 653 let Inst = num; 654 let isCodeGenOnly = 1; 655} 656 657def LITERALS : R600WrapperInst <(outs), 658(ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > { 659 let isCodeGenOnly = 1; 660 661 field bits<64> Inst; 662 bits<32> literal1; 663 bits<32> literal2; 664 665 let Inst{31-0} = literal1; 666 let Inst{63-32} = literal2; 667} 668 669def PAD : R600WrapperInst <(outs), (ins), "PAD", [] > { 670 field bits<64> Inst; 671} 672 673//===----------------------------------------------------------------------===// 674// Common Instructions R600, R700, Evergreen, Cayman 675//===----------------------------------------------------------------------===// 676 677let isCodeGenOnly = 1, isPseudo = 1 in { 678 679let Namespace = "R600", usesCustomInserter = 1 in { 680 681class FABS <RegisterClass rc> : AMDGPUShaderInst < 682 (outs rc:$dst), 683 (ins rc:$src0), 684 "FABS $dst, $src0", 685 [(set f32:$dst, (fabs f32:$src0))] 686>; 687 688class FNEG <RegisterClass rc> : AMDGPUShaderInst < 689 (outs rc:$dst), 690 (ins rc:$src0), 691 "FNEG $dst, $src0", 692 [(set f32:$dst, (fneg f32:$src0))] 693>; 694 695} // usesCustomInserter = 1 696 697multiclass RegisterLoadStore <RegisterClass dstClass, Operand addrClass, 698 ComplexPattern addrPat> { 699let UseNamedOperandTable = 1 in { 700 701 def RegisterLoad : AMDGPUShaderInst < 702 (outs dstClass:$dst), 703 (ins addrClass:$addr, i32imm:$chan), 704 "RegisterLoad $dst, $addr", 705 [(set i32:$dst, (AMDGPUregister_load addrPat:$addr, (i32 timm:$chan)))] 706 > { 707 let isRegisterLoad = 1; 708 } 709 710 def RegisterStore : AMDGPUShaderInst < 711 (outs), 712 (ins dstClass:$val, addrClass:$addr, i32imm:$chan), 713 "RegisterStore $val, $addr", 714 [(AMDGPUregister_store i32:$val, addrPat:$addr, (i32 timm:$chan))] 715 > { 716 let isRegisterStore = 1; 717 } 718} 719} 720 721} // End isCodeGenOnly = 1, isPseudo = 1 722 723 724def ADD : R600_2OP_Helper <0x0, "ADD", fadd>; 725// Non-IEEE MUL: 0 * anything = 0 726def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE">; 727def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>; 728// TODO: Do these actually match the regular fmin/fmax behavior? 729def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax_legacy>; 730def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin_legacy>; 731// According to https://msdn.microsoft.com/en-us/library/windows/desktop/cc308050%28v=vs.85%29.aspx 732// DX10 min/max returns the other operand if one is NaN, 733// this matches http://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic 734def MAX_DX10 : R600_2OP_Helper <0x5, "MAX_DX10", fmaxnum>; 735def MIN_DX10 : R600_2OP_Helper <0x6, "MIN_DX10", fminnum>; 736 737// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td, 738// so some of the instruction names don't match the asm string. 739// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics. 740def SETE : R600_2OP < 741 0x08, "SETE", 742 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))] 743>; 744 745def SGT : R600_2OP < 746 0x09, "SETGT", 747 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))] 748>; 749 750def SGE : R600_2OP < 751 0xA, "SETGE", 752 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))] 753>; 754 755def SNE : R600_2OP < 756 0xB, "SETNE", 757 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE_NE))] 758>; 759 760def SETE_DX10 : R600_2OP < 761 0xC, "SETE_DX10", 762 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))] 763>; 764 765def SETGT_DX10 : R600_2OP < 766 0xD, "SETGT_DX10", 767 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))] 768>; 769 770def SETGE_DX10 : R600_2OP < 771 0xE, "SETGE_DX10", 772 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))] 773>; 774 775// FIXME: This should probably be COND_ONE 776def SETNE_DX10 : R600_2OP < 777 0xF, "SETNE_DX10", 778 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE_NE))] 779>; 780 781// FIXME: Need combine for AMDGPUfract 782def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>; 783def TRUNC : R600_1OP_Helper <0x11, "TRUNC", ftrunc>; 784def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>; 785def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>; 786def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>; 787 788def MOV : R600_1OP <0x19, "MOV", []>; 789 790 791// This is a hack to get rid of DUMMY_CHAIN nodes. 792// Most DUMMY_CHAINs should be eliminated during legalization, but undef 793// values can sneak in some to selection. 