1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCtorDtorLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUIGroupLP.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPURegBankSelect.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "AMDGPUUnifyDivergentExitNodes.h" 26 #include "GCNIterativeScheduler.h" 27 #include "GCNSchedStrategy.h" 28 #include "GCNVOPDUtils.h" 29 #include "R600.h" 30 #include "R600MachineFunctionInfo.h" 31 #include "R600TargetMachine.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIMachineScheduler.h" 34 #include "TargetInfo/AMDGPUTargetInfo.h" 35 #include "Utils/AMDGPUBaseInfo.h" 36 #include "llvm/Analysis/CGSCCPassManager.h" 37 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 38 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 39 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 40 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 41 #include "llvm/CodeGen/GlobalISel/Localizer.h" 42 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 43 #include "llvm/CodeGen/MIRParser/MIParser.h" 44 #include "llvm/CodeGen/Passes.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/IR/IntrinsicsAMDGPU.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Passes/PassBuilder.h" 53 #include "llvm/Transforms/HipStdPar/HipStdPar.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/IPO/AlwaysInliner.h" 56 #include "llvm/Transforms/IPO/GlobalDCE.h" 57 #include "llvm/Transforms/IPO/Internalize.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Scalar/GVN.h" 60 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 61 #include "llvm/Transforms/Utils.h" 62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 63 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 64 #include <optional> 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 namespace { 70 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 71 public: 72 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 73 : RegisterRegAllocBase(N, D, C) {} 74 }; 75 76 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 77 public: 78 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 79 : RegisterRegAllocBase(N, D, C) {} 80 }; 81 82 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 83 const TargetRegisterClass &RC) { 84 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 85 } 86 87 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 88 const TargetRegisterClass &RC) { 89 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 90 } 91 92 93 /// -{sgpr|vgpr}-regalloc=... command line option. 94 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 95 96 /// A dummy default pass factory indicates whether the register allocator is 97 /// overridden on the command line. 98 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 99 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 100 101 static SGPRRegisterRegAlloc 102 defaultSGPRRegAlloc("default", 103 "pick SGPR register allocator based on -O option", 104 useDefaultRegisterAllocator); 105 106 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 107 RegisterPassParser<SGPRRegisterRegAlloc>> 108 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 109 cl::desc("Register allocator to use for SGPRs")); 110 111 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 112 RegisterPassParser<VGPRRegisterRegAlloc>> 113 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 114 cl::desc("Register allocator to use for VGPRs")); 115 116 117 static void initializeDefaultSGPRRegisterAllocatorOnce() { 118 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 119 120 if (!Ctor) { 121 Ctor = SGPRRegAlloc; 122 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 123 } 124 } 125 126 static void initializeDefaultVGPRRegisterAllocatorOnce() { 127 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 128 129 if (!Ctor) { 130 Ctor = VGPRRegAlloc; 131 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 132 } 133 } 134 135 static FunctionPass *createBasicSGPRRegisterAllocator() { 136 return createBasicRegisterAllocator(onlyAllocateSGPRs); 137 } 138 139 static FunctionPass *createGreedySGPRRegisterAllocator() { 140 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 141 } 142 143 static FunctionPass *createFastSGPRRegisterAllocator() { 144 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 145 } 146 147 static FunctionPass *createBasicVGPRRegisterAllocator() { 148 return createBasicRegisterAllocator(onlyAllocateVGPRs); 149 } 150 151 static FunctionPass *createGreedyVGPRRegisterAllocator() { 152 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 153 } 154 155 static FunctionPass *createFastVGPRRegisterAllocator() { 156 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 157 } 158 159 static SGPRRegisterRegAlloc basicRegAllocSGPR( 160 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 161 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 162 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 163 164 static SGPRRegisterRegAlloc fastRegAllocSGPR( 165 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 166 167 168 static VGPRRegisterRegAlloc basicRegAllocVGPR( 169 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 170 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 171 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 172 173 static VGPRRegisterRegAlloc fastRegAllocVGPR( 174 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 175 } 176 177 static cl::opt<bool> 178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 179 cl::desc("Run early if-conversion"), 180 cl::init(false)); 181 182 static cl::opt<bool> 183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 184 cl::desc("Run pre-RA exec mask optimizations"), 185 cl::init(true)); 186 187 static cl::opt<bool> 188 LowerCtorDtor("amdgpu-lower-global-ctor-dtor", 189 cl::desc("Lower GPU ctor / dtors to globals on the device."), 190 cl::init(true), cl::Hidden); 191 192 // Option to disable vectorizer for tests. 193 static cl::opt<bool> EnableLoadStoreVectorizer( 194 "amdgpu-load-store-vectorizer", 195 cl::desc("Enable load store vectorizer"), 196 cl::init(true), 197 cl::Hidden); 198 199 // Option to control global loads scalarization 200 static cl::opt<bool> ScalarizeGlobal( 201 "amdgpu-scalarize-global-loads", 202 cl::desc("Enable global load scalarization"), 203 cl::init(true), 204 cl::Hidden); 205 206 // Option to run internalize pass. 207 static cl::opt<bool> InternalizeSymbols( 208 "amdgpu-internalize-symbols", 209 cl::desc("Enable elimination of non-kernel functions and unused globals"), 210 cl::init(false), 211 cl::Hidden); 212 213 // Option to inline all early. 