1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "MCTargetDesc/R600MCTargetDesc.h" 18 #include "R600RegisterInfo.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/SelectionDAGISel.h" 25 #include "llvm/CodeGen/SelectionDAGNodes.h" 26 #include "llvm/IR/IntrinsicsAMDGPU.h" 27 #include "llvm/InitializePasses.h" 28 29 #ifdef EXPENSIVE_CHECKS 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #endif 33 34 #define DEBUG_TYPE "isel" 35 36 using namespace llvm; 37 38 //===----------------------------------------------------------------------===// 39 // Instruction Selector Implementation 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 44 static SDValue stripBitcast(SDValue Val) { 45 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 46 } 47 48 // Figure out if this is really an extract of the high 16-bits of a dword. 49 static bool isExtractHiElt(SDValue In, SDValue &Out) { 50 In = stripBitcast(In); 51 52 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 53 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 54 if (!Idx->isOne()) 55 return false; 56 Out = In.getOperand(0); 57 return true; 58 } 59 } 60 61 if (In.getOpcode() != ISD::TRUNCATE) 62 return false; 63 64 SDValue Srl = In.getOperand(0); 65 if (Srl.getOpcode() == ISD::SRL) { 66 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 67 if (ShiftAmt->getZExtValue() == 16) { 68 Out = stripBitcast(Srl.getOperand(0)); 69 return true; 70 } 71 } 72 } 73 74 return false; 75 } 76 77 // Look through operations that obscure just looking at the low 16-bits of the 78 // same register. 79 static SDValue stripExtractLoElt(SDValue In) { 80 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 81 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 82 if (Idx->isZero() && In.getValueSizeInBits() <= 32) 83 return In.getOperand(0); 84 } 85 } 86 87 if (In.getOpcode() == ISD::TRUNCATE) { 88 SDValue Src = In.getOperand(0); 89 if (Src.getValueType().getSizeInBits() == 32) 90 return stripBitcast(Src); 91 } 92 93 return In; 94 } 95 96 } // end anonymous namespace 97 98 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 99 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 100 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 101 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 102 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 103 #ifdef EXPENSIVE_CHECKS 104 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 105 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 106 #endif 107 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 108 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 109 110 /// This pass converts a legalized DAG into a AMDGPU-specific 111 // DAG, ready for instruction scheduling. 112 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 113 CodeGenOpt::Level OptLevel) { 114 return new AMDGPUDAGToDAGISel(TM, OptLevel); 115 } 116 117 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel( 118 TargetMachine *TM /*= nullptr*/, 119 CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/) 120 : SelectionDAGISel(*TM, OptLevel) { 121 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 122 } 123 124 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 125 #ifdef EXPENSIVE_CHECKS 126 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 127 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 128 for (auto &L : LI->getLoopsInPreorder()) { 129 assert(L->isLCSSAForm(DT)); 130 } 131 #endif 132 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 133 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 134 return SelectionDAGISel::runOnMachineFunction(MF); 135 } 136 137 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 138 // XXX - only need to list legal operations. 139 switch (Opc) { 140 case ISD::FADD: 141 case ISD::FSUB: 142 case ISD::FMUL: 143 case ISD::FDIV: 144 case ISD::FREM: 145 case ISD::FCANONICALIZE: 146 case ISD::UINT_TO_FP: 147 case ISD::SINT_TO_FP: 148 case ISD::FABS: 149 // Fabs is lowered to a bit operation, but it's an and which will clear the 150 // high bits anyway. 151 case ISD::FSQRT: 152 case ISD::FSIN: 153 case ISD::FCOS: 154 case ISD::FPOWI: 155 case ISD::FPOW: 156 case ISD::FLOG: 157 case ISD::FLOG2: 158 case ISD::FLOG10: 159 case ISD::FEXP: 160 case ISD::FEXP2: 161 case ISD::FCEIL: 162 case ISD::FTRUNC: 163 case ISD::FRINT: 164 case ISD::FNEARBYINT: 165 case ISD::FROUND: 166 case ISD::FFLOOR: 167 case ISD::FMINNUM: 168 case ISD::FMAXNUM: 169 case AMDGPUISD::FRACT: 170 case AMDGPUISD::CLAMP: 171 case AMDGPUISD::COS_HW: 172 case AMDGPUISD::SIN_HW: 173 case AMDGPUISD::FMIN3: 174 case AMDGPUISD::FMAX3: 175 case AMDGPUISD::FMED3: 176 case AMDGPUISD::FMAD_FTZ: 177 case AMDGPUISD::RCP: 178 case AMDGPUISD::RSQ: 179 case AMDGPUISD::RCP_IFLAG: 180 case AMDGPUISD::LDEXP: 181 // On gfx10, all 16-bit instructions preserve the high bits. 182 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 183 case ISD::FP_ROUND: 184 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 185 // high bits on gfx9. 186 // TODO: If we had the source node we could see if the source was fma/mad 187 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 188 case ISD::FMA: 189 case ISD::FMAD: 190 case AMDGPUISD::DIV_FIXUP: 191 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 192 default: 193 // fcopysign, select and others may be lowered to 32-bit bit operations 194 // which don't zero the high bits. 195 return false; 196 } 197 } 198 199 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.addRequired<AMDGPUArgumentUsageInfo>(); 201 AU.addRequired<LegacyDivergenceAnalysis>(); 202 #ifdef EXPENSIVE_CHECKS 203 AU.addRequired<DominatorTreeWrapperPass>(); 204 AU.addRequired<LoopInfoWrapperPass>(); 205 #endif 206 SelectionDAGISel::getAnalysisUsage(AU); 207 } 208 209 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 210 assert(Subtarget->d16PreservesUnusedBits()); 211 MVT VT = N->getValueType(0).getSimpleVT(); 212 if (VT != MVT::v2i16 && VT != MVT::v2f16) 213 return false; 214 215 SDValue Lo = N->getOperand(0); 216 SDValue Hi = N->getOperand(1); 217 218 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 219 220 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 221 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 222 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 223 224 // Need to check for possible indirect dependencies on the other half of the 225 // vector to avoid introducing a cycle. 226 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 227 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 228 229 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 230 SDValue Ops[] = { 231 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 232 }; 233 234 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 235 if (LdHi->getMemoryVT() == MVT::i8) { 236 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 237 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 238 } else { 239 assert(LdHi->getMemoryVT() == MVT::i16); 240 } 241 242 SDValue NewLoadHi = 243 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 244 Ops, LdHi->getMemoryVT(), 245 LdHi->getMemOperand()); 246 247 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 248 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 249 return true; 250 } 251 252 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 253 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 254 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 255 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 256 if (LdLo && Lo.hasOneUse()) { 257 SDValue TiedIn = getHi16Elt(Hi); 258 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 259 return false; 260 261 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 262 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 263 if (LdLo->getMemoryVT() == MVT::i8) { 264 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 265 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 266 } else { 267 assert(LdLo->getMemoryVT() == MVT::i16); 268 } 269 270 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 271 272 SDValue Ops[] = { 273 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 274 }; 275 276 SDValue NewLoadLo = 277 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 278 Ops, LdLo->getMemoryVT(), 279 LdLo->getMemOperand()); 280 281 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 282 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 283 return true; 284 } 285 286 return false; 287 } 288 289 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 290 if (!Subtarget->d16PreservesUnusedBits()) 291 return; 292 293 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 294 295 bool MadeChange = false; 296 while (Position != CurDAG->allnodes_begin()) { 297 SDNode *N = &*--Position; 298 if (N->use_empty()) 299 continue; 300 301 switch (N->getOpcode()) { 302 case ISD::BUILD_VECTOR: 303 MadeChange |= matchLoadD16FromBuildVector(N); 304 break; 305 default: 306 break; 307 } 308 } 309 310 if (MadeChange) { 311 CurDAG->RemoveDeadNodes(); 312 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 313 CurDAG->dump();); 314 } 315 } 316 317 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 318 if (TM.Options.NoNaNsFPMath) 319 return true; 320 321 // TODO: Move into isKnownNeverNaN 322 if (N->getFlags().hasNoNaNs()) 323 return true; 324 325 return CurDAG->isKnownNeverNaN(N); 326 } 327 328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 329 bool Negated) const { 330 if (N->isUndef()) 331 return true; 332 333 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 334 if (Negated) { 335 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 336 return TII->isInlineConstant(-C->getAPIntValue()); 337 338 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 339 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 340 341 } else { 342 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 343 return TII->isInlineConstant(C->getAPIntValue()); 344 345 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 346 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 347 } 348 349 return false; 350 } 351 352 /// Determine the register class for \p OpNo 353 /// \returns The register class of the virtual register that will be used for 354 /// the given operand number \OpNo or NULL if the register class cannot be 355 /// determined. 356 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 357 unsigned OpNo) const { 358 if (!N->isMachineOpcode()) { 359 if (N->getOpcode() == ISD::CopyToReg) { 360 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 361 if (Reg.isVirtual()) { 362 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 363 return MRI.getRegClass(Reg); 364 } 365 366 const SIRegisterInfo *TRI 367 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 368 return TRI->getPhysRegClass(Reg); 369 } 370 371 return nullptr; 372 } 373 374 switch (N->getMachineOpcode()) { 375 default: { 376 const MCInstrDesc &Desc = 377 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 378 unsigned OpIdx = Desc.getNumDefs() + OpNo; 379 if (OpIdx >= Desc.getNumOperands()) 380 return nullptr; 381 int RegClass = Desc.OpInfo[OpIdx].RegClass; 382 if (RegClass == -1) 383 return nullptr; 384 385 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 386 } 387 case AMDGPU::REG_SEQUENCE: { 388 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 389 const TargetRegisterClass *SuperRC = 390 Subtarget->getRegisterInfo()->getRegClass(RCID); 391 392 SDValue SubRegOp = N->getOperand(OpNo + 1); 393 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 394 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 395 SubRegIdx); 396 } 397 } 398 } 399 400 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 401 SDValue Glue) const { 402 SmallVector <SDValue, 8> Ops; 403 Ops.push_back(NewChain); // Replace the chain. 