1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminates allocas by either converting them into vectors or by migrating 10 // them to local address space. 11 // 12 // Two passes are exposed by this file: 13 // - "promote-alloca-to-vector", which runs early in the pipeline and only 14 // promotes to vector. Promotion to vector is almost always profitable 15 // except when the alloca is too big and the promotion would result in 16 // very high register pressure. 17 // - "promote-alloca", which does both promotion to vector and LDS and runs 18 // much later in the pipeline. This runs after SROA because promoting to 19 // LDS is of course less profitable than getting rid of the alloca or 20 // vectorizing it, thus we only want to do it when the only alternative is 21 // lowering the alloca to stack. 22 // 23 // Note that both of them exist for the old and new PMs. The new PM passes are 24 // declared in AMDGPU.h and the legacy PM ones are declared here.s 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "AMDGPU.h" 29 #include "GCNSubtarget.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/Analysis/CaptureTracking.h" 33 #include "llvm/Analysis/InstSimplifyFolder.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/IntrinsicsR600.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Transforms/Utils/SSAUpdater.h" 45 46 #define DEBUG_TYPE "amdgpu-promote-alloca" 47 48 using namespace llvm; 49 50 namespace { 51 52 static cl::opt<bool> 53 DisablePromoteAllocaToVector("disable-promote-alloca-to-vector", 54 cl::desc("Disable promote alloca to vector"), 55 cl::init(false)); 56 57 static cl::opt<bool> 58 DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds", 59 cl::desc("Disable promote alloca to LDS"), 60 cl::init(false)); 61 62 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 63 "amdgpu-promote-alloca-to-vector-limit", 64 cl::desc("Maximum byte size to consider promote alloca to vector"), 65 cl::init(0)); 66 67 // Shared implementation which can do both promotion to vector and to LDS. 68 class AMDGPUPromoteAllocaImpl { 69 private: 70 const TargetMachine &TM; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 74 // FIXME: This should be per-kernel. 75 uint32_t LocalMemLimit = 0; 76 uint32_t CurrentLocalMemUsage = 0; 77 unsigned MaxVGPRs; 78 79 bool IsAMDGCN = false; 80 bool IsAMDHSA = false; 81 82 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 83 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 84 85 /// BaseAlloca is the alloca root the search started from. 86 /// Val may be that alloca or a recursive user of it. 87 bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, 88 std::vector<Value *> &WorkList) const; 89 90 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 91 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 92 /// Returns true if both operands are derived from the same alloca. Val should 93 /// be the same value as one of the input operands of UseInst. 94 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 95 Instruction *UseInst, int OpIdx0, 96 int OpIdx1) const; 97 98 /// Check whether we have enough local memory for promotion. 99 bool hasSufficientLocalMem(const Function &F); 100 101 bool tryPromoteAllocaToVector(AllocaInst &I); 102 bool tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS); 103 104 public: 105 AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) { 106 const Triple &TT = TM.getTargetTriple(); 107 IsAMDGCN = TT.getArch() == Triple::amdgcn; 108 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 109 } 110 111 bool run(Function &F, bool PromoteToLDS); 112 }; 113 114 // FIXME: This can create globals so should be a module pass. 115 class AMDGPUPromoteAlloca : public FunctionPass { 116 public: 117 static char ID; 118 119 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 120 121 bool runOnFunction(Function &F) override { 122 if (skipFunction(F)) 123 return false; 124 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 125 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()) 126 .run(F, /*PromoteToLDS*/ true); 127 return false; 128 } 129 130 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 FunctionPass::getAnalysisUsage(AU); 135 } 136 }; 137 138 class AMDGPUPromoteAllocaToVector : public FunctionPass { 139 public: 140 static char ID; 141 142 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 143 144 bool runOnFunction(Function &F) override { 145 if (skipFunction(F)) 146 return false; 147 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 148 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()) 149 .run(F, /*PromoteToLDS*/ false); 150 return false; 151 } 152 153 StringRef getPassName() const override { 154 return "AMDGPU Promote Alloca to vector"; 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 FunctionPass::getAnalysisUsage(AU); 160 } 161 }; 162 163 unsigned getMaxVGPRs(const TargetMachine &TM, const Function &F) { 164 if (!TM.getTargetTriple().isAMDGCN()) 165 return 128; 166 167 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 168 unsigned MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 169 170 // A non-entry function has only 32 caller preserved registers. 171 // Do not promote alloca which will force spilling unless we know the function 172 // will be inlined. 173 if (!F.hasFnAttribute(Attribute::AlwaysInline) && 174 !AMDGPU::isEntryFunctionCC(F.getCallingConv())) 175 MaxVGPRs = std::min(MaxVGPRs, 32u); 176 return MaxVGPRs; 177 } 178 179 } // end anonymous namespace 180 181 char AMDGPUPromoteAlloca::ID = 0; 182 char AMDGPUPromoteAllocaToVector::ID = 0; 183 184 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 185 "AMDGPU promote alloca to vector or LDS", false, false) 186 // Move LDS uses from functions to kernels before promote alloca for accurate 187 // estimation of LDS available 188 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDSLegacy) 189 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 190 "AMDGPU promote alloca to vector or LDS", false, false) 191 192 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 193 "AMDGPU promote alloca to vector", false, false) 194 195 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 196 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 197 198 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 199 FunctionAnalysisManager &AM) { 200 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ true); 201 if (Changed) { 202 PreservedAnalyses PA; 203 PA.preserveSet<CFGAnalyses>(); 204 return PA; 205 } 206 return PreservedAnalyses::all(); 207 } 208 209 