214 static cl::opt<bool> EarlyInlineAll( 215 "amdgpu-early-inline-all", 216 cl::desc("Inline all functions early"), 217 cl::init(false), 218 cl::Hidden); 219 220 static cl::opt<bool> RemoveIncompatibleFunctions( 221 "amdgpu-enable-remove-incompatible-functions", cl::Hidden, 222 cl::desc("Enable removal of functions when they" 223 "use features not supported by the target GPU"), 224 cl::init(true)); 225 226 static cl::opt<bool> EnableSDWAPeephole( 227 "amdgpu-sdwa-peephole", 228 cl::desc("Enable SDWA peepholer"), 229 cl::init(true)); 230 231 static cl::opt<bool> EnableDPPCombine( 232 "amdgpu-dpp-combine", 233 cl::desc("Enable DPP combiner"), 234 cl::init(true)); 235 236 // Enable address space based alias analysis 237 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 238 cl::desc("Enable AMDGPU Alias Analysis"), 239 cl::init(true)); 240 241 // Option to run late CFG structurizer 242 static cl::opt<bool, true> LateCFGStructurize( 243 "amdgpu-late-structurize", 244 cl::desc("Enable late CFG structurization"), 245 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 246 cl::Hidden); 247 248 // Enable lib calls simplifications 249 static cl::opt<bool> EnableLibCallSimplify( 250 "amdgpu-simplify-libcall", 251 cl::desc("Enable amdgpu library simplifications"), 252 cl::init(true), 253 cl::Hidden); 254 255 static cl::opt<bool> EnableLowerKernelArguments( 256 "amdgpu-ir-lower-kernel-arguments", 257 cl::desc("Lower kernel argument loads in IR pass"), 258 cl::init(true), 259 cl::Hidden); 260 261 static cl::opt<bool> EnableRegReassign( 262 "amdgpu-reassign-regs", 263 cl::desc("Enable register reassign optimizations on gfx10+"), 264 cl::init(true), 265 cl::Hidden); 266 267 static cl::opt<bool> OptVGPRLiveRange( 268 "amdgpu-opt-vgpr-liverange", 269 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 270 cl::init(true), cl::Hidden); 271 272 static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy( 273 "amdgpu-atomic-optimizer-strategy", 274 cl::desc("Select DPP or Iterative strategy for scan"), 275 cl::init(ScanOptions::Iterative), 276 cl::values( 277 clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"), 278 clEnumValN(ScanOptions::Iterative, "Iterative", 279 "Use Iterative approach for scan"), 280 clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer"))); 281 282 // Enable Mode register optimization 283 static cl::opt<bool> EnableSIModeRegisterPass( 284 "amdgpu-mode-register", 285 cl::desc("Enable mode register pass"), 286 cl::init(true), 287 cl::Hidden); 288 289 // Enable GFX11.5+ s_singleuse_vdst insertion 290 static cl::opt<bool> 291 EnableInsertSingleUseVDST("amdgpu-enable-single-use-vdst", 292 cl::desc("Enable s_singleuse_vdst insertion"), 293 cl::init(false), cl::Hidden); 294 295 // Enable GFX11+ s_delay_alu insertion 296 static cl::opt<bool> 297 EnableInsertDelayAlu("amdgpu-enable-delay-alu", 298 cl::desc("Enable s_delay_alu insertion"), 299 cl::init(true), cl::Hidden); 300 301 // Enable GFX11+ VOPD 302 static cl::opt<bool> 303 EnableVOPD("amdgpu-enable-vopd", 304 cl::desc("Enable VOPD, dual issue of VALU in wave32"), 305 cl::init(true), cl::Hidden); 306 307 // Option is used in lit tests to prevent deadcoding of patterns inspected. 308 static cl::opt<bool> 309 EnableDCEInRA("amdgpu-dce-in-ra", 310 cl::init(true), cl::Hidden, 311 cl::desc("Enable machine DCE inside regalloc")); 312 313 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 314 cl::desc("Adjust wave priority"), 315 cl::init(false), cl::Hidden); 316 317 static cl::opt<bool> EnableScalarIRPasses( 318 "amdgpu-scalar-ir-passes", 319 cl::desc("Enable scalar IR passes"), 320 cl::init(true), 321 cl::Hidden); 322 323 static cl::opt<bool> EnableStructurizerWorkarounds( 324 "amdgpu-enable-structurizer-workarounds", 325 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 326 cl::Hidden); 327 328 static cl::opt<bool, true> EnableLowerModuleLDS( 329 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 330 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 331 cl::Hidden); 332 333 static cl::opt<bool> EnablePreRAOptimizations( 334 "amdgpu-enable-pre-ra-optimizations", 335 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 336 cl::Hidden); 337 338 static cl::opt<bool> EnablePromoteKernelArguments( 339 "amdgpu-enable-promote-kernel-arguments", 340 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 341 cl::Hidden, cl::init(true)); 342 343 static cl::opt<bool> EnableImageIntrinsicOptimizer( 344 "amdgpu-enable-image-intrinsic-optimizer", 345 cl::desc("Enable image intrinsic optimizer pass"), cl::init(true), 346 cl::Hidden); 347 348 static cl::opt<bool> 349 EnableLoopPrefetch("amdgpu-loop-prefetch", 350 cl::desc("Enable loop data prefetch on AMDGPU"), 351 cl::Hidden, cl::init(false)); 352 353 static cl::opt<bool> EnableMaxIlpSchedStrategy( 354 "amdgpu-enable-max-ilp-scheduling-strategy", 355 cl::desc("Enable scheduling strategy to maximize ILP for a single wave."), 356 cl::Hidden, cl::init(false)); 357 358 static cl::opt<bool> EnableRewritePartialRegUses( 359 "amdgpu-enable-rewrite-partial-reg-uses", 360 cl::desc("Enable rewrite partial reg uses pass"), cl::init(true), 361 cl::Hidden); 362 363 static cl::opt<bool> EnableHipStdPar( 364 "amdgpu-enable-hipstdpar", 365 cl::desc("Enable HIP Standard Parallelism Offload support"), cl::init(false), 366 cl::Hidden); 367 368 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 369 // Register the target 370 RegisterTargetMachine<R600TargetMachine> X(getTheR600Target()); 371 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 372 373 PassRegistry *PR = PassRegistry::getPassRegistry(); 374 initializeR600ClauseMergePassPass(*PR); 375 initializeR600ControlFlowFinalizerPass(*PR); 376 initializeR600PacketizerPass(*PR); 377 initializeR600ExpandSpecialInstrsPassPass(*PR); 378 initializeR600VectorRegMergerPass(*PR); 379 initializeGlobalISel(*PR); 380 initializeAMDGPUDAGToDAGISelPass(*PR); 381 initializeGCNDPPCombinePass(*PR); 382 initializeSILowerI1CopiesPass(*PR); 383 initializeAMDGPUGlobalISelDivergenceLoweringPass(*PR); 384 initializeSILowerWWMCopiesPass(*PR); 385 initializeSILowerSGPRSpillsPass(*PR); 386 initializeSIFixSGPRCopiesPass(*PR); 387 initializeSIFixVGPRCopiesPass(*PR); 388 initializeSIFoldOperandsPass(*PR); 389 initializeSIPeepholeSDWAPass(*PR); 390 initializeSIShrinkInstructionsPass(*PR); 391 initializeSIOptimizeExecMaskingPreRAPass(*PR); 392 initializeSIOptimizeVGPRLiveRangePass(*PR); 393 initializeSILoadStoreOptimizerPass(*PR); 394 initializeAMDGPUCtorDtorLoweringLegacyPass(*PR); 395 initializeAMDGPUAlwaysInlinePass(*PR); 396 initializeAMDGPUAttributorLegacyPass(*PR); 397 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 398 initializeAMDGPUAnnotateUniformValuesPass(*PR); 399 initializeAMDGPUArgumentUsageInfoPass(*PR); 400 initializeAMDGPUAtomicOptimizerPass(*PR); 401 initializeAMDGPULowerKernelArgumentsPass(*PR); 402 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 403 initializeAMDGPULowerKernelAttributesPass(*PR); 404 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 405 initializeAMDGPUPostLegalizerCombinerPass(*PR); 406 initializeAMDGPUPreLegalizerCombinerPass(*PR); 407 initializeAMDGPURegBankCombinerPass(*PR); 408 initializeAMDGPURegBankSelectPass(*PR); 409 initializeAMDGPUPromoteAllocaPass(*PR); 410 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 411 initializeAMDGPUCodeGenPreparePass(*PR); 412 initializeAMDGPULateCodeGenPreparePass(*PR); 413 initializeAMDGPURemoveIncompatibleFunctionsPass(*PR); 414 initializeAMDGPULowerModuleLDSLegacyPass(*PR); 415 initializeAMDGPURewriteOutArgumentsPass(*PR); 416 initializeAMDGPURewriteUndefForPHILegacyPass(*PR); 417 initializeAMDGPUUnifyMetadataPass(*PR); 418 initializeSIAnnotateControlFlowPass(*PR); 419 initializeAMDGPUInsertSingleUseVDSTPass(*PR); 420 initializeAMDGPUInsertDelayAluPass(*PR); 421 initializeSIInsertHardClausesPass(*PR); 422 initializeSIInsertWaitcntsPass(*PR); 423 initializeSIModeRegisterPass(*PR); 424 initializeSIWholeQuadModePass(*PR); 425 initializeSILowerControlFlowPass(*PR); 426 initializeSIPreEmitPeepholePass(*PR); 427 initializeSILateBranchLoweringPass(*PR); 428 initializeSIMemoryLegalizerPass(*PR); 429 initializeSIOptimizeExecMaskingPass(*PR); 430 initializeSIPreAllocateWWMRegsPass(*PR); 431 initializeSIFormMemoryClausesPass(*PR); 432 initializeSIPostRABundlerPass(*PR); 433 