794let isPseudo = 1, isCodeGenOnly = 1 in { 795def DUMMY_CHAIN : R600WrapperInst < 796 (outs), 797 (ins), 798 "DUMMY_CHAIN", 799 [(R600dummy_chain)] 800>; 801} // end let isPseudo = 1, isCodeGenOnly = 1 802 803 804let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { 805 806class MOV_IMM <Operand immType> : R600WrapperInst < 807 (outs R600_Reg32:$dst), 808 (ins immType:$imm), 809 "", 810 [] 811> { 812 let Namespace = "R600"; 813} 814 815} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 816 817def MOV_IMM_I32 : MOV_IMM<i32imm>; 818def : R600Pat < 819 (imm:$val), 820 (MOV_IMM_I32 imm:$val) 821>; 822 823def MOV_IMM_GLOBAL_ADDR : MOV_IMM<i32imm>; 824def : R600Pat < 825 (AMDGPUconstdata_ptr tglobaladdr:$addr), 826 (MOV_IMM_GLOBAL_ADDR tglobaladdr:$addr) 827>; 828 829 830def MOV_IMM_F32 : MOV_IMM<f32imm>; 831def : R600Pat < 832 (fpimm:$val), 833 (MOV_IMM_F32 fpimm:$val) 834>; 835 836def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>; 837def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>; 838def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>; 839def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>; 840 841let hasSideEffects = 1 in { 842 843def KILLGT : R600_2OP <0x2D, "KILLGT", []>; 844 845} // end hasSideEffects 846 847def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>; 848def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>; 849def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>; 850def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>; 851def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>; 852def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>; 853def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", smax>; 854def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", smin>; 855def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", umax>; 856def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", umin>; 857 858def SETE_INT : R600_2OP < 859 0x3A, "SETE_INT", 860 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))] 861>; 862 863def SETGT_INT : R600_2OP < 864 0x3B, "SETGT_INT", 865 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))] 866>; 867 868def SETGE_INT : R600_2OP < 869 0x3C, "SETGE_INT", 870 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))] 871>; 872 873def SETNE_INT : R600_2OP < 874 0x3D, "SETNE_INT", 875 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))] 876>; 877 878def SETGT_UINT : R600_2OP < 879 0x3E, "SETGT_UINT", 880 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))] 881>; 882 883def SETGE_UINT : R600_2OP < 884 0x3F, "SETGE_UINT", 885 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))] 886>; 887 888def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>; 889def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>; 890def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>; 891def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>; 892 893def CNDE_INT : R600_3OP < 894 0x1C, "CNDE_INT", 895 [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))] 896>; 897 898def CNDGE_INT : R600_3OP < 899 0x1E, "CNDGE_INT", 900 [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))] 901>; 902 903def CNDGT_INT : R600_3OP < 904 0x1D, "CNDGT_INT", 905 [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))] 906>; 907 908//===----------------------------------------------------------------------===// 909// Texture instructions 910//===----------------------------------------------------------------------===// 911 912let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { 913 914class R600_TEX <bits<11> inst, string opName> : 915 InstR600 <(outs R600_Reg128:$DST_GPR), 916 (ins R600_Reg128:$SRC_GPR, 917 RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw, 918 i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz, 919 RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W, 920 i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID, 921 CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z, 922 CT:$COORD_TYPE_W), 923 !strconcat(" ", opName, 924 " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, " 925 "$SRC_GPR.$srcx$srcy$srcz$srcw " 926 "RID:$RESOURCE_ID SID:$SAMPLER_ID " 927 "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"), 928 [], 929 NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 { 930 let Inst{31-0} = Word0; 931 let Inst{63-32} = Word1; 932 933 let TEX_INST = inst{4-0}; 934 let SRC_REL = 0; 935 let DST_REL = 0; 936 let LOD_BIAS = 0; 937 938 let INST_MOD = 0; 939 let FETCH_WHOLE_QUAD = 0; 940 let ALT_CONST = 0; 941 let SAMPLER_INDEX_MODE = 0; 942 let RESOURCE_INDEX_MODE = 0; 943 944 let TEXInst = 1; 945} 946 947} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 948 949 950 951def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">; 952def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">; 