PreservedAnalyses 210 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 211 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ false); 212 if (Changed) { 213 PreservedAnalyses PA; 214 PA.preserveSet<CFGAnalyses>(); 215 return PA; 216 } 217 return PreservedAnalyses::all(); 218 } 219 220 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 221 return new AMDGPUPromoteAlloca(); 222 } 223 224 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 225 return new AMDGPUPromoteAllocaToVector(); 226 } 227 228 bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) { 229 Mod = F.getParent(); 230 DL = &Mod->getDataLayout(); 231 232 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 233 if (!ST.isPromoteAllocaEnabled()) 234 return false; 235 236 MaxVGPRs = getMaxVGPRs(TM, F); 237 238 bool SufficientLDS = PromoteToLDS ? hasSufficientLocalMem(F) : false; 239 240 SmallVector<AllocaInst *, 16> Allocas; 241 for (Instruction &I : F.getEntryBlock()) { 242 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 243 // Array allocations are probably not worth handling, since an allocation 244 // of the array type is the canonical form. 245 if (!AI->isStaticAlloca() || AI->isArrayAllocation()) 246 continue; 247 Allocas.push_back(AI); 248 } 249 } 250 251 bool Changed = false; 252 for (AllocaInst *AI : Allocas) { 253 if (tryPromoteAllocaToVector(*AI)) 254 Changed = true; 255 else if (PromoteToLDS && tryPromoteAllocaToLDS(*AI, SufficientLDS)) 256 Changed = true; 257 } 258 259 // NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains 260 // dangling pointers. If we want to reuse it past this point, the loop above 261 // would need to be updated to remove successfully promoted allocas. 262 263 return Changed; 264 } 265 266 struct MemTransferInfo { 267 ConstantInt *SrcIndex = nullptr; 268 ConstantInt *DestIndex = nullptr; 269 }; 270 271 // Checks if the instruction I is a memset user of the alloca AI that we can 272 // deal with. Currently, only non-volatile memsets that affect the whole alloca 273 // are handled. 274 static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI, 275 const DataLayout &DL) { 276 using namespace PatternMatch; 277 // For now we only care about non-volatile memsets that affect the whole type 278 // (start at index 0 and fill the whole alloca). 279 // 280 // TODO: Now that we moved to PromoteAlloca we could handle any memsets 281 // (except maybe volatile ones?) - we just need to use shufflevector if it 282 // only affects a subset of the vector. 283 const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType()); 284 return I->getOperand(0) == AI && 285 match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile(); 286 } 287 288 static Value * 289 calculateVectorIndex(Value *Ptr, 290 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 291 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()); 292 if (!GEP) 293 return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); 294 295 auto I = GEPIdx.find(GEP); 296 assert(I != GEPIdx.end() && "Must have entry for GEP!"); 297 return I->second; 298 } 299 300 static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, 301 Type *VecElemTy, const DataLayout &DL) { 302 // TODO: Extracting a "multiple of X" from a GEP might be a useful generic 303 // helper. 304 unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); 305 MapVector<Value *, APInt> VarOffsets; 306 APInt ConstOffset(BW, 0); 307 if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || 308 !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) 309 return nullptr; 310 311 unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); 312 if (VarOffsets.size() > 1) 313 return nullptr; 314 315 if (VarOffsets.size() == 1) { 316 // Only handle cases where we don't need to insert extra arithmetic 317 // instructions. 318 const auto &VarOffset = VarOffsets.front(); 319 if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) 320 return nullptr; 321 return VarOffset.first; 322 } 323 324 APInt Quot; 325 uint64_t Rem; 326 APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); 327 if (Rem != 0) 328 return nullptr; 329 330 return ConstantInt::get(GEP->getContext(), Quot); 331 } 332 333 /// Promotes a single user of the alloca to a vector form. 334 /// 335 /// \param Inst Instruction to be promoted. 336 /// \param DL Module Data Layout. 337 /// \param VectorTy Vectorized Type. 338 /// \param VecStoreSize Size of \p VectorTy in bytes. 339 /// \param ElementSize Size of \p VectorTy element type in bytes. 340 /// \param TransferInfo MemTransferInst info map. 341 /// \param GEPVectorIdx GEP -> VectorIdx cache. 342 /// \param CurVal Current value of the vector (e.g. last stored value) 343 /// \param[out] DeferredLoads \p Inst is added to this vector if it can't 344 /// be promoted now. This happens when promoting requires \p 345 /// CurVal, but \p CurVal is nullptr. 346 /// \return the stored value if \p Inst would have written to the alloca, or 347 /// nullptr otherwise. 348 static Value *promoteAllocaUserToVector( 349 Instruction *Inst, const DataLayout &DL, FixedVectorType *VectorTy, 350 unsigned VecStoreSize, unsigned ElementSize, 351 DenseMap<MemTransferInst *, MemTransferInfo> &TransferInfo, 352 std::map<GetElementPtrInst *, Value *> &GEPVectorIdx, Value *CurVal, 353 SmallVectorImpl<LoadInst *> &DeferredLoads) { 354 // Note: we use InstSimplifyFolder because it can leverage the DataLayout 355 // to do more folding, especially in the case of vector splats. 356 IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(), 357 InstSimplifyFolder(DL)); 358 Builder.SetInsertPoint(Inst); 359 360 const auto GetOrLoadCurrentVectorValue = [&]() -> Value * { 361 if (CurVal) 362 return CurVal; 363 364 // If the current value is not known, insert a dummy load and lower it on 365 // the second pass. 366 LoadInst *Dummy = 367 Builder.CreateLoad(VectorTy, PoisonValue::get(Builder.getPtrTy()), 368 "promotealloca.dummyload"); 369 DeferredLoads.push_back(Dummy); 370 return Dummy; 371 }; 372 373 const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val, 374 Type *PtrTy) -> Value * { 375 assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy)); 376 const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy); 377 if (!PtrTy->isVectorTy()) 378 return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size)); 379 const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements(); 380 // If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to 381 // first cast the ptr vector to <2 x i64>. 