xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerLowering.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Post-legalization lowering for instructions.
11 ///
12 /// This is used to offload pattern matching from the selector.
13 ///
14 /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
15 /// a G_ZIP, G_UZP, etc.
16 ///
17 /// General optimization combines should be handled by either the
18 /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "AArch64GlobalISelUtils.h"
23 #include "AArch64Subtarget.h"
24 #include "AArch64TargetMachine.h"
25 #include "GISel/AArch64LegalizerInfo.h"
26 #include "MCTargetDesc/AArch64MCTargetDesc.h"
27 #include "TargetInfo/AArch64TargetInfo.h"
28 #include "Utils/AArch64BaseInfo.h"
29 #include "llvm/CodeGen/GlobalISel/Combiner.h"
30 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
31 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
33 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
34 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
35 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
36 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
37 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
38 #include "llvm/CodeGen/GlobalISel/Utils.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <optional>
49 
50 #define GET_GICOMBINER_DEPS
51 #include "AArch64GenPostLegalizeGILowering.inc"
52 #undef GET_GICOMBINER_DEPS
53 
54 #define DEBUG_TYPE "aarch64-postlegalizer-lowering"
55 
56 using namespace llvm;
57 using namespace MIPatternMatch;
58 using namespace AArch64GISelUtils;
59 
60 namespace {
61 
62 #define GET_GICOMBINER_TYPES
63 #include "AArch64GenPostLegalizeGILowering.inc"
64 #undef GET_GICOMBINER_TYPES
65 
66 /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
67 ///
68 /// Used for matching target-supported shuffles before codegen.
69 struct ShuffleVectorPseudo {
70   unsigned Opc;                 ///< Opcode for the instruction. (E.g. G_ZIP1)
71   Register Dst;                 ///< Destination register.
72   SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
73   ShuffleVectorPseudo(unsigned Opc, Register Dst,
74                       std::initializer_list<SrcOp> SrcOps)
75       : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
76   ShuffleVectorPseudo() = default;
77 };
78 
79 /// Check if a vector shuffle corresponds to a REV instruction with the
80 /// specified blocksize.
81 bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
82                unsigned BlockSize) {
83   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
84          "Only possible block sizes for REV are: 16, 32, 64");
85   assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
86 
87   unsigned BlockElts = M[0] + 1;
88 
89   // If the first shuffle index is UNDEF, be optimistic.
90   if (M[0] < 0)
91     BlockElts = BlockSize / EltSize;
92 
93   if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
94     return false;
95 
96   for (unsigned i = 0; i < NumElts; ++i) {
97     // Ignore undef indices.
98     if (M[i] < 0)
99       continue;
100     if (static_cast<unsigned>(M[i]) !=
101         (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
102       return false;
103   }
104 
105   return true;
106 }
107 
108 /// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
109 /// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
110 bool isTRNMask(ArrayRef<int> M, unsigned NumElts, unsigned &WhichResult) {
111   if (NumElts % 2 != 0)
112     return false;
113   WhichResult = (M[0] == 0 ? 0 : 1);
114   for (unsigned i = 0; i < NumElts; i += 2) {
115     if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
116         (M[i + 1] >= 0 &&
117          static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
118       return false;
119   }
120   return true;
121 }
122 
123 /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
124 /// sources of the shuffle are different.
125 std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
126                                                     unsigned NumElts) {
127   // Look for the first non-undef element.
128   auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
129   if (FirstRealElt == M.end())
130     return std::nullopt;
131 
132   // Use APInt to handle overflow when calculating expected element.
133   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
134   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
135 
136   // The following shuffle indices must be the successive elements after the
137   // first real element.
138   if (any_of(
139           make_range(std::next(FirstRealElt), M.end()),
140           [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
141     return std::nullopt;
142 
143   // The index of an EXT is the first element if it is not UNDEF.
144   // Watch out for the beginning UNDEFs. The EXT index should be the expected
145   // value of the first element.  E.g.
146   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
147   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
148   // ExpectedElt is the last mask index plus 1.
149   uint64_t Imm = ExpectedElt.getZExtValue();
150   bool ReverseExt = false;
151 
152   // There are two difference cases requiring to reverse input vectors.
153   // For example, for vector <4 x i32> we have the following cases,
154   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
155   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
156   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
157   // to reverse two input vectors.