initializeGCNCreateVOPDPass(*PR); 434 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 435 initializeAMDGPUAAWrapperPassPass(*PR); 436 initializeAMDGPUExternalAAWrapperPass(*PR); 437 initializeAMDGPUImageIntrinsicOptimizerPass(*PR); 438 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 439 initializeAMDGPUResourceUsageAnalysisPass(*PR); 440 initializeGCNNSAReassignPass(*PR); 441 initializeGCNPreRAOptimizationsPass(*PR); 442 initializeGCNPreRALongBranchRegPass(*PR); 443 initializeGCNRewritePartialRegUsesPass(*PR); 444 initializeGCNRegPressurePrinterPass(*PR); 445 } 446 447 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 448 return std::make_unique<AMDGPUTargetObjectFile>(); 449 } 450 451 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 452 return new SIScheduleDAGMI(C); 453 } 454 455 static ScheduleDAGInstrs * 456 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 457 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 458 ScheduleDAGMILive *DAG = 459 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 460 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 461 if (ST.shouldClusterStores()) 462 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 463 DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/false)); 464 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 465 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 466 return DAG; 467 } 468 469 static ScheduleDAGInstrs * 470 createGCNMaxILPMachineScheduler(MachineSchedContext *C) { 471 ScheduleDAGMILive *DAG = 472 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C)); 473 DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/false)); 474 return DAG; 475 } 476 477 static ScheduleDAGInstrs * 478 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 479 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 480 auto DAG = new GCNIterativeScheduler(C, 481 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 482 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 483 if (ST.shouldClusterStores()) 484 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 485 return DAG; 486 } 487 488 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 489 return new GCNIterativeScheduler(C, 490 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 491 } 492 493 static ScheduleDAGInstrs * 494 createIterativeILPMachineScheduler(MachineSchedContext *C) { 495 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 496 auto DAG = new GCNIterativeScheduler(C, 497 GCNIterativeScheduler::SCHEDULE_ILP); 498 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 499 if (ST.shouldClusterStores()) 500 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 501 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 502 return DAG; 503 } 504 505 static MachineSchedRegistry 506 SISchedRegistry("si", "Run SI's custom scheduler", 507 createSIMachineScheduler); 508 509 static MachineSchedRegistry 510 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 511 "Run GCN scheduler to maximize occupancy", 512 createGCNMaxOccupancyMachineScheduler); 513 514 static MachineSchedRegistry 515 GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp", 516 createGCNMaxILPMachineScheduler); 517 518 static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry( 519 "gcn-iterative-max-occupancy-experimental", 520 "Run GCN scheduler to maximize occupancy (experimental)", 521 createIterativeGCNMaxOccupancyMachineScheduler); 522 523 static MachineSchedRegistry GCNMinRegSchedRegistry( 524 "gcn-iterative-minreg", 525 "Run GCN iterative scheduler for minimal register usage (experimental)", 526 createMinRegScheduler); 527 528 static MachineSchedRegistry GCNILPSchedRegistry( 529 "gcn-iterative-ilp", 530 "Run GCN iterative scheduler for ILP scheduling (experimental)", 531 createIterativeILPMachineScheduler); 532 533 static StringRef computeDataLayout(const Triple &TT) { 534 if (TT.getArch() == Triple::r600) { 535 // 32-bit pointers. 536 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 537 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 538 } 539 540 // 32-bit private, local, and region pointers. 64-bit global, constant and 541 // flat. 160-bit non-integral fat buffer pointers that include a 128-bit 542 // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values 543 // (address space 7), and 128-bit non-integral buffer resourcees (address 544 // space 8) which cannot be non-trivilally accessed by LLVM memory operations 545 // like getelementptr. 546 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 547 "-p7:160:256:256:32-p8:128:128-p9:192:256:256:32-i64:64-v16:16-v24:32-" 548 "v32:32-v48:64-v96:" 549 "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-" 550 "G1-ni:7:8:9"; 551 } 552 553 LLVM_READNONE 554 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 555 if (!GPU.empty()) 556 return GPU; 557 558 // Need to default to a target with flat support for HSA. 559 if (TT.getArch() == Triple::amdgcn) 560 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 561 562 return "r600"; 563 } 564 565 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { 566 // The AMDGPU toolchain only supports generating shared objects, so we 567 // must always use PIC. 568 return Reloc::PIC_; 569 } 570 571 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 572 StringRef CPU, StringRef FS, 573 TargetOptions Options, 574 std::optional<Reloc::Model> RM, 575 std::optional<CodeModel::Model> CM, 576 CodeGenOptLevel OptLevel) 577 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 578 FS, Options, getEffectiveRelocModel(RM), 579 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 580 TLOF(createTLOF(getTargetTriple())) { 581 initAsmInfo(); 582 if (TT.getArch() == Triple::amdgcn) { 583 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 584 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 585 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 586 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 587 } 588 } 589 590 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 591 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 592 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 593 594 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 595 596 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 597 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 598 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 599 } 600 601 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 602 Attribute FSAttr = F.getFnAttribute("target-features"); 603 604 return FSAttr.isValid() ? FSAttr.getValueAsString() 605 : getTargetFeatureString(); 606 } 607 608 /// Predicate for Internalize pass. 609 static bool mustPreserveGV(const GlobalValue &GV) { 610 if (const Function *F = dyn_cast<Function>(&GV)) 611 return F->isDeclaration() || F->getName().starts_with("__asan_") || 612 F->getName().starts_with("__sanitizer_") || 613 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 614 615 GV.removeDeadConstantUsers(); 616 return !GV.use_empty(); 617 } 618 619 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 620 AAM.registerFunctionAnalysis<AMDGPUAA>(); 621 } 622 623 void AMDGPUTargetMachine::registerPassBuilderCallbacks( 624 PassBuilder &PB, bool PopulateClassToPassNames) { 625 PB.registerPipelineParsingCallback( 626 [this](StringRef PassName, ModulePassManager &PM, 627 ArrayRef<PassBuilder::PipelineElement>) { 628 if (PassName == "amdgpu-attributor") { 629 PM.addPass(AMDGPUAttributorPass(*this)); 630 return true; 631 } 632 if (PassName == "amdgpu-unify-metadata") { 633 PM.addPass(AMDGPUUnifyMetadataPass()); 634 return true; 635 } 636 if (PassName == "amdgpu-printf-runtime-binding") { 637 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 638 return true; 639 } 640 if (PassName == "amdgpu-always-inline") { 641 PM.addPass(AMDGPUAlwaysInlinePass()); 642 return true; 643 } 644 if (PassName == "amdgpu-lower-module-lds") { 645 PM.addPass(AMDGPULowerModuleLDSPass(*this)); 646 return true; 647 } 648 if (PassName == "amdgpu-lower-ctor-dtor") { 649 PM.addPass(AMDGPUCtorDtorLoweringPass()); 650 return true; 651 } 652 return false; 653 }); 654 PB.registerPipelineParsingCallback( 655 [this](StringRef PassName, FunctionPassManager &PM, 656 ArrayRef<PassBuilder::PipelineElement>) { 657 if (PassName == "amdgpu-simplifylib") { 658 PM.addPass(AMDGPUSimplifyLibCallsPass()); 659 return true; 660 } 661 if (PassName == "amdgpu-image-intrinsic-opt") { 662 PM.addPass(AMDGPUImageIntrinsicOptimizerPass(*this)); 663 return true; 664 } 665 if (PassName == "amdgpu-usenative") { 666 PM.addPass(AMDGPUUseNativeCallsPass()); 667 return true; 668 } 669 if (PassName == "amdgpu-promote-alloca") { 670 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 671 return true; 672 } 673 if (PassName == "amdgpu-promote-alloca-to-vector") { 674 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 675 return true; 676 } 677 if (PassName == "amdgpu-lower-kernel-attributes") { 678 PM.addPass(AMDGPULowerKernelAttributesPass()); 679 return true; 680 } 681 if (PassName == "amdgpu-promote-kernel-arguments") { 682 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 683 return true; 684 } 685 if (PassName == "amdgpu-unify-divergent-exit-nodes") { 686 PM.addPass(AMDGPUUnifyDivergentExitNodesPass()); 687 return true; 688 } 689 if (PassName == "amdgpu-atomic-optimizer") { 690 PM.addPass( 691 AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy)); 692 return true; 693 } 694 if (PassName == "amdgpu-codegenprepare") { 695 PM.addPass(AMDGPUCodeGenPreparePass(*this)); 696 return true; 697 } 698 if (PassName == "amdgpu-lower-kernel-arguments") { 699 PM.addPass(AMDGPULowerKernelArgumentsPass(*this)); 700 return true; 701 } 702 if (PassName == "amdgpu-rewrite-undef-for-phi") { 703 PM.addPass(AMDGPURewriteUndefForPHIPass()); 704 return true; 705 } 706 return false; 707 }); 708 709 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 710 FAM.registerPass([&] { return AMDGPUAA(); }); 711 }); 712 713 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 714 if (AAName == "amdgpu-aa") { 715 AAM.registerFunctionAnalysis<AMDGPUAA>(); 716 return true; 717 } 718 return false; 719 }); 720 721 PB.registerPipelineStartEPCallback( 722 [](ModulePassManager &PM, OptimizationLevel Level) { 723 FunctionPassManager FPM; 724 FPM.addPass(AMDGPUUseNativeCallsPass()); 725 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 726 FPM.addPass(AMDGPUSimplifyLibCallsPass()); 727 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 728 if (EnableHipStdPar) 729 PM.addPass(HipStdParAcceleratorCodeSelectionPass()); 730 }); 731 732 PB.registerPipelineEarlySimplificationEPCallback( 733 [](ModulePassManager &PM, OptimizationLevel Level) { 734 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 735 736 if (Level == OptimizationLevel::O0) 737 return; 738 739 PM.addPass(AMDGPUUnifyMetadataPass()); 740 741 if (InternalizeSymbols) { 742 PM.addPass(InternalizePass(mustPreserveGV)); 743 PM.addPass(GlobalDCEPass()); 744 } 745 746 if (EarlyInlineAll && !EnableFunctionCalls) 747 PM.addPass(AMDGPUAlwaysInlinePass()); 748 }); 749 750 PB.registerCGSCCOptimizerLateEPCallback( 751 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 752 if (Level == OptimizationLevel::O0) 753 return; 754 755 FunctionPassManager FPM; 756 757 // Add promote kernel arguments pass to the opt pipeline right before 758 // infer address spaces which is needed to do actual address space 759 // rewriting. 760 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 761 EnablePromoteKernelArguments) 762 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 763 764 // Add infer address spaces pass to the opt pipeline after inlining 765 // but before SROA to increase SROA opportunities. 766 FPM.addPass(InferAddressSpacesPass()); 767 768 // This should run after inlining to have any chance of doing 769 // anything, and before other cleanup optimizations. 770 FPM.addPass(AMDGPULowerKernelAttributesPass()); 771 772 if (Level != OptimizationLevel::O0) { 773 // Promote alloca to vector before SROA and loop unroll. If we 774 // manage to eliminate allocas before unroll we may choose to unroll 775 // less. 776 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 777 } 778 779 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 780 }); 781 } 782 783 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 784 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 785 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 786 AddrSpace == AMDGPUAS::REGION_ADDRESS) 787 ? -1 788 : 0; 789 } 790 791 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 792 unsigned DestAS) const { 793 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 794 AMDGPU::isFlatGlobalAddrSpace(DestAS); 795 } 796 797 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 798 const auto *LD = dyn_cast<LoadInst>(V); 799 if (!LD) 800 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 801 802 // It must be a generic pointer loaded. 803 assert(V->getType()->isPointerTy() && 804 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 805 806 const auto *Ptr = LD->getPointerOperand(); 807 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 808 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 809 // For a generic pointer loaded from the constant memory, it could be assumed 810 // as a global pointer since the constant memory is only populated on the 811 // host side. As implied by the offload programming model, only global 812 // pointers could be referenced on the host side. 813 return AMDGPUAS::GLOBAL_ADDRESS; 814 } 815 816 std::pair<const Value *, unsigned> 817 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 818 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 819 switch (II->getIntrinsicID()) { 820 case Intrinsic::amdgcn_is_shared: 821 return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 822 case Intrinsic::amdgcn_is_private: 823 return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 824 default: 825 break; 826 } 827 return std::pair(nullptr, -1); 828 } 829 // Check the global pointer predication based on 830 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 831 // the order of 'is_shared' and 'is_private' is not significant. 