382 assert((Size % NumPtrElts == 0) && "Vector size not divisble"); 383 Type *EltTy = Builder.getIntNTy(Size / NumPtrElts); 384 return Builder.CreateBitOrPointerCast( 385 Val, FixedVectorType::get(EltTy, NumPtrElts)); 386 }; 387 388 Type *VecEltTy = VectorTy->getElementType(); 389 390 switch (Inst->getOpcode()) { 391 case Instruction::Load: { 392 // Loads can only be lowered if the value is known. 393 if (!CurVal) { 394 DeferredLoads.push_back(cast<LoadInst>(Inst)); 395 return nullptr; 396 } 397 398 Value *Index = calculateVectorIndex( 399 cast<LoadInst>(Inst)->getPointerOperand(), GEPVectorIdx); 400 401 // We're loading the full vector. 402 Type *AccessTy = Inst->getType(); 403 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 404 if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) { 405 if (AccessTy->isPtrOrPtrVectorTy()) 406 CurVal = CreateTempPtrIntCast(CurVal, AccessTy); 407 else if (CurVal->getType()->isPtrOrPtrVectorTy()) 408 CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType()); 409 Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy); 410 Inst->replaceAllUsesWith(NewVal); 411 return nullptr; 412 } 413 414 // Loading a subvector. 415 if (isa<FixedVectorType>(AccessTy)) { 416 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 417 const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy); 418 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts); 419 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 420 421 Value *SubVec = PoisonValue::get(SubVecTy); 422 for (unsigned K = 0; K < NumLoadedElts; ++K) { 423 Value *CurIdx = 424 Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); 425 SubVec = Builder.CreateInsertElement( 426 SubVec, Builder.CreateExtractElement(CurVal, CurIdx), K); 427 } 428 429 if (AccessTy->isPtrOrPtrVectorTy()) 430 SubVec = CreateTempPtrIntCast(SubVec, AccessTy); 431 else if (SubVecTy->isPtrOrPtrVectorTy()) 432 SubVec = CreateTempPtrIntCast(SubVec, SubVecTy); 433 434 SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy); 435 Inst->replaceAllUsesWith(SubVec); 436 return nullptr; 437 } 438 439 // We're loading one element. 440 Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index); 441 if (AccessTy != VecEltTy) 442 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy); 443 444 Inst->replaceAllUsesWith(ExtractElement); 445 return nullptr; 446 } 447 case Instruction::Store: { 448 // For stores, it's a bit trickier and it depends on whether we're storing 449 // the full vector or not. If we're storing the full vector, we don't need 450 // to know the current value. If this is a store of a single element, we 451 // need to know the value. 452 StoreInst *SI = cast<StoreInst>(Inst); 453 Value *Index = calculateVectorIndex(SI->getPointerOperand(), GEPVectorIdx); 454 Value *Val = SI->getValueOperand(); 455 456 // We're storing the full vector, we can handle this without knowing CurVal. 457 Type *AccessTy = Val->getType(); 458 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 459 if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) { 460 if (AccessTy->isPtrOrPtrVectorTy()) 461 Val = CreateTempPtrIntCast(Val, AccessTy); 462 else if (VectorTy->isPtrOrPtrVectorTy()) 463 Val = CreateTempPtrIntCast(Val, VectorTy); 464 return Builder.CreateBitOrPointerCast(Val, VectorTy); 465 } 466 467 // Storing a subvector. 468 if (isa<FixedVectorType>(AccessTy)) { 469 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 470 const unsigned NumWrittenElts = 471 AccessSize / DL.getTypeStoreSize(VecEltTy); 472 const unsigned NumVecElts = VectorTy->getNumElements(); 473 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts); 474 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 475 476 if (SubVecTy->isPtrOrPtrVectorTy()) 477 Val = CreateTempPtrIntCast(Val, SubVecTy); 478 else if (AccessTy->isPtrOrPtrVectorTy()) 479 Val = CreateTempPtrIntCast(Val, AccessTy); 480 481 Val = Builder.CreateBitOrPointerCast(Val, SubVecTy); 482 483 Value *CurVec = GetOrLoadCurrentVectorValue(); 484 for (unsigned K = 0, NumElts = std::min(NumWrittenElts, NumVecElts); 485 K < NumElts; ++K) { 486 Value *CurIdx = 487 Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); 488 CurVec = Builder.CreateInsertElement( 489 CurVec, Builder.CreateExtractElement(Val, K), CurIdx); 490 } 491 return CurVec; 492 } 493 494 if (Val->getType() != VecEltTy) 495 Val = Builder.CreateBitOrPointerCast(Val, VecEltTy); 496 return Builder.CreateInsertElement(GetOrLoadCurrentVectorValue(), Val, 497 Index); 498 } 499 case Instruction::Call: { 500 if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) { 501 // For memcpy, we need to know curval. 502 ConstantInt *Length = cast<ConstantInt>(MTI->getLength()); 503 unsigned NumCopied = Length->getZExtValue() / ElementSize; 504 MemTransferInfo *TI = &TransferInfo[MTI]; 505 unsigned SrcBegin = TI->SrcIndex->getZExtValue(); 506 unsigned DestBegin = TI->DestIndex->getZExtValue(); 507 508 SmallVector<int> Mask; 509 for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) { 510 if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { 511 Mask.push_back(SrcBegin++); 512 } else { 513 Mask.push_back(Idx); 514 } 515 } 516 517 return Builder.CreateShuffleVector(GetOrLoadCurrentVectorValue(), Mask); 518 } 519 520 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 521 // For memset, we don't need to know the previous value because we 522 // currently only allow memsets that cover the whole alloca. 523 Value *Elt = MSI->getOperand(1); 524 if (DL.getTypeStoreSize(VecEltTy) > 1) { 525 Value *EltBytes = 526 Builder.CreateVectorSplat(DL.getTypeStoreSize(VecEltTy), Elt); 527 Elt = Builder.CreateBitCast(EltBytes, VecEltTy); 528 } 529 530 return Builder.CreateVectorSplat(VectorTy->getElementCount(), Elt); 531 } 532 533 if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { 534 if (Intr->getIntrinsicID() == Intrinsic::objectsize) { 535 Intr->replaceAllUsesWith( 536 Builder.getIntN(Intr->getType()->getIntegerBitWidth(), 537 DL.getTypeAllocSize(VectorTy))); 538 return nullptr; 539 } 540 } 541 542 llvm_unreachable("Unsupported call when promoting alloca to vector"); 543 } 544 545 default: 546 llvm_unreachable("Inconsistency in instructions promotable to vector"); 547 } 548 549 llvm_unreachable("Did not return after promoting instruction!"); 550 } 551 552 static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy, 553 const DataLayout &DL) { 554 // Access as a vector type can work if the size of the access vector is a 555 // multiple of the size of the alloca's vector element type. 556 // 557 // Examples: 558 // - VecTy = <8 x float>, AccessTy = <4 x float> -> OK 559 // - VecTy = <4 x double>, AccessTy = <2 x float> -> OK 560 // - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK 561 // - 3*32 is not a multiple of 64 562 // 563 // We could handle more complicated cases, but it'd make things a lot more 564 // complicated. 