953def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">; 954def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">; 955def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">; 956def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">; 957def TEX_LD : R600_TEX <0x03, "TEX_LD">; 958def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> { 959 let INST_MOD = 1; 960} 961def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">; 962def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">; 963def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">; 964def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">; 965def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">; 966def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">; 967def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">; 968 969defm : TexPattern<0, TEX_SAMPLE>; 970defm : TexPattern<1, TEX_SAMPLE_C>; 971defm : TexPattern<2, TEX_SAMPLE_L>; 972defm : TexPattern<3, TEX_SAMPLE_C_L>; 973defm : TexPattern<4, TEX_SAMPLE_LB>; 974defm : TexPattern<5, TEX_SAMPLE_C_LB>; 975defm : TexPattern<6, TEX_LD, v4i32>; 976defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>; 977defm : TexPattern<8, TEX_GET_GRADIENTS_H>; 978defm : TexPattern<9, TEX_GET_GRADIENTS_V>; 979defm : TexPattern<10, TEX_LDPTR, v4i32>; 980 981//===----------------------------------------------------------------------===// 982// Helper classes for common instructions 983//===----------------------------------------------------------------------===// 984 985class MUL_LIT_Common <bits<5> inst> : R600_3OP < 986 inst, "MUL_LIT", 987 [] 988>; 989 990class MULADD_Common <bits<5> inst> : R600_3OP < 991 inst, "MULADD", 992 [] 993>; 994 995class MULADD_IEEE_Common <bits<5> inst> : R600_3OP < 996 inst, "MULADD_IEEE", 997 [(set f32:$dst, (any_fmad f32:$src0, f32:$src1, f32:$src2))] 998>; 999 1000class FMA_Common <bits<5> inst> : R600_3OP < 1001 inst, "FMA", 1002 [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))], VecALU 1003> 1004{ 1005 let OtherPredicates = [FMA]; 1006} 1007 1008class CNDE_Common <bits<5> inst> : R600_3OP < 1009 inst, "CNDE", 1010 [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))] 1011>; 1012 1013class CNDGT_Common <bits<5> inst> : R600_3OP < 1014 inst, "CNDGT", 1015 [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))] 1016> { 1017 let Itinerary = VecALU; 1018} 1019 1020class CNDGE_Common <bits<5> inst> : R600_3OP < 1021 inst, "CNDGE", 1022 [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))] 1023> { 1024 let Itinerary = VecALU; 1025} 1026 1027 1028let isCodeGenOnly = 1, isPseudo = 1, Namespace = "R600" in { 1029class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins 1030// Slot X 1031 UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X, 1032 OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X, 1033 R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X, 1034 R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X, 1035 R600_Pred:$pred_sel_X, 1036// Slot Y 1037 UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y, 1038 OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y, 1039 R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y, 1040 R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y, 1041 R600_Pred:$pred_sel_Y, 1042// Slot Z 1043 UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z, 1044 OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z, 1045 R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z, 1046 R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z, 1047 R600_Pred:$pred_sel_Z, 1048// Slot W 1049 UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W, 1050 OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W, 1051 R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W, 1052 R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W, 1053 R600_Pred:$pred_sel_W, 1054 LITERAL:$literal0, LITERAL:$literal1), 1055 "", 1056 pattern, 1057 AnyALU> { 1058 1059 let UseNamedOperandTable = 1; 1060 1061} 1062} 1063 1064def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4 1065 R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X, 1066 R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y, 1067 R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z, 1068 R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>; 1069 1070 1071class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>; 1072 1073 1074let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { 1075multiclass CUBE_Common <bits<11> inst> { 1076 1077 def _pseudo : InstR600 < 1078 (outs R600_Reg128:$dst), 1079 (ins R600_Reg128:$src0), 