832 Value *Ptr; 833 if (match( 834 const_cast<Value *>(V), 835 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 836 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 837 m_Deferred(Ptr)))))) 838 return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 839 840 return std::pair(nullptr, -1); 841 } 842 843 unsigned 844 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 845 switch (Kind) { 846 case PseudoSourceValue::Stack: 847 case PseudoSourceValue::FixedStack: 848 return AMDGPUAS::PRIVATE_ADDRESS; 849 case PseudoSourceValue::ConstantPool: 850 case PseudoSourceValue::GOT: 851 case PseudoSourceValue::JumpTable: 852 case PseudoSourceValue::GlobalValueCallEntry: 853 case PseudoSourceValue::ExternalSymbolCallEntry: 854 return AMDGPUAS::CONSTANT_ADDRESS; 855 } 856 return AMDGPUAS::FLAT_ADDRESS; 857 } 858 859 //===----------------------------------------------------------------------===// 860 // GCN Target Machine (SI+) 861 //===----------------------------------------------------------------------===// 862 863 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 864 StringRef CPU, StringRef FS, 865 TargetOptions Options, 866 std::optional<Reloc::Model> RM, 867 std::optional<CodeModel::Model> CM, 868 CodeGenOptLevel OL, bool JIT) 869 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 870 871 const TargetSubtargetInfo * 872 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 873 StringRef GPU = getGPUName(F); 874 StringRef FS = getFeatureString(F); 875 876 SmallString<128> SubtargetKey(GPU); 877 SubtargetKey.append(FS); 878 879 auto &I = SubtargetMap[SubtargetKey]; 880 if (!I) { 881 // This needs to be done before we create a new subtarget since any 882 // creation will depend on the TM and the code generation flags on the 883 // function that reside in TargetOptions. 884 resetTargetOptions(F); 885 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 886 } 887 888 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 889 890 return I.get(); 891 } 892 893 TargetTransformInfo 894 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 895 return TargetTransformInfo(GCNTTIImpl(this, F)); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // AMDGPU Pass Setup 900 //===----------------------------------------------------------------------===// 901 902 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 903 return getStandardCSEConfigForOpt(TM->getOptLevel()); 904 } 905 906 namespace { 907 908 class GCNPassConfig final : public AMDGPUPassConfig { 909 public: 910 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 911 : AMDGPUPassConfig(TM, PM) { 912 // It is necessary to know the register usage of the entire call graph. We 913 // allow calls without EnableAMDGPUFunctionCalls if they are marked 914 // noinline, so this is always required. 915 setRequiresCodeGenSCCOrder(true); 916 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 917 } 918 919 GCNTargetMachine &getGCNTargetMachine() const { 920 return getTM<GCNTargetMachine>(); 921 } 922 923 ScheduleDAGInstrs * 924 createMachineScheduler(MachineSchedContext *C) const override; 925 926 ScheduleDAGInstrs * 927 createPostMachineScheduler(MachineSchedContext *C) const override { 928 ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive( 929 C, std::make_unique<PostGenericScheduler>(C), 930 /*RemoveKillFlags=*/true); 931 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 932 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 933 if (ST.shouldClusterStores()) 934 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 935 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 936 DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/true)); 937 if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less)) 938 DAG->addMutation(createVOPDPairingMutation()); 939 return DAG; 940 } 941 942 bool addPreISel() override; 943 void addMachineSSAOptimization() override; 944 bool addILPOpts() override; 945 bool addInstSelector() override; 946 bool addIRTranslator() override; 947 void addPreLegalizeMachineIR() override; 948 bool addLegalizeMachineIR() override; 949 void addPreRegBankSelect() override; 950 bool addRegBankSelect() override; 951 void addPreGlobalInstructionSelect() override; 952 bool addGlobalInstructionSelect() override; 953 void addFastRegAlloc() override; 954 void addOptimizedRegAlloc() override; 955 956 FunctionPass *createSGPRAllocPass(bool Optimized); 957 FunctionPass *createVGPRAllocPass(bool Optimized); 958 FunctionPass *createRegAllocPass(bool Optimized) override; 959 960 bool addRegAssignAndRewriteFast() override; 961 bool addRegAssignAndRewriteOptimized() override; 962 963 void addPreRegAlloc() override; 964 bool addPreRewrite() override; 965 void addPostRegAlloc() override; 966 void addPreSched2() override; 967 void addPreEmitPass() override; 968 }; 969 970 } // end anonymous namespace 971 972 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 973 : TargetPassConfig(TM, PM) { 974 // Exceptions and StackMaps are not supported, so these passes will never do 975 // anything. 976 disablePass(&StackMapLivenessID); 977 disablePass(&FuncletLayoutID); 978 // Garbage collection is not supported. 979 disablePass(&GCLoweringID); 980 disablePass(&ShadowStackGCLoweringID); 981 } 982 983 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 984 if (getOptLevel() == CodeGenOptLevel::Aggressive) 985 addPass(createGVNPass()); 986 else 987 addPass(createEarlyCSEPass()); 988 } 989 990 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 991 if (isPassEnabled(EnableLoopPrefetch, CodeGenOptLevel::Aggressive)) 992 addPass(createLoopDataPrefetchPass()); 993 addPass(createSeparateConstOffsetFromGEPPass()); 994 // ReassociateGEPs exposes more opportunities for SLSR. See 995 // the example in reassociate-geps-and-slsr.ll. 996 addPass(createStraightLineStrengthReducePass()); 997 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 998 // EarlyCSE can reuse. 999 addEarlyCSEOrGVNPass(); 1000 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 1001 addPass(createNaryReassociatePass()); 1002 // NaryReassociate on GEPs creates redundant common expressions, so run 1003 // EarlyCSE after it. 1004 addPass(createEarlyCSEPass()); 1005 } 1006 1007 void AMDGPUPassConfig::addIRPasses() { 1008 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 1009 1010 Triple::ArchType Arch = TM.getTargetTriple().getArch(); 1011 if (RemoveIncompatibleFunctions && Arch == Triple::amdgcn) 1012 addPass(createAMDGPURemoveIncompatibleFunctionsPass(&TM)); 1013 1014 // There is no reason to run these. 1015 disablePass(&StackMapLivenessID); 1016 disablePass(&FuncletLayoutID); 1017 disablePass(&PatchableFunctionID); 1018 1019 addPass(createAMDGPUPrintfRuntimeBinding()); 1020 if (LowerCtorDtor) 1021 addPass(createAMDGPUCtorDtorLoweringLegacyPass()); 1022 1023 if (isPassEnabled(EnableImageIntrinsicOptimizer)) 1024 addPass(createAMDGPUImageIntrinsicOptimizerPass(&TM)); 1025 1026 // Function calls are not supported, so make sure we inline everything. 1027 addPass(createAMDGPUAlwaysInlinePass()); 1028 addPass(createAlwaysInlinerLegacyPass()); 1029 1030 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 1031 if (Arch == Triple::r600) 1032 addPass(createR600OpenCLImageTypeLoweringPass()); 1033 1034 // Replace OpenCL enqueued block function pointers with global variables. 1035 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 1036 1037 // Runs before PromoteAlloca so the latter can account for function uses 1038 if (EnableLowerModuleLDS) { 1039 addPass(createAMDGPULowerModuleLDSLegacyPass(&TM)); 1040 } 1041 1042 // AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run 1043 // after their introduction 1044 if (TM.getOptLevel() > CodeGenOptLevel::None) 1045 addPass(createAMDGPUAttributorLegacyPass()); 1046 1047 if (TM.getOptLevel() > CodeGenOptLevel::None) 1048 addPass(createInferAddressSpacesPass()); 1049 1050 // Run atomic optimizer before Atomic Expand 1051 if ((TM.getTargetTriple().getArch() == Triple::amdgcn) && 1052 (TM.getOptLevel() >= CodeGenOptLevel::Less) && 1053 (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) { 1054 addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy)); 1055 } 1056 1057 addPass(createAtomicExpandPass()); 1058 1059 if (TM.getOptLevel() > CodeGenOptLevel::None) { 1060 addPass(createAMDGPUPromoteAlloca()); 1061 1062 if (isPassEnabled(EnableScalarIRPasses)) 1063 addStraightLineScalarOptimizationPasses(); 1064 1065 if (EnableAMDGPUAliasAnalysis) { 1066 addPass(createAMDGPUAAWrapperPass()); 1067 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1068 AAResults &AAR) { 1069 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1070 AAR.addAAResult(WrapperPass->getResult()); 1071 })); 1072 } 1073 1074 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1075 // TODO: May want to move later or split into an early and late one. 1076 addPass(createAMDGPUCodeGenPreparePass()); 1077 } 1078 1079 // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may 1080 // have expanded. 