158   if (Imm < NumElts)
159     ReverseExt = true;
160   else
161     Imm -= NumElts;
162   return std::make_pair(ReverseExt, Imm);
163 }
164 
165 /// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
166 /// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
167 bool isUZPMask(ArrayRef<int> M, unsigned NumElts, unsigned &WhichResult) {
168   WhichResult = (M[0] == 0 ? 0 : 1);
169   for (unsigned i = 0; i != NumElts; ++i) {
170     // Skip undef indices.
171     if (M[i] < 0)
172       continue;
173     if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
174       return false;
175   }
176   return true;
177 }
178 
179 /// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
180 /// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
181 bool isZipMask(ArrayRef<int> M, unsigned NumElts, unsigned &WhichResult) {
182   if (NumElts % 2 != 0)
183     return false;
184 
185   // 0 means use ZIP1, 1 means use ZIP2.
186   WhichResult = (M[0] == 0 ? 0 : 1);
187   unsigned Idx = WhichResult * NumElts / 2;
188   for (unsigned i = 0; i != NumElts; i += 2) {
189     if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
190         (M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
191       return false;
192     Idx += 1;
193   }
194   return true;
195 }
196 
197 /// Helper function for matchINS.
198 ///
199 /// \returns a value when \p M is an ins mask for \p NumInputElements.
200 ///
201 /// First element of the returned pair is true when the produced
202 /// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
203 ///
204 /// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
205 std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
206                                               int NumInputElements) {
207   if (M.size() != static_cast<size_t>(NumInputElements))
208     return std::nullopt;
209   int NumLHSMatch = 0, NumRHSMatch = 0;
210   int LastLHSMismatch = -1, LastRHSMismatch = -1;
211   for (int Idx = 0; Idx < NumInputElements; ++Idx) {
212     if (M[Idx] == -1) {
213       ++NumLHSMatch;
214       ++NumRHSMatch;
215       continue;
216     }
217     M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
218     M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
219   }
220   const int NumNeededToMatch = NumInputElements - 1;
221   if (NumLHSMatch == NumNeededToMatch)
222     return std::make_pair(true, LastLHSMismatch);
223   if (NumRHSMatch == NumNeededToMatch)
224     return std::make_pair(false, LastRHSMismatch);
225   return std::nullopt;
226 }
227 
228 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
229 /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
230 bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
231               ShuffleVectorPseudo &MatchInfo) {
232   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
233   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
234   Register Dst = MI.getOperand(0).getReg();
235   Register Src = MI.getOperand(1).getReg();
236   LLT Ty = MRI.getType(Dst);
237   unsigned EltSize = Ty.getScalarSizeInBits();
238 
239   // Element size for a rev cannot be 64.
240   if (EltSize == 64)
241     return false;
242 
243   unsigned NumElts = Ty.getNumElements();
244 
245   // Try to produce G_REV64
246   if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
247     MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
248     return true;
249   }
250 
251   // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
252   // This should be identical to above, but with a constant 32 and constant
253   // 16.
254   return false;
255 }
256 
257 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
258 /// a G_TRN1 or G_TRN2 instruction.
259 bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
260               ShuffleVectorPseudo &MatchInfo) {
261   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
262   unsigned WhichResult;
263   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
264   Register Dst = MI.getOperand(0).getReg();
265   unsigned NumElts = MRI.getType(Dst).getNumElements();
266   if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
267     return false;
268   unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
269   Register V1 = MI.getOperand(1).getReg();
270   Register V2 = MI.getOperand(2).getReg();
271   MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
272   return true;
273 }
274 
275 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
276 /// a G_UZP1 or G_UZP2 instruction.
277 ///
278 /// \param [in] MI - The shuffle vector instruction.
279 /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
280 bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
281               ShuffleVectorPseudo &MatchInfo) {
282   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
283   unsigned WhichResult;
284   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
285   Register Dst = MI.getOperand(0).getReg();
286   unsigned NumElts = MRI.getType(Dst).getNumElements();
287   if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
288     return false;
289   unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
290   Register V1 = MI.getOperand(1).getReg();
291   Register V2 = MI.getOperand(2).getReg();
292   MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
293   return true;
294 }
295 
296 bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
297               ShuffleVectorPseudo &MatchInfo) {
298   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
299   unsigned WhichResult;
300   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
301   Register Dst = MI.getOperand(0).getReg();
302   unsigned NumElts = MRI.getType(Dst).getNumElements();
303   if (!isZipMask(ShuffleMask, NumElts, WhichResult))
304     return false;
305   unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
306   Register V1 = MI.getOperand(1).getReg();
307   Register V2 = MI.getOperand(2).getReg();
308   MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
309   return true;
310 }
311 
312 /// Helper function for matchDup.