565 if (isa<FixedVectorType>(AccessTy)) { 566 TypeSize AccTS = DL.getTypeStoreSize(AccessTy); 567 TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType()); 568 return AccTS.isKnownMultipleOf(VecTS); 569 } 570 571 return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy, 572 DL); 573 } 574 575 /// Iterates over an instruction worklist that may contain multiple instructions 576 /// from the same basic block, but in a different order. 577 template <typename InstContainer> 578 static void forEachWorkListItem(const InstContainer &WorkList, 579 std::function<void(Instruction *)> Fn) { 580 // Bucket up uses of the alloca by the block they occur in. 581 // This is important because we have to handle multiple defs/uses in a block 582 // ourselves: SSAUpdater is purely for cross-block references. 583 DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock; 584 for (Instruction *User : WorkList) 585 UsesByBlock[User->getParent()].insert(User); 586 587 for (Instruction *User : WorkList) { 588 BasicBlock *BB = User->getParent(); 589 auto &BlockUses = UsesByBlock[BB]; 590 591 // Already processed, skip. 592 if (BlockUses.empty()) 593 continue; 594 595 // Only user in the block, directly process it. 596 if (BlockUses.size() == 1) { 597 Fn(User); 598 continue; 599 } 600 601 // Multiple users in the block, do a linear scan to see users in order. 602 for (Instruction &Inst : *BB) { 603 if (!BlockUses.contains(&Inst)) 604 continue; 605 606 Fn(&Inst); 607 } 608 609 // Clear the block so we know it's been processed. 610 BlockUses.clear(); 611 } 612 } 613 614 // FIXME: Should try to pick the most likely to be profitable allocas first. 615 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToVector(AllocaInst &Alloca) { 616 LLVM_DEBUG(dbgs() << "Trying to promote to vector: " << Alloca << '\n'); 617 618 if (DisablePromoteAllocaToVector) { 619 LLVM_DEBUG(dbgs() << " Promote alloca to vector is disabled\n"); 620 return false; 621 } 622 623 Type *AllocaTy = Alloca.getAllocatedType(); 624 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 625 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 626 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 627 ArrayTy->getNumElements() > 0) 628 VectorTy = FixedVectorType::get(ArrayTy->getElementType(), 629 ArrayTy->getNumElements()); 630 } 631 632 // Use up to 1/4 of available register budget for vectorization. 633 unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 634 : (MaxVGPRs * 32); 635 636 if (DL->getTypeSizeInBits(AllocaTy) * 4 > Limit) { 637 LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " << MaxVGPRs 638 << " registers available\n"); 639 return false; 640 } 641 642 // FIXME: There is no reason why we can't support larger arrays, we 643 // are just being conservative for now. 644 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or 645 // equivalent. Potentially these could also be promoted but we don't currently 646 // handle this case 647 if (!VectorTy) { 648 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 649 return false; 650 } 651 652 if (VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) { 653 LLVM_DEBUG(dbgs() << " " << *VectorTy 654 << " has an unsupported number of elements\n"); 655 return false; 656 } 657 658 std::map<GetElementPtrInst *, Value *> GEPVectorIdx; 659 SmallVector<Instruction *> WorkList; 660 SmallVector<Instruction *> UsersToRemove; 661 SmallVector<Instruction *> DeferredInsts; 662 SmallVector<Use *, 8> Uses; 663 DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo; 664 665 const auto RejectUser = [&](Instruction *Inst, Twine Msg) { 666 LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n" 667 << " " << *Inst << "\n"); 668 return false; 669 }; 670 671 for (Use &U : Alloca.uses()) 672 Uses.push_back(&U); 673 674 LLVM_DEBUG(dbgs() << " Attempting promotion to: " << *VectorTy << "\n"); 675 676 Type *VecEltTy = VectorTy->getElementType(); 677 unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; 678 while (!Uses.empty()) { 679 Use *U = Uses.pop_back_val(); 680 Instruction *Inst = cast<Instruction>(U->getUser()); 681 682 if (Value *Ptr = getLoadStorePointerOperand(Inst)) { 683 // This is a store of the pointer, not to the pointer. 684 if (isa<StoreInst>(Inst) && 685 U->getOperandNo() != StoreInst::getPointerOperandIndex()) 686 return RejectUser(Inst, "pointer is being stored"); 687 688 Type *AccessTy = getLoadStoreType(Inst); 689 if (AccessTy->isAggregateType()) 690 return RejectUser(Inst, "unsupported load/store as aggregate"); 691 assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy()); 692 693 // Check that this is a simple access of a vector element. 694 bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() 695 : cast<StoreInst>(Inst)->isSimple(); 696 if (!IsSimple) 697 return RejectUser(Inst, "not a simple load or store"); 698 699 Ptr = Ptr->stripPointerCasts(); 700 701 // Alloca already accessed as vector. 702 if (Ptr == &Alloca && DL->getTypeStoreSize(Alloca.getAllocatedType()) == 703 DL->getTypeStoreSize(AccessTy)) { 704 WorkList.push_back(Inst); 705 continue; 706 } 707 708 if (!isSupportedAccessType(VectorTy, AccessTy, *DL)) 709 return RejectUser(Inst, "not a supported access type"); 710 711 WorkList.push_back(Inst); 712 continue; 713 } 714 715 if (isa<BitCastInst>(Inst)) { 716 // Look through bitcasts. 717 for (Use &U : Inst->uses()) 718 Uses.push_back(&U); 719 UsersToRemove.push_back(Inst); 720 continue; 721 } 722 723 if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 724 // If we can't compute a vector index from this GEP, then we can't 725 // promote this alloca to vector. 