1080 "CUBE $dst $src0", 1081 [(set v4f32:$dst, (int_r600_cube v4f32:$src0))], 1082 VecALU 1083 > { 1084 let isPseudo = 1; 1085 let UseNamedOperandTable = 1; 1086 } 1087 1088 def _real : R600_2OP <inst, "CUBE", []>; 1089} 1090} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 1091 1092class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper < 1093 inst, "EXP_IEEE", fexp2 1094> { 1095 let Itinerary = TransALU; 1096} 1097 1098class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper < 1099 inst, "FLT_TO_INT", fp_to_sint 1100> { 1101 let Itinerary = TransALU; 1102} 1103 1104class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper < 1105 inst, "INT_TO_FLT", sint_to_fp 1106> { 1107 let Itinerary = TransALU; 1108} 1109 1110class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper < 1111 inst, "FLT_TO_UINT", fp_to_uint 1112> { 1113 let Itinerary = TransALU; 1114} 1115 1116class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper < 1117 inst, "UINT_TO_FLT", uint_to_fp 1118> { 1119 let Itinerary = TransALU; 1120} 1121 1122class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP < 1123 inst, "LOG_CLAMPED", [] 1124>; 1125 1126class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper < 1127 inst, "LOG_IEEE", flog2 1128> { 1129 let Itinerary = TransALU; 1130} 1131 1132class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>; 1133class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>; 1134class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>; 1135class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper < 1136 inst, "MULHI_INT", mulhs> { 1137 let Itinerary = TransALU; 1138} 1139 1140class MULHI_INT24_Common <bits<11> inst> : R600_2OP_Helper < 1141 inst, "MULHI_INT24", AMDGPUmulhi_i24> { 1142 let Itinerary = VecALU; 1143} 1144 1145class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper < 1146 inst, "MULHI", mulhu> { 1147 let Itinerary = TransALU; 1148} 1149 1150class MULHI_UINT24_Common <bits<11> inst> : R600_2OP_Helper < 1151 inst, "MULHI_UINT24", AMDGPUmulhi_u24> { 1152 let Itinerary = VecALU; 1153} 1154 1155class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper < 1156 inst, "MULLO_INT", mul> { 1157 let Itinerary = TransALU; 1158} 1159class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> { 1160 let Itinerary = TransALU; 1161} 1162 1163class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP < 1164 inst, "RECIP_CLAMPED", [] 1165> { 1166 let Itinerary = TransALU; 1167} 1168 1169class RECIP_IEEE_Common <bits<11> inst> : R600_1OP < 1170 inst, "RECIP_IEEE", [(set f32:$dst, (AMDGPUrcp f32:$src0))] 1171> { 1172 let Itinerary = TransALU; 1173} 1174 1175class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper < 1176 inst, "RECIP_UINT", AMDGPUurecip 1177> { 1178 let Itinerary = TransALU; 1179} 1180 1181// Clamped to maximum. 1182class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper < 1183 inst, "RECIPSQRT_CLAMPED", AMDGPUrsq_clamp 1184> { 1185 let Itinerary = TransALU; 1186} 1187 1188class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP_Helper < 1189 inst, "RECIPSQRT_IEEE", AMDGPUrsq> { 1190 let Itinerary = TransALU; 1191} 1192 1193// TODO: There is also RECIPSQRT_FF which clamps to zero. 1194 1195class SIN_Common <bits<11> inst> : R600_1OP < 1196 inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{ 1197 let Trig = 1; 1198 let Itinerary = TransALU; 1199} 1200 1201class COS_Common <bits<11> inst> : R600_1OP < 1202 inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> { 1203 let Trig = 1; 1204 let Itinerary = TransALU; 1205} 1206 1207def FABS_R600 : FABS<R600_Reg32>; 1208def FNEG_R600 : FNEG<R600_Reg32>; 1209 1210//===----------------------------------------------------------------------===// 1211// Helper patterns for complex intrinsics 1212//===----------------------------------------------------------------------===// 1213 1214// FIXME: Should be predicated on unsafe fp math. 1215multiclass DIV_Common <InstR600 recip_ieee> { 1216def : R600Pat< 1217 (fdiv f32:$src0, f32:$src1), 1218 (MUL_IEEE $src0, (recip_ieee $src1)) 1219>; 1220 1221def : RcpPat<recip_ieee, f32>; 1222} 1223 1224class SqrtPat<Instruction RsqInst, Instruction RecipInst> : R600Pat < 1225 (fsqrt f32:$src), 1226 (RecipInst (RsqInst $src)) 1227>; 1228 1229//===----------------------------------------------------------------------===// 1230// R600 / R700 Instructions 1231//===----------------------------------------------------------------------===// 1232 1233let Predicates = [isR600] in { 1234 1235 def MUL_LIT_r600 : MUL_LIT_Common<0x0C>; 1236 def MULADD_r600 : MULADD_Common<0x10>; 1237 