1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 95 Offset = Imm & 0xFFFFF; 96 } else { // GFX9+ supports 21-bit signed offsets. 97 Offset = SignExtend64<21>(Imm); 98 } 99 return addOperand(Inst, MCOperand::createImm(Offset)); 100 } 101 102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 103 const MCDisassembler *Decoder) { 104 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 105 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 106 } 107 108 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 109 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 110 uint64_t /*Addr*/, \ 111 const MCDisassembler *Decoder) { \ 112 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 113 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 114 } 115 116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 117 // number of register. Used by VGPR only and AGPR only operands. 118 #define DECODE_OPERAND_REG_8(RegClass) \ 119 static DecodeStatus Decode##RegClass##RegisterClass( \ 120 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 121 const MCDisassembler *Decoder) { \ 122 assert(Imm < (1 << 8) && "8-bit encoding"); \ 123 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 124 return addOperand( \ 125 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 126 } 127 128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 129 ImmWidth) \ 130 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 131 const MCDisassembler *Decoder) { \ 132 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 133 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 134 return addOperand(Inst, \ 135 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 136 MandatoryLiteral, ImmWidth)); \ 137 } 138 139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 140 // get register class. Used by SGPR only operands. 141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 142 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 143 144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 147 // Used by AV_ register classes (AGPR or VGPR only register operands). 148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 149 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 150 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 151 152 // Decoder for Src(9-bit encoding) registers only. 153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 154 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 155 156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 158 // only. 159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 160 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 161 162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 163 // Imm{9} is acc, registers only. 164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 165 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 166 167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 168 // register from RegClass or immediate. Registers that don't belong to RegClass 169 // will be decoded and InstPrinter will report warning. Immediate will be 170 // decoded into constant of size ImmWidth, should match width of immediate used 171 // by OperandType (important for floating point types). 172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 173 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 174 false, ImmWidth) 175 176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 177 // and decode using 'enum10' from decodeSrcOp. 178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 179 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 180 Imm | 512, false, ImmWidth) 181 182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 183 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 184 OpWidth, Imm, true, ImmWidth) 185 186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 187 // when RegisterClass is used as an operand. Most often used for destination 188 // operands. 189 190 DECODE_OPERAND_REG_8(VGPR_32) 191 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 192 DECODE_OPERAND_REG_8(VReg_64) 193 DECODE_OPERAND_REG_8(VReg_96) 194 DECODE_OPERAND_REG_8(VReg_128) 195 DECODE_OPERAND_REG_8(VReg_256) 196 DECODE_OPERAND_REG_8(VReg_288) 197 DECODE_OPERAND_REG_8(VReg_352) 198 DECODE_OPERAND_REG_8(VReg_384) 199 DECODE_OPERAND_REG_8(VReg_512) 200 DECODE_OPERAND_REG_8(VReg_1024) 201 202 DECODE_OPERAND_REG_7(SReg_32, OPW32) 203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 205 DECODE_OPERAND_REG_7(SReg_64, OPW64) 206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 207 DECODE_OPERAND_REG_7(SReg_128, OPW128) 208 DECODE_OPERAND_REG_7(SReg_256, OPW256) 209 DECODE_OPERAND_REG_7(SReg_512, OPW512) 210 211 DECODE_OPERAND_REG_8(AGPR_32) 212 DECODE_OPERAND_REG_8(AReg_64) 213 DECODE_OPERAND_REG_8(AReg_128) 214 DECODE_OPERAND_REG_8(AReg_256) 215 DECODE_OPERAND_REG_8(AReg_512) 216 DECODE_OPERAND_REG_8(AReg_1024) 217 218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 220 221 // Decoders for register only source RegisterOperands that use use 9-bit Src 222 // encoding: 'decodeOperand_<RegClass>'. 223 224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 229 230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 231 232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 235 236 // Decoders for register or immediate RegisterOperands that use 9-bit Src 237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 238 239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 252 253 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 258 259 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 262 263 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 264 uint64_t Addr, 265 const MCDisassembler *Decoder) { 266 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 267 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 268 } 269 270 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 271 uint64_t Addr, const void *Decoder) { 272 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 273 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 274 } 275 276 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 277 const MCRegisterInfo *MRI) { 278 if (OpIdx < 0) 279 return false; 280 281 const MCOperand &Op = Inst.getOperand(OpIdx); 282 if (!Op.isReg()) 283 return false; 284 285 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 286 auto Reg = Sub ? Sub : Op.getReg(); 287 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 288 } 289 290 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 291 AMDGPUDisassembler::OpWidthTy Opw, 292 const MCDisassembler *Decoder) { 293 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 294 if (!DAsm->isGFX90A()) { 295 Imm &= 511; 296 } else { 297 // If atomic has both vdata and vdst their register classes are tied. 298 // The bit is decoded along with the vdst, first operand. We need to 299 // change register class to AGPR if vdst was AGPR. 300 // If a DS instruction has both data0 and data1 their register classes 301 // are also tied. 302 unsigned Opc = Inst.getOpcode(); 303 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 304 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 305 : AMDGPU::OpName::vdata; 306 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 307 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 308 if ((int)Inst.getNumOperands() == DataIdx) { 309 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 310 if (IsAGPROperand(Inst, DstIdx, MRI)) 311 Imm |= 512; 312 } 313 314 if (TSFlags & SIInstrFlags::DS) { 315 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 316 if ((int)Inst.getNumOperands() == Data2Idx && 317 IsAGPROperand(Inst, DataIdx, MRI)) 318 Imm |= 512; 319 } 320 } 321 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 322 } 323 324 static DecodeStatus 325 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 326 const MCDisassembler *Decoder) { 327 return decodeOperand_AVLdSt_Any(Inst, Imm, 328 AMDGPUDisassembler::OPW32, Decoder); 329 } 330 331 static DecodeStatus 332 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 333 const MCDisassembler *Decoder) { 334 return decodeOperand_AVLdSt_Any(Inst, Imm, 335 AMDGPUDisassembler::OPW64, Decoder); 336 } 337 338 static DecodeStatus 339 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 340 const MCDisassembler *Decoder) { 341 return decodeOperand_AVLdSt_Any(Inst, Imm, 342 AMDGPUDisassembler::OPW96, Decoder); 343 } 344 345 static DecodeStatus 346 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 347 const MCDisassembler *Decoder) { 348 return decodeOperand_AVLdSt_Any(Inst, Imm, 349 AMDGPUDisassembler::OPW128, Decoder); 350 } 351 352 static