1 //=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass does combining of machine instructions at the generic MI level, 10 // before the legalizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64GlobalISelUtils.h" 15 #include "AArch64TargetMachine.h" 16 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 17 #include "llvm/CodeGen/GlobalISel/Combiner.h" 18 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 19 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutor.h" 21 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" 22 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 23 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 24 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/Debug.h" 32 33 #define GET_GICOMBINER_DEPS 34 #include "AArch64GenPreLegalizeGICombiner.inc" 35 #undef GET_GICOMBINER_DEPS 36 37 #define DEBUG_TYPE "aarch64-prelegalizer-combiner" 38 39 using namespace llvm; 40 using namespace MIPatternMatch; 41 42 namespace { 43 44 #define GET_GICOMBINER_TYPES 45 #include "AArch64GenPreLegalizeGICombiner.inc" 46 #undef GET_GICOMBINER_TYPES 47 48 /// Return true if a G_FCONSTANT instruction is known to be better-represented 49 /// as a G_CONSTANT. 50 bool matchFConstantToConstant(MachineInstr &MI, MachineRegisterInfo &MRI) { 51 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); 52 Register DstReg = MI.getOperand(0).getReg(); 53 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits(); 54 if (DstSize != 32 && DstSize != 64) 55 return false; 56 57 // When we're storing a value, it doesn't matter what register bank it's on. 58 // Since not all floating point constants can be materialized using a fmov, 59 // it makes more sense to just use a GPR. 60 return all_of(MRI.use_nodbg_instructions(DstReg), 61 [](const MachineInstr &Use) { return Use.mayStore(); }); 62 } 63 64 /// Change a G_FCONSTANT into a G_CONSTANT. 65 void applyFConstantToConstant(MachineInstr &MI) { 66 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); 67 MachineIRBuilder MIB(MI); 68 const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF(); 69 MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt()); 70 MI.eraseFromParent(); 71 } 72 73 /// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits 74 /// are sign bits. In this case, we can transform the G_ICMP to directly compare 75 /// the wide value with a zero. 76 bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, 77 GISelKnownBits *KB, Register &MatchInfo) { 78 assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB); 79 80 auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate(); 81 if (!ICmpInst::isEquality(Pred)) 82 return false; 83 84 Register LHS = MI.getOperand(2).getReg(); 85 LLT LHSTy = MRI.getType(LHS); 86 if (!LHSTy.isScalar()) 87 return false; 88 89 Register RHS = MI.getOperand(3).getReg(); 90 Register WideReg; 91 92 if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) || 93 !mi_match(RHS, MRI, m_SpecificICst(0))) 94 return false; 95 96 LLT WideTy = MRI.getType(WideReg); 97 if (KB->computeNumSignBits(WideReg) <= 98 WideTy.getSizeInBits() - LHSTy.getSizeInBits()) 99 return false; 100 101 MatchInfo = WideReg; 102 return true; 103 } 104 105 void applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, 106 MachineIRBuilder &Builder, 107 GISelChangeObserver &Observer, Register &WideReg) { 108 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 109 110 LLT WideTy = MRI.getType(WideReg); 111 // We're going to directly use the wide register as the LHS, and then use an 112 // equivalent size zero for RHS. 113 Builder.setInstrAndDebugLoc(MI); 114 auto WideZero = Builder.buildConstant(WideTy, 0); 115 Observer.changingInstr(MI); 116 