def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>; 1238 def CNDE_r600 : CNDE_Common<0x18>; 1239 def CNDGT_r600 : CNDGT_Common<0x19>; 1240 def CNDGE_r600 : CNDGE_Common<0x1A>; 1241 def DOT4_r600 : DOT4_Common<0x50>; 1242 defm CUBE_r600 : CUBE_Common<0x52>; 1243 def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>; 1244 def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>; 1245 def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>; 1246 def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>; 1247 def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>; 1248 def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>; 1249 def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>; 1250 def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>; 1251 def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>; 1252 def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>; 1253 def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>; 1254 def SIN_r600 : SIN_Common<0x6E>; 1255 def COS_r600 : COS_Common<0x6F>; 1256 def ASHR_r600 : ASHR_Common<0x70>; 1257 def LSHR_r600 : LSHR_Common<0x71>; 1258 def LSHL_r600 : LSHL_Common<0x72>; 1259 def MULLO_INT_r600 : MULLO_INT_Common<0x73>; 1260 def MULHI_INT_r600 : MULHI_INT_Common<0x74>; 1261 def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>; 1262 def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>; 1263 def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>; 1264 1265 defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>; 1266 def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>; 1267 1268 def : SqrtPat<RECIPSQRT_IEEE_r600, RECIP_IEEE_r600>; 1269 1270 def R600_ExportSwz : ExportSwzInst { 1271 let Word1{20-17} = 0; // BURST_COUNT 1272 let Word1{21} = eop; 1273 let Word1{22} = 0; // VALID_PIXEL_MODE 1274 let Word1{30-23} = inst; 1275 let Word1{31} = 1; // BARRIER 1276 } 1277 defm : ExportPattern<R600_ExportSwz, 39>; 1278 1279 def R600_ExportBuf : ExportBufInst { 1280 let Word1{20-17} = 0; // BURST_COUNT 1281 let Word1{21} = eop; 1282 let Word1{22} = 0; // VALID_PIXEL_MODE 1283 let Word1{30-23} = inst; 1284 let Word1{31} = 1; // BARRIER 1285 } 1286 defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>; 1287 1288 def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT), 1289 "TEX $CNT @$ADDR"> { 1290 let POP_COUNT = 0; 1291 } 1292 def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT), 1293 "VTX $CNT @$ADDR"> { 1294 let POP_COUNT = 0; 1295 } 1296 def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR), 1297 "LOOP_START_DX10 @$ADDR"> { 1298 let POP_COUNT = 0; 1299 let CNT = 0; 1300 } 1301 def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> { 1302 let POP_COUNT = 0; 1303 let CNT = 0; 1304 } 1305 def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR), 1306 "LOOP_BREAK @$ADDR"> { 1307 let POP_COUNT = 0; 1308 let CNT = 0; 1309 } 1310 def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR), 1311 "CONTINUE @$ADDR"> { 1312 let POP_COUNT = 0; 1313 let CNT = 0; 1314 } 1315 def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), 1316 "JUMP @$ADDR POP:$POP_COUNT"> { 1317 let CNT = 0; 1318 } 1319 def CF_PUSH_ELSE_R600 : CF_CLAUSE_R600<12, (ins i32imm:$ADDR), 1320 "PUSH_ELSE @$ADDR"> { 1321 let CNT = 0; 1322 let POP_COUNT = 0; // FIXME? 1323 } 1324 def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), 1325 "ELSE @$ADDR POP:$POP_COUNT"> { 1326 let CNT = 0; 1327 } 1328 def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> { 1329 let ADDR = 0; 1330 let CNT = 0; 1331 let POP_COUNT = 0; 1332 } 1333 def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), 1334 "POP @$ADDR POP:$POP_COUNT"> { 1335 let CNT = 0; 1336 } 1337 def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> { 1338 let CNT = 0; 1339 let POP_COUNT = 0; 1340 let ADDR = 0; 1341 let END_OF_PROGRAM = 1; 1342 } 1343 1344} 1345 1346 1347//===----------------------------------------------------------------------===// 1348// Register loads and stores - for indirect addressing 1349//===----------------------------------------------------------------------===// 1350 1351let Namespace = "R600" in { 1352defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>; 1353} 1354 1355// Hardcode channel to 0 1356// NOTE: LSHR is not available here. LSHR is per family instruction 1357def : R600Pat < 1358 (i32 (load_private ADDRIndirect:$addr) ), 1359 (R600_RegisterLoad FRAMEri:$addr, (i32 0)) 1360>; 1361def : R600Pat < 1362 (store_private i32:$val, ADDRIndirect:$addr), 1363 (R600_RegisterStore i32:$val, FRAMEri:$addr, (i32 0)) 1364>; 1365 1366 1367//===----------------------------------------------------------------------===// 