404 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 405 Ops.push_back(N->getOperand(i)); 406 407 Ops.push_back(Glue); 408 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 409 } 410 411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 412 const SITargetLowering& Lowering = 413 *static_cast<const SITargetLowering*>(getTargetLowering()); 414 415 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 416 417 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 418 return glueCopyToOp(N, M0, M0.getValue(1)); 419 } 420 421 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 422 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 423 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 424 if (Subtarget->ldsRequiresM0Init()) 425 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 426 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 427 MachineFunction &MF = CurDAG->getMachineFunction(); 428 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 429 return 430 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 431 } 432 return N; 433 } 434 435 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 436 EVT VT) const { 437 SDNode *Lo = CurDAG->getMachineNode( 438 AMDGPU::S_MOV_B32, DL, MVT::i32, 439 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 440 SDNode *Hi = 441 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 442 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 443 const SDValue Ops[] = { 444 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 445 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 446 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 447 448 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 449 } 450 451 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 452 EVT VT = N->getValueType(0); 453 unsigned NumVectorElts = VT.getVectorNumElements(); 454 EVT EltVT = VT.getVectorElementType(); 455 SDLoc DL(N); 456 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 458 if (NumVectorElts == 1) { 459 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 460 RegClass); 461 return; 462 } 463 464 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 465 "supported yet"); 466 // 32 = Max Num Vector Elements 467 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 468 // 1 = Vector Register Class 469 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 470 471 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 472 Triple::amdgcn; 473 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 474 bool IsRegSeq = true; 475 unsigned NOps = N->getNumOperands(); 476 for (unsigned i = 0; i < NOps; i++) { 477 // XXX: Why is this here? 478 if (isa<RegisterSDNode>(N->getOperand(i))) { 479 IsRegSeq = false; 480 break; 481 } 482 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 483 : R600RegisterInfo::getSubRegFromChannel(i); 484 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 485 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 486 } 487 if (NOps != NumVectorElts) { 488 // Fill in the missing undef elements if this was a scalar_to_vector. 489 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 490 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 491 DL, EltVT); 492 for (unsigned i = NOps; i < NumVectorElts; ++i) { 493 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 494 : R600RegisterInfo::getSubRegFromChannel(i); 495 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 496 RegSeqArgs[1 + (2 * i) + 1] = 497 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 498 } 499 } 500 501 if (!IsRegSeq) 502 SelectCode(N); 503 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 504 } 505 506 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 507 unsigned int Opc = N->getOpcode(); 508 if (N->isMachineOpcode()) { 509 N->setNodeId(-1); 510 return; // Already selected. 511 } 512 513 // isa<MemSDNode> almost works but is slightly too permissive for some DS 514 // intrinsics. 515 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 516 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 517 Opc == ISD::ATOMIC_LOAD_FADD || 518 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 519 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 520 N = glueCopyToM0LDSInit(N); 521 SelectCode(N); 522 return; 523 } 524 525 switch (Opc) { 526 default: 527 break; 528 // We are selecting i64 ADD here instead of custom lower it during 529 // DAG legalization, so we can fold some i64 ADDs used for address 530 // calculation into the LOAD and STORE instructions. 531 case ISD::ADDC: 532 case ISD::ADDE: 533 case ISD::SUBC: 534 case ISD::SUBE: { 535 if (N->getValueType(0) != MVT::i64) 536 break; 537 538 SelectADD_SUB_I64(N); 539 return; 540 } 541 case ISD::ADDCARRY: 542 case ISD::SUBCARRY: 543 if (N->getValueType(0) != MVT::i32) 544 break; 545 546 SelectAddcSubb(N); 547 return; 548 case ISD::UADDO: 549 case ISD::USUBO: { 550 SelectUADDO_USUBO(N); 551 return; 552 } 553 case AMDGPUISD::FMUL_W_CHAIN: { 554 SelectFMUL_W_CHAIN(N); 555 return; 556 } 557 case AMDGPUISD::FMA_W_CHAIN: { 558 SelectFMA_W_CHAIN(N); 559 return; 560 } 561 562 case ISD::SCALAR_TO_VECTOR: 563 case ISD::BUILD_VECTOR: { 564 EVT VT = N->getValueType(0); 565 unsigned NumVectorElts = VT.getVectorNumElements(); 566 if (VT.getScalarSizeInBits() == 16) { 567 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 568 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 569 ReplaceNode(N, Packed); 570 return; 571 } 572 } 573 574 break; 575 } 576 577 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 578 unsigned RegClassID = 579 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 580 SelectBuildVector(N, RegClassID); 581 return; 582 } 583 case ISD::BUILD_PAIR: { 584 SDValue RC, SubReg0, SubReg1; 585 SDLoc DL(N); 586 if (N->getValueType(0) == MVT::i128) { 587 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 588 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 589 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 590 } else if (N->getValueType(0) == MVT::i64) { 591 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 592 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 593 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 594 } else { 595 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 596 } 597 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 598 N->getOperand(1), SubReg1 }; 599 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 600 N->getValueType(0), Ops)); 601 return; 602 } 603 604 case ISD::Constant: 605 case ISD::ConstantFP: { 606 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 607 break; 608 609 uint64_t Imm; 610 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 611 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 612 else { 613 ConstantSDNode *C = cast<ConstantSDNode>(N); 614 Imm = C->getZExtValue(); 615 } 616 617 SDLoc DL(N); 618 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 619 return; 620 } 621 case AMDGPUISD::BFE_I32: 622 case AMDGPUISD::BFE_U32: { 623 // There is a scalar version available, but unlike the vector version which 624 // has a separate operand for the offset and width, the scalar version packs 625 // the width and offset into a single operand. Try to move to the scalar 626 // version if the offsets are constant, so that we can try to keep extended 627 // loads of kernel arguments in SGPRs. 628 629 // TODO: Technically we could try to pattern match scalar bitshifts of 630 // dynamic values, but it's probably not useful. 631 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 632 if (!Offset) 633 break; 634 635 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 636 if (!Width) 637 break; 638 639 bool Signed = Opc == AMDGPUISD::BFE_I32; 640 641 uint32_t OffsetVal = Offset->getZExtValue(); 642 uint32_t WidthVal = Width->getZExtValue(); 643 644 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 645 WidthVal)); 646 return; 647 } 648 case AMDGPUISD::DIV_SCALE: { 649 SelectDIV_SCALE(N); 650 return; 651 } 652 case AMDGPUISD::MAD_I64_I32: 653 case AMDGPUISD::MAD_U64_U32: { 654 SelectMAD_64_32(N); 655 return; 656 } 657 case ISD::SMUL_LOHI: 658 case ISD::UMUL_LOHI: 659 return SelectMUL_LOHI(N); 660 case ISD::CopyToReg: { 661 const SITargetLowering& Lowering = 662 *static_cast<const SITargetLowering*>(getTargetLowering()); 663 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 664 break; 665 } 666 case ISD::AND: 667 case ISD::SRL: 668 case ISD::SRA: 669 case ISD::SIGN_EXTEND_INREG: 670 if (N->getValueType(0) != MVT::i32) 671 break; 672 673 SelectS_BFE(N); 674 return; 675 case ISD::BRCOND: 676 SelectBRCOND(N); 677 return; 678 case ISD::FMAD: 679 case ISD::FMA: 680 SelectFMAD_FMA(N); 681 return; 682 case AMDGPUISD::ATOMIC_CMP_SWAP: 683 SelectATOMIC_CMP_SWAP(N); 684 return; 685 case AMDGPUISD::CVT_PKRTZ_F16_F32: 686 case AMDGPUISD::CVT_PKNORM_I16_F32: 687 case AMDGPUISD::CVT_PKNORM_U16_F32: 688 case AMDGPUISD::CVT_PK_U16_U32: 689 case AMDGPUISD::CVT_PK_I16_I32: { 690 // Hack around using a legal type if f16 is illegal. 691 if (N->getValueType(0) == MVT::i32) { 692 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 693 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 694 { N->getOperand(0), N->getOperand(1) }); 695 SelectCode(N); 696 return; 697 } 698 699 break; 700 } 701 case ISD::INTRINSIC_W_CHAIN: { 702 SelectINTRINSIC_W_CHAIN(N); 703 return; 704 } 705 case ISD::INTRINSIC_WO_CHAIN: { 706 SelectINTRINSIC_WO_CHAIN(N); 707 return; 708 } 709 case ISD::INTRINSIC_VOID: { 710 SelectINTRINSIC_VOID(N); 711 return; 712 } 713 } 714 715 SelectCode(N); 716 } 717 718 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 719 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 720 const Instruction *Term = BB->getTerminator(); 721 return Term->getMetadata("amdgpu.uniform") || 722 Term->getMetadata("structurizecfg.uniform"); 723 } 724 725 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 726 unsigned ShAmtBits) const { 727 assert(N->getOpcode() == ISD::AND); 728 729 const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 730 if (RHS.countTrailingOnes() >= ShAmtBits) 731 return true; 732 733 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 734 return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits; 735 } 736 737 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 738 SDValue &N0, SDValue &N1) { 739 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 740 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 741 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 742 // (i64 (bitcast (v2i32 (build_vector 743 // (or (extract_vector_elt V, 0), OFFSET), 744 // (extract_vector_elt V, 1))))) 745 SDValue Lo = Addr.getOperand(0).getOperand(0); 746 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 747 SDValue BaseLo = Lo.getOperand(0); 748 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 749 // Check that split base (Lo and Hi) are extracted from the same one. 750 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 751 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 752 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 753 // Lo is statically extracted from index 0. 754 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 755 BaseLo.getConstantOperandVal(1) == 0 && 756 // Hi is statically extracted from index 0. 