DecodeStatus 353 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 354 const MCDisassembler *Decoder) { 355 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 356 Decoder); 357 } 358 359 #define DECODE_SDWA(DecName) \ 360 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 361 362 DECODE_SDWA(Src32) 363 DECODE_SDWA(Src16) 364 DECODE_SDWA(VopcDst) 365 366 #include "AMDGPUGenDisassemblerTables.inc" 367 368 //===----------------------------------------------------------------------===// 369 // 370 //===----------------------------------------------------------------------===// 371 372 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 373 assert(Bytes.size() >= sizeof(T)); 374 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 375 Bytes = Bytes.slice(sizeof(T)); 376 return Res; 377 } 378 379 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 380 assert(Bytes.size() >= 12); 381 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 382 Bytes.data()); 383 Bytes = Bytes.slice(8); 384 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 385 Bytes.data()); 386 Bytes = Bytes.slice(4); 387 return DecoderUInt128(Lo, Hi); 388 } 389 390 // The disassembler is greedy, so we need to check FI operand value to 391 // not parse a dpp if the correct literal is not set. For dpp16 the 392 // autogenerated decoder checks the dpp literal 393 static bool isValidDPP8(const MCInst &MI) { 394 using namespace llvm::AMDGPU::DPP; 395 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 396 assert(FiIdx != -1); 397 if ((unsigned)FiIdx >= MI.getNumOperands()) 398 return false; 399 unsigned Fi = MI.getOperand(FiIdx).getImm(); 400 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 401 } 402 403 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 404 ArrayRef<uint8_t> Bytes_, 405 uint64_t Address, 406 raw_ostream &CS) const { 407 bool IsSDWA = false; 408 409 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 410 Bytes = Bytes_.slice(0, MaxInstBytesNum); 411 412 DecodeStatus Res = MCDisassembler::Fail; 413 do { 414 // ToDo: better to switch encoding length using some bit predicate 415 // but it is unknown yet, so try all we can 416 417 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 418 // encodings 419 if (isGFX11Plus() && Bytes.size() >= 12 ) { 420 DecoderUInt128 DecW = eat12Bytes(Bytes); 421 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS); 422 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 423 break; 424 MI = MCInst(); // clear 425 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS); 426 if (Res) { 427 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 428 convertVOP3PDPPInst(MI); 429 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 430 convertVOPCDPPInst(MI); // Special VOP3 case 431 else { 432 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 433 convertVOP3DPPInst(MI); // Regular VOP3 case 434 } 435 break; 436 } 437 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 438 if (Res) 439 break; 440 } 441 // Reinitialize Bytes 442 Bytes = Bytes_.slice(0, MaxInstBytesNum); 443 444 if (Bytes.size() >= 8) { 445 const uint64_t QW = eatBytes<uint64_t>(Bytes); 446 447 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 448 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 449 if (Res) { 450 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 451 == -1) 452 break; 453 if (convertDPP8Inst(MI) == MCDisassembler::Success) 454 break; 455 MI = MCInst(); // clear 456 } 457 } 458 459 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 460 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 461 break; 462 MI = MCInst(); // clear 463 464 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS); 465 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 466 break; 467 MI = MCInst(); // clear 468 469 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 470 if (Res) break; 471 472 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS); 473 if (Res) { 474 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 475 convertVOPCDPPInst(MI); 476 break; 477 } 478 479 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 480 if (Res) { IsSDWA = true; break; } 481 482 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 483 if (Res) { IsSDWA = true; break; } 484 485 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 486 if (Res) { IsSDWA = true; break; } 487 488 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 489 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 490 if (Res) 491 break; 492 } 493 494 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 495 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 496 // table first so we print the correct name. 497 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 498 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 499 if (Res) 500 break; 501 } 502 } 503 504 // Reinitialize Bytes as DPP64 could have eaten too much 505 Bytes = Bytes_.slice(0, MaxInstBytesNum); 506 507 // Try decode 32-bit instruction 508 if (Bytes.size() < 4) break; 509 const uint32_t DW = eatBytes<uint32_t>(Bytes); 510 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 511 if (Res) break; 512 513 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 514 if (Res) break; 515 516 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 517 if (Res) break; 518 519 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 520 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 521 if (Res) 522 break; 523 } 524 525 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 526 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 527 if (Res) break; 528 } 529 530 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 531 if (Res) break; 532 533 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS); 534 if (Res) break; 535 536 if (Bytes.size() < 4) break; 537 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 538 539 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 540 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 541 if (Res) 542 break; 543 } 544 545 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 546 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 547 if (Res) 548 break; 549 } 550 551 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 552 if (Res) break; 553 554 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 555 if (Res) break; 556 557 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 558 if (Res) break; 559 560 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 561 if (Res) break; 562 563 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS); 564 if (Res) 565 break; 566 567 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 568 } while (false); 569 570 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 571 // Insert dummy unused src2_modifiers. 572 insertNamedMCOperand(MI, MCOperand::createImm(0), 573 AMDGPU::OpName::src2_modifiers); 574 } 575 576 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 577 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 578 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 579 AMDGPU::OpName::cpol); 580 if (CPolPos != -1) { 581 unsigned CPol = 582 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 583 AMDGPU::CPol::GLC : 0; 584 if (MI.getNumOperands() <= (unsigned)CPolPos) { 585 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 586 AMDGPU::OpName::cpol); 587 } else if (CPol) { 588 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 589 } 590 } 591 } 592 593 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 594 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 595 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 596 // GFX90A lost TFE, its place is occupied by ACC. 597 int TFEOpIdx = 598 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 599 if (TFEOpIdx != -1) { 600 auto TFEIter = MI.begin(); 601 std::advance(TFEIter, TFEOpIdx); 602 MI.insert(TFEIter, MCOperand::createImm(0)); 603 } 604 } 605 606 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 607 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 608 int SWZOpIdx = 609 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 610 if (SWZOpIdx != -1) { 611 auto SWZIter = MI.begin(); 612 std::advance(SWZIter, SWZOpIdx); 613 MI.insert(SWZIter, MCOperand::createImm(0)); 614 } 615 } 616 617 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 618 int VAddr0Idx = 619 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 620 int RsrcIdx = 621 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 622 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 623 if (VAddr0Idx >= 0 && NSAArgs > 0) { 624 unsigned NSAWords = (NSAArgs + 3) / 4; 625 if (Bytes.size() < 4 * NSAWords) { 626 Res = MCDisassembler::Fail; 627 } else { 628 for (unsigned i = 0; i < NSAArgs; ++i) { 629 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 630 auto VAddrRCID = 631 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 632 MI.insert(MI.begin() + VAddrIdx, 633 createRegOperand(VAddrRCID, Bytes[i])); 634 } 635 Bytes = Bytes.slice(4 * NSAWords); 636 } 637 } 638 639 if (Res) 640 Res = convertMIMGInst(MI); 641 } 642 643 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 644 Res = convertEXPInst(MI); 645 646 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 647 Res = convertVINTERPInst(MI); 648 649 if (Res && IsSDWA) 650 Res = convertSDWAInst(MI); 651 652 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 653 AMDGPU::OpName::vdst_in); 654 if (VDstIn_Idx != -1) { 655 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 656 MCOI::OperandConstraint::TIED_TO); 657 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 658 !MI.getOperand(VDstIn_Idx).isReg() || 659 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 660 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 661 MI.erase(&MI.getOperand(VDstIn_Idx)); 662 insertNamedMCOperand(MI, 663 MCOperand::createReg(MI.getOperand(Tied).getReg()), 664 AMDGPU::OpName::vdst_in); 665 } 666 } 667 668 int ImmLitIdx = 669 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 670 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 671 if (Res && ImmLitIdx != -1 && !IsSOPK) 672 Res = convertFMAanyK(MI, ImmLitIdx); 673 674 // if the opcode was not recognized we'll assume a Size of 4 bytes 675 // (unless there are fewer bytes left) 676 Size = Res ? (MaxInstBytesNum - Bytes.size()) 677 : std::min((size_t)4, Bytes_.size()); 678 return Res; 679 } 680 681 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 682 if (STI.hasFeature(AMDGPU::FeatureGFX11)) { 683 // The MCInst still has these fields even though they are no longer encoded 684 // in the GFX11 instruction. 685 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 686 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 687 } 688 return MCDisassembler::Success; 689 } 690 691 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 692 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 693 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 694 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 695 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 696 // The MCInst has this field that is not directly encoded in the 697 // instruction. 698 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 699 } 700 return MCDisassembler::Success; 701 } 702 703 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 704 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 705 STI.hasFeature(AMDGPU::FeatureGFX10)) { 706 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 707 // VOPC - insert clamp 708 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 709 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 710 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 711 if (SDst != -1) { 712 // VOPC - insert VCC register as sdst 713 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 714 AMDGPU::OpName::sdst); 715 } else { 716 // VOP1/2 - insert omod if present in instruction 717 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 718 } 719 } 720 return MCDisassembler::Success; 721 } 722 723 struct VOPModifiers { 724 unsigned OpSel = 0; 725 unsigned OpSelHi = 0; 726 unsigned NegLo = 0; 727 unsigned NegHi = 0; 728 }; 729 730 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 731 // Note that these values do not affect disassembler output, 732 // so this is only necessary for consistency with src_modifiers. 733 static VOPModifiers collectVOPModifiers(const MCInst &MI, 734 bool IsVOP3P = false) { 735 VOPModifiers Modifiers; 736 unsigned Opc = MI.getOpcode(); 737 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 738 AMDGPU::OpName::src1_modifiers, 739 AMDGPU::OpName::src2_modifiers}; 740 for (int J = 0; J < 3; ++J) { 741 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 742 if (OpIdx == -1) 743 continue; 744 745 unsigned Val = MI.getOperand(OpIdx).getImm(); 746 747 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 748 if (IsVOP3P) { 749 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 750 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 751 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 752 } else if (J == 0) { 753 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 754 } 755 } 756 757 return Modifiers; 758 } 759 760 // MAC opcodes have special old and src2 operands. 761 // src2 is tied to dst, while old is not tied (but assumed to be). 762 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 763 constexpr int DST_IDX = 0; 764 auto Opcode = MI.getOpcode(); 765 const auto &Desc = MCII->get(Opcode); 766 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 767 768 if (OldIdx != -1 && Desc.getOperandConstraint( 769 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 770 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 771 assert(Desc.getOperandConstraint( 772 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 773 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 774 (void)DST_IDX; 775 return true; 776 } 777 778 return false; 779 } 780 781 // Create dummy old operand and insert dummy unused src2_modifiers 782 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 783 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 784 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 785 insertNamedMCOperand(MI, MCOperand::createImm(0), 786 AMDGPU::OpName::src2_modifiers); 787 } 788 789 // We must check FI == literal to reject not genuine dpp8 insts, and we must 790 // first add optional MI operands to check FI 791 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 792 unsigned Opc = MI.getOpcode(); 793 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 794 convertVOP3PDPPInst(MI); 795 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 796 AMDGPU::isVOPC64DPP(Opc)) { 797 convertVOPCDPPInst(MI); 798 } else { 799 if (isMacDPP(MI)) 800 convertMacDPPInst(MI); 801 802 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 803 if (MI.getNumOperands() < DescNumOps && 804 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 805 auto Mods = collectVOPModifiers(MI); 806 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 807 AMDGPU::OpName::op_sel); 808 } else { 809 // Insert dummy unused src modifiers. 810 if (MI.getNumOperands() < DescNumOps && 811 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 812 insertNamedMCOperand(MI, MCOperand::createImm(0), 813 AMDGPU::OpName::src0_modifiers); 814 815 if (MI.getNumOperands() < DescNumOps && 816 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 817 insertNamedMCOperand(MI, MCOperand::createImm(0), 818 AMDGPU::OpName::src1_modifiers); 819 } 820 } 821 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 822 } 823 824 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 825 if (isMacDPP(MI)) 826 convertMacDPPInst(MI); 827 828 unsigned Opc = MI.getOpcode(); 829 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 830 if (MI.getNumOperands() < DescNumOps && 831 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 832 auto Mods = collectVOPModifiers(MI); 833 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 834 AMDGPU::OpName::op_sel); 835 } 836 return MCDisassembler::Success; 837 } 838 839 // Note that before gfx10, the MIMG encoding provided no information about 840 // VADDR size. Consequently, decoded instructions always show address as if it 841 // has 1 dword, which could be not really so. 842 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 843 844 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 845 AMDGPU::OpName::vdst); 846 847 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 848 AMDGPU::OpName::vdata); 849 int VAddr0Idx = 850 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 851 int RsrcIdx = 852 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 853 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 854 AMDGPU::OpName::dmask); 855 856 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 857 AMDGPU::OpName::tfe); 858 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 859 AMDGPU::OpName::d16); 860 861 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 862 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 863 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 864 865 assert(VDataIdx != -1); 866 if (BaseOpcode->BVH) { 867 // Add A16 operand for intersect_ray instructions 868 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 869 return MCDisassembler::Success; 870 } 871 872 bool IsAtomic = (VDstIdx != -1); 873 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 874 bool IsNSA = false; 875 bool IsPartialNSA = false; 876 unsigned AddrSize = Info->VAddrDwords; 877 878 if (isGFX10Plus()) { 879 unsigned DimIdx = 880 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 881 int A16Idx = 882 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 883 const AMDGPU::MIMGDimInfo *Dim = 884 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 885 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 886 887 AddrSize = 888 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 889 890 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 891 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 892 if (!IsNSA) { 893 if (AddrSize > 12) 894 AddrSize = 16; 895 } else { 896 if (AddrSize > Info->VAddrDwords) { 897 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 898 // The NSA encoding does not contain enough operands for the 899 // combination of base opcode / dimension. Should this be an error? 