1368// Pseudo instructions 1369//===----------------------------------------------------------------------===// 1370 1371let isPseudo = 1 in { 1372 1373def PRED_X : InstR600 < 1374 (outs R600_Predicate_Bit:$dst), 1375 (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags), 1376 "", [], NullALU> { 1377 let FlagOperandIdx = 3; 1378} 1379 1380let isTerminator = 1, isBranch = 1 in { 1381def JUMP_COND : InstR600 < 1382 (outs), 1383 (ins brtarget:$target, R600_Predicate_Bit:$p), 1384 "JUMP $target ($p)", 1385 [], AnyALU 1386 >; 1387 1388def JUMP : InstR600 < 1389 (outs), 1390 (ins brtarget:$target), 1391 "JUMP $target", 1392 [], AnyALU 1393 > 1394{ 1395 let isPredicable = 1; 1396 let isBarrier = 1; 1397} 1398 1399} // End isTerminator = 1, isBranch = 1 1400 1401let usesCustomInserter = 1 in { 1402 1403let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in { 1404 1405def MASK_WRITE : InstR600 < 1406 (outs), 1407 (ins R600_Reg32:$src), 1408 "MASK_WRITE $src", 1409 [], 1410 NullALU 1411>; 1412 1413} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1 1414 1415 1416def TXD: InstR600 < 1417 (outs R600_Reg128:$dst), 1418 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, 1419 i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), 1420 "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", [], 1421 NullALU > { 1422 let TEXInst = 1; 1423} 1424 1425def TXD_SHADOW: InstR600 < 1426 (outs R600_Reg128:$dst), 1427 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, 1428 i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), 1429 "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", 1430 [], NullALU> { 1431 let TEXInst = 1; 1432} 1433} // End isPseudo = 1 1434} // End usesCustomInserter = 1 1435 1436 1437//===----------------------------------------------------------------------===// 1438// Constant Buffer Addressing Support 1439//===----------------------------------------------------------------------===// 1440 1441let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "R600" in { 1442def CONST_COPY : Instruction { 1443 let OutOperandList = (outs R600_Reg32:$dst); 1444 let InOperandList = (ins i32imm:$src); 1445 let Pattern = 1446 [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))]; 1447 let AsmString = "CONST_COPY"; 1448 let hasSideEffects = 0; 1449 let isAsCheapAsAMove = 1; 1450 let Itinerary = NullALU; 1451} 1452} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" 1453 1454def TEX_VTX_CONSTBUF : 1455 InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$buffer_id), "VTX_READ_eg $dst, $ptr", 1456 [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$buffer_id)))]>, 1457 VTX_WORD1_GPR, VTX_WORD0_eg { 1458 1459 let VC_INST = 0; 1460 let FETCH_TYPE = 2; 1461 let FETCH_WHOLE_QUAD = 0; 1462 let SRC_REL = 0; 1463 let SRC_SEL_X = 0; 1464 let DST_REL = 0; 1465 let USE_CONST_FIELDS = 0; 1466 let NUM_FORMAT_ALL = 2; 1467 let FORMAT_COMP_ALL = 1; 1468 let SRF_MODE_ALL = 1; 1469 let MEGA_FETCH_COUNT = 16; 1470 let DST_SEL_X = 0; 1471 let DST_SEL_Y = 1; 1472 let DST_SEL_Z = 2; 1473 let DST_SEL_W = 3; 1474 let DATA_FORMAT = 35; 1475 1476 let Inst{31-0} = Word0; 1477 let Inst{63-32} = Word1; 1478 1479// LLVM can only encode 64-bit instructions, so these fields are manually 1480// encoded in R600CodeEmitter 1481// 1482// bits<16> OFFSET; 1483// bits<2> ENDIAN_SWAP = 0; 1484// bits<1> CONST_BUF_NO_STRIDE = 0; 1485// bits<1> MEGA_FETCH = 0; 1486// bits<1> ALT_CONST = 0; 1487// bits<2> BUFFER_INDEX_MODE = 0; 1488 1489 1490 1491// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding 1492// is done in R600CodeEmitter 1493// 1494// Inst{79-64} = OFFSET; 1495// Inst{81-80} = ENDIAN_SWAP; 1496// Inst{82} = CONST_BUF_NO_STRIDE; 1497// Inst{83} = MEGA_FETCH; 1498// Inst{84} = ALT_CONST; 1499// Inst{86-85} = BUFFER_INDEX_MODE; 1500// Inst{95-86} = 0; Reserved 1501 1502// VTX_WORD3 (Padding) 1503// 1504// Inst{127-96} = 0; 1505 let VTXInst = 1; 1506} 1507 1508def TEX_VTX_TEXBUF: 1509 InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$buffer_id), "TEX_VTX_EXPLICIT_READ $dst, $ptr">, 1510VTX_WORD1_GPR, VTX_WORD0_eg { 1511 1512let VC_INST = 0; 1513let FETCH_TYPE = 2; 1514let FETCH_WHOLE_QUAD = 0; 1515let SRC_REL = 0; 1516let SRC_SEL_X = 0; 1517let DST_REL = 0; 1518let USE_CONST_FIELDS = 1; 1519let NUM_FORMAT_ALL = 0; 1520let FORMAT_COMP_ALL = 0; 1521let SRF_MODE_ALL = 1; 1522let MEGA_FETCH_COUNT = 16; 1523let DST_SEL_X = 0; 1524let DST_SEL_Y = 1; 1525let DST_SEL_Z = 2; 1526let DST_SEL_W = 3; 1527let DATA_FORMAT = 0; 1528 1529let Inst{31-0} = Word0; 1530let Inst{63-32} = Word1; 1531 1532// LLVM can only encode 64-bit