313 bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
314                                  MachineRegisterInfo &MRI,
315                                  ShuffleVectorPseudo &MatchInfo) {
316   if (Lane != 0)
317     return false;
318 
319   // Try to match a vector splat operation into a dup instruction.
320   // We're looking for this pattern:
321   //
322   // %scalar:gpr(s64) = COPY $x0
323   // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
324   // %cst0:gpr(s32) = G_CONSTANT i32 0
325   // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
326   // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
327   // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
328   // %zerovec(<2 x s32>)
329   //
330   // ...into:
331   // %splat = G_DUP %scalar
332 
333   // Begin matching the insert.
334   auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
335                              MI.getOperand(1).getReg(), MRI);
336   if (!InsMI)
337     return false;
338   // Match the undef vector operand.
339   if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
340                     MRI))
341     return false;
342 
343   // Match the index constant 0.
344   if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
345     return false;
346 
347   MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
348                                   {InsMI->getOperand(2).getReg()});
349   return true;
350 }
351 
352 /// Helper function for matchDup.
353 bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
354                              MachineRegisterInfo &MRI,
355                              ShuffleVectorPseudo &MatchInfo) {
356   assert(Lane >= 0 && "Expected positive lane?");
357   // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
358   // lane's definition directly.
359   auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
360                                   MI.getOperand(1).getReg(), MRI);
361   if (!BuildVecMI)
362     return false;
363   Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
364   MatchInfo =
365       ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
366   return true;
367 }
368 
369 bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
370               ShuffleVectorPseudo &MatchInfo) {
371   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
372   auto MaybeLane = getSplatIndex(MI);
373   if (!MaybeLane)
374     return false;
375   int Lane = *MaybeLane;
376   // If this is undef splat, generate it via "just" vdup, if possible.
377   if (Lane < 0)
378     Lane = 0;
379   if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
380     return true;
381   if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
382     return true;
383   return false;
384 }
385 
386 // Check if an EXT instruction can handle the shuffle mask when the vector
387 // sources of the shuffle are the same.
388 bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) {
389   unsigned NumElts = Ty.getNumElements();
390 
391   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
392   if (M[0] < 0)
393     return false;
394 
395   // If this is a VEXT shuffle, the immediate value is the index of the first
396   // element.  The other shuffle indices must be the successive elements after
397   // the first one.
398   unsigned ExpectedElt = M[0];
399   for (unsigned I = 1; I < NumElts; ++I) {
400     // Increment the expected index.  If it wraps around, just follow it
401     // back to index zero and keep going.
402     ++ExpectedElt;
403     if (ExpectedElt == NumElts)
404       ExpectedElt = 0;
405 
406     if (M[I] < 0)
407       continue; // Ignore UNDEF indices.
408     if (ExpectedElt != static_cast<unsigned>(M[I]))
409       return false;
410   }
411 
412   return true;
413 }
414 
415 bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
416               ShuffleVectorPseudo &MatchInfo) {
417   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
418   Register Dst = MI.getOperand(0).getReg();
419   LLT DstTy = MRI.getType(Dst);
420   Register V1 = MI.getOperand(1).getReg();
421   Register V2 = MI.getOperand(2).getReg();
422   auto Mask = MI.getOperand(3).getShuffleMask();
423   uint64_t Imm;
424   auto ExtInfo = getExtMask(Mask, DstTy.getNumElements());
425   uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
426 
427   if (!ExtInfo) {
428     if (!getOpcodeDef<GImplicitDef>(V2, MRI) ||
429         !isSingletonExtMask(Mask, DstTy))
430       return false;
431 
432     Imm = Mask[0] * ExtFactor;
433     MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm});
434     return true;
435   }
436   bool ReverseExt;
437   std::tie(ReverseExt, Imm) = *ExtInfo;
438   if (ReverseExt)
439     std::swap(V1, V2);
440   Imm *= ExtFactor;
441   MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
442   return true;
443 }
444 
445 /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
446 /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
447 void applyShuffleVectorPseudo(MachineInstr &MI,
448                               ShuffleVectorPseudo &MatchInfo) {
449   MachineIRBuilder MIRBuilder(MI);
450   MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
451   MI.eraseFromParent();
452 }
453 
454 /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
455 /// Special-cased because the constant operand must be emitted as a G_CONSTANT
456 /// for the imported tablegen patterns to work.