900 return MCDisassembler::Success; 901 } 902 IsPartialNSA = true; 903 } 904 } 905 } 906 907 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 908 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 909 910 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 911 if (D16 && AMDGPU::hasPackedD16(STI)) { 912 DstSize = (DstSize + 1) / 2; 913 } 914 915 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 916 DstSize += 1; 917 918 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 919 return MCDisassembler::Success; 920 921 int NewOpcode = 922 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 923 if (NewOpcode == -1) 924 return MCDisassembler::Success; 925 926 // Widen the register to the correct number of enabled channels. 927 unsigned NewVdata = AMDGPU::NoRegister; 928 if (DstSize != Info->VDataDwords) { 929 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 930 931 // Get first subregister of VData 932 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 933 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 934 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 935 936 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 937 &MRI.getRegClass(DataRCID)); 938 if (NewVdata == AMDGPU::NoRegister) { 939 // It's possible to encode this such that the low register + enabled 940 // components exceeds the register count. 941 return MCDisassembler::Success; 942 } 943 } 944 945 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 946 // If using partial NSA on GFX11+ widen last address register. 947 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 948 unsigned NewVAddrSA = AMDGPU::NoRegister; 949 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 950 AddrSize != Info->VAddrDwords) { 951 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 952 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 953 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 954 955 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 956 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 957 &MRI.getRegClass(AddrRCID)); 958 if (!NewVAddrSA) 959 return MCDisassembler::Success; 960 } 961 962 MI.setOpcode(NewOpcode); 963 964 if (NewVdata != AMDGPU::NoRegister) { 965 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 966 967 if (IsAtomic) { 968 // Atomic operations have an additional operand (a copy of data) 969 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 970 } 971 } 972 973 if (NewVAddrSA) { 974 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 975 } else if (IsNSA) { 976 assert(AddrSize <= Info->VAddrDwords); 977 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 978 MI.begin() + VAddr0Idx + Info->VAddrDwords); 979 } 980 981 return MCDisassembler::Success; 982 } 983 984 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 985 // decoder only adds to src_modifiers, so manually add the bits to the other 986 // operands. 987 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 988 unsigned Opc = MI.getOpcode(); 989 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 990 auto Mods = collectVOPModifiers(MI, true); 991 992 if (MI.getNumOperands() < DescNumOps && 993 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 994 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 995 996 if (MI.getNumOperands() < DescNumOps && 997 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 998 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 999 AMDGPU::OpName::op_sel); 1000 if (MI.getNumOperands() < DescNumOps && 1001 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1002 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1003 AMDGPU::OpName::op_sel_hi); 1004 if (MI.getNumOperands() < DescNumOps && 1005 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1006 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1007 AMDGPU::OpName::neg_lo); 1008 if (MI.getNumOperands() < DescNumOps && 1009 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1010 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1011 AMDGPU::OpName::neg_hi); 1012 1013 return MCDisassembler::Success; 1014 } 1015 1016 // Create dummy old operand and insert optional operands 1017 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1018 unsigned Opc = MI.getOpcode(); 1019 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1020 1021 if (MI.getNumOperands() < DescNumOps && 1022 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1023 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1024 1025 if (MI.getNumOperands() < DescNumOps && 1026 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1027 insertNamedMCOperand(MI, MCOperand::createImm(0), 1028 AMDGPU::OpName::src0_modifiers); 1029 1030 if (MI.getNumOperands() < DescNumOps && 1031 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1032 insertNamedMCOperand(MI, MCOperand::createImm(0), 1033 AMDGPU::OpName::src1_modifiers); 1034 return MCDisassembler::Success; 1035 } 1036 1037 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1038 int ImmLitIdx) const { 1039 assert(HasLiteral && "Should have decoded a literal"); 1040 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1041 unsigned DescNumOps = Desc.getNumOperands(); 1042 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1043 AMDGPU::OpName::immDeferred); 1044 assert(DescNumOps == MI.getNumOperands()); 1045 for (unsigned I = 0; I < DescNumOps; ++I) { 1046 auto &Op = MI.getOperand(I); 1047 auto OpType = Desc.operands()[I].OperandType; 1048 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1049 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1050 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1051 IsDeferredOp) 1052 Op.setImm(Literal); 1053 } 1054 return MCDisassembler::Success; 1055 } 1056 1057 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1058 return getContext().getRegisterInfo()-> 1059 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1060 } 1061 1062 inline 1063 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1064 const Twine& ErrMsg) const { 1065 *CommentStream << "Error: " + ErrMsg; 1066 1067 // ToDo: add support for error operands to MCInst.h 1068 // return MCOperand::createError(V); 1069 return MCOperand(); 1070 } 1071 1072 inline 1073 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1074 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1075 } 1076 1077 inline 1078 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1079 unsigned Val) const { 1080 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1081 if (Val >= RegCl.getNumRegs()) 1082 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1083 ": unknown register " + Twine(Val)); 1084 return createRegOperand(RegCl.getRegister(Val)); 1085 } 1086 1087 inline 1088 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1089 unsigned Val) const { 1090 // ToDo: SI/CI have 104 SGPRs, VI - 102 1091 // Valery: here we accepting as much as we can, let assembler sort it out 1092 int shift = 0; 1093 switch (SRegClassID) { 1094 case AMDGPU::SGPR_32RegClassID: 1095 case AMDGPU::TTMP_32RegClassID: 1096 break; 1097 case AMDGPU::SGPR_64RegClassID: 1098 case AMDGPU::TTMP_64RegClassID: 1099 shift = 1; 1100 break; 1101 case AMDGPU::SGPR_128RegClassID: 1102 case AMDGPU::TTMP_128RegClassID: 1103 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1104 // this bundle? 1105 case AMDGPU::SGPR_256RegClassID: 1106 case AMDGPU::TTMP_256RegClassID: 1107 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1108 // this bundle? 