instructions, so these fields are manually 1533// encoded in R600CodeEmitter 1534// 1535// bits<16> OFFSET; 1536// bits<2> ENDIAN_SWAP = 0; 1537// bits<1> CONST_BUF_NO_STRIDE = 0; 1538// bits<1> MEGA_FETCH = 0; 1539// bits<1> ALT_CONST = 0; 1540// bits<2> BUFFER_INDEX_MODE = 0; 1541 1542 1543 1544// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding 1545// is done in R600CodeEmitter 1546// 1547// Inst{79-64} = OFFSET; 1548// Inst{81-80} = ENDIAN_SWAP; 1549// Inst{82} = CONST_BUF_NO_STRIDE; 1550// Inst{83} = MEGA_FETCH; 1551// Inst{84} = ALT_CONST; 1552// Inst{86-85} = BUFFER_INDEX_MODE; 1553// Inst{95-86} = 0; Reserved 1554 1555// VTX_WORD3 (Padding) 1556// 1557// Inst{127-96} = 0; 1558 let VTXInst = 1; 1559} 1560 1561//===---------------------------------------------------------------------===// 1562// Flow and Program control Instructions 1563//===---------------------------------------------------------------------===// 1564 1565multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> { 1566 def _i32 : ILFormat<(outs), 1567 (ins brtarget:$target, rci:$src0), 1568 "; i32 Pseudo branch instruction", 1569 [(Op bb:$target, (i32 rci:$src0))]>; 1570 def _f32 : ILFormat<(outs), 1571 (ins brtarget:$target, rcf:$src0), 1572 "; f32 Pseudo branch instruction", 1573 [(Op bb:$target, (f32 rcf:$src0))]>; 1574} 1575 1576// Only scalar types should generate flow control 1577multiclass BranchInstr<string name> { 1578 def _i32 : ILFormat<(outs), (ins R600_Reg32:$src), 1579 !strconcat(name, " $src"), []>; 1580 def _f32 : ILFormat<(outs), (ins R600_Reg32:$src), 1581 !strconcat(name, " $src"), []>; 1582} 1583// Only scalar types should generate flow control 1584multiclass BranchInstr2<string name> { 1585 def _i32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1), 1586 !strconcat(name, " $src0, $src1"), []>; 1587 def _f32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1), 1588 !strconcat(name, " $src0, $src1"), []>; 1589} 1590 1591//===---------------------------------------------------------------------===// 1592// Custom Inserter for Branches and returns, this eventually will be a 1593// separate pass 1594//===---------------------------------------------------------------------===// 1595let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1, 1596 Namespace = "R600" in { 1597 def BRANCH : ILFormat<(outs), (ins brtarget:$target), 1598 "; Pseudo unconditional branch instruction", 1599 [(br bb:$target)]>; 1600 defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>; 1601} 1602 1603//===----------------------------------------------------------------------===// 1604// Branch Instructions 1605//===----------------------------------------------------------------------===// 1606 1607def IF_PREDICATE_SET : ILFormat<(outs), (ins R600_Reg32:$src), 1608 "IF_PREDICATE_SET $src", []>; 1609 1610let isTerminator=1 in { 1611 def BREAK : ILFormat< (outs), (ins), 1612 "BREAK", []>; 1613 def CONTINUE : ILFormat< (outs), (ins), 1614 "CONTINUE", []>; 1615 def DEFAULT : ILFormat< (outs), (ins), 1616 "DEFAULT", []>; 1617 def ELSE : ILFormat< (outs), (ins), 1618 "ELSE", []>; 1619 def ENDSWITCH : ILFormat< (outs), (ins), 1620 "ENDSWITCH", []>; 1621 def ENDMAIN : ILFormat< (outs), (ins), 1622 "ENDMAIN", []>; 1623 def END : ILFormat< (outs), (ins), 1624 "END", []>; 1625 def ENDFUNC : ILFormat< (outs), (ins), 1626 "ENDFUNC", []>; 1627 def ENDIF : ILFormat< (outs), (ins), 1628 "ENDIF", []>; 1629 def WHILELOOP : ILFormat< (outs), (ins), 1630 "WHILE", []>; 1631 def ENDLOOP : ILFormat< (outs), (ins), 1632 "ENDLOOP", []>; 1633 def FUNC : ILFormat< (outs), (ins), 1634 "FUNC", []>; 1635 def RETDYN : ILFormat< (outs), (ins), 1636 "RET_DYN", []>; 1637 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1638 defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">; 1639 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1640 defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">; 1641 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1642 defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">; 1643 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1644 defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">; 1645 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1646 defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">; 1647 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1648 defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">; 1649 defm IFC : BranchInstr2<"IFC">; 1650 defm BREAKC : BranchInstr2<"BREAKC">; 1651 defm CONTINUEC : BranchInstr2<"CONTINUEC">; 1652} 1653 1654//===----------------------------------------------------------------------===// 