457 void applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
458   MachineIRBuilder MIRBuilder(MI);
459   if (MatchInfo.SrcOps[2].getImm() == 0)
460     MIRBuilder.buildCopy(MatchInfo.Dst, MatchInfo.SrcOps[0]);
461   else {
462     // Tablegen patterns expect an i32 G_CONSTANT as the final op.
463     auto Cst =
464         MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
465     MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
466                           {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
467   }
468   MI.eraseFromParent();
469 }
470 
471 /// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
472 /// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
473 ///
474 /// e.g.
475 ///   %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
476 ///
477 /// Can be represented as
478 ///
479 ///   %extract = G_EXTRACT_VECTOR_ELT %left, 0
480 ///   %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
481 ///
482 bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
483               std::tuple<Register, int, Register, int> &MatchInfo) {
484   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
485   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
486   Register Dst = MI.getOperand(0).getReg();
487   int NumElts = MRI.getType(Dst).getNumElements();
488   auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
489   if (!DstIsLeftAndDstLane)
490     return false;
491   bool DstIsLeft;
492   int DstLane;
493   std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
494   Register Left = MI.getOperand(1).getReg();
495   Register Right = MI.getOperand(2).getReg();
496   Register DstVec = DstIsLeft ? Left : Right;
497   Register SrcVec = Left;
498 
499   int SrcLane = ShuffleMask[DstLane];
500   if (SrcLane >= NumElts) {
501     SrcVec = Right;
502     SrcLane -= NumElts;
503   }
504 
505   MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
506   return true;
507 }
508 
509 void applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
510               MachineIRBuilder &Builder,
511               std::tuple<Register, int, Register, int> &MatchInfo) {
512   Builder.setInstrAndDebugLoc(MI);
513   Register Dst = MI.getOperand(0).getReg();
514   auto ScalarTy = MRI.getType(Dst).getElementType();
515   Register DstVec, SrcVec;
516   int DstLane, SrcLane;
517   std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
518   auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
519   auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
520   auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
521   Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
522   MI.eraseFromParent();
523 }
524 
525 /// isVShiftRImm - Check if this is a valid vector for the immediate
526 /// operand of a vector shift right operation. The value must be in the range:
527 ///   1 <= Value <= ElementBits for a right shift.
528 bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
529                   int64_t &Cnt) {
530   assert(Ty.isVector() && "vector shift count is not a vector type");
531   MachineInstr *MI = MRI.getVRegDef(Reg);
532   auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
533   if (!Cst)
534     return false;
535   Cnt = *Cst;
536   int64_t ElementBits = Ty.getScalarSizeInBits();
537   return Cnt >= 1 && Cnt <= ElementBits;
538 }
539 
540 /// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
541 bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
542                        int64_t &Imm) {
543   assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
544          MI.getOpcode() == TargetOpcode::G_LSHR);
545   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
546   if (!Ty.isVector())
547     return false;
548   return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
549 }
550 
551 void applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
552                        int64_t &Imm) {
553   unsigned Opc = MI.getOpcode();
554   assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
555   unsigned NewOpc =
556       Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
557   MachineIRBuilder MIB(MI);
558   auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
559   MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
560   MI.eraseFromParent();
561 }
562 
563 /// Determine if it is possible to modify the \p RHS and predicate \p P of a
564 /// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
565 ///
566 /// \returns A pair containing the updated immediate and predicate which may
567 /// be used to optimize the instruction.
568 ///
569 /// \note This assumes that the comparison has been legalized.
570 std::optional<std::pair<uint64_t, CmpInst::Predicate>>
571 tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
572                         const MachineRegisterInfo &MRI) {
573   const auto &Ty = MRI.getType(RHS);
574   if (Ty.isVector())
575     return std::nullopt;
576   unsigned Size = Ty.getSizeInBits();
577   assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
578 
579   // If the RHS is not a constant, or the RHS is already a valid arithmetic
580   // immediate, then there is nothing to change.