726 Value *Index = GEPToVectorIndex(GEP, &Alloca, VecEltTy, *DL); 727 if (!Index) 728 return RejectUser(Inst, "cannot compute vector index for GEP"); 729 730 GEPVectorIdx[GEP] = Index; 731 for (Use &U : Inst->uses()) 732 Uses.push_back(&U); 733 UsersToRemove.push_back(Inst); 734 continue; 735 } 736 737 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst); 738 MSI && isSupportedMemset(MSI, &Alloca, *DL)) { 739 WorkList.push_back(Inst); 740 continue; 741 } 742 743 if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) { 744 if (TransferInst->isVolatile()) 745 return RejectUser(Inst, "mem transfer inst is volatile"); 746 747 ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength()); 748 if (!Len || (Len->getZExtValue() % ElementSize)) 749 return RejectUser(Inst, "mem transfer inst length is non-constant or " 750 "not a multiple of the vector element size"); 751 752 if (!TransferInfo.count(TransferInst)) { 753 DeferredInsts.push_back(Inst); 754 WorkList.push_back(Inst); 755 TransferInfo[TransferInst] = MemTransferInfo(); 756 } 757 758 auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * { 759 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 760 if (Ptr != &Alloca && !GEPVectorIdx.count(GEP)) 761 return nullptr; 762 763 return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx)); 764 }; 765 766 unsigned OpNum = U->getOperandNo(); 767 MemTransferInfo *TI = &TransferInfo[TransferInst]; 768 if (OpNum == 0) { 769 Value *Dest = TransferInst->getDest(); 770 ConstantInt *Index = getPointerIndexOfAlloca(Dest); 771 if (!Index) 772 return RejectUser(Inst, "could not calculate constant dest index"); 773 TI->DestIndex = Index; 774 } else { 775 assert(OpNum == 1); 776 Value *Src = TransferInst->getSource(); 777 ConstantInt *Index = getPointerIndexOfAlloca(Src); 778 if (!Index) 779 return RejectUser(Inst, "could not calculate constant src index"); 780 TI->SrcIndex = Index; 781 } 782 continue; 783 } 784 785 if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { 786 if (Intr->getIntrinsicID() == Intrinsic::objectsize) { 787 WorkList.push_back(Inst); 788 continue; 789 } 790 } 791 792 // Ignore assume-like intrinsics and comparisons used in assumes. 793 if (isAssumeLikeIntrinsic(Inst)) { 794 if (!Inst->use_empty()) 795 return RejectUser(Inst, "assume-like intrinsic cannot have any users"); 796 UsersToRemove.push_back(Inst); 797 continue; 798 } 799 800 if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { 801 return isAssumeLikeIntrinsic(cast<Instruction>(U)); 802 })) { 803 UsersToRemove.push_back(Inst); 804 continue; 805 } 806 807 return RejectUser(Inst, "unhandled alloca user"); 808 } 809 810 while (!DeferredInsts.empty()) { 811 Instruction *Inst = DeferredInsts.pop_back_val(); 812 MemTransferInst *TransferInst = cast<MemTransferInst>(Inst); 813 // TODO: Support the case if the pointers are from different alloca or 814 // from different address spaces. 815 MemTransferInfo &Info = TransferInfo[TransferInst]; 816 if (!Info.SrcIndex || !Info.DestIndex) 817 return RejectUser( 818 Inst, "mem transfer inst is missing constant src and/or dst index"); 819 } 820 821 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 822 << *VectorTy << '\n'); 823 const unsigned VecStoreSize = DL->getTypeStoreSize(VectorTy); 824 825 // Alloca is uninitialized memory. Imitate that by making the first value 826 // undef. 827 SSAUpdater Updater; 828 Updater.Initialize(VectorTy, "promotealloca"); 829 Updater.AddAvailableValue(Alloca.getParent(), UndefValue::get(VectorTy)); 830 831 // First handle the initial worklist. 832 SmallVector<LoadInst *, 4> DeferredLoads; 833 forEachWorkListItem(WorkList, [&](Instruction *I) { 834 BasicBlock *BB = I->getParent(); 835 // On the first pass, we only take values that are trivially known, i.e. 836 // where AddAvailableValue was already called in this block. 837 Value *Result = promoteAllocaUserToVector( 838 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 839 Updater.FindValueForBlock(BB), DeferredLoads); 840 if (Result) 841 Updater.AddAvailableValue(BB, Result); 842 }); 843 844 // Then handle deferred loads. 845 forEachWorkListItem(DeferredLoads, [&](Instruction *I) { 846 SmallVector<LoadInst *, 0> NewDLs; 847 BasicBlock *BB = I->getParent(); 848 // On the second pass, we use GetValueInMiddleOfBlock to guarantee we always 849 // get a value, inserting PHIs as needed. 850 Value *Result = promoteAllocaUserToVector( 851 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 852 Updater.GetValueInMiddleOfBlock(I->getParent()), NewDLs); 853 if (Result) 854 Updater.AddAvailableValue(BB, Result); 855 assert(NewDLs.empty() && "No more deferred loads should be queued!"); 856 }); 857 858 // Delete all instructions. On the first pass, new dummy loads may have been 859 // added so we need to collect them too. 860 DenseSet<Instruction *> InstsToDelete(WorkList.begin(), WorkList.end()); 861 InstsToDelete.insert(DeferredLoads.begin(), DeferredLoads.end()); 862 for (Instruction *I : InstsToDelete) { 863 assert(I->use_empty()); 864 I->eraseFromParent(); 865 } 866 867 // Delete all the users that are known to be removeable. 868 for (Instruction *I : reverse(UsersToRemove)) { 869 I->dropDroppableUses(); 870 assert(I->use_empty()); 871 I->eraseFromParent(); 872 } 873 874 // Alloca should now be dead too. 875 assert(Alloca.use_empty()); 876 Alloca.eraseFromParent(); 877 return true; 878 } 879 880 std::pair<Value *, Value *> 881 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 882 Function &F = *Builder.GetInsertBlock()->getParent(); 883 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 884 885 if (!IsAMDHSA) { 886 Function *LocalSizeYFn = 887 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 888 Function *LocalSizeZFn = 889 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 890 891 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 892 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 893 894 ST.makeLIDRangeMetadata(LocalSizeY); 895 ST.makeLIDRangeMetadata(LocalSizeZ); 896 897 return std::pair(LocalSizeY, LocalSizeZ); 898 } 899 900 // We must read the size out of the dispatch pointer. 901 assert(IsAMDGCN); 902 903 // We are indexing into this struct, and want to extract the workgroup_size_* 904 // fields. 905 // 906 // typedef struct hsa_kernel_dispatch_packet_s { 907 // uint16_t header; 908 // uint16_t setup; 909 // uint16_t workgroup_size_x ; 910 // uint16_t workgroup_size_y; 911 // uint16_t workgroup_size_z; 912 // uint16_t reserved0; 913 // uint32_t grid_size_x ; 914 // uint32_t grid_size_y ; 915 // uint32_t grid_size_z; 916 // 917 // uint32_t private_segment_size; 918 // uint32_t group_segment_size; 919 // uint64_t kernel_object; 920 // 921 // #ifdef HSA_LARGE_MODEL 922 // void *kernarg_address; 923 // #elif defined HSA_LITTLE_ENDIAN 924 // void *kernarg_address; 925 // uint32_t reserved1; 926 // #else 927 // uint32_t reserved1; 928 // void *kernarg_address; 929 // #endif 930 // uint64_t reserved2; 931 // hsa_signal_t completion_signal; // uint64_t wrapper 932 // } hsa_kernel_dispatch_packet_t 933 // 934 Function *DispatchPtrFn = 935 Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 936 937 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 938 DispatchPtr->addRetAttr(Attribute::NoAlias); 939 DispatchPtr->addRetAttr(Attribute::NonNull); 940 F.removeFnAttr("amdgpu-no-dispatch-ptr"); 941 942 // Size of the dispatch packet struct. 