1655// Indirect addressing pseudo instructions 1656//===----------------------------------------------------------------------===// 1657 1658let isPseudo = 1 in { 1659 1660class ExtractVertical <RegisterClass vec_rc> : InstR600 < 1661 (outs R600_Reg32:$dst), 1662 (ins vec_rc:$vec, R600_Reg32:$index), "", 1663 [], 1664 AnyALU 1665>; 1666 1667let Constraints = "$dst = $vec" in { 1668 1669class InsertVertical <RegisterClass vec_rc> : InstR600 < 1670 (outs vec_rc:$dst), 1671 (ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "", 1672 [], 1673 AnyALU 1674>; 1675 1676} // End Constraints = "$dst = $vec" 1677 1678} // End isPseudo = 1 1679 1680def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>; 1681def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>; 1682 1683def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>; 1684def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>; 1685 1686class ExtractVerticalPat <Instruction inst, ValueType vec_ty, 1687 ValueType scalar_ty> : R600Pat < 1688 (scalar_ty (extractelt vec_ty:$vec, i32:$index)), 1689 (inst $vec, $index) 1690>; 1691 1692def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>; 1693def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>; 1694def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>; 1695def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>; 1696 1697class InsertVerticalPat <Instruction inst, ValueType vec_ty, 1698 ValueType scalar_ty> : R600Pat < 1699 (vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)), 1700 (inst $vec, $value, $index) 1701>; 1702 1703def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>; 1704def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>; 1705def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>; 1706def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>; 1707 1708//===----------------------------------------------------------------------===// 1709// ISel Patterns 1710//===----------------------------------------------------------------------===// 1711 1712let SubtargetPredicate = isR600toCayman in { 1713 1714// CND*_INT Patterns for f32 True / False values 1715 1716class CND_INT_f32 <InstR600 cnd, CondCode cc> : R600Pat < 1717 (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc), 1718 (cnd $src0, $src1, $src2) 1719>; 1720 1721def : CND_INT_f32 <CNDE_INT, SETEQ>; 1722def : CND_INT_f32 <CNDGT_INT, SETGT>; 1723def : CND_INT_f32 <CNDGE_INT, SETGE>; 1724 1725//CNDGE_INT extra pattern 1726def : R600Pat < 1727 (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT), 1728 (CNDGE_INT $src0, $src1, $src2) 1729>; 1730 1731// KIL Patterns 1732def KIL : R600Pat < 1733 (int_r600_kill f32:$src0), 1734 (MASK_WRITE (KILLGT (f32 ZERO), $src0)) 1735>; 1736 1737def : Extract_Element <f32, v4f32, 0, sub0>; 1738def : Extract_Element <f32, v4f32, 1, sub1>; 1739def : Extract_Element <f32, v4f32, 2, sub2>; 1740def : Extract_Element <f32, v4f32, 3, sub3>; 1741 1742def : Insert_Element <f32, v4f32, 0, sub0>; 1743def : Insert_Element <f32, v4f32, 1, sub1>; 1744def : Insert_Element <f32, v4f32, 2, sub2>; 1745def : Insert_Element <f32, v4f32, 3, sub3>; 1746 1747def : Extract_Element <i32, v4i32, 0, sub0>; 1748def : Extract_Element <i32, v4i32, 1, sub1>; 1749def : Extract_Element <i32, v4i32, 2, sub2>; 1750def : Extract_Element <i32, v4i32, 3, sub3>; 1751 1752def : Insert_Element <i32, v4i32, 0, sub0>; 1753def : Insert_Element <i32, v4i32, 1, sub1>; 1754def : Insert_Element <i32, v4i32, 2, sub2>; 1755def : Insert_Element <i32, v4i32, 3, sub3>; 1756 1757def : Extract_Element <f32, v2f32, 0, sub0>; 1758def : Extract_Element <f32, v2f32, 1, sub1>; 1759 1760def : Insert_Element <f32, v2f32, 0, sub0>; 1761def : Insert_Element <f32, v2f32, 1, sub1>; 1762 1763def : Extract_Element <i32, v2i32, 0, sub0>; 1764def : Extract_Element <i32, v2i32, 1, sub1>; 1765 1766def : Insert_Element <i32, v2i32, 0, sub0>; 1767def : Insert_Element <i32, v2i32, 1, sub1>; 1768 1769// bitconvert patterns 1770 1771def : BitConvert <i32, f32, R600_Reg32>; 1772def : BitConvert <f32, i32, R600_Reg32>; 1773def : BitConvert <v2f32, v2i32, R600_Reg64>; 1774def : BitConvert <v2i32, v2f32, R600_Reg64>; 1775def : BitConvert <v4f32, v4i32, R600_Reg128>; 1776def : BitConvert <v4i32, v4f32, R600_Reg128>; 1777 1778// DWORDADDR pattern 1779def : DwordAddrPat <i32, R600_Reg32>; 1780 1781} // End SubtargetPredicate = isR600toCayman 1782 1783def getLDSNoRetOp : InstrMapping { 1784 let FilterClass = "R600_LDS_1A1D"; 1785 let RowFields = ["BaseOp"]; 1786 let ColFields = ["DisableEncoding"]; 1787 let KeyCol = ["$dst"]; 1788 let ValueCols = [[""""]]; 1789} 1790