581   auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
582   if (!ValAndVReg)
583     return std::nullopt;
584   uint64_t C = ValAndVReg->Value.getZExtValue();
585   if (isLegalArithImmed(C))
586     return std::nullopt;
587 
588   // We have a non-arithmetic immediate. Check if adjusting the immediate and
589   // adjusting the predicate will result in a legal arithmetic immediate.
590   switch (P) {
591   default:
592     return std::nullopt;
593   case CmpInst::ICMP_SLT:
594   case CmpInst::ICMP_SGE:
595     // Check for
596     //
597     // x slt c => x sle c - 1
598     // x sge c => x sgt c - 1
599     //
600     // When c is not the smallest possible negative number.
601     if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
602         (Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
603       return std::nullopt;
604     P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
605     C -= 1;
606     break;
607   case CmpInst::ICMP_ULT:
608   case CmpInst::ICMP_UGE:
609     // Check for
610     //
611     // x ult c => x ule c - 1
612     // x uge c => x ugt c - 1
613     //
614     // When c is not zero.
615     if (C == 0)
616       return std::nullopt;
617     P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
618     C -= 1;
619     break;
620   case CmpInst::ICMP_SLE:
621   case CmpInst::ICMP_SGT:
622     // Check for
623     //
624     // x sle c => x slt c + 1
625     // x sgt c => s sge c + 1
626     //
627     // When c is not the largest possible signed integer.
628     if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
629         (Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
630       return std::nullopt;
631     P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
632     C += 1;
633     break;
634   case CmpInst::ICMP_ULE:
635   case CmpInst::ICMP_UGT:
636     // Check for
637     //
638     // x ule c => x ult c + 1
639     // x ugt c => s uge c + 1
640     //
641     // When c is not the largest possible unsigned integer.
642     if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
643         (Size == 64 && C == UINT64_MAX))
644       return std::nullopt;
645     P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
646     C += 1;
647     break;
648   }
649 
650   // Check if the new constant is valid, and return the updated constant and
651   // predicate if it is.
652   if (Size == 32)
653     C = static_cast<uint32_t>(C);
654   if (!isLegalArithImmed(C))
655     return std::nullopt;
656   return {{C, P}};
657 }
658 
659 /// Determine whether or not it is possible to update the RHS and predicate of
660 /// a G_ICMP instruction such that the RHS will be selected as an arithmetic
661 /// immediate.
662 ///
663 /// \p MI - The G_ICMP instruction
664 /// \p MatchInfo - The new RHS immediate and predicate on success
665 ///
666 /// See tryAdjustICmpImmAndPred for valid transformations.
667 bool matchAdjustICmpImmAndPred(
668     MachineInstr &MI, const MachineRegisterInfo &MRI,
669     std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
670   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
671   Register RHS = MI.getOperand(3).getReg();
672   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
673   if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
674     MatchInfo = *MaybeNewImmAndPred;
675     return true;
676   }
677   return false;
678 }
679 
680 void applyAdjustICmpImmAndPred(
681     MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
682     MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
683   MIB.setInstrAndDebugLoc(MI);
684   MachineOperand &RHS = MI.getOperand(3);
685   MachineRegisterInfo &MRI = *MIB.getMRI();
686   auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
687                                MatchInfo.first);
688   Observer.changingInstr(MI);
689   RHS.setReg(Cst->getOperand(0).getReg());
690   MI.getOperand(1).setPredicate(MatchInfo.second);
691   Observer.changedInstr(MI);
692 }
693 
694 bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
695                   std::pair<unsigned, int> &MatchInfo) {
696   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
697   Register Src1Reg = MI.getOperand(1).getReg();
698   const LLT SrcTy = MRI.getType(Src1Reg);
699   const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
700 
701   auto LaneIdx = getSplatIndex(MI);
702   if (!LaneIdx)
703     return false;
704 
705   // The lane idx should be within the first source vector.