1109 case AMDGPU::SGPR_288RegClassID: 1110 case AMDGPU::TTMP_288RegClassID: 1111 case AMDGPU::SGPR_320RegClassID: 1112 case AMDGPU::TTMP_320RegClassID: 1113 case AMDGPU::SGPR_352RegClassID: 1114 case AMDGPU::TTMP_352RegClassID: 1115 case AMDGPU::SGPR_384RegClassID: 1116 case AMDGPU::TTMP_384RegClassID: 1117 case AMDGPU::SGPR_512RegClassID: 1118 case AMDGPU::TTMP_512RegClassID: 1119 shift = 2; 1120 break; 1121 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1122 // this bundle? 1123 default: 1124 llvm_unreachable("unhandled register class"); 1125 } 1126 1127 if (Val % (1 << shift)) { 1128 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1129 << ": scalar reg isn't aligned " << Val; 1130 } 1131 1132 return createRegOperand(SRegClassID, Val >> shift); 1133 } 1134 1135 // Decode Literals for insts which always have a literal in the encoding 1136 MCOperand 1137 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1138 if (HasLiteral) { 1139 assert( 1140 AMDGPU::hasVOPD(STI) && 1141 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1142 if (Literal != Val) 1143 return errOperand(Val, "More than one unique literal is illegal"); 1144 } 1145 HasLiteral = true; 1146 Literal = Val; 1147 return MCOperand::createImm(Literal); 1148 } 1149 1150 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1151 // For now all literal constants are supposed to be unsigned integer 1152 // ToDo: deal with signed/unsigned 64-bit integer constants 1153 // ToDo: deal with float/double constants 1154 if (!HasLiteral) { 1155 if (Bytes.size() < 4) { 1156 return errOperand(0, "cannot read literal, inst bytes left " + 1157 Twine(Bytes.size())); 1158 } 1159 HasLiteral = true; 1160 Literal = eatBytes<uint32_t>(Bytes); 1161 } 1162 return MCOperand::createImm(Literal); 1163 } 1164 1165 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1166 using namespace AMDGPU::EncValues; 1167 1168 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1169 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1170 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1171 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1172 // Cast prevents negative overflow. 1173 } 1174 1175 static int64_t getInlineImmVal32(unsigned Imm) { 1176 switch (Imm) { 1177 case 240: 1178 return llvm::bit_cast<uint32_t>(0.5f); 1179 case 241: 1180 return llvm::bit_cast<uint32_t>(-0.5f); 1181 case 242: 1182 return llvm::bit_cast<uint32_t>(1.0f); 1183 case 243: 1184 return llvm::bit_cast<uint32_t>(-1.0f); 1185 case 244: 1186 return llvm::bit_cast<uint32_t>(2.0f); 1187 case 245: 1188 return llvm::bit_cast<uint32_t>(-2.0f); 1189 case 246: 1190 return llvm::bit_cast<uint32_t>(4.0f); 1191 case 247: 1192 return llvm::bit_cast<uint32_t>(-4.0f); 1193 case 248: // 1 / (2 * PI) 1194 return 0x3e22f983; 1195 default: 1196 llvm_unreachable("invalid fp inline imm"); 1197 } 1198 } 1199 1200 static int64_t getInlineImmVal64(unsigned Imm) { 1201 switch (Imm) { 1202 case 240: 1203 return llvm::bit_cast<uint64_t>(0.5); 1204 case 241: 1205 return llvm::bit_cast<uint64_t>(-0.5); 1206 case 242: 1207 return llvm::bit_cast<uint64_t>(1.0); 1208 case 243: 1209 return llvm::bit_cast<uint64_t>(-1.0); 1210 case 244: 1211 return llvm::bit_cast<uint64_t>(2.0); 1212 case 245: 1213 return llvm::bit_cast<uint64_t>(-2.0); 1214 case 246: 1215 return llvm::bit_cast<uint64_t>(4.0); 1216 case 247: 1217 return llvm::bit_cast<uint64_t>(-4.0); 1218 case 248: // 1 / (2 * PI) 1219 return 0x3fc45f306dc9c882; 1220 default: 1221 llvm_unreachable("invalid fp inline imm"); 1222 } 1223 } 1224 1225 static int64_t getInlineImmVal16(unsigned Imm) { 1226 switch (Imm) { 1227 case 240: 1228 return 0x3800; 1229 case 241: 1230 return 0xB800; 1231 case 242: 1232 return 0x3C00; 1233 case 243: 1234 return 0xBC00; 1235 case 244: 1236 return 0x4000; 1237 case 245: 1238 return 0xC000; 1239 case 246: 1240 return 0x4400; 1241 case 247: 1242 return 0xC400; 1243 case 248: // 1 / (2 * PI) 1244 return 0x3118; 1245 default: 1246 llvm_unreachable("invalid fp inline imm"); 1247 } 1248 } 1249 1250 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1251 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1252 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1253 1254 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1255 // ImmWidth 0 is a default case where operand should not allow immediates. 1256 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1257 // use it to print verbose error message. 1258 switch (ImmWidth) { 1259 case 0: 1260 case 32: 1261 return MCOperand::createImm(getInlineImmVal32(Imm)); 1262 case 64: 1263 return MCOperand::createImm(getInlineImmVal64(Imm)); 1264 case 16: 1265 return MCOperand::createImm(getInlineImmVal16(Imm)); 1266 default: 1267 llvm_unreachable("implement me"); 1268 } 1269 } 1270 1271 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1272 using namespace AMDGPU; 1273 1274 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1275 switch (Width) { 1276 default: // fall 1277 case OPW32: 1278 case OPW16: 1279 case OPWV216: 1280 return VGPR_32RegClassID; 1281 case OPW64: 1282 case OPWV232: return VReg_64RegClassID; 1283 case OPW96: return VReg_96RegClassID; 1284 case OPW128: return VReg_128RegClassID; 1285 case OPW160: return VReg_160RegClassID; 1286 case OPW256: return VReg_256RegClassID; 1287 case OPW288: return VReg_288RegClassID; 1288 case OPW320: return VReg_320RegClassID; 1289 case OPW352: return VReg_352RegClassID; 1290 case OPW384: return VReg_384RegClassID; 1291 case OPW512: return VReg_512RegClassID; 1292 case OPW1024: return VReg_1024RegClassID; 1293 } 1294 } 1295 1296 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1297 using namespace AMDGPU; 1298 1299 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1300 switch (Width) { 1301 default: // fall 1302 case OPW32: 1303 case OPW16: 1304 case OPWV216: 1305 return AGPR_32RegClassID; 1306 case OPW64: 1307 case OPWV232: return AReg_64RegClassID; 1308 case OPW96: return AReg_96RegClassID; 1309 case OPW128: return AReg_128RegClassID; 1310 case OPW160: return AReg_160RegClassID; 1311 case OPW256: return AReg_256RegClassID; 1312 case OPW288: return AReg_288RegClassID; 1313 case OPW320: return AReg_320RegClassID; 1314 case OPW352: return AReg_352RegClassID; 1315 case OPW384: return AReg_384RegClassID; 1316 case OPW512: return AReg_512RegClassID; 1317 case OPW1024: return AReg_1024RegClassID; 1318 } 1319 } 1320 1321 1322 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1323 using namespace AMDGPU; 1324 1325 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1326 switch (Width) { 1327 default: // fall 1328 case OPW32: 1329 case OPW16: 1330 case OPWV216: 1331 return SGPR_32RegClassID; 1332 case OPW64: 1333 case OPWV232: return SGPR_64RegClassID; 1334 case OPW96: return SGPR_96RegClassID; 1335 case OPW128: return SGPR_128RegClassID; 1336 case OPW160: return SGPR_160RegClassID; 1337 case OPW256: return SGPR_256RegClassID; 1338 case OPW288: return SGPR_288RegClassID; 1339 case OPW320: return SGPR_320RegClassID; 1340 case OPW352: return SGPR_352RegClassID; 1341 case OPW384: return SGPR_384RegClassID; 1342 case OPW512: return SGPR_512RegClassID; 1343 } 1344 } 1345 1346 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1347 using namespace AMDGPU; 1348 1349 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1350 switch (Width) { 1351 default: // fall 1352 case OPW32: 1353 case OPW16: 1354 case OPWV216: 1355 return TTMP_32RegClassID; 1356 case OPW64: 1357 case OPWV232: return TTMP_64RegClassID; 1358 case OPW128: return TTMP_128RegClassID; 1359 case OPW256: return TTMP_256RegClassID; 1360 case OPW288: return TTMP_288RegClassID; 1361 case OPW320: return TTMP_320RegClassID; 1362 case OPW352: return TTMP_352RegClassID; 1363 case OPW384: return TTMP_384RegClassID; 1364 case OPW512: return TTMP_512RegClassID; 1365 } 1366 } 1367 1368 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1369 using namespace AMDGPU::EncValues; 1370 1371 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1372 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1373 1374 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1375 } 1376 1377 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1378 bool MandatoryLiteral, 1379 unsigned ImmWidth) const { 1380 using namespace AMDGPU::EncValues; 1381 1382 assert(Val < 1024); // enum10 1383 1384 bool IsAGPR = Val & 512; 1385 Val &= 511; 1386 1387 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1388 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1389 : getVgprClassId(Width), Val - VGPR_MIN); 1390 } 1391 if (Val <= SGPR_MAX) { 1392 