943 DispatchPtr->addDereferenceableRetAttr(64); 944 945 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 946 Value *CastDispatchPtr = Builder.CreateBitCast( 947 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 948 949 // We could do a single 64-bit load here, but it's likely that the basic 950 // 32-bit and extract sequence is already present, and it is probably easier 951 // to CSE this. The loads should be mergeable later anyway. 952 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 953 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 954 955 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 956 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 957 958 MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); 959 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 960 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 961 ST.makeLIDRangeMetadata(LoadZU); 962 963 // Extract y component. Upper half of LoadZU should be zero already. 964 Value *Y = Builder.CreateLShr(LoadXY, 16); 965 966 return std::pair(Y, LoadZU); 967 } 968 969 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 970 unsigned N) { 971 Function *F = Builder.GetInsertBlock()->getParent(); 972 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 973 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 974 StringRef AttrName; 975 976 switch (N) { 977 case 0: 978 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 979 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 980 AttrName = "amdgpu-no-workitem-id-x"; 981 break; 982 case 1: 983 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 984 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 985 AttrName = "amdgpu-no-workitem-id-y"; 986 break; 987 988 case 2: 989 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 990 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 991 AttrName = "amdgpu-no-workitem-id-z"; 992 break; 993 default: 994 llvm_unreachable("invalid dimension"); 995 } 996 997 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 998 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 999 ST.makeLIDRangeMetadata(CI); 1000 F->removeFnAttr(AttrName); 1001 1002 return CI; 1003 } 1004 1005 static bool isCallPromotable(CallInst *CI) { 1006 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1007 if (!II) 1008 return false; 1009 1010 switch (II->getIntrinsicID()) { 1011 case Intrinsic::memcpy: 1012 case Intrinsic::memmove: 1013 case Intrinsic::memset: 1014 case Intrinsic::lifetime_start: 1015 case Intrinsic::lifetime_end: 1016 case Intrinsic::invariant_start: 1017 case Intrinsic::invariant_end: 1018 case Intrinsic::launder_invariant_group: 1019 case Intrinsic::strip_invariant_group: 1020 case Intrinsic::objectsize: 1021 return true; 1022 default: 1023 return false; 1024 } 1025 } 1026 1027 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 1028 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 1029 int OpIdx1) const { 1030 // Figure out which operand is the one we might not be promoting. 1031 Value *OtherOp = Inst->getOperand(OpIdx0); 1032 if (Val == OtherOp) 1033 OtherOp = Inst->getOperand(OpIdx1); 1034 1035 if (isa<ConstantPointerNull>(OtherOp)) 1036 return true; 1037 1038 Value *OtherObj = getUnderlyingObject(OtherOp); 1039 if (!isa<AllocaInst>(OtherObj)) 1040 return false; 1041 1042 // TODO: We should be able to replace undefs with the right pointer type. 1043 1044 // TODO: If we know the other base object is another promotable 1045 // alloca, not necessarily this alloca, we can do this. The 1046 // important part is both must have the same address space at 1047 // the end. 1048 if (OtherObj != BaseAlloca) { 1049 LLVM_DEBUG( 1050 dbgs() << "Found a binary instruction with another alloca object\n"); 1051 return false; 1052 } 1053 1054 return true; 1055 } 1056 1057 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 1058 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 1059 1060 for (User *User : Val->users()) { 1061 if (is_contained(WorkList, User)) 1062 continue; 1063 1064 if (CallInst *CI = dyn_cast<CallInst>(User)) { 1065 if (!isCallPromotable(CI)) 1066 return false; 1067 1068 WorkList.push_back(User); 1069 continue; 1070 } 1071 1072 Instruction *UseInst = cast<Instruction>(User); 1073 if (UseInst->getOpcode() == Instruction::PtrToInt) 1074 return false; 1075 1076 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 1077 if (LI->isVolatile()) 1078 return false; 1079 1080 continue; 1081 } 1082 1083 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 1084 if (SI->isVolatile()) 1085 return false; 1086 1087 // Reject if the stored value is not the pointer operand. 1088 if (SI->getPointerOperand() != Val) 1089 return false; 1090 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 1091 if (RMW->isVolatile()) 1092 return false; 1093 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 1094 if (CAS->isVolatile()) 1095 return false; 1096 } 1097 1098 // Only promote a select if we know that the other select operand 1099 // is from another pointer that will also be promoted. 1100 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 1101 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 1102 return false; 1103 1104 // May need to rewrite constant operands. 1105 WorkList.push_back(ICmp); 1106 } 1107 1108 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 1109 // Give up if the pointer may be captured. 1110 if (PointerMayBeCaptured(UseInst, true, true)) 1111 return false; 1112 // Don't collect the users of this. 1113 WorkList.push_back(User); 1114 continue; 1115 } 1116 1117 // Do not promote vector/aggregate type instructions. It is hard to track 1118 // their users. 1119 if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 1120 return false; 1121 1122 if (!User->getType()->isPointerTy()) 1123 continue; 1124 1125 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 1126 // Be conservative if an address could be computed outside the bounds of 1127 // the alloca. 1128 if (!GEP->isInBounds()) 1129 return false; 1130 } 1131 1132 // Only promote a select if we know that the other select operand is from 1133 // another pointer that will also be promoted. 