706   if (*LaneIdx >= SrcTy.getNumElements())
707     return false;
708 
709   if (DstTy != SrcTy)
710     return false;
711 
712   LLT ScalarTy = SrcTy.getElementType();
713   unsigned ScalarSize = ScalarTy.getSizeInBits();
714 
715   unsigned Opc = 0;
716   switch (SrcTy.getNumElements()) {
717   case 2:
718     if (ScalarSize == 64)
719       Opc = AArch64::G_DUPLANE64;
720     else if (ScalarSize == 32)
721       Opc = AArch64::G_DUPLANE32;
722     break;
723   case 4:
724     if (ScalarSize == 32)
725       Opc = AArch64::G_DUPLANE32;
726     else if (ScalarSize == 16)
727       Opc = AArch64::G_DUPLANE16;
728     break;
729   case 8:
730     if (ScalarSize == 8)
731       Opc = AArch64::G_DUPLANE8;
732     else if (ScalarSize == 16)
733       Opc = AArch64::G_DUPLANE16;
734     break;
735   case 16:
736     if (ScalarSize == 8)
737       Opc = AArch64::G_DUPLANE8;
738     break;
739   default:
740     break;
741   }
742   if (!Opc)
743     return false;
744 
745   MatchInfo.first = Opc;
746   MatchInfo.second = *LaneIdx;
747   return true;
748 }
749 
750 void applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
751                   MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
752   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
753   Register Src1Reg = MI.getOperand(1).getReg();
754   const LLT SrcTy = MRI.getType(Src1Reg);
755 
756   B.setInstrAndDebugLoc(MI);
757   auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
758 
759   Register DupSrc = MI.getOperand(1).getReg();
760   // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
761   // To do this, we can use a G_CONCAT_VECTORS to do the widening.
762   if (SrcTy.getSizeInBits() == 64) {
763     auto Undef = B.buildUndef(SrcTy);
764     DupSrc = B.buildConcatVectors(SrcTy.multiplyElements(2),
765                                   {Src1Reg, Undef.getReg(0)})
766                  .getReg(0);
767   }
768   B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
769   MI.eraseFromParent();
770 }
771 
772 bool matchScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI) {
773   auto &Unmerge = cast<GUnmerge>(MI);
774   Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
775   const LLT SrcTy = MRI.getType(Src1Reg);
776   return SrcTy.isVector() && !SrcTy.isScalable() &&
777          Unmerge.getNumOperands() == (unsigned)SrcTy.getNumElements() + 1;
778 }
779 
780 void applyScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
781                                  MachineIRBuilder &B) {
782   auto &Unmerge = cast<GUnmerge>(MI);
783   Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
784   const LLT SrcTy = MRI.getType(Src1Reg);
785   assert((SrcTy.isVector() && !SrcTy.isScalable()) &&
786          "Expected a fixed length vector");
787 
788   for (int I = 0; I < SrcTy.getNumElements(); ++I)
789     B.buildExtractVectorElementConstant(Unmerge.getReg(I), Src1Reg, I);
790   MI.eraseFromParent();
791 }
792 
793 bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
794   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
795   auto Splat = getAArch64VectorSplat(MI, MRI);
796   if (!Splat)
797     return false;
798   if (Splat->isReg())
799     return true;
800   // Later, during selection, we'll try to match imported patterns using
801   // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
802   // G_BUILD_VECTORs which could match those patterns.
803   int64_t Cst = Splat->getCst();
804   return (Cst != 0 && Cst != -1);
805 }
806 
807 void applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
808                            MachineIRBuilder &B) {
809   B.setInstrAndDebugLoc(MI);
810   B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
811                {MI.getOperand(1).getReg()});
812   MI.eraseFromParent();
813 }
814 
815 /// \returns how many instructions would be saved by folding a G_ICMP's shift
816 /// and/or extension operations.
817 unsigned getCmpOperandFoldingProfit(Register CmpOp, MachineRegisterInfo &MRI) {
818   // No instructions to save if there's more than one use or no uses.
819   if (!MRI.hasOneNonDBGUse(CmpOp))
820     return 0;
821 
822   // FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
823   auto IsSupportedExtend = [&](const MachineInstr &MI) {
824     if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
825       return true;
826     if (MI.getOpcode() != TargetOpcode::G_AND)
827       return false;
828     auto ValAndVReg =
829         getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
830     if (!ValAndVReg)
831       return false;
832     uint64_t Mask = ValAndVReg->Value.getZExtValue();
833     return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
834   };
835 
836   MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI);
837   if (IsSupportedExtend(*Def))
838     return 1;
839 
840   unsigned Opc = Def->getOpcode();
841   if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
842       Opc != TargetOpcode::G_LSHR)
843     return 0;
844 
845   auto MaybeShiftAmt =
846       getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
847   if (!MaybeShiftAmt)
848     return 0;
849   uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
850   MachineInstr *ShiftLHS =
851       getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);
852 
853   // Check if we can fold an extend and a shift.