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1393 static_assert(SGPR_MIN == 0); 1394 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1395 } 1396 1397 int TTmpIdx = getTTmpIdx(Val); 1398 if (TTmpIdx >= 0) { 1399 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1400 } 1401 1402 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1403 return decodeIntImmed(Val); 1404 1405 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1406 return decodeFPImmed(ImmWidth, Val); 1407 1408 if (Val == LITERAL_CONST) { 1409 if (MandatoryLiteral) 1410 // Keep a sentinel value for deferred setting 1411 return MCOperand::createImm(LITERAL_CONST); 1412 else 1413 return decodeLiteralConstant(); 1414 } 1415 1416 switch (Width) { 1417 case OPW32: 1418 case OPW16: 1419 case OPWV216: 1420 return decodeSpecialReg32(Val); 1421 case OPW64: 1422 case OPWV232: 1423 return decodeSpecialReg64(Val); 1424 default: 1425 llvm_unreachable("unexpected immediate type"); 1426 } 1427 } 1428 1429 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1430 // opposite of bit 0 of DstX. 1431 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1432 unsigned Val) const { 1433 int VDstXInd = 1434 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1435 assert(VDstXInd != -1); 1436 assert(Inst.getOperand(VDstXInd).isReg()); 1437 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1438 Val |= ~XDstReg & 1; 1439 auto Width = llvm::AMDGPUDisassembler::OPW32; 1440 return createRegOperand(getVgprClassId(Width), Val); 1441 } 1442 1443 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1444 using namespace AMDGPU; 1445 1446 switch (Val) { 1447 // clang-format off 1448 case 102: return createRegOperand(FLAT_SCR_LO); 1449 case 103: return createRegOperand(FLAT_SCR_HI); 1450 case 104: return createRegOperand(XNACK_MASK_LO); 1451 case 105: return createRegOperand(XNACK_MASK_HI); 1452 case 106: return createRegOperand(VCC_LO); 1453 case 107: return createRegOperand(VCC_HI); 1454 case 108: return createRegOperand(TBA_LO); 1455 case 109: return createRegOperand(TBA_HI); 1456 case 110: return createRegOperand(TMA_LO); 1457 case 111: return createRegOperand(TMA_HI); 1458 case 124: 1459 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1460 case 125: 1461 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1462 case 126: return createRegOperand(EXEC_LO); 1463 case 127: return createRegOperand(EXEC_HI); 1464 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1465 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1466 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1467 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1468 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1469 case 251: return createRegOperand(SRC_VCCZ); 1470 case 252: return createRegOperand(SRC_EXECZ); 1471 case 253: return createRegOperand(SRC_SCC); 1472 case 254: return createRegOperand(LDS_DIRECT); 1473 default: break; 1474 // clang-format on 1475 } 1476 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1477 } 1478 1479 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1480 using namespace AMDGPU; 1481 1482 switch (Val) { 1483 case 102: return createRegOperand(FLAT_SCR); 1484 case 104: return createRegOperand(XNACK_MASK); 1485 case 106: return createRegOperand(VCC); 1486 case 108: return createRegOperand(TBA); 1487 case 110: return createRegOperand(TMA); 1488 case 124: 1489 if (isGFX11Plus()) 1490 return createRegOperand(SGPR_NULL); 1491 break; 1492 case 125: 1493 if (!isGFX11Plus()) 1494 return createRegOperand(SGPR_NULL); 1495 break; 1496 case 126: return createRegOperand(EXEC); 1497 case 235: return createRegOperand(SRC_SHARED_BASE); 1498 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1499 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1500 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1501 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1502 case 251: return createRegOperand(SRC_VCCZ); 1503 case 252: return createRegOperand(SRC_EXECZ); 1504 case 253: return createRegOperand(SRC_SCC); 1505 default: break; 1506 } 1507 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1508 } 1509 1510 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1511 const unsigned Val, 1512 unsigned ImmWidth) const { 1513 using namespace AMDGPU::SDWA; 1514 using namespace AMDGPU::EncValues; 1515 1516 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1517 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1518 // XXX: cast to int is needed to avoid stupid warning: 1519 // compare with unsigned is always true 1520 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1521 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1522 return createRegOperand(getVgprClassId(Width), 1523 Val - SDWA9EncValues::SRC_VGPR_MIN); 1524 } 1525 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1526 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1527 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1528 return createSRegOperand(getSgprClassId(Width), 1529 Val - SDWA9EncValues::SRC_SGPR_MIN); 1530 } 1531 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1532 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1533 return createSRegOperand(getTtmpClassId(Width), 1534 Val - SDWA9EncValues::SRC_TTMP_MIN); 1535 } 1536 1537 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1538 1539 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1540 return decodeIntImmed(SVal); 1541 1542 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1543 return decodeFPImmed(ImmWidth, SVal); 1544 1545 return decodeSpecialReg32(SVal); 1546 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1547 return createRegOperand(getVgprClassId(Width), Val); 1548 } 1549 llvm_unreachable("unsupported target"); 1550 } 1551 1552 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1553 return decodeSDWASrc(OPW16, Val, 16); 1554 } 1555 1556 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1557 return decodeSDWASrc(OPW32, Val, 32); 1558 } 1559 1560 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1561 using namespace AMDGPU::SDWA; 1562 1563 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1564 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1565 "SDWAVopcDst should be present only on GFX9+"); 1566 1567 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1568 1569 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1570 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1571 1572 int TTmpIdx = getTTmpIdx(Val); 1573 if (TTmpIdx >= 0) { 1574 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1575 return createSRegOperand(TTmpClsId, TTmpIdx); 1576 } else if (Val > SGPR_MAX) { 1577 return IsWave64 ? decodeSpecialReg64(Val) 1578 : decodeSpecialReg32(Val); 1579 } else { 1580 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1581 } 1582 } else { 1583 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1584 } 1585 } 1586 1587 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1588 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1589 ? decodeSrcOp(OPW64, Val) 1590 : decodeSrcOp(OPW32, Val); 1591 } 1592 1593 bool AMDGPUDisassembler::isVI() const { 1594 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1595 } 1596 1597 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1598 1599 bool AMDGPUDisassembler::isGFX90A() const { 1600 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1601 } 1602 1603 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1604 1605 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1606 1607 bool AMDGPUDisassembler::isGFX10Plus() const { 1608 return AMDGPU::isGFX10Plus(STI); 1609 } 1610 1611 bool AMDGPUDisassembler::isGFX11() const { 1612 return STI.hasFeature(AMDGPU::FeatureGFX11); 1613 } 1614 1615 bool AMDGPUDisassembler::isGFX11Plus() const { 1616 return AMDGPU::isGFX11Plus(STI); 1617 } 1618 1619 1620 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1621 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1622 } 1623 1624 //===----------------------------------------------------------------------===// 1625 // AMDGPU specific symbol handling 1626 //===----------------------------------------------------------------------===// 1627 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1628 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1629 do { \ 1630 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1631 } while (0) 1632 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1633 do { \ 1634 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1635 << GET_FIELD(MASK) << '\n'; \ 1636 } while (0) 1637 1638 // NOLINTNEXTLINE(readability-identifier-naming) 1639 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1640 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1641 using namespace amdhsa; 1642 StringRef Indent = "\t"; 1643 1644 // We cannot accurately backward compute #VGPRs used from 1645 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1646 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1647 // simply calculate the inverse of what the assembler does. 1648 1649 uint32_t GranulatedWorkitemVGPRCount = 1650 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1651 1652 uint32_t NextFreeVGPR = 1653 (GranulatedWorkitemVGPRCount + 1) * 1654 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1655 1656 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1657 1658 // We cannot backward compute values used to calculate 1659 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1660 // directives can't be computed: 1661 // .amdhsa_reserve_vcc 1662 // .amdhsa_reserve_flat_scratch 1663 // .amdhsa_reserve_xnack_mask 1664 // They take their respective default values if not specified in the assembly. 