1081 if (TM.getOptLevel() > CodeGenOptLevel::Less) 1082 addPass(createLICMPass()); 1083 } 1084 1085 TargetPassConfig::addIRPasses(); 1086 1087 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1088 // example, GVN can combine 1089 // 1090 // %0 = add %a, %b 1091 // %1 = add %b, %a 1092 // 1093 // and 1094 // 1095 // %0 = shl nsw %a, 2 1096 // %1 = shl %a, 2 1097 // 1098 // but EarlyCSE can do neither of them. 1099 if (isPassEnabled(EnableScalarIRPasses)) 1100 addEarlyCSEOrGVNPass(); 1101 } 1102 1103 void AMDGPUPassConfig::addCodeGenPrepare() { 1104 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1105 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1106 // analysis, and should be removed. 1107 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1108 } 1109 1110 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1111 EnableLowerKernelArguments) 1112 addPass(createAMDGPULowerKernelArgumentsPass()); 1113 1114 TargetPassConfig::addCodeGenPrepare(); 1115 1116 if (isPassEnabled(EnableLoadStoreVectorizer)) 1117 addPass(createLoadStoreVectorizerPass()); 1118 1119 // LowerSwitch pass may introduce unreachable blocks that can 1120 // cause unexpected behavior for subsequent passes. Placing it 1121 // here seems better that these blocks would get cleaned up by 1122 // UnreachableBlockElim inserted next in the pass flow. 1123 addPass(createLowerSwitchPass()); 1124 } 1125 1126 bool AMDGPUPassConfig::addPreISel() { 1127 if (TM->getOptLevel() > CodeGenOptLevel::None) 1128 addPass(createFlattenCFGPass()); 1129 return false; 1130 } 1131 1132 bool AMDGPUPassConfig::addInstSelector() { 1133 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 1134 return false; 1135 } 1136 1137 bool AMDGPUPassConfig::addGCPasses() { 1138 // Do nothing. GC is not supported. 1139 return false; 1140 } 1141 1142 llvm::ScheduleDAGInstrs * 1143 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1144 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1145 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1146 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1147 if (ST.shouldClusterStores()) 1148 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1149 return DAG; 1150 } 1151 1152 MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo( 1153 BumpPtrAllocator &Allocator, const Function &F, 1154 const TargetSubtargetInfo *STI) const { 1155 return R600MachineFunctionInfo::create<R600MachineFunctionInfo>( 1156 Allocator, F, static_cast<const R600Subtarget *>(STI)); 1157 } 1158 1159 //===----------------------------------------------------------------------===// 1160 // GCN Pass Setup 1161 //===----------------------------------------------------------------------===// 1162 1163 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1164 MachineSchedContext *C) const { 1165 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1166 if (ST.enableSIScheduler()) 1167 return createSIMachineScheduler(C); 1168 1169 if (EnableMaxIlpSchedStrategy) 1170 return createGCNMaxILPMachineScheduler(C); 1171 1172 return createGCNMaxOccupancyMachineScheduler(C); 1173 } 1174 1175 bool GCNPassConfig::addPreISel() { 1176 AMDGPUPassConfig::addPreISel(); 1177 1178 if (TM->getOptLevel() > CodeGenOptLevel::None) 1179 addPass(createAMDGPULateCodeGenPreparePass()); 1180 1181 if (TM->getOptLevel() > CodeGenOptLevel::None) 1182 addPass(createSinkingPass()); 1183 1184 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1185 // regions formed by them. 1186 addPass(&AMDGPUUnifyDivergentExitNodesID); 1187 if (!LateCFGStructurize) { 1188 if (EnableStructurizerWorkarounds) { 1189 addPass(createFixIrreduciblePass()); 1190 addPass(createUnifyLoopExitsPass()); 1191 } 1192 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1193 } 1194 addPass(createAMDGPUAnnotateUniformValues()); 1195 if (!LateCFGStructurize) { 1196 addPass(createSIAnnotateControlFlowPass()); 1197 // TODO: Move this right after structurizeCFG to avoid extra divergence 1198 // analysis. This depends on stopping SIAnnotateControlFlow from making 1199 // control flow modifications. 1200 addPass(createAMDGPURewriteUndefForPHILegacyPass()); 1201 } 1202 addPass(createLCSSAPass()); 1203 1204 if (TM->getOptLevel() > CodeGenOptLevel::Less) 1205 addPass(&AMDGPUPerfHintAnalysisID); 1206 1207 return false; 1208 } 1209 1210 void GCNPassConfig::addMachineSSAOptimization() { 1211 TargetPassConfig::addMachineSSAOptimization(); 1212 1213 // We want to fold operands after PeepholeOptimizer has run (or as part of 1214 // it), because it will eliminate extra copies making it easier to fold the 1215 // real source operand. We want to eliminate dead instructions after, so that 1216 // we see fewer uses of the copies. We then need to clean up the dead 1217 // instructions leftover after the operands are folded as well. 1218 // 1219 // XXX - Can we get away without running DeadMachineInstructionElim again? 1220 addPass(&SIFoldOperandsID); 1221 if (EnableDPPCombine) 1222 addPass(&GCNDPPCombineID); 1223 addPass(&SILoadStoreOptimizerID); 1224 if (isPassEnabled(EnableSDWAPeephole)) { 1225 addPass(&SIPeepholeSDWAID); 1226 addPass(&EarlyMachineLICMID); 1227 addPass(&MachineCSEID); 1228 addPass(&SIFoldOperandsID); 1229 } 1230 addPass(&DeadMachineInstructionElimID); 1231 addPass(createSIShrinkInstructionsPass()); 1232 } 1233 1234 bool GCNPassConfig::addILPOpts() { 1235 if (EnableEarlyIfConversion) 1236 addPass(&EarlyIfConverterID); 1237 1238 TargetPassConfig::addILPOpts(); 1239 return false; 1240 } 1241 1242 bool GCNPassConfig::addInstSelector() { 1243 AMDGPUPassConfig::addInstSelector(); 1244 addPass(&SIFixSGPRCopiesID); 1245 addPass(createSILowerI1CopiesPass()); 1246 return false; 1247 } 1248 1249 bool GCNPassConfig::addIRTranslator() { 1250 addPass(new IRTranslator(getOptLevel())); 1251 return false; 1252 } 1253 1254 void GCNPassConfig::addPreLegalizeMachineIR() { 1255 bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; 1256 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1257 addPass(new Localizer()); 1258 } 1259 1260 bool GCNPassConfig::addLegalizeMachineIR() { 1261 addPass(new Legalizer()); 1262 return false; 1263 } 1264 1265 void GCNPassConfig::addPreRegBankSelect() { 1266 bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; 1267 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1268 addPass(createAMDGPUGlobalISelDivergenceLoweringPass()); 1269 } 1270 1271 bool GCNPassConfig::addRegBankSelect() { 1272 addPass(new AMDGPURegBankSelect()); 1273 return false; 1274 } 1275 1276 void GCNPassConfig::addPreGlobalInstructionSelect() { 1277 bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; 1278 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1279 } 1280 1281 bool GCNPassConfig::addGlobalInstructionSelect() { 1282 addPass(new InstructionSelect(getOptLevel())); 1283 return false; 1284 } 1285 1286 void GCNPassConfig::addPreRegAlloc() { 1287 if (LateCFGStructurize) { 1288 addPass(createAMDGPUMachineCFGStructurizerPass()); 1289 } 1290 } 1291 1292 void GCNPassConfig::addFastRegAlloc() { 1293 // FIXME: We have to disable the verifier here because of PHIElimination + 1294 // TwoAddressInstructions disabling it. 1295 1296 // This must be run immediately after phi elimination and before 1297 // TwoAddressInstructions, otherwise the processing of the tied operand of 1298 // SI_ELSE will introduce a copy of the tied operand source after the else. 1299 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1300 1301 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1302 1303 TargetPassConfig::addFastRegAlloc(); 1304 } 1305 1306 void GCNPassConfig::addOptimizedRegAlloc() { 1307 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1308 // instructions that cause scheduling barriers. 