854   // FIXME: This is duplicated with the selector. (See:
855   // selectArithExtendedRegister)
856   if (IsSupportedExtend(*ShiftLHS))
857     return (ShiftAmt <= 4) ? 2 : 1;
858 
859   LLT Ty = MRI.getType(Def->getOperand(0).getReg());
860   if (Ty.isVector())
861     return 0;
862   unsigned ShiftSize = Ty.getSizeInBits();
863   if ((ShiftSize == 32 && ShiftAmt <= 31) ||
864       (ShiftSize == 64 && ShiftAmt <= 63))
865     return 1;
866   return 0;
867 }
868 
869 /// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
870 /// instruction \p MI.
871 bool trySwapICmpOperands(MachineInstr &MI, MachineRegisterInfo &MRI) {
872   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
873   // Swap the operands if it would introduce a profitable folding opportunity.
874   // (e.g. a shift + extend).
875   //
876   //  For example:
877   //    lsl     w13, w11, #1
878   //    cmp     w13, w12
879   // can be turned into:
880   //    cmp     w12, w11, lsl #1
881 
882   // Don't swap if there's a constant on the RHS, because we know we can fold
883   // that.
884   Register RHS = MI.getOperand(3).getReg();
885   auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
886   if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
887     return false;
888 
889   Register LHS = MI.getOperand(2).getReg();
890   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
891   auto GetRegForProfit = [&](Register Reg) {
892     MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
893     return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
894   };
895 
896   // Don't have a constant on the RHS. If we swap the LHS and RHS of the
897   // compare, would we be able to fold more instructions?
898   Register TheLHS = GetRegForProfit(LHS);
899   Register TheRHS = GetRegForProfit(RHS);
900 
901   // If the LHS is more likely to give us a folding opportunity, then swap the
902   // LHS and RHS.
903   return (getCmpOperandFoldingProfit(TheLHS, MRI) >
904           getCmpOperandFoldingProfit(TheRHS, MRI));
905 }
906 
907 void applySwapICmpOperands(MachineInstr &MI, GISelChangeObserver &Observer) {
908   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
909   Register LHS = MI.getOperand(2).getReg();
910   Register RHS = MI.getOperand(3).getReg();
911   Observer.changedInstr(MI);
912   MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
913   MI.getOperand(2).setReg(RHS);
914   MI.getOperand(3).setReg(LHS);
915   Observer.changedInstr(MI);
916 }
917 
918 /// \returns a function which builds a vector floating point compare instruction
919 /// for a condition code \p CC.
920 /// \param [in] IsZero - True if the comparison is against 0.
921 /// \param [in] NoNans - True if the target has NoNansFPMath.
922 std::function<Register(MachineIRBuilder &)>
923 getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
924               bool NoNans, MachineRegisterInfo &MRI) {
925   LLT DstTy = MRI.getType(LHS);
926   assert(DstTy.isVector() && "Expected vector types only?");
927   assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
928   switch (CC) {
929   default:
930     llvm_unreachable("Unexpected condition code!");
931   case AArch64CC::NE:
932     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
933       auto FCmp = IsZero
934                       ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
935                       : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
936       return MIB.buildNot(DstTy, FCmp).getReg(0);
937     };
938   case AArch64CC::EQ:
939     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
940       return IsZero
941                  ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
942                  : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
943                        .getReg(0);
944     };
945   case AArch64CC::GE:
946     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
947       return IsZero
948                  ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
949                  : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
950                        .getReg(0);
951     };
952   case AArch64CC::GT:
953     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
954       return IsZero
955                  ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
956                  : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
957                        .getReg(0);
958     };
959   case AArch64CC::LS:
960     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
961       return IsZero
962                  ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
963                  : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
964                        .getReg(0);
965     };
966   case AArch64CC::MI:
967     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
968       return IsZero
969                  ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
970                  : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
971                        .getReg(0);
972     };
973   }
974 }
975 
976 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
977 bool matchLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
978                           MachineIRBuilder &MIB) {
979   assert(MI.getOpcode() == TargetOpcode::G_FCMP);
980   const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
981 
982   Register Dst = MI.getOperand(0).getReg();
983   LLT DstTy = MRI.getType(Dst);
984   if (!DstTy.isVector() || !ST.hasNEON())
985     return false;
986   Register LHS = MI.getOperand(2).getReg();
987   unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
988   if (EltSize == 16 && !ST.hasFullFP16())
989     return false;
990   if (EltSize != 16 && EltSize != 32 && EltSize != 64)
991     return false;
992 
993   return true;
994 }
995 
996 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
997 void applyLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
998                           MachineIRBuilder &MIB) {
999   assert(MI.getOpcode() == TargetOpcode::G_FCMP);
1000   const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
1001 
1002   const auto &CmpMI = cast<GFCmp>(MI);
1003 
1004   Register Dst = CmpMI.getReg(0);
1005   CmpInst::Predicate Pred = CmpMI.getCond();
1006   Register LHS = CmpMI.getLHSReg();
1007   Register RHS = CmpMI.getRHSReg();
1008 
1009   LLT DstTy = MRI.getType(Dst);
1010 
1011   auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);
1012 
1013   // Compares against 0 have special target-specific pseudos.