757 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 758 BaseHi.getConstantOperandVal(1) == 1) { 759 N0 = BaseLo.getOperand(0).getOperand(0); 760 N1 = Lo.getOperand(1); 761 return true; 762 } 763 } 764 } 765 return false; 766 } 767 768 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 769 SDValue &RHS) const { 770 if (CurDAG->isBaseWithConstantOffset(Addr)) { 771 LHS = Addr.getOperand(0); 772 RHS = Addr.getOperand(1); 773 return true; 774 } 775 776 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 777 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 778 return true; 779 } 780 781 return false; 782 } 783 784 StringRef AMDGPUDAGToDAGISel::getPassName() const { 785 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // Complex Patterns 790 //===----------------------------------------------------------------------===// 791 792 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 793 SDValue &Offset) { 794 return false; 795 } 796 797 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 798 SDValue &Offset) { 799 ConstantSDNode *C; 800 SDLoc DL(Addr); 801 802 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 803 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 804 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 805 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 806 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 807 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 808 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 809 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 810 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 811 Base = Addr.getOperand(0); 812 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 813 } else { 814 Base = Addr; 815 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 816 } 817 818 return true; 819 } 820 821 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 822 const SDLoc &DL) const { 823 SDNode *Mov = CurDAG->getMachineNode( 824 AMDGPU::S_MOV_B32, DL, MVT::i32, 825 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 826 return SDValue(Mov, 0); 827 } 828 829 // FIXME: Should only handle addcarry/subcarry 830 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 831 SDLoc DL(N); 832 SDValue LHS = N->getOperand(0); 833 SDValue RHS = N->getOperand(1); 834 835 unsigned Opcode = N->getOpcode(); 836 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 837 bool ProduceCarry = 838 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 839 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 840 841 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 842 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 843 844 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 845 DL, MVT::i32, LHS, Sub0); 846 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 847 DL, MVT::i32, LHS, Sub1); 848 849 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 850 DL, MVT::i32, RHS, Sub0); 851 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 852 DL, MVT::i32, RHS, Sub1); 853 854 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 855 856 static const unsigned OpcMap[2][2][2] = { 857 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 858 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 859 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 860 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 861 862 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 863 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 864 865 SDNode *AddLo; 866 if (!ConsumeCarry) { 867 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 868 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 869 } else { 870 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 871 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 872 } 873 SDValue AddHiArgs[] = { 874 SDValue(Hi0, 0), 875 SDValue(Hi1, 0), 876 SDValue(AddLo, 1) 877 }; 878 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 879 880 SDValue RegSequenceArgs[] = { 881 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 882 SDValue(AddLo,0), 883 Sub0, 884 SDValue(AddHi,0), 885 Sub1, 886 }; 887 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 888 MVT::i64, RegSequenceArgs); 889 890 if (ProduceCarry) { 891 // Replace the carry-use 892 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 893 } 894 895 // Replace the remaining uses. 896 ReplaceNode(N, RegSequence); 897 } 898 899 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 900 SDLoc DL(N); 901 SDValue LHS = N->getOperand(0); 902 SDValue RHS = N->getOperand(1); 903 SDValue CI = N->getOperand(2); 904 905 if (N->isDivergent()) { 906 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 907 : AMDGPU::V_SUBB_U32_e64; 908 CurDAG->SelectNodeTo( 909 N, Opc, N->getVTList(), 910 {LHS, RHS, CI, 911 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 912 } else { 913 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 914 : AMDGPU::S_SUB_CO_PSEUDO; 915 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 916 } 917 } 918 919 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 920 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 921 // carry out despite the _i32 name. These were renamed in VI to _U32. 922 // FIXME: We should probably rename the opcodes here. 923 bool IsAdd = N->getOpcode() == ISD::UADDO; 924 bool IsVALU = N->isDivergent(); 925 926 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 927 ++UI) 928 if (UI.getUse().getResNo() == 1) { 929 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 930 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 931 IsVALU = true; 932 break; 933 } 934 } 935 936 if (IsVALU) { 937 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 938 939 CurDAG->SelectNodeTo( 940 N, Opc, N->getVTList(), 941 {N->getOperand(0), N->getOperand(1), 942 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 943 } else { 944 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 945 : AMDGPU::S_USUBO_PSEUDO; 946 947 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 948 {N->getOperand(0), N->getOperand(1)}); 949 } 950 } 951 952 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 953 SDLoc SL(N); 954 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 955 SDValue Ops[10]; 956 957 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 958 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 959 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 960 Ops[8] = N->getOperand(0); 961 Ops[9] = N->getOperand(4); 962 963 // If there are no source modifiers, prefer fmac over fma because it can use 964 // the smaller VOP2 encoding. 965 bool UseFMAC = Subtarget->hasDLInsts() && 966 cast<ConstantSDNode>(Ops[0])->isZero() && 967 cast<ConstantSDNode>(Ops[2])->isZero() && 968 cast<ConstantSDNode>(Ops[4])->isZero(); 969 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 970 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 971 } 972 973 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 974 SDLoc SL(N); 975 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 976 SDValue Ops[8]; 977 978 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 979 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 980 Ops[6] = N->getOperand(0); 981 Ops[7] = N->getOperand(3); 982 983 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 984 } 985 986 // We need to handle this here because tablegen doesn't support matching 987 // instructions with multiple outputs. 988 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 989 SDLoc SL(N); 990 EVT VT = N->getValueType(0); 991 992 assert(VT == MVT::f32 || VT == MVT::f64); 993 994 unsigned Opc 995 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 996 997 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 998 // omod 999 SDValue Ops[8]; 1000 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1001 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1002 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1003 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1004 } 1005 1006 // We need to handle this here because tablegen doesn't support matching 1007 // instructions with multiple outputs. 1008 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1009 SDLoc SL(N); 1010 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1011 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1012 1013 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1014 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1015 Clamp }; 1016 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1017 } 1018 1019 // We need to handle this here because tablegen doesn't support matching 1020 // instructions with multiple outputs. 1021 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1022 SDLoc SL(N); 1023 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1024 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1025 1026 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1027 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1028 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1029 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1030 if (!SDValue(N, 0).use_empty()) { 1031 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1032 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1033 MVT::i32, SDValue(Mad, 0), Sub0); 1034 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1035 } 1036 if (!SDValue(N, 1).use_empty()) { 1037 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1038 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1039 MVT::i32, SDValue(Mad, 0), Sub1); 1040 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1041 } 1042 CurDAG->RemoveDeadNode(N); 1043 } 1044 1045 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1046 if (!isUInt<16>(Offset)) 1047 return false; 1048 1049 if (!Base || Subtarget->hasUsableDSOffset() || 1050 Subtarget->unsafeDSOffsetFoldingEnabled()) 1051 return true; 1052 1053 // On Southern Islands instruction with a negative base value and an offset 1054 // don't seem to work. 1055 return CurDAG->SignBitIsZero(Base); 1056 } 1057 1058 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1059 SDValue &Offset) const { 1060 SDLoc DL(Addr); 1061 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1062 SDValue N0 = Addr.getOperand(0); 1063 SDValue N1 = Addr.getOperand(1); 1064 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1065 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1066 // (add n0, c0) 1067 Base = N0; 1068 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1069 return true; 1070 } 1071 } else if (Addr.getOpcode() == ISD::SUB) { 1072 // sub C, x -> add (sub 0, x), C 1073 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1074 int64_t ByteOffset = C->getSExtValue(); 1075 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1076 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1077 1078 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1079 // the known bits in isDSOffsetLegal. We need to emit the selected node 1080 // here, so this is thrown away. 1081 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1082 Zero, Addr.getOperand(1)); 1083 1084 if (isDSOffsetLegal(Sub, ByteOffset)) { 1085 SmallVector<SDValue, 3> Opnds; 1086 Opnds.push_back(Zero); 1087 Opnds.push_back(Addr.getOperand(1)); 1088 1089 // FIXME: Select to VOP3 version for with-carry. 1090 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1091 if (Subtarget->hasAddNoCarry()) { 1092 SubOp = AMDGPU::V_SUB_U32_e64; 1093 Opnds.push_back( 1094 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1095 } 1096 1097 MachineSDNode *MachineSub = 1098 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1099 1100 Base = SDValue(MachineSub, 0); 1101 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1102 return true; 1103 } 1104 } 1105 } 1106 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1107 // If we have a constant address, prefer to put the constant into the 1108 // offset. This can save moves to load the constant address since multiple 1109 // operations can share the zero base address register, and enables merging 1110 // into read2 / write2 instructions. 