1134 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 1135 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 1136 return false; 1137 } 1138 1139 // Repeat for phis. 1140 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 1141 // TODO: Handle more complex cases. We should be able to replace loops 1142 // over arrays. 1143 switch (Phi->getNumIncomingValues()) { 1144 case 1: 1145 break; 1146 case 2: 1147 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 1148 return false; 1149 break; 1150 default: 1151 return false; 1152 } 1153 } 1154 1155 WorkList.push_back(User); 1156 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 1157 return false; 1158 } 1159 1160 return true; 1161 } 1162 1163 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 1164 1165 FunctionType *FTy = F.getFunctionType(); 1166 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1167 1168 // If the function has any arguments in the local address space, then it's 1169 // possible these arguments require the entire local memory space, so 1170 // we cannot use local memory in the pass. 1171 for (Type *ParamTy : FTy->params()) { 1172 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 1173 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 1174 LocalMemLimit = 0; 1175 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 1176 "local memory disabled.\n"); 1177 return false; 1178 } 1179 } 1180 1181 LocalMemLimit = ST.getAddressableLocalMemorySize(); 1182 if (LocalMemLimit == 0) 1183 return false; 1184 1185 SmallVector<const Constant *, 16> Stack; 1186 SmallPtrSet<const Constant *, 8> VisitedConstants; 1187 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 1188 1189 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 1190 for (const User *U : Val->users()) { 1191 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 1192 if (Use->getParent()->getParent() == &F) 1193 return true; 1194 } else { 1195 const Constant *C = cast<Constant>(U); 1196 if (VisitedConstants.insert(C).second) 1197 Stack.push_back(C); 1198 } 1199 } 1200 1201 return false; 1202 }; 1203 1204 for (GlobalVariable &GV : Mod->globals()) { 1205 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 1206 continue; 1207 1208 if (visitUsers(&GV, &GV)) { 1209 UsedLDS.insert(&GV); 1210 Stack.clear(); 1211 continue; 1212 } 1213 1214 // For any ConstantExpr uses, we need to recursively search the users until 1215 // we see a function. 1216 while (!Stack.empty()) { 1217 const Constant *C = Stack.pop_back_val(); 1218 if (visitUsers(&GV, C)) { 1219 UsedLDS.insert(&GV); 1220 Stack.clear(); 1221 break; 1222 } 1223 } 1224 } 1225 1226 const DataLayout &DL = Mod->getDataLayout(); 1227 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 1228 AllocatedSizes.reserve(UsedLDS.size()); 1229 1230 for (const GlobalVariable *GV : UsedLDS) { 1231 Align Alignment = 1232 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 1233 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 1234 1235 // HIP uses an extern unsized array in local address space for dynamically 1236 // allocated shared memory. In that case, we have to disable the promotion. 1237 if (GV->hasExternalLinkage() && AllocSize == 0) { 1238 LocalMemLimit = 0; 1239 LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " 1240 "local memory. Promoting to local memory " 1241 "disabled.\n"); 1242 return false; 1243 } 1244 1245 AllocatedSizes.emplace_back(AllocSize, Alignment); 1246 } 1247 1248 // Sort to try to estimate the worst case alignment padding 1249 // 1250 // FIXME: We should really do something to fix the addresses to a more optimal 1251 // value instead 1252 llvm::sort(AllocatedSizes, llvm::less_second()); 1253 1254 // Check how much local memory is being used by global objects 1255 CurrentLocalMemUsage = 0; 1256 1257 // FIXME: Try to account for padding here. The real padding and address is 1258 // currently determined from the inverse order of uses in the function when 1259 // legalizing, which could also potentially change. We try to estimate the 1260 // worst case here, but we probably should fix the addresses earlier. 1261 for (auto Alloc : AllocatedSizes) { 1262 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 1263 CurrentLocalMemUsage += Alloc.first; 1264 } 1265 1266 unsigned MaxOccupancy = 1267 ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F); 1268 1269 // Restrict local memory usage so that we don't drastically reduce occupancy, 1270 // unless it is already significantly reduced. 1271 1272 // TODO: Have some sort of hint or other heuristics to guess occupancy based 1273 // on other factors.. 1274 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 1275 if (OccupancyHint == 0) 1276 OccupancyHint = 7; 1277 1278 // Clamp to max value. 1279 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 1280 1281 // Check the hint but ignore it if it's obviously wrong from the existing LDS 1282 // usage. 1283 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 1284 1285 // Round up to the next tier of usage. 1286 unsigned MaxSizeWithWaveCount = 1287 ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 1288 1289 // Program is possibly broken by using more local mem than available. 1290 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 1291 return false; 1292 1293 LocalMemLimit = MaxSizeWithWaveCount; 1294 1295 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 1296 << " bytes of LDS\n" 1297 << " Rounding size to " << MaxSizeWithWaveCount 1298 << " with a maximum occupancy of " << MaxOccupancy << '\n' 1299 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 1300 << " available for promotion\n"); 1301 1302 return true; 1303 } 1304 1305 // FIXME: Should try to pick the most likely to be profitable allocas first. 1306 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(AllocaInst &I, 1307 bool SufficientLDS) { 1308 LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << I << '\n'); 1309 1310 if (DisablePromoteAllocaToLDS) { 1311 LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n"); 1312 return false; 1313 } 1314 1315 const DataLayout &DL = Mod->getDataLayout(); 1316 IRBuilder<> Builder(&I); 1317 1318 const Function &ContainingFunction = *I.getParent()->getParent(); 1319 CallingConv::ID CC = ContainingFunction.getCallingConv(); 1320 1321 // Don't promote the alloca to LDS for shader calling conventions as the work 1322 // item ID intrinsics are not supported for these calling conventions. 1323 // Furthermore not all LDS is available for some of the stages. 1324 switch (CC) { 1325 case CallingConv::AMDGPU_KERNEL: 1326 case CallingConv::SPIR_KERNEL: 1327 break; 1328 default: 1329 LLVM_DEBUG( 1330 dbgs() 1331 << " promote alloca to LDS not supported with calling convention.