1309 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1310 1311 if (OptExecMaskPreRA) 1312 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1313 1314 if (EnableRewritePartialRegUses) 1315 insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID); 1316 1317 if (isPassEnabled(EnablePreRAOptimizations)) 1318 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1319 1320 // This is not an essential optimization and it has a noticeable impact on 1321 // compilation time, so we only enable it from O2. 1322 if (TM->getOptLevel() > CodeGenOptLevel::Less) 1323 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1324 1325 // FIXME: when an instruction has a Killed operand, and the instruction is 1326 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1327 // the register in LiveVariables, this would trigger a failure in verifier, 1328 // we should fix it and enable the verifier. 1329 if (OptVGPRLiveRange) 1330 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1331 // This must be run immediately after phi elimination and before 1332 // TwoAddressInstructions, otherwise the processing of the tied operand of 1333 // SI_ELSE will introduce a copy of the tied operand source after the else. 1334 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1335 1336 if (EnableDCEInRA) 1337 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1338 1339 TargetPassConfig::addOptimizedRegAlloc(); 1340 } 1341 1342 bool GCNPassConfig::addPreRewrite() { 1343 addPass(&SILowerWWMCopiesID); 1344 if (EnableRegReassign) 1345 addPass(&GCNNSAReassignID); 1346 return true; 1347 } 1348 1349 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1350 // Initialize the global default. 1351 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1352 initializeDefaultSGPRRegisterAllocatorOnce); 1353 1354 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1355 if (Ctor != useDefaultRegisterAllocator) 1356 return Ctor(); 1357 1358 if (Optimized) 1359 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1360 1361 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1362 } 1363 1364 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1365 // Initialize the global default. 1366 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1367 initializeDefaultVGPRRegisterAllocatorOnce); 1368 1369 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1370 if (Ctor != useDefaultRegisterAllocator) 1371 return Ctor(); 1372 1373 if (Optimized) 1374 return createGreedyVGPRRegisterAllocator(); 1375 1376 return createFastVGPRRegisterAllocator(); 1377 } 1378 1379 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1380 llvm_unreachable("should not be used"); 1381 } 1382 1383 static const char RegAllocOptNotSupportedMessage[] = 1384 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1385 1386 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1387 if (!usingDefaultRegAlloc()) 1388 report_fatal_error(RegAllocOptNotSupportedMessage); 1389 1390 addPass(&GCNPreRALongBranchRegID); 1391 1392 addPass(createSGPRAllocPass(false)); 1393 1394 // Equivalent of PEI for SGPRs. 1395 addPass(&SILowerSGPRSpillsID); 1396 addPass(&SIPreAllocateWWMRegsID); 1397 1398 addPass(createVGPRAllocPass(false)); 1399 1400 addPass(&SILowerWWMCopiesID); 1401 return true; 1402 } 1403 1404 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1405 if (!usingDefaultRegAlloc()) 1406 report_fatal_error(RegAllocOptNotSupportedMessage); 1407 1408 addPass(&GCNPreRALongBranchRegID); 1409 1410 addPass(createSGPRAllocPass(true)); 1411 1412 // Commit allocated register changes. This is mostly necessary because too 1413 // many things rely on the use lists of the physical registers, such as the 1414 // verifier. This is only necessary with allocators which use LiveIntervals, 1415 // since FastRegAlloc does the replacements itself. 1416 addPass(createVirtRegRewriter(false)); 1417 1418 // Equivalent of PEI for SGPRs. 1419 addPass(&SILowerSGPRSpillsID); 1420 addPass(&SIPreAllocateWWMRegsID); 1421 1422 addPass(createVGPRAllocPass(true)); 1423 1424 addPreRewrite(); 1425 addPass(&VirtRegRewriterID); 1426 1427 return true; 1428 } 1429 1430 void GCNPassConfig::addPostRegAlloc() { 1431 addPass(&SIFixVGPRCopiesID); 1432 if (getOptLevel() > CodeGenOptLevel::None) 1433 addPass(&SIOptimizeExecMaskingID); 1434 TargetPassConfig::addPostRegAlloc(); 1435 } 1436 1437 void GCNPassConfig::addPreSched2() { 1438 if (TM->getOptLevel() > CodeGenOptLevel::None) 1439 addPass(createSIShrinkInstructionsPass()); 1440 addPass(&SIPostRABundlerID); 1441 } 1442 1443 void GCNPassConfig::addPreEmitPass() { 1444 if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less)) 1445 addPass(&GCNCreateVOPDID); 1446 addPass(createSIMemoryLegalizerPass()); 1447 addPass(createSIInsertWaitcntsPass()); 1448 1449 addPass(createSIModeRegisterPass()); 1450 1451 if (getOptLevel() > CodeGenOptLevel::None) 1452 addPass(&SIInsertHardClausesID); 1453 1454 addPass(&SILateBranchLoweringPassID); 1455 if (isPassEnabled(EnableSetWavePriority, CodeGenOptLevel::Less)) 1456 addPass(createAMDGPUSetWavePriorityPass()); 1457 if (getOptLevel() > CodeGenOptLevel::None) 1458 addPass(&SIPreEmitPeepholeID); 1459 // The hazard recognizer that runs as part of the post-ra scheduler does not 1460 // guarantee to be able handle all hazards correctly. This is because if there 1461 // are multiple scheduling regions in a basic block, the regions are scheduled 1462 // bottom up, so when we begin to schedule a region we don't know what 1463 // instructions were emitted directly before it. 1464 // 1465 // Here we add a stand-alone hazard recognizer pass which can handle all 1466 // cases. 