1111 1112 SDLoc DL(Addr); 1113 1114 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1115 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1116 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1117 DL, MVT::i32, Zero); 1118 Base = SDValue(MovZero, 0); 1119 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1120 return true; 1121 } 1122 } 1123 1124 // default case 1125 Base = Addr; 1126 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1127 return true; 1128 } 1129 1130 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1131 unsigned Offset1, 1132 unsigned Size) const { 1133 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1134 return false; 1135 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1136 return false; 1137 1138 if (!Base || Subtarget->hasUsableDSOffset() || 1139 Subtarget->unsafeDSOffsetFoldingEnabled()) 1140 return true; 1141 1142 // On Southern Islands instruction with a negative base value and an offset 1143 // don't seem to work. 1144 return CurDAG->SignBitIsZero(Base); 1145 } 1146 1147 // TODO: If offset is too big, put low 16-bit into offset. 1148 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1149 SDValue &Offset0, 1150 SDValue &Offset1) const { 1151 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1152 } 1153 1154 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1155 SDValue &Offset0, 1156 SDValue &Offset1) const { 1157 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1158 } 1159 1160 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1161 SDValue &Offset0, SDValue &Offset1, 1162 unsigned Size) const { 1163 SDLoc DL(Addr); 1164 1165 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1166 SDValue N0 = Addr.getOperand(0); 1167 SDValue N1 = Addr.getOperand(1); 1168 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1169 unsigned OffsetValue0 = C1->getZExtValue(); 1170 unsigned OffsetValue1 = OffsetValue0 + Size; 1171 1172 // (add n0, c0) 1173 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1174 Base = N0; 1175 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1176 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1177 return true; 1178 } 1179 } else if (Addr.getOpcode() == ISD::SUB) { 1180 // sub C, x -> add (sub 0, x), C 1181 if (const ConstantSDNode *C = 1182 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1183 unsigned OffsetValue0 = C->getZExtValue(); 1184 unsigned OffsetValue1 = OffsetValue0 + Size; 1185 1186 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1187 SDLoc DL(Addr); 1188 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1189 1190 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1191 // the known bits in isDSOffsetLegal. We need to emit the selected node 1192 // here, so this is thrown away. 1193 SDValue Sub = 1194 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1195 1196 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1197 SmallVector<SDValue, 3> Opnds; 1198 Opnds.push_back(Zero); 1199 Opnds.push_back(Addr.getOperand(1)); 1200 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1201 if (Subtarget->hasAddNoCarry()) { 1202 SubOp = AMDGPU::V_SUB_U32_e64; 1203 Opnds.push_back( 1204 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1205 } 1206 1207 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1208 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1209 1210 Base = SDValue(MachineSub, 0); 1211 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1212 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1213 return true; 1214 } 1215 } 1216 } 1217 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1218 unsigned OffsetValue0 = CAddr->getZExtValue(); 1219 unsigned OffsetValue1 = OffsetValue0 + Size; 1220 1221 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1222 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1223 MachineSDNode *MovZero = 1224 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1225 Base = SDValue(MovZero, 0); 1226 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1227 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1228 return true; 1229 } 1230 } 1231 1232 // default case 1233 1234 Base = Addr; 1235 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1236 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1237 return true; 1238 } 1239 1240 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1241 SDValue &SOffset, SDValue &Offset, 1242 SDValue &Offen, SDValue &Idxen, 1243 SDValue &Addr64) const { 1244 // Subtarget prefers to use flat instruction 1245 // FIXME: This should be a pattern predicate and not reach here 1246 if (Subtarget->useFlatForGlobal()) 1247 return false; 1248 1249 SDLoc DL(Addr); 1250 1251 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1252 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1253 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1254 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1255 1256 ConstantSDNode *C1 = nullptr; 1257 SDValue N0 = Addr; 1258 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1259 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1260 if (isUInt<32>(C1->getZExtValue())) 1261 N0 = Addr.getOperand(0); 1262 else 1263 C1 = nullptr; 1264 } 1265 1266 if (N0.getOpcode() == ISD::ADD) { 1267 // (add N2, N3) -> addr64, or 1268 // (add (add N2, N3), C1) -> addr64 1269 SDValue N2 = N0.getOperand(0); 1270 SDValue N3 = N0.getOperand(1); 1271 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1272 1273 if (N2->isDivergent()) { 1274 if (N3->isDivergent()) { 1275 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1276 // addr64, and construct the resource from a 0 address. 1277 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1278 VAddr = N0; 1279 } else { 1280 // N2 is divergent, N3 is not. 1281 Ptr = N3; 1282 VAddr = N2; 1283 } 1284 } else { 1285 // N2 is not divergent. 1286 Ptr = N2; 1287 VAddr = N3; 1288 } 1289 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1290 } else if (N0->isDivergent()) { 1291 // N0 is divergent. Use it as the addr64, and construct the resource from a 1292 // 0 address. 1293 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1294 VAddr = N0; 1295 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1296 } else { 1297 // N0 -> offset, or 1298 // (N0 + C1) -> offset 1299 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1300 Ptr = N0; 1301 } 1302 1303 if (!C1) { 1304 // No offset. 1305 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1306 return true; 1307 } 1308 1309 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1310 // Legal offset for instruction. 1311 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1312 return true; 1313 } 1314 1315 // Illegal offset, store it in soffset. 1316 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1317 SOffset = 1318 SDValue(CurDAG->getMachineNode( 1319 AMDGPU::S_MOV_B32, DL, MVT::i32, 1320 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1321 0); 1322 return true; 1323 } 1324 1325 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1326 SDValue &VAddr, SDValue &SOffset, 1327 SDValue &Offset) const { 1328 SDValue Ptr, Offen, Idxen, Addr64; 1329 1330 // addr64 bit was removed for volcanic islands. 1331 // FIXME: This should be a pattern predicate and not reach here 1332 if (!Subtarget->hasAddr64()) 1333 return false; 1334 1335 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1336 return false; 1337 1338 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1339 if (C->getSExtValue()) { 1340 SDLoc DL(Addr); 1341 1342 const SITargetLowering& Lowering = 1343 *static_cast<const SITargetLowering*>(getTargetLowering()); 1344 1345 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1346 return true; 1347 } 1348 1349 return false; 1350 } 1351 1352 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1353 SDLoc DL(N); 1354 1355 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1356 SDValue TFI = 1357 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1358 1359 // We rebase the base address into an absolute stack address and hence 1360 // use constant 0 for soffset. This value must be retained until 1361 // frame elimination and eliminateFrameIndex will choose the appropriate 1362 // frame register if need be. 1363 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1364 } 1365 1366 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1367 SDValue Addr, SDValue &Rsrc, 1368 SDValue &VAddr, SDValue &SOffset, 1369 SDValue &ImmOffset) const { 1370 1371 SDLoc DL(Addr); 1372 MachineFunction &MF = CurDAG->getMachineFunction(); 1373 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1374 1375 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1376 1377 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1378 int64_t Imm = CAddr->getSExtValue(); 1379 const int64_t NullPtr = 1380 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1381 // Don't fold null pointer. 1382 if (Imm != NullPtr) { 1383 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1384 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1385 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1386 VAddr = SDValue(MovHighBits, 0); 1387 1388 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1389 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1390 return true; 1391 } 1392 } 1393 1394 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1395 // (add n0, c1) 1396 1397 SDValue N0 = Addr.getOperand(0); 1398 SDValue N1 = Addr.getOperand(1); 1399 1400 // Offsets in vaddr must be positive if range checking is enabled. 1401 // 1402 // The total computation of vaddr + soffset + offset must not overflow. If 1403 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1404 // overflowing. 1405 // 1406 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1407 // always perform a range check. If a negative vaddr base index was used, 1408 // this would fail the range check. The overall address computation would 1409 // compute a valid address, but this doesn't happen due to the range 1410 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1411 // 1412 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1413 // MUBUF vaddr, but not on older subtargets which can only do this if the 1414 // sign bit is known 0. 