MI.getOperand(2).setReg(WideReg); 117 MI.getOperand(3).setReg(WideZero.getReg(0)); 118 Observer.changedInstr(MI); 119 } 120 121 /// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE. 122 /// 123 /// e.g. 124 /// 125 /// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst 126 bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI, 127 std::pair<uint64_t, uint64_t> &MatchInfo) { 128 assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE); 129 MachineFunction &MF = *MI.getMF(); 130 auto &GlobalOp = MI.getOperand(1); 131 auto *GV = GlobalOp.getGlobal(); 132 if (GV->isThreadLocal()) 133 return false; 134 135 // Don't allow anything that could represent offsets etc. 136 if (MF.getSubtarget<AArch64Subtarget>().ClassifyGlobalReference( 137 GV, MF.getTarget()) != AArch64II::MO_NO_FLAG) 138 return false; 139 140 // Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants: 141 // 142 // %g = G_GLOBAL_VALUE @x 143 // %ptr1 = G_PTR_ADD %g, cst1 144 // %ptr2 = G_PTR_ADD %g, cst2 145 // ... 146 // %ptrN = G_PTR_ADD %g, cstN 147 // 148 // Identify the *smallest* constant. We want to be able to form this: 149 // 150 // %offset_g = G_GLOBAL_VALUE @x + min_cst 151 // %g = G_PTR_ADD %offset_g, -min_cst 152 // %ptr1 = G_PTR_ADD %g, cst1 153 // ... 154 Register Dst = MI.getOperand(0).getReg(); 155 uint64_t MinOffset = -1ull; 156 for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) { 157 if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD) 158 return false; 159 auto Cst = getIConstantVRegValWithLookThrough( 160 UseInstr.getOperand(2).getReg(), MRI); 161 if (!Cst) 162 return false; 163 MinOffset = std::min(MinOffset, Cst->Value.getZExtValue()); 164 } 165 166 // Require that the new offset is larger than the existing one to avoid 167 // infinite loops. 168 uint64_t CurrOffset = GlobalOp.getOffset(); 169 uint64_t NewOffset = MinOffset + CurrOffset; 170 if (NewOffset <= CurrOffset) 171 return false; 172 173 // Check whether folding this offset is legal. It must not go out of bounds of 174 // the referenced object to avoid violating the code model, and must be 175 // smaller than 2^20 because this is the largest offset expressible in all 176 // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF 177 // stores an immediate signed 21 bit offset.) 178 // 179 // This check also prevents us from folding negative offsets, which will end 180 // up being treated in the same way as large positive ones. They could also 181 // cause code model violations, and aren't really common enough to matter. 182 if (NewOffset >= (1 << 20)) 183 return false; 184 185 Type *T = GV->getValueType(); 186 if (!T->isSized() || 187 NewOffset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) 188 return false; 189 MatchInfo = std::make_pair(NewOffset, MinOffset); 190 return true; 191 } 192 193 void applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI, 194 MachineIRBuilder &B, GISelChangeObserver &Observer, 195 std::pair<uint64_t, uint64_t> &MatchInfo) { 196 // Change: 197 // 198 // %g = G_GLOBAL_VALUE @x 199 // %ptr1 = G_PTR_ADD %g, cst1 200 // %ptr2 = G_PTR_ADD %g, cst2 201 // ... 202 // %ptrN = G_PTR_ADD %g, cstN 203 // 204 // To: 205 // 206 // %offset_g = G_GLOBAL_VALUE @x + min_cst 207 // %g = G_PTR_ADD %offset_g, -min_cst 208 // %ptr1 = G_PTR_ADD %g, cst1 209 // ... 