1665 // 1666 // GRANULATED_WAVEFRONT_SGPR_COUNT 1667 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1668 // 1669 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1670 // are set to 0. So while disassembling we consider that: 1671 // 1672 // GRANULATED_WAVEFRONT_SGPR_COUNT 1673 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1674 // 1675 // The disassembler cannot recover the original values of those 3 directives. 1676 1677 uint32_t GranulatedWavefrontSGPRCount = 1678 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1679 1680 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1681 return MCDisassembler::Fail; 1682 1683 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1684 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1685 1686 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1687 if (!hasArchitectedFlatScratch()) 1688 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1689 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1690 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1691 1692 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1693 return MCDisassembler::Fail; 1694 1695 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1696 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1697 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1698 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1699 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1700 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1701 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1702 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1703 1704 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1705 return MCDisassembler::Fail; 1706 1707 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1708 1709 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1710 return MCDisassembler::Fail; 1711 1712 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1713 1714 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1715 return MCDisassembler::Fail; 1716 1717 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1718 return MCDisassembler::Fail; 1719 1720 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1721 1722 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1723 return MCDisassembler::Fail; 1724 1725 if (isGFX10Plus()) { 1726 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1727 COMPUTE_PGM_RSRC1_WGP_MODE); 1728 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1729 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1730 } 1731 return MCDisassembler::Success; 1732 } 1733 1734 // NOLINTNEXTLINE(readability-identifier-naming) 1735 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1736 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1737 using namespace amdhsa; 1738 StringRef Indent = "\t"; 1739 if (hasArchitectedFlatScratch()) 1740 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1741 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1742 else 1743 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1744 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1745 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1746 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1747 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1748 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1749 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1750 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1751 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1752 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1753 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1754 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1755 1756 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1757 return MCDisassembler::Fail; 1758 1759 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1760 return MCDisassembler::Fail; 1761 1762 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1763 return MCDisassembler::Fail; 1764 1765 PRINT_DIRECTIVE( 1766 ".amdhsa_exception_fp_ieee_invalid_op", 1767 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1768 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1769 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1770 PRINT_DIRECTIVE( 1771 ".amdhsa_exception_fp_ieee_div_zero", 1772 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1773 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1774 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1775 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1776 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1777 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1778 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1779 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1780 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1781 1782 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1783 return MCDisassembler::Fail; 1784 1785 return MCDisassembler::Success; 1786 } 1787 1788 // NOLINTNEXTLINE(readability-identifier-naming) 1789 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1790 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1791 using namespace amdhsa; 1792 StringRef Indent = "\t"; 1793 if (isGFX90A()) { 1794 KdStream << Indent << ".amdhsa_accum_offset " 1795 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1796 << '\n'; 1797 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1798 return MCDisassembler::Fail; 1799 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1800 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1801 return MCDisassembler::Fail; 1802 } else if (isGFX10Plus()) { 1803 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1804 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 1805 COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1806 } else { 1807 PRINT_PSEUDO_DIRECTIVE_COMMENT( 1808 "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1809 } 1810 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 1811 COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE); 1812 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 1813 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1814 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 1815 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END); 1816 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0) 1817 return MCDisassembler::Fail; 1818 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 1819 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1820 } else if (FourByteBuffer) { 1821 return MCDisassembler::Fail; 1822 } 1823 return MCDisassembler::Success; 1824 } 1825 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 1826 #undef PRINT_DIRECTIVE 1827 #undef GET_FIELD 1828 1829 MCDisassembler::DecodeStatus 1830 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1831 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1832 raw_string_ostream &KdStream) const { 1833 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1834 do { \ 1835 KdStream << Indent << DIRECTIVE " " \ 1836 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1837 } while (0) 1838 1839 uint16_t TwoByteBuffer = 0; 1840 uint32_t FourByteBuffer = 0; 1841 1842 StringRef ReservedBytes; 1843 StringRef Indent = "\t"; 1844 1845 assert(Bytes.size() == 64); 1846 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1847 1848 switch (Cursor.tell()) { 1849 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1850 FourByteBuffer = DE.getU32(Cursor); 1851 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1852 << '\n'; 1853 return MCDisassembler::Success; 1854 1855 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1856 FourByteBuffer = DE.getU32(Cursor); 1857 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1858 << FourByteBuffer << '\n'; 1859 return MCDisassembler::Success; 1860 1861 case amdhsa::KERNARG_SIZE_OFFSET: 1862 FourByteBuffer = DE.getU32(Cursor); 1863 KdStream << Indent << ".amdhsa_kernarg_size " 1864 << FourByteBuffer << '\n'; 1865 return MCDisassembler::Success; 1866 1867 case amdhsa::RESERVED0_OFFSET: 1868 // 4 reserved bytes, must be 0. 