1415 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1416 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1417 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1418 CurDAG->SignBitIsZero(N0))) { 1419 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1420 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1421 return true; 1422 } 1423 } 1424 1425 // (node) 1426 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1427 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1428 return true; 1429 } 1430 1431 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1432 if (Val.getOpcode() != ISD::CopyFromReg) 1433 return false; 1434 auto RC = 1435 TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg()); 1436 return RC && TRI.isSGPRClass(RC); 1437 } 1438 1439 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1440 SDValue Addr, 1441 SDValue &SRsrc, 1442 SDValue &SOffset, 1443 SDValue &Offset) const { 1444 const SIRegisterInfo *TRI = 1445 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1446 MachineFunction &MF = CurDAG->getMachineFunction(); 1447 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1448 SDLoc DL(Addr); 1449 1450 // CopyFromReg <sgpr> 1451 if (IsCopyFromSGPR(*TRI, Addr)) { 1452 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1453 SOffset = Addr; 1454 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1455 return true; 1456 } 1457 1458 ConstantSDNode *CAddr; 1459 if (Addr.getOpcode() == ISD::ADD) { 1460 // Add (CopyFromReg <sgpr>) <constant> 1461 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1462 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1463 return false; 1464 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1465 return false; 1466 1467 SOffset = Addr.getOperand(0); 1468 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1469 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1470 // <constant> 1471 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1472 } else { 1473 return false; 1474 } 1475 1476 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1477 1478 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1479 return true; 1480 } 1481 1482 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1483 SDValue &SOffset, SDValue &Offset 1484 ) const { 1485 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1486 const SIInstrInfo *TII = 1487 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1488 1489 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1490 return false; 1491 1492 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1493 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1494 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1495 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1496 APInt::getAllOnes(32).getZExtValue(); // Size 1497 SDLoc DL(Addr); 1498 1499 const SITargetLowering& Lowering = 1500 *static_cast<const SITargetLowering*>(getTargetLowering()); 1501 1502 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1503 return true; 1504 } 1505 return false; 1506 } 1507 1508 // Find a load or store from corresponding pattern root. 1509 // Roots may be build_vector, bitconvert or their combinations. 1510 static MemSDNode* findMemSDNode(SDNode *N) { 1511 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1512 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1513 return MN; 1514 assert(isa<BuildVectorSDNode>(N)); 1515 for (SDValue V : N->op_values()) 1516 if (MemSDNode *MN = 1517 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1518 return MN; 1519 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1520 } 1521 1522 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1523 SDValue &VAddr, SDValue &Offset, 1524 uint64_t FlatVariant) const { 1525 int64_t OffsetVal = 0; 1526 1527 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1528 1529 bool CanHaveFlatSegmentOffsetBug = 1530 Subtarget->hasFlatSegmentOffsetBug() && 1531 FlatVariant == SIInstrFlags::FLAT && 1532 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1533 1534 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1535 SDValue N0, N1; 1536 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1537 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1538 1539 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1540 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1541 Addr = N0; 1542 OffsetVal = COffsetVal; 1543 } else { 1544 // If the offset doesn't fit, put the low bits into the offset field and 1545 // add the rest. 1546 // 1547 // For a FLAT instruction the hardware decides whether to access 1548 // global/scratch/shared memory based on the high bits of vaddr, 1549 // ignoring the offset field, so we have to ensure that when we add 1550 // remainder to vaddr it still points into the same underlying object. 1551 // The easiest way to do that is to make sure that we split the offset 1552 // into two pieces that are both >= 0 or both <= 0. 1553 1554 SDLoc DL(N); 1555 uint64_t RemainderOffset; 1556 1557 std::tie(OffsetVal, RemainderOffset) = 1558 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1559 1560 SDValue AddOffsetLo = 1561 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1562 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1563 1564 if (Addr.getValueType().getSizeInBits() == 32) { 1565 SmallVector<SDValue, 3> Opnds; 1566 Opnds.push_back(N0); 1567 Opnds.push_back(AddOffsetLo); 1568 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1569 if (Subtarget->hasAddNoCarry()) { 1570 AddOp = AMDGPU::V_ADD_U32_e64; 1571 Opnds.push_back(Clamp); 1572 } 1573 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1574 } else { 1575 // TODO: Should this try to use a scalar add pseudo if the base address 1576 // is uniform and saddr is usable? 1577 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1578 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1579 1580 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1581 DL, MVT::i32, N0, Sub0); 1582 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1583 DL, MVT::i32, N0, Sub1); 1584 1585 SDValue AddOffsetHi = 1586 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1587 1588 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1589 1590 SDNode *Add = 1591 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1592 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1593 1594 SDNode *Addc = CurDAG->getMachineNode( 1595 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1596 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1597 1598 SDValue RegSequenceArgs[] = { 1599 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1600 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1601 1602 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1603 MVT::i64, RegSequenceArgs), 1604 0); 1605 } 1606 } 1607 } 1608 } 1609 1610 VAddr = Addr; 1611 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1612 return true; 1613 } 1614 1615 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1616 SDValue &VAddr, 1617 SDValue &Offset) const { 1618 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1619 } 1620 1621 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1622 SDValue &VAddr, 1623 SDValue &Offset) const { 1624 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1625 } 1626 1627 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1628 SDValue &VAddr, 1629 SDValue &Offset) const { 1630 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1631 SIInstrFlags::FlatScratch); 1632 } 1633 1634 // If this matches zero_extend i32:x, return x 1635 static SDValue matchZExtFromI32(SDValue Op) { 1636 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1637 return SDValue(); 1638 1639 SDValue ExtSrc = Op.getOperand(0); 1640 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1641 } 1642 1643 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1644 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1645 SDValue Addr, 1646 SDValue &SAddr, 1647 SDValue &VOffset, 1648 SDValue &Offset) const { 1649 int64_t ImmOffset = 0; 1650 1651 // Match the immediate offset first, which canonically is moved as low as 1652 // possible. 1653 1654 SDValue LHS, RHS; 1655 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1656 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1657 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1658 1659 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1660 SIInstrFlags::FlatGlobal)) { 1661 Addr = LHS; 1662 ImmOffset = COffsetVal; 1663 } else if (!LHS->isDivergent()) { 1664 if (COffsetVal > 0) { 1665 SDLoc SL(N); 1666 // saddr + large_offset -> saddr + 1667 // (voffset = large_offset & ~MaxOffset) + 1668 // (large_offset & MaxOffset); 1669 int64_t SplitImmOffset, RemainderOffset; 1670 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1671 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1672 1673 if (isUInt<32>(RemainderOffset)) { 1674 SDNode *VMov = CurDAG->getMachineNode( 1675 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1676 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1677 VOffset = SDValue(VMov, 0); 1678 SAddr = LHS; 1679 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1680 return true; 1681 } 1682 } 1683 1684 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1685 // is 1 we would need to perform 1 or 2 extra moves for each half of 1686 // the constant and it is better to do a scalar add and then issue a 1687 // single VALU instruction to materialize zero. Otherwise it is less 1688 // instructions to perform VALU adds with immediates or inline literals. 1689 unsigned NumLiterals = 1690 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1691 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1692 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1693 return false; 1694 } 1695 } 1696 1697 // Match the variable offset. 1698 if (Addr.getOpcode() == ISD::ADD) { 1699 LHS = Addr.getOperand(0); 1700 RHS = Addr.getOperand(1); 1701 1702 if (!LHS->isDivergent()) { 1703 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1704 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1705 SAddr = LHS; 1706 VOffset = ZextRHS; 1707 } 1708 } 1709 1710 if (!SAddr && !RHS->isDivergent()) { 1711 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1712 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1713 SAddr = RHS; 1714 VOffset = ZextLHS; 1715 } 1716 } 1717 1718 if (SAddr) { 1719 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1720 return true; 1721 } 1722 } 1723 1724 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1725 isa<ConstantSDNode>(Addr)) 1726 return false; 1727 1728 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1729 // moves required to copy a 64-bit SGPR to VGPR. 1730 SAddr = Addr; 1731 SDNode *VMov = 1732 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1733 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1734 VOffset = SDValue(VMov, 0); 1735 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1736 return true; 1737 } 1738 1739 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1740 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1741 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1742 } else if (SAddr.getOpcode() == ISD::ADD && 1743 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1744 // Materialize this into a scalar move for scalar address to avoid 1745 // readfirstlane. 1746 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1747 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1748 FI->getValueType(0)); 1749 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1750 MVT::i32, TFI, SAddr.getOperand(1)), 1751 0); 1752 } 1753 1754 return SAddr; 1755 } 1756 1757 // Match (32-bit SGPR base) + sext(imm offset) 1758 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1759 SDValue &SAddr, 1760 SDValue &Offset) const { 1761 if (Addr->isDivergent()) 1762 return false; 1763 1764 SDLoc DL(Addr); 1765 1766 int64_t COffsetVal = 0; 1767 1768 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1769 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1770 SAddr = Addr.getOperand(0); 1771 } else { 1772 SAddr = Addr; 1773 } 1774 1775 SAddr = SelectSAddrFI(CurDAG, SAddr); 1776 1777 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1778 1779 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1780 SIInstrFlags::FlatScratch)) { 1781 int64_t SplitImmOffset, RemainderOffset; 1782 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1783 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1784 1785 COffsetVal = SplitImmOffset; 1786 1787 SDValue AddOffset = 1788 SAddr.getOpcode() == ISD::TargetFrameIndex 1789 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1790 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1791 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1792 SAddr, AddOffset), 1793 0); 1794 } 1795 1796 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1797 1798 return true; 1799 } 1800 1801 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1802 SDValue &Offset, bool &Imm) const { 1803 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1804 if (!C) { 1805 if (ByteOffsetNode.getValueType().isScalarInteger() && 1806 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1807 Offset = ByteOffsetNode; 1808 Imm = false; 1809 return true; 1810 } 1811 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1812 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1813 Offset = ByteOffsetNode.getOperand(0); 1814 Imm = false; 1815 return true; 1816 } 1817 } 1818 return false; 1819 } 1820 1821 SDLoc SL(ByteOffsetNode); 1822 // GFX9 and GFX10 have signed byte immediate offsets. 