210 // %ptrN = G_PTR_ADD %g, cstN 211 // 212 // Then, the original G_PTR_ADDs should be folded later on so that they look 213 // like this: 214 // 215 // %ptrN = G_PTR_ADD %offset_g, cstN - min_cst 216 uint64_t Offset, MinOffset; 217 std::tie(Offset, MinOffset) = MatchInfo; 218 B.setInstrAndDebugLoc(MI); 219 Observer.changingInstr(MI); 220 auto &GlobalOp = MI.getOperand(1); 221 auto *GV = GlobalOp.getGlobal(); 222 GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags()); 223 Register Dst = MI.getOperand(0).getReg(); 224 Register NewGVDst = MRI.cloneVirtualRegister(Dst); 225 MI.getOperand(0).setReg(NewGVDst); 226 Observer.changedInstr(MI); 227 B.buildPtrAdd( 228 Dst, NewGVDst, 229 B.buildConstant(LLT::scalar(64), -static_cast<int64_t>(MinOffset))); 230 } 231 232 bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B, 233 CombinerHelper &Helper, GISelChangeObserver &Observer) { 234 // Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if 235 // result is only used in the no-overflow case. It is restricted to cases 236 // where we know that the high-bits of the operands are 0. If there's an 237 // overflow, then the the 9th or 17th bit must be set, which can be checked 238 // using TBNZ. 239 // 240 // Change (for UADDOs on 8 and 16 bits): 241 // 242 // %z0 = G_ASSERT_ZEXT _ 243 // %op0 = G_TRUNC %z0 244 // %z1 = G_ASSERT_ZEXT _ 245 // %op1 = G_TRUNC %z1 246 // %val, %cond = G_UADDO %op0, %op1 247 // G_BRCOND %cond, %error.bb 248 // 249 // error.bb: 250 // (no successors and no uses of %val) 251 // 252 // To: 253 // 254 // %z0 = G_ASSERT_ZEXT _ 255 // %z1 = G_ASSERT_ZEXT _ 256 // %add = G_ADD %z0, %z1 257 // %val = G_TRUNC %add 258 // %bit = G_AND %add, 1 << scalar-size-in-bits(%op1) 259 // %cond = G_ICMP NE, %bit, 0 260 // G_BRCOND %cond, %error.bb 261 262 auto &MRI = *B.getMRI(); 263 264 MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg()); 265 MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg()); 266 Register Op0Wide; 267 Register Op1Wide; 268 if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) || 269 !mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide)))) 270 return false; 271 LLT WideTy0 = MRI.getType(Op0Wide); 272 LLT WideTy1 = MRI.getType(Op1Wide); 273 Register ResVal = MI.getOperand(0).getReg(); 274 LLT OpTy = MRI.getType(ResVal); 275 MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide); 276 MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide); 277 278 unsigned OpTySize = OpTy.getScalarSizeInBits(); 279 // First check that the G_TRUNC feeding the G_UADDO are no-ops, because the 280 // inputs have been zero-extended. 281 if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT || 282 Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT || 283 OpTySize != Op0WideDef->getOperand(2).getImm() || 284 OpTySize != Op1WideDef->getOperand(2).getImm()) 285 return false; 286 287 // Only scalar UADDO with either 8 or 16 bit operands are handled. 288 if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 || 289 OpTySize >= WideTy0.getScalarSizeInBits() || 290 (OpTySize != 8 && OpTySize != 16)) 291 return false; 292 293 // The overflow-status result must be used by a branch only. 294 Register ResStatus = MI.getOperand(1).getReg(); 295 if (!MRI.hasOneNonDBGUse(ResStatus)) 296 return false; 297 MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus); 298 if (CondUser->getOpcode() != TargetOpcode::G_BRCOND) 299 return false; 300 301 // Make sure the computed result is only used in the no-overflow blocks. 302 MachineBasicBlock *CurrentMBB = MI.getParent(); 303 MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB(); 304 if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB) 305 return false; 306 if (any_of(MRI.use_nodbg_instructions(ResVal), 307 [&MI, FailMBB, CurrentMBB](MachineInstr &I) { 308 return &MI != &I && 309 (I.getParent() == FailMBB || I.getParent() == CurrentMBB); 310 })) 311 return false; 312 313 // Remove G_ADDO. 314 B.setInstrAndDebugLoc(*MI.getNextNode()); 315 MI.eraseFromParent(); 316 317 // Emit wide add. 318 Register AddDst = MRI.cloneVirtualRegister(Op0Wide); 319 B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide}); 320 321 // Emit check of the 9th or 17th bit and update users (the branch). This will 322 // later be folded to TBNZ. 323 Register CondBit = MRI.cloneVirtualRegister(Op0Wide); 324 B.buildAnd( 325 CondBit, AddDst, 326 B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16)); 327 B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit, 328 B.buildConstant(LLT::scalar(32), 0)); 329 330 // Update ZEXts users of the result value. Because all uses are in the 331 // no-overflow case, we know that the top bits are 0 and we can ignore ZExts. 332 B.buildZExtOrTrunc(ResVal, AddDst); 333 for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) { 334 Register WideReg; 335 if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) { 336 auto OldR = U.getParent()->getOperand(0).getReg(); 337 Observer.erasingInstr(*U.getParent()); 338 U.getParent()->eraseFromParent(); 339 Helper.replaceRegWith(MRI, OldR, AddDst); 340 } 341 } 342 343 return true; 344 } 345 346 class AArch64PreLegalizerCombinerImpl : public GIMatchTableExecutor { 347 protected: 348 CombinerHelper &Helper; 349 const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig; 350 351 const AArch64Subtarget &STI; 352 GISelChangeObserver &Observer; 353 MachineIRBuilder &B; 354 MachineFunction &MF; 355 356 MachineRegisterInfo &MRI; 357 358 public: 359 AArch64PreLegalizerCombinerImpl( 360 const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig, 361 const AArch64Subtarget &STI, GISelChangeObserver &Observer, 362 MachineIRBuilder &B, CombinerHelper &Helper); 363 364 static const char *getName() { return "AArch6400PreLegalizerCombiner"; } 365 366 bool tryCombineAll(MachineInstr &I) const; 367 368 private: 369 #define GET_GICOMBINER_CLASS_MEMBERS 370 #include "AArch64GenPreLegalizeGICombiner.inc" 371 #undef GET_GICOMBINER_CLASS_MEMBERS 372 }; 373 374 #define GET_GICOMBINER_IMPL 375 #include "AArch64GenPreLegalizeGICombiner.inc" 376 #undef GET_GICOMBINER_IMPL 377 378 AArch64PreLegalizerCombinerImpl::AArch64PreLegalizerCombinerImpl( 379 const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig, 380 const AArch64Subtarget &STI, GISelChangeObserver &Observer, 381 MachineIRBuilder &B, CombinerHelper &Helper) 382 : Helper(Helper), RuleConfig(RuleConfig), STI(STI), Observer(Observer), 383 B(B), MF(B.getMF()), MRI(*B.getMRI()), 384 #define GET_GICOMBINER_CONSTRUCTOR_INITS 385 #include "AArch64GenPreLegalizeGICombiner.inc" 386 #undef GET_GICOMBINER_CONSTRUCTOR_INITS 387 { 388 } 389 390 class AArch64PreLegalizerCombinerInfo : public CombinerInfo { 391 GISelKnownBits *KB; 392 MachineDominatorTree *MDT; 393 AArch64PreLegalizerCombinerImplRuleConfig RuleConfig; 394 395 public: 396 AArch64PreLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize, 397 GISelKnownBits *KB, MachineDominatorTree *MDT) 398 : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, 399 /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize), 400 KB(KB), MDT(MDT) { 401 if (!RuleConfig.parseCommandLineOption()) 402 report_fatal_error("Invalid rule identifier"); 403 } 404 405 bool combine(GISelChangeObserver &Observer, MachineInstr &MI, 406 MachineIRBuilder &B) const override; 407 }; 408 409 bool AArch64PreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer, 410 MachineInstr &MI, 411 MachineIRBuilder &B) const { 412 const auto &STI = MI.getMF()->getSubtarget<AArch64Subtarget>(); 413 const auto *LI = STI.getLegalizerInfo(); 414 CombinerHelper Helper(Observer, B, /* IsPreLegalize*/ true, KB, MDT, LI); 415 AArch64PreLegalizerCombinerImpl Impl(RuleConfig, STI, Observer, B, Helper); 416 Impl.setupMF(*MI.getMF(), KB); 417 418 if (Impl.tryCombineAll(MI)) 419 return true; 420 421 unsigned Opc = MI.getOpcode(); 422 switch (Opc) { 423 case TargetOpcode::G_CONCAT_VECTORS: 424 return Helper.tryCombineConcatVectors(MI); 425 case TargetOpcode::G_SHUFFLE_VECTOR: 426 return Helper.tryCombineShuffleVector(MI); 427 case TargetOpcode::G_UADDO: 428 return tryToSimplifyUADDO(MI, B, Helper, Observer); 429 case TargetOpcode::G_MEMCPY_INLINE: 430 return Helper.tryEmitMemcpyInline(MI); 431 case TargetOpcode::G_MEMCPY: 432 case TargetOpcode::G_MEMMOVE: 433 case TargetOpcode::G_MEMSET: { 434 // If we're at -O0 set a maxlen of 32 to inline, otherwise let the other 435 // heuristics decide. 436 unsigned MaxLen = EnableOpt ? 0 : 32; 437 // Try to inline memcpy type calls if optimizations are enabled. 438 if (Helper.tryCombineMemCpyFamily(MI, MaxLen)) 439 return true; 440 if (Opc == TargetOpcode::G_MEMSET) 441 return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, EnableMinSize); 442 return false; 443 } 444 } 445 446 return false; 447 } 448 449 // Pass boilerplate 450 // ================ 451 452 class AArch64PreLegalizerCombiner : public MachineFunctionPass { 453 public: 454 static char ID; 455 456 AArch64PreLegalizerCombiner(); 457 458 StringRef getPassName() const override { 459 return "AArch64PreLegalizerCombiner"; 460 } 461 462 bool runOnMachineFunction(MachineFunction &MF) override; 463 464 void getAnalysisUsage(AnalysisUsage &AU) const override; 465 }; 466 } // end anonymous namespace 467 468 void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 469 AU.addRequired<TargetPassConfig>(); 470 AU.setPreservesCFG(); 471 getSelectionDAGFallbackAnalysisUsage(AU); 472 AU.addRequired<GISelKnownBitsAnalysis>(); 473 AU.addPreserved<GISelKnownBitsAnalysis>(); 474 AU.addRequired<MachineDominatorTree>(); 475 AU.addPreserved<MachineDominatorTree>(); 476 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 477 AU.addPreserved<GISelCSEAnalysisWrapperPass>(); 478 MachineFunctionPass::getAnalysisUsage(AU); 479 } 480 481 AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner() 482 : MachineFunctionPass(ID) { 483 initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry()); 484 } 485 486 bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) { 487 if (MF.getProperties().hasProperty( 488 MachineFunctionProperties::Property::FailedISel)) 489 return false; 490 auto &TPC = getAnalysis<TargetPassConfig>(); 491 492 // Enable CSE. 493 GISelCSEAnalysisWrapper &Wrapper = 494 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 495 auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig()); 496 497 const Function &F = MF.getFunction(); 498 bool EnableOpt = 499 MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F); 500 GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF); 501 MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>(); 502 AArch64PreLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(), 503 F.hasMinSize(), KB, MDT); 504 Combiner C(PCInfo, &TPC); 505 return C.combineMachineInstrs(MF, CSEInfo); 506 } 507 508 char AArch64PreLegalizerCombiner::ID = 0; 509 INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE, 510 "Combine AArch64 machine instrs before legalization", 511 false, false) 512 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 513 INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) 514 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 515 INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE, 516 "Combine AArch64 machine instrs before legalization", false, 517 false) 518 519 namespace llvm { 520 FunctionPass *createAArch64PreLegalizerCombiner() { 521 return new AArch64PreLegalizerCombiner(); 522 } 523 } // end namespace llvm 524