\n"); 1332 return false; 1333 } 1334 1335 // Not likely to have sufficient local memory for promotion. 1336 if (!SufficientLDS) 1337 return false; 1338 1339 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 1340 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 1341 1342 Align Alignment = 1343 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 1344 1345 // FIXME: This computed padding is likely wrong since it depends on inverse 1346 // usage order. 1347 // 1348 // FIXME: It is also possible that if we're allowed to use all of the memory 1349 // could end up using more than the maximum due to alignment padding. 1350 1351 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 1352 uint32_t AllocSize = 1353 WorkGroupSize * DL.getTypeAllocSize(I.getAllocatedType()); 1354 NewSize += AllocSize; 1355 1356 if (NewSize > LocalMemLimit) { 1357 LLVM_DEBUG(dbgs() << " " << AllocSize 1358 << " bytes of local memory not available to promote\n"); 1359 return false; 1360 } 1361 1362 CurrentLocalMemUsage = NewSize; 1363 1364 std::vector<Value *> WorkList; 1365 1366 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 1367 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 1368 return false; 1369 } 1370 1371 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 1372 1373 Function *F = I.getParent()->getParent(); 1374 1375 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 1376 GlobalVariable *GV = new GlobalVariable( 1377 *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), 1378 Twine(F->getName()) + Twine('.') + I.getName(), nullptr, 1379 GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); 1380 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1381 GV->setAlignment(I.getAlign()); 1382 1383 Value *TCntY, *TCntZ; 1384 1385 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 1386 Value *TIdX = getWorkitemID(Builder, 0); 1387 Value *TIdY = getWorkitemID(Builder, 1); 1388 Value *TIdZ = getWorkitemID(Builder, 2); 1389 1390 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 1391 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 1392 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 1393 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 1394 TID = Builder.CreateAdd(TID, TIdZ); 1395 1396 LLVMContext &Context = Mod->getContext(); 1397 Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID}; 1398 1399 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 1400 I.mutateType(Offset->getType()); 1401 I.replaceAllUsesWith(Offset); 1402 I.eraseFromParent(); 1403 1404 SmallVector<IntrinsicInst *> DeferredIntrs; 1405 1406 for (Value *V : WorkList) { 1407 CallInst *Call = dyn_cast<CallInst>(V); 1408 if (!Call) { 1409 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 1410 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1411 1412 if (isa<ConstantPointerNull>(CI->getOperand(0))) 1413 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 1414 1415 if (isa<ConstantPointerNull>(CI->getOperand(1))) 1416 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 1417 1418 continue; 1419 } 1420 1421 // The operand's value should be corrected on its own and we don't want to 1422 // touch the users. 1423 if (isa<AddrSpaceCastInst>(V)) 1424 continue; 1425 1426 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1427 1428 // FIXME: It doesn't really make sense to try to do this for all 1429 // instructions. 1430 V->mutateType(NewTy); 1431 1432 // Adjust the types of any constant operands. 1433 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1434 if (isa<ConstantPointerNull>(SI->getOperand(1))) 1435 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 1436 1437 if (isa<ConstantPointerNull>(SI->getOperand(2))) 1438 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1439 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1440 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1441 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1442 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1443 } 1444 } 1445 1446 continue; 1447 } 1448 1449 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1450 Builder.SetInsertPoint(Intr); 1451 switch (Intr->getIntrinsicID()) { 1452 case Intrinsic::lifetime_start: 1453 case Intrinsic::lifetime_end: 1454 // These intrinsics are for address space 0 only 1455 Intr->eraseFromParent(); 1456 continue; 1457 case Intrinsic::memcpy: 1458 case Intrinsic::memmove: 1459 // These have 2 pointer operands. In case if second pointer also needs 1460 // to be replaced we defer processing of these intrinsics until all 1461 // other values are processed. 1462 DeferredIntrs.push_back(Intr); 1463 continue; 1464 case Intrinsic::memset: { 1465 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1466 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 1467 MemSet->getLength(), MemSet->getDestAlign(), 1468 MemSet->isVolatile()); 1469 Intr->eraseFromParent(); 1470 continue; 1471 } 1472 case Intrinsic::invariant_start: 1473 case Intrinsic::invariant_end: 1474 case Intrinsic::launder_invariant_group: 1475 case Intrinsic::strip_invariant_group: 1476 Intr->eraseFromParent(); 1477 // FIXME: I think the invariant marker should still theoretically apply, 1478 // but the intrinsics need to be changed to accept pointers with any 1479 // address space. 1480 continue; 1481 case Intrinsic::objectsize: { 1482 Value *Src = Intr->getOperand(0); 1483 Function *ObjectSize = Intrinsic::getDeclaration( 1484 Mod, Intrinsic::objectsize, 1485 {Intr->getType(), 1486 PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)}); 1487 1488 CallInst *NewCall = Builder.CreateCall( 1489 ObjectSize, 1490 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1491 Intr->replaceAllUsesWith(NewCall); 1492 Intr->eraseFromParent(); 1493 continue; 1494 } 1495 default: 1496 Intr->print(errs()); 1497 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1498 } 1499 } 1500 1501 for (IntrinsicInst *Intr : DeferredIntrs) { 1502 Builder.SetInsertPoint(Intr); 1503 Intrinsic::ID ID = Intr->getIntrinsicID(); 1504 assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1505 1506 MemTransferInst *MI = cast<MemTransferInst>(Intr); 1507 auto *B = Builder.CreateMemTransferInst( 1508 ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), 1509 MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); 1510 1511 for (unsigned I = 0; I != 2; ++I) { 1512 if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1513 B->addDereferenceableParamAttr(I, Bytes); 1514 } 1515 } 1516 1517 Intr->eraseFromParent(); 1518 } 1519 1520 return true; 1521 } 1522