1869 ReservedBytes = DE.getBytes(Cursor, 4); 1870 for (int I = 0; I < 4; ++I) { 1871 if (ReservedBytes[I] != 0) { 1872 return MCDisassembler::Fail; 1873 } 1874 } 1875 return MCDisassembler::Success; 1876 1877 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1878 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1879 // So far no directive controls this for Code Object V3, so simply skip for 1880 // disassembly. 1881 DE.skip(Cursor, 8); 1882 return MCDisassembler::Success; 1883 1884 case amdhsa::RESERVED1_OFFSET: 1885 // 20 reserved bytes, must be 0. 1886 ReservedBytes = DE.getBytes(Cursor, 20); 1887 for (int I = 0; I < 20; ++I) { 1888 if (ReservedBytes[I] != 0) { 1889 return MCDisassembler::Fail; 1890 } 1891 } 1892 return MCDisassembler::Success; 1893 1894 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1895 FourByteBuffer = DE.getU32(Cursor); 1896 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 1897 1898 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1899 FourByteBuffer = DE.getU32(Cursor); 1900 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 1901 1902 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1903 FourByteBuffer = DE.getU32(Cursor); 1904 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 1905 1906 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1907 using namespace amdhsa; 1908 TwoByteBuffer = DE.getU16(Cursor); 1909 1910 if (!hasArchitectedFlatScratch()) 1911 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1912 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1913 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1914 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1915 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1916 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1917 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1918 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1919 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1920 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1921 if (!hasArchitectedFlatScratch()) 1922 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1923 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1924 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1925 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1926 1927 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1928 return MCDisassembler::Fail; 1929 1930 // Reserved for GFX9 1931 if (isGFX9() && 1932 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1933 return MCDisassembler::Fail; 1934 } else if (isGFX10Plus()) { 1935 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1936 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1937 } 1938 1939 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 1940 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1941 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1942 1943 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1944 return MCDisassembler::Fail; 1945 1946 return MCDisassembler::Success; 1947 1948 case amdhsa::RESERVED2_OFFSET: 1949 // 6 bytes from here are reserved, must be 0. 1950 ReservedBytes = DE.getBytes(Cursor, 6); 1951 for (int I = 0; I < 6; ++I) { 1952 if (ReservedBytes[I] != 0) 1953 return MCDisassembler::Fail; 1954 } 1955 return MCDisassembler::Success; 1956 1957 default: 1958 llvm_unreachable("Unhandled index. Case statements cover everything."); 1959 return MCDisassembler::Fail; 1960 } 1961 #undef PRINT_DIRECTIVE 1962 } 1963 1964 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1965 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1966 // CP microcode requires the kernel descriptor to be 64 aligned. 1967 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1968 return MCDisassembler::Fail; 1969 1970 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 1971 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 1972 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 1973 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 1974 // when required. 1975 if (isGFX10Plus()) { 1976 uint16_t KernelCodeProperties = 1977 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 1978 support::endianness::little); 1979 EnableWavefrontSize32 = 1980 AMDHSA_BITS_GET(KernelCodeProperties, 1981 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1982 } 1983 1984 std::string Kd; 1985 raw_string_ostream KdStream(Kd); 1986 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1987 1988 DataExtractor::Cursor C(0); 1989 while (C && C.tell() < Bytes.size()) { 1990 MCDisassembler::DecodeStatus Status = 1991 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1992 1993 cantFail(C.takeError()); 1994 1995 if (Status == MCDisassembler::Fail) 1996 return MCDisassembler::Fail; 1997 } 1998 KdStream << ".end_amdhsa_kernel\n"; 1999 outs() << KdStream.str(); 2000 return MCDisassembler::Success; 2001 } 2002 2003 std::optional<MCDisassembler::DecodeStatus> 2004 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2005 ArrayRef<uint8_t> Bytes, uint64_t Address, 2006 raw_ostream &CStream) const { 2007 // Right now only kernel descriptor needs to be handled. 2008 // We ignore all other symbols for target specific handling. 2009 // TODO: 2010 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2011 // Object V2 and V3 when symbols are marked protected. 2012 2013 // amd_kernel_code_t for Code Object V2. 2014 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2015 Size = 256; 2016 return MCDisassembler::Fail; 2017 } 2018 2019 // Code Object V3 kernel descriptors. 2020 StringRef Name = Symbol.Name; 2021 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2022 Size = 64; // Size = 64 regardless of success or failure. 2023 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2024 } 2025 return std::nullopt; 2026 } 2027 2028 //===----------------------------------------------------------------------===// 2029 // AMDGPUSymbolizer 2030 //===----------------------------------------------------------------------===// 2031 2032 // Try to find symbol name for specified label 2033 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2034 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2035 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2036 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2037 2038 if (!IsBranch) { 2039 return false; 2040 } 2041 2042 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2043 if (!Symbols) 2044 return false; 2045 2046 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2047 return Val.Addr == static_cast<uint64_t>(Value) && 2048 Val.Type == ELF::STT_NOTYPE; 2049 }); 2050 if (Result != Symbols->end()) { 2051 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2052 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2053 Inst.addOperand(MCOperand::createExpr(Add)); 2054 return true; 2055 } 2056 // Add to list of referenced addresses, so caller can synthesize a label. 2057 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2058 return false; 2059 } 2060 2061 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2062 int64_t Value, 2063 uint64_t Address) { 2064 llvm_unreachable("unimplemented"); 2065 } 2066 2067 //===----------------------------------------------------------------------===// 2068 // Initialization 2069 //===----------------------------------------------------------------------===// 2070 2071 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2072 LLVMOpInfoCallback /*GetOpInfo*/, 2073 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2074 void *DisInfo, 2075 MCContext *Ctx, 2076 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2077 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2078 } 2079 2080 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2081 const MCSubtargetInfo &STI, 2082 MCContext &Ctx) { 2083 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2084 } 2085 2086 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2087 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2088 createAMDGPUDisassembler); 2089 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2090 createAMDGPUSymbolizer); 2091 } 2092