1823 int64_t ByteOffset = C->getSExtValue(); 1824 Optional<int64_t> EncodedOffset = 1825 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1826 if (EncodedOffset) { 1827 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1828 Imm = true; 1829 return true; 1830 } 1831 1832 // SGPR and literal offsets are unsigned. 1833 if (ByteOffset < 0) 1834 return false; 1835 1836 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1837 if (EncodedOffset) { 1838 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1839 return true; 1840 } 1841 1842 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1843 return false; 1844 1845 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1846 Offset = SDValue( 1847 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1848 1849 return true; 1850 } 1851 1852 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1853 if (Addr.getValueType() != MVT::i32) 1854 return Addr; 1855 1856 // Zero-extend a 32-bit address. 1857 SDLoc SL(Addr); 1858 1859 const MachineFunction &MF = CurDAG->getMachineFunction(); 1860 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1861 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1862 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1863 1864 const SDValue Ops[] = { 1865 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1866 Addr, 1867 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1868 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1869 0), 1870 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1871 }; 1872 1873 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1874 Ops), 0); 1875 } 1876 1877 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1878 SDValue &Offset, bool &Imm) const { 1879 SDLoc SL(Addr); 1880 1881 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1882 // wraparound, because s_load instructions perform the addition in 64 bits. 1883 if ((Addr.getValueType() != MVT::i32 || 1884 Addr->getFlags().hasNoUnsignedWrap())) { 1885 SDValue N0, N1; 1886 // Extract the base and offset if possible. 1887 if (CurDAG->isBaseWithConstantOffset(Addr) || 1888 Addr.getOpcode() == ISD::ADD) { 1889 N0 = Addr.getOperand(0); 1890 N1 = Addr.getOperand(1); 1891 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1892 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1893 } 1894 if (N0 && N1) { 1895 if (SelectSMRDOffset(N1, Offset, Imm)) { 1896 SBase = Expand32BitAddress(N0); 1897 return true; 1898 } 1899 } 1900 } 1901 SBase = Expand32BitAddress(Addr); 1902 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1903 Imm = true; 1904 return true; 1905 } 1906 1907 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1908 SDValue &Offset) const { 1909 bool Imm = false; 1910 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1911 } 1912 1913 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1914 SDValue &Offset) const { 1915 1916 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1917 1918 bool Imm = false; 1919 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1920 return false; 1921 1922 return !Imm && isa<ConstantSDNode>(Offset); 1923 } 1924 1925 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1926 SDValue &Offset) const { 1927 bool Imm = false; 1928 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1929 !isa<ConstantSDNode>(Offset); 1930 } 1931 1932 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1933 SDValue &Offset) const { 1934 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1935 // The immediate offset for S_BUFFER instructions is unsigned. 1936 if (auto Imm = 1937 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 1938 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1939 return true; 1940 } 1941 } 1942 1943 return false; 1944 } 1945 1946 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 1947 SDValue &Offset) const { 1948 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1949 1950 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1951 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 1952 C->getZExtValue())) { 1953 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1954 return true; 1955 } 1956 } 1957 1958 return false; 1959 } 1960 1961 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 1962 SDValue &Base, 1963 SDValue &Offset) const { 1964 SDLoc DL(Index); 1965 1966 if (CurDAG->isBaseWithConstantOffset(Index)) { 1967 SDValue N0 = Index.getOperand(0); 1968 SDValue N1 = Index.getOperand(1); 1969 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1970 1971 // (add n0, c0) 1972 // Don't peel off the offset (c0) if doing so could possibly lead 1973 // the base (n0) to be negative. 1974 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 1975 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 1976 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 1977 Base = N0; 1978 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1979 return true; 1980 } 1981 } 1982 1983 if (isa<ConstantSDNode>(Index)) 1984 return false; 1985 1986 Base = Index; 1987 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1988 return true; 1989 } 1990 1991 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 1992 SDValue Val, uint32_t Offset, 1993 uint32_t Width) { 1994 if (Val->isDivergent()) { 1995 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 1996 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 1997 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 1998 1999 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2000 } 2001 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2002 // Transformation function, pack the offset and width of a BFE into 2003 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2004 // source, bits [5:0] contain the offset and bits [22:16] the width. 2005 uint32_t PackedVal = Offset | (Width << 16); 2006 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2007 2008 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2009 } 2010 2011 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2012 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2013 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2014 // Predicate: 0 < b <= c < 32 2015 2016 const SDValue &Shl = N->getOperand(0); 2017 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2018 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2019 2020 if (B && C) { 2021 uint32_t BVal = B->getZExtValue(); 2022 uint32_t CVal = C->getZExtValue(); 2023 2024 if (0 < BVal && BVal <= CVal && CVal < 32) { 2025 bool Signed = N->getOpcode() == ISD::SRA; 2026 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2027 32 - CVal)); 2028 return; 2029 } 2030 } 2031 SelectCode(N); 2032 } 2033 2034 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2035 switch (N->getOpcode()) { 2036 case ISD::AND: 2037 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2038 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2039 // Predicate: isMask(mask) 2040 const SDValue &Srl = N->getOperand(0); 2041 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2042 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2043 2044 if (Shift && Mask) { 2045 uint32_t ShiftVal = Shift->getZExtValue(); 2046 uint32_t MaskVal = Mask->getZExtValue(); 2047 2048 if (isMask_32(MaskVal)) { 2049 uint32_t WidthVal = countPopulation(MaskVal); 2050 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2051 WidthVal)); 2052 return; 2053 } 2054 } 2055 } 2056 break; 2057 case ISD::SRL: 2058 if (N->getOperand(0).getOpcode() == ISD::AND) { 2059 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2060 // Predicate: isMask(mask >> b) 2061 const SDValue &And = N->getOperand(0); 2062 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2063 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2064 2065 if (Shift && Mask) { 2066 uint32_t ShiftVal = Shift->getZExtValue(); 2067 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2068 2069 if (isMask_32(MaskVal)) { 2070 uint32_t WidthVal = countPopulation(MaskVal); 2071 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2072 WidthVal)); 2073 return; 2074 } 2075 } 2076 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2077 SelectS_BFEFromShifts(N); 2078 return; 2079 } 2080 break; 2081 case ISD::SRA: 2082 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2083 SelectS_BFEFromShifts(N); 2084 return; 2085 } 2086 break; 2087 2088 case ISD::SIGN_EXTEND_INREG: { 2089 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2090 SDValue Src = N->getOperand(0); 2091 if (Src.getOpcode() != ISD::SRL) 2092 break; 2093 2094 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2095 if (!Amt) 2096 break; 2097 2098 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2099 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2100 Amt->getZExtValue(), Width)); 2101 return; 2102 } 2103 } 2104 2105 SelectCode(N); 2106 } 2107 2108 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2109 assert(N->getOpcode() == ISD::BRCOND); 2110 if (!N->hasOneUse()) 2111 return false; 2112 2113 SDValue Cond = N->getOperand(1); 2114 if (Cond.getOpcode() == ISD::CopyToReg) 2115 Cond = Cond.getOperand(2); 2116 2117 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2118 return false; 2119 2120 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2121 if (VT == MVT::i32) 2122 return true; 2123 2124 if (VT == MVT::i64) { 2125 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2126 2127 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2128 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2129 } 2130 2131 return false; 2132 } 2133 2134 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2135 SDValue Cond = N->getOperand(1); 2136 2137 if (Cond.isUndef()) { 2138 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2139 N->getOperand(2), N->getOperand(0)); 2140 return; 2141 } 2142 2143 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2144 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2145 2146 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2147 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2148 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2149 SDLoc SL(N); 2150 2151 if (!UseSCCBr) { 2152 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2153 // analyzed what generates the vcc value, so we do not know whether vcc 2154 // bits for disabled lanes are 0. Thus we need to mask out bits for 2155 // disabled lanes. 2156 // 2157 // For the case that we select S_CBRANCH_SCC1 and it gets 2158 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2159 // SIInstrInfo::moveToVALU which inserts the S_AND). 2160 // 2161 // We could add an analysis of what generates the vcc value here and omit 2162 // the S_AND when is unnecessary. But it would be better to add a separate 2163 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2164 // catches both cases. 