1467 addPass(&PostRAHazardRecognizerID); 1468 1469 if (isPassEnabled(EnableInsertSingleUseVDST, CodeGenOptLevel::Less)) 1470 addPass(&AMDGPUInsertSingleUseVDSTID); 1471 1472 if (isPassEnabled(EnableInsertDelayAlu, CodeGenOptLevel::Less)) 1473 addPass(&AMDGPUInsertDelayAluID); 1474 1475 addPass(&BranchRelaxationPassID); 1476 } 1477 1478 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1479 return new GCNPassConfig(*this, PM); 1480 } 1481 1482 void GCNTargetMachine::registerMachineRegisterInfoCallback( 1483 MachineFunction &MF) const { 1484 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1485 MF.getRegInfo().addDelegate(MFI); 1486 } 1487 1488 MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo( 1489 BumpPtrAllocator &Allocator, const Function &F, 1490 const TargetSubtargetInfo *STI) const { 1491 return SIMachineFunctionInfo::create<SIMachineFunctionInfo>( 1492 Allocator, F, static_cast<const GCNSubtarget *>(STI)); 1493 } 1494 1495 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1496 return new yaml::SIMachineFunctionInfo(); 1497 } 1498 1499 yaml::MachineFunctionInfo * 1500 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1501 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1502 return new yaml::SIMachineFunctionInfo( 1503 *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF); 1504 } 1505 1506 bool GCNTargetMachine::parseMachineFunctionInfo( 1507 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1508 SMDiagnostic &Error, SMRange &SourceRange) const { 1509 const yaml::SIMachineFunctionInfo &YamlMFI = 1510 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1511 MachineFunction &MF = PFS.MF; 1512 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1513 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1514 1515 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1516 return true; 1517 1518 if (MFI->Occupancy == 0) { 1519 // Fixup the subtarget dependent default value. 1520 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1521 } 1522 1523 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1524 Register TempReg; 1525 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1526 SourceRange = RegName.SourceRange; 1527 return true; 1528 } 1529 RegVal = TempReg; 1530 1531 return false; 1532 }; 1533 1534 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1535 Register &RegVal) { 1536 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1537 }; 1538 1539 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1540 return true; 1541 1542 if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy)) 1543 return true; 1544 1545 if (parseOptionalRegister(YamlMFI.LongBranchReservedReg, 1546 MFI->LongBranchReservedReg)) 1547 return true; 1548 1549 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1550 // Create a diagnostic for a the register string literal. 1551 const MemoryBuffer &Buffer = 1552 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1553 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1554 RegName.Value.size(), SourceMgr::DK_Error, 1555 "incorrect register class for field", RegName.Value, 1556 std::nullopt, std::nullopt); 1557 SourceRange = RegName.SourceRange; 1558 return true; 1559 }; 1560 1561 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1562 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1563 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1564 return true; 1565 1566 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1567 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1568 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1569 } 1570 1571 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1572 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1573 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1574 } 1575 1576 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1577 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1578 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1579 } 1580 1581 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1582 Register ParsedReg; 1583 if (parseRegister(YamlReg, ParsedReg)) 1584 return true; 1585 1586 MFI->reserveWWMRegister(ParsedReg); 1587 } 1588 1589 auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A, 1590 const TargetRegisterClass &RC, 1591 ArgDescriptor &Arg, unsigned UserSGPRs, 1592 unsigned SystemSGPRs) { 1593 // Skip parsing if it's not present. 1594 if (!A) 1595 return false; 1596 1597 if (A->IsRegister) { 1598 Register Reg; 1599 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1600 SourceRange = A->RegisterName.SourceRange; 1601 return true; 1602 } 1603 if (!RC.contains(Reg)) 1604 return diagnoseRegisterClass(A->RegisterName); 1605 Arg = ArgDescriptor::createRegister(Reg); 1606 } else 1607 Arg = ArgDescriptor::createStack(A->StackOffset); 1608 // Check and apply the optional mask. 1609 if (A->Mask) 1610 Arg = ArgDescriptor::createArg(Arg, *A->Mask); 1611 1612 MFI->NumUserSGPRs += UserSGPRs; 1613 MFI->NumSystemSGPRs += SystemSGPRs; 1614 return false; 1615 }; 1616 1617 if (YamlMFI.ArgInfo && 1618 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1619 AMDGPU::SGPR_128RegClass, 1620 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1621 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1622 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1623 2, 0) || 1624 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1625 MFI->ArgInfo.QueuePtr, 2, 0) || 1626 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1627 AMDGPU::SReg_64RegClass, 1628 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1629 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1630 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1631 2, 0) || 1632 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1633 AMDGPU::SReg_64RegClass, 1634 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1635 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1636 AMDGPU::SGPR_32RegClass, 1637 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1638 parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, 1639 AMDGPU::SGPR_32RegClass, 1640 MFI->ArgInfo.LDSKernelId, 0, 1) || 1641 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1642 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1643 0, 1) || 1644 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1645 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1646 0, 1) || 1647 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1648 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1649 0, 1) || 1650 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1651 AMDGPU::SGPR_32RegClass, 1652 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1653 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1654 AMDGPU::SGPR_32RegClass, 1655 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1656 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1657 AMDGPU::SReg_64RegClass, 1658 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1659 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1660 AMDGPU::SReg_64RegClass, 1661 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1662 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1663 AMDGPU::VGPR_32RegClass, 1664 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1665 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1666 AMDGPU::VGPR_32RegClass, 1667 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1668 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1669 AMDGPU::VGPR_32RegClass, 1670 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1671 return true; 1672 1673 if (ST.hasIEEEMode()) 1674 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1675 if (ST.hasDX10ClampMode()) 1676 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1677 1678 // FIXME: Move proper support for denormal-fp-math into base MachineFunction 1679 MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals 1680 ? DenormalMode::IEEE 1681 : DenormalMode::PreserveSign; 1682 MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals 1683 ? DenormalMode::IEEE 1684 : DenormalMode::PreserveSign; 1685 1686 MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals 1687 ? DenormalMode::IEEE 1688 : DenormalMode::PreserveSign; 1689 MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals 1690 ? DenormalMode::IEEE 1691 : DenormalMode::PreserveSign; 1692 1693 return false; 1694 } 1695