2165 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2166 : AMDGPU::S_AND_B64, 2167 SL, MVT::i1, 2168 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2169 : AMDGPU::EXEC, 2170 MVT::i1), 2171 Cond), 2172 0); 2173 } 2174 2175 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2176 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2177 N->getOperand(2), // Basic Block 2178 VCC.getValue(0)); 2179 } 2180 2181 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2182 MVT VT = N->getSimpleValueType(0); 2183 bool IsFMA = N->getOpcode() == ISD::FMA; 2184 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2185 !Subtarget->hasFmaMixInsts()) || 2186 ((IsFMA && Subtarget->hasMadMixInsts()) || 2187 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2188 SelectCode(N); 2189 return; 2190 } 2191 2192 SDValue Src0 = N->getOperand(0); 2193 SDValue Src1 = N->getOperand(1); 2194 SDValue Src2 = N->getOperand(2); 2195 unsigned Src0Mods, Src1Mods, Src2Mods; 2196 2197 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2198 // using the conversion from f16. 2199 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2200 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2201 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2202 2203 assert((IsFMA || !Mode.allFP32Denormals()) && 2204 "fmad selected with denormals enabled"); 2205 // TODO: We can select this with f32 denormals enabled if all the sources are 2206 // converted from f16 (in which case fmad isn't legal). 2207 2208 if (Sel0 || Sel1 || Sel2) { 2209 // For dummy operands. 2210 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2211 SDValue Ops[] = { 2212 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2213 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2214 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2215 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2216 Zero, Zero 2217 }; 2218 2219 CurDAG->SelectNodeTo(N, 2220 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2221 MVT::f32, Ops); 2222 } else { 2223 SelectCode(N); 2224 } 2225 } 2226 2227 // This is here because there isn't a way to use the generated sub0_sub1 as the 2228 // subreg index to EXTRACT_SUBREG in tablegen. 2229 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2230 MemSDNode *Mem = cast<MemSDNode>(N); 2231 unsigned AS = Mem->getAddressSpace(); 2232 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2233 SelectCode(N); 2234 return; 2235 } 2236 2237 MVT VT = N->getSimpleValueType(0); 2238 bool Is32 = (VT == MVT::i32); 2239 SDLoc SL(N); 2240 2241 MachineSDNode *CmpSwap = nullptr; 2242 if (Subtarget->hasAddr64()) { 2243 SDValue SRsrc, VAddr, SOffset, Offset; 2244 2245 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) { 2246 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2247 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2248 SDValue CmpVal = Mem->getOperand(2); 2249 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2250 2251 // XXX - Do we care about glue operands? 2252 2253 SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol, 2254 Mem->getChain()}; 2255 2256 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2257 } 2258 } 2259 2260 if (!CmpSwap) { 2261 SDValue SRsrc, SOffset, Offset; 2262 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) { 2263 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2264 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2265 2266 SDValue CmpVal = Mem->getOperand(2); 2267 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2268 SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()}; 2269 2270 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2271 } 2272 } 2273 2274 if (!CmpSwap) { 2275 SelectCode(N); 2276 return; 2277 } 2278 2279 MachineMemOperand *MMO = Mem->getMemOperand(); 2280 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2281 2282 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2283 SDValue Extract 2284 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2285 2286 ReplaceUses(SDValue(N, 0), Extract); 2287 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2288 CurDAG->RemoveDeadNode(N); 2289 } 2290 2291 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2292 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2293 // be copied to an SGPR with readfirstlane. 2294 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2295 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2296 2297 SDValue Chain = N->getOperand(0); 2298 SDValue Ptr = N->getOperand(2); 2299 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2300 MachineMemOperand *MMO = M->getMemOperand(); 2301 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2302 2303 SDValue Offset; 2304 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2305 SDValue PtrBase = Ptr.getOperand(0); 2306 SDValue PtrOffset = Ptr.getOperand(1); 2307 2308 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2309 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2310 N = glueCopyToM0(N, PtrBase); 2311 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2312 } 2313 } 2314 2315 if (!Offset) { 2316 N = glueCopyToM0(N, Ptr); 2317 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2318 } 2319 2320 SDValue Ops[] = { 2321 Offset, 2322 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2323 Chain, 2324 N->getOperand(N->getNumOperands() - 1) // New glue 2325 }; 2326 2327 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2328 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2329 } 2330 2331 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2332 switch (IntrID) { 2333 case Intrinsic::amdgcn_ds_gws_init: 2334 return AMDGPU::DS_GWS_INIT; 2335 case Intrinsic::amdgcn_ds_gws_barrier: 2336 return AMDGPU::DS_GWS_BARRIER; 2337 case Intrinsic::amdgcn_ds_gws_sema_v: 2338 return AMDGPU::DS_GWS_SEMA_V; 2339 case Intrinsic::amdgcn_ds_gws_sema_br: 2340 return AMDGPU::DS_GWS_SEMA_BR; 2341 case Intrinsic::amdgcn_ds_gws_sema_p: 2342 return AMDGPU::DS_GWS_SEMA_P; 2343 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2344 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2345 default: 2346 llvm_unreachable("not a gws intrinsic"); 2347 } 2348 } 2349 2350 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2351 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2352 !Subtarget->hasGWSSemaReleaseAll()) { 2353 // Let this error. 2354 SelectCode(N); 2355 return; 2356 } 2357 2358 // Chain, intrinsic ID, vsrc, offset 2359 const bool HasVSrc = N->getNumOperands() == 4; 2360 assert(HasVSrc || N->getNumOperands() == 3); 2361 2362 SDLoc SL(N); 2363 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2364 int ImmOffset = 0; 2365 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2366 MachineMemOperand *MMO = M->getMemOperand(); 2367 2368 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2369 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2370 2371 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2372 // offset field) % 64. Some versions of the programming guide omit the m0 2373 // part, or claim it's from offset 0. 2374 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2375 // If we have a constant offset, try to use the 0 in m0 as the base. 2376 // TODO: Look into changing the default m0 initialization value. If the 2377 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2378 // the immediate offset. 2379 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2380 ImmOffset = ConstOffset->getZExtValue(); 2381 } else { 2382 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2383 ImmOffset = BaseOffset.getConstantOperandVal(1); 2384 BaseOffset = BaseOffset.getOperand(0); 2385 } 2386 2387 // Prefer to do the shift in an SGPR since it should be possible to use m0 2388 // as the result directly. If it's already an SGPR, it will be eliminated 2389 // later. 2390 SDNode *SGPROffset 2391 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2392 BaseOffset); 2393 // Shift to offset in m0 2394 SDNode *M0Base 2395 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2396 SDValue(SGPROffset, 0), 2397 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2398 glueCopyToM0(N, SDValue(M0Base, 0)); 2399 } 2400 2401 SDValue Chain = N->getOperand(0); 2402 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2403 2404 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2405 SmallVector<SDValue, 5> Ops; 2406 if (HasVSrc) 2407 Ops.push_back(N->getOperand(2)); 2408 Ops.push_back(OffsetField); 2409 Ops.push_back(Chain); 2410 2411 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2412 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2413 } 2414 2415 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2416 if (Subtarget->getLDSBankCount() != 16) { 2417 // This is a single instruction with a pattern. 2418 SelectCode(N); 2419 return; 2420 } 2421 2422 SDLoc DL(N); 2423 2424 // This requires 2 instructions. It is possible to write a pattern to support 2425 // this, but the generated isel emitter doesn't correctly deal with multiple 2426 // output instructions using the same physical register input. The copy to m0 2427 // is incorrectly placed before the second instruction. 2428 // 2429 // TODO: Match source modifiers. 2430 // 2431 // def : Pat < 2432 // (int_amdgcn_interp_p1_f16 2433 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2434 // (i32 timm:$attrchan), (i32 timm:$attr), 2435 // (i1 timm:$high), M0), 2436 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2437 // timm:$attrchan, 0, 2438 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2439 // let Predicates = [has16BankLDS]; 2440 // } 2441 2442 // 16 bank LDS 2443 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2444 N->getOperand(5), SDValue()); 2445 2446 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2447 2448 SDNode *InterpMov = 2449 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2450 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2451 N->getOperand(3), // Attr 2452 N->getOperand(2), // Attrchan 2453 ToM0.getValue(1) // In glue 2454 }); 2455 2456 SDNode *InterpP1LV = 2457 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2458 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2459 N->getOperand(1), // Src0 2460 N->getOperand(3), // Attr 2461 N->getOperand(2), // Attrchan 2462 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2463 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2464 N->getOperand(4), // high 2465 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2466 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2467 SDValue(InterpMov, 1) 2468 }); 2469 2470 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2471 } 2472 2473 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2474 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2475 switch (IntrID) { 2476 case Intrinsic::amdgcn_ds_append: 2477 case Intrinsic::amdgcn_ds_consume: { 2478 if (N->getValueType(0) != MVT::i32) 2479 break; 2480 SelectDSAppendConsume(N, IntrID); 2481 return; 2482 } 2483 } 2484 2485 SelectCode(N); 2486 } 2487 2488 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2489 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2490 unsigned Opcode; 2491 switch (IntrID) { 2492 case Intrinsic::amdgcn_wqm: 2493 Opcode = AMDGPU::WQM; 2494 break; 2495 case Intrinsic::amdgcn_softwqm: 2496 Opcode = AMDGPU::SOFT_WQM; 2497 break; 2498 case Intrinsic::amdgcn_wwm: 2499 case Intrinsic::amdgcn_strict_wwm: 2500 Opcode = AMDGPU::STRICT_WWM; 2501 break; 2502 case Intrinsic::amdgcn_strict_wqm: 2503 Opcode = AMDGPU::STRICT_WQM; 2504 break; 2505 case Intrinsic::amdgcn_interp_p1_f16: 2506 SelectInterpP1F16(N); 2507 return; 2508 default: 2509 SelectCode(N); 2510 return; 2511 } 2512 2513 SDValue Src = N->getOperand(1); 2514 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2515 } 2516 2517 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2518 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2519 switch (IntrID) { 2520 case Intrinsic::amdgcn_ds_gws_init: 2521 case Intrinsic::amdgcn_ds_gws_barrier: 2522 case Intrinsic::amdgcn_ds_gws_sema_v: 2523 case Intrinsic::amdgcn_ds_gws_sema_br: 2524 case Intrinsic::amdgcn_ds_gws_sema_p: 2525 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2526 SelectDS_GWS(N, IntrID); 2527 return; 2528 default: 2529 break; 2530 } 2531 2532 SelectCode(N); 2533 } 2534 2535 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2536 unsigned &Mods, 2537 bool AllowAbs) const { 2538 Mods = 0; 2539 Src = In; 2540 2541 if (Src.getOpcode() == ISD::FNEG) { 2542 Mods |= SISrcMods::NEG; 2543 Src = Src.getOperand(0); 2544 } 2545 2546 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2547 Mods |= SISrcMods::ABS; 2548 Src = Src.getOperand(0); 2549 } 2550 2551 return true; 2552 } 2553 2554 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2555 SDValue &SrcMods) const { 2556 unsigned Mods; 2557 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2558 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2559 return true; 2560 } 2561 2562 return false; 2563 } 2564 2565 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2566 SDValue &SrcMods) const { 2567 unsigned Mods; 2568 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2569 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2570 return true; 2571 } 2572 2573 return false; 2574 } 2575 2576 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2577 SDValue &SrcMods) const { 2578 SelectVOP3Mods(In, Src, SrcMods); 2579 return isNoNanSrc(Src); 2580 } 2581 2582 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2583 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2584 return false; 2585 2586 Src = In; 2587 return true; 2588 } 2589 2590 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2591 SDValue &SrcMods, SDValue &Clamp, 2592 SDValue &Omod) const { 2593 SDLoc DL(In); 2594 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2595 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2596 2597 return SelectVOP3Mods(In, Src, SrcMods); 2598 } 2599 2600 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2601 SDValue &SrcMods, SDValue &Clamp, 2602 SDValue &Omod) const { 2603 SDLoc DL(In); 2604 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2605 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2606 2607 return SelectVOP3BMods(In, Src, SrcMods); 2608 } 2609 2610 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2611 SDValue &Clamp, SDValue &Omod) const { 2612 Src = In; 2613 2614 SDLoc DL(In); 2615 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2616 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2617 2618 return true; 2619 } 2620 2621 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2622 SDValue &SrcMods) const { 2623 unsigned Mods = 0; 2624 Src = In; 2625 2626 if (Src.getOpcode() == ISD::FNEG) { 2627 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2628 Src = Src.getOperand(0); 2629 } 2630 2631 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2632 unsigned VecMods = Mods; 2633 2634 SDValue Lo = stripBitcast(Src.getOperand(0)); 2635 SDValue Hi = stripBitcast(Src.getOperand(1)); 2636 2637 if (Lo.getOpcode() == ISD::FNEG) { 2638 Lo = stripBitcast(Lo.getOperand(0)); 2639 Mods ^= SISrcMods::NEG; 2640 } 2641 2642 if (Hi.getOpcode() == ISD::FNEG) { 2643 Hi = stripBitcast(Hi.getOperand(0)); 2644 Mods ^= SISrcMods::NEG_HI; 2645 } 2646 2647 if (isExtractHiElt(Lo, Lo)) 2648 Mods |= SISrcMods::OP_SEL_0; 2649 2650 if (isExtractHiElt(Hi, Hi)) 2651 Mods |= SISrcMods::OP_SEL_1; 2652 2653 unsigned VecSize = Src.getValueSizeInBits(); 2654 Lo = stripExtractLoElt(Lo); 2655 Hi = stripExtractLoElt(Hi); 2656 2657 if (Lo.getValueSizeInBits() > VecSize) { 2658 Lo = CurDAG->getTargetExtractSubreg( 2659 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2660 MVT::getIntegerVT(VecSize), Lo); 2661 } 2662 2663 if (Hi.getValueSizeInBits() > VecSize) { 2664 Hi = CurDAG->getTargetExtractSubreg( 2665 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2666 MVT::getIntegerVT(VecSize), Hi); 2667 } 2668 2669 assert(Lo.getValueSizeInBits() <= VecSize && 2670 Hi.getValueSizeInBits() <= VecSize); 2671 2672 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2673 // Really a scalar input. Just select from the low half of the register to 2674 // avoid packing. 2675 2676 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2677 Src = Lo; 2678 } else { 2679 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2680 2681 SDLoc SL(In); 2682 SDValue Undef = SDValue( 2683 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2684 Lo.getValueType()), 0); 2685 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2686 : AMDGPU::SReg_64RegClassID; 2687 const SDValue Ops[] = { 2688 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2689 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2690 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2691 2692 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2693 Src.getValueType(), Ops), 0); 2694 } 2695 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2696 return true; 2697 } 2698 2699 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2700 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2701 .bitcastToAPInt().getZExtValue(); 2702 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2703 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2704 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2705 return true; 2706 } 2707 } 2708 2709 Mods = VecMods; 2710 } 2711 2712 // Packed instructions do not have abs modifiers. 2713 Mods |= SISrcMods::OP_SEL_1; 2714 2715 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2716 return true; 2717 } 2718 2719 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2720 SDValue &SrcMods) const { 2721 Src = In; 2722 // FIXME: Handle op_sel 2723 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2724 return true; 2725 } 2726 2727 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2728 SDValue &SrcMods) const { 2729 // FIXME: Handle op_sel 2730 return SelectVOP3Mods(In, Src, SrcMods); 2731 } 2732 2733 // The return value is not whether the match is possible (which it always is), 2734 // but whether or not it a conversion is really used. 2735 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2736 unsigned &Mods) const { 2737 Mods = 0; 2738 SelectVOP3ModsImpl(In, Src, Mods); 2739 2740 if (Src.getOpcode() == ISD::FP_EXTEND) { 2741 Src = Src.getOperand(0); 2742 assert(Src.getValueType() == MVT::f16); 2743 Src = stripBitcast(Src); 2744 2745 // Be careful about folding modifiers if we already have an abs. fneg is 2746 // applied last, so we don't want to apply an earlier fneg. 2747 if ((Mods & SISrcMods::ABS) == 0) { 2748 unsigned ModsTmp; 2749 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2750 2751 if ((ModsTmp & SISrcMods::NEG) != 0) 2752 Mods ^= SISrcMods::NEG; 2753 2754 if ((ModsTmp & SISrcMods::ABS) != 0) 2755 Mods |= SISrcMods::ABS; 2756 } 2757 2758 // op_sel/op_sel_hi decide the source type and source. 2759 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2760 // If the sources's op_sel is set, it picks the high half of the source 2761 // register. 2762 2763 Mods |= SISrcMods::OP_SEL_1; 2764 if (isExtractHiElt(Src, Src)) { 2765 Mods |= SISrcMods::OP_SEL_0; 2766 2767 // TODO: Should we try to look for neg/abs here? 2768 } 2769 2770 return true; 2771 } 2772 2773 return false; 2774 } 2775 2776 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2777 SDValue &SrcMods) const { 2778 unsigned Mods = 0; 2779 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2780 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2781 return true; 2782 } 2783 2784 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2785 if (In.isUndef()) 2786 return CurDAG->getUNDEF(MVT::i32); 2787 2788 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2789 SDLoc SL(In); 2790 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2791 } 2792 2793 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2794 SDLoc SL(In); 2795 return CurDAG->getConstant( 2796 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2797 } 2798 2799 SDValue Src; 2800 if (isExtractHiElt(In, Src)) 2801 return Src; 2802 2803 return SDValue(); 2804 } 2805 2806 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2807 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2808 2809 const SIRegisterInfo *SIRI = 2810 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2811 const SIInstrInfo * SII = 2812 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2813 2814 unsigned Limit = 0; 2815 bool AllUsesAcceptSReg = true; 2816 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2817 Limit < 10 && U != E; ++U, ++Limit) { 2818 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2819 2820 // If the register class is unknown, it could be an unknown 2821 // register class that needs to be an SGPR, e.g. an inline asm 2822 // constraint 2823 if (!RC || SIRI->isSGPRClass(RC)) 2824 return false; 2825 2826 if (RC != &AMDGPU::VS_32RegClass) { 2827 AllUsesAcceptSReg = false; 2828 SDNode * User = *U; 2829 if (User->isMachineOpcode()) { 2830 unsigned Opc = User->getMachineOpcode(); 2831 MCInstrDesc Desc = SII->get(Opc); 2832 if (Desc.isCommutable()) { 2833 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2834 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2835 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2836 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2837 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2838 if (CommutedRC == &AMDGPU::VS_32RegClass) 2839 AllUsesAcceptSReg = true; 2840 } 2841 } 2842 } 2843 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2844 // commuting current user. This means have at least one use 2845 // that strictly require VGPR. Thus, we will not attempt to commute 2846 // other user instructions. 2847 if (!AllUsesAcceptSReg) 2848 break; 2849 } 2850 } 2851 return !AllUsesAcceptSReg && (Limit < 10); 2852 } 2853 2854 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2855 auto Ld = cast<LoadSDNode>(N); 2856 2857 return Ld->getAlignment() >= 4 && 2858 ( 2859 ( 2860 ( 2861 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2862 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2863 ) 2864 && 2865 !N->isDivergent() 2866 ) 2867 || 2868 ( 2869 Subtarget->getScalarizeGlobalBehavior() && 2870 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2871 Ld->isSimple() && 2872 !N->isDivergent() && 2873 static_cast<const SITargetLowering *>( 2874 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2875 ) 2876 ); 2877 } 2878 2879 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2880 const AMDGPUTargetLowering& Lowering = 2881 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2882 bool IsModified = false; 2883 do { 2884 IsModified = false; 2885 2886 // Go over all selected nodes and try to fold them a bit more 2887 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2888 while (Position != CurDAG->allnodes_end()) { 2889 SDNode *Node = &*Position++; 2890 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2891 if (!MachineNode) 2892 continue; 2893 2894 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2895 if (ResNode != Node) { 2896 if (ResNode) 2897 ReplaceUses(Node, ResNode); 2898 IsModified = true; 2899 } 2900 } 2901 CurDAG->RemoveDeadNodes(); 2902 } while (IsModified); 2903 } 2904