1014   bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;
1015 
1016   bool Invert = false;
1017   AArch64CC::CondCode CC, CC2 = AArch64CC::AL;
1018   if (Pred == CmpInst::Predicate::FCMP_ORD && IsZero) {
1019     // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't
1020     // NaN, so equivalent to a == a and doesn't need the two comparisons an
1021     // "ord" normally would.
1022     RHS = LHS;
1023     IsZero = false;
1024     CC = AArch64CC::EQ;
1025   } else
1026     changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);
1027 
1028   // Instead of having an apply function, just build here to simplify things.
1029   MIB.setInstrAndDebugLoc(MI);
1030 
1031   const bool NoNans =
1032       ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;
1033 
1034   auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
1035   Register CmpRes;
1036   if (CC2 == AArch64CC::AL)
1037     CmpRes = Cmp(MIB);
1038   else {
1039     auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
1040     auto Cmp2Dst = Cmp2(MIB);
1041     auto Cmp1Dst = Cmp(MIB);
1042     CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
1043   }
1044   if (Invert)
1045     CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
1046   MRI.replaceRegWith(Dst, CmpRes);
1047   MI.eraseFromParent();
1048 }
1049 
1050 bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1051                          Register &SrcReg) {
1052   assert(MI.getOpcode() == TargetOpcode::G_STORE);
1053   Register DstReg = MI.getOperand(0).getReg();
1054   if (MRI.getType(DstReg).isVector())
1055     return false;
1056   // Match a store of a truncate.
1057   if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
1058     return false;
1059   // Only form truncstores for value types of max 64b.
1060   return MRI.getType(SrcReg).getSizeInBits() <= 64;
1061 }
1062 
1063 void applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1064                          MachineIRBuilder &B, GISelChangeObserver &Observer,
1065                          Register &SrcReg) {
1066   assert(MI.getOpcode() == TargetOpcode::G_STORE);
1067   Observer.changingInstr(MI);
1068   MI.getOperand(0).setReg(SrcReg);
1069   Observer.changedInstr(MI);
1070 }
1071 
1072 // Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to
1073 // form in the first place for combine opportunities, so any remaining ones
1074 // at this stage need be lowered back.
1075 bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) {
1076   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1077   Register DstReg = MI.getOperand(0).getReg();
1078   LLT DstTy = MRI.getType(DstReg);
1079   return DstTy.isVector();
1080 }
1081 
1082 void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI,
1083                           MachineIRBuilder &B, GISelChangeObserver &Observer) {
1084   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1085   B.setInstrAndDebugLoc(MI);
1086   LegalizerHelper Helper(*MI.getMF(), Observer, B);
1087   Helper.lower(MI, 0, /* Unused hint type */ LLT());
1088 }
1089 
1090 /// Combine <N x t>, unused = unmerge(G_EXT <2*N x t> v, undef, N)
1091 ///           => unused, <N x t> = unmerge v
1092 bool matchUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1093                               Register &MatchInfo) {
1094   auto &Unmerge = cast<GUnmerge>(MI);
1095   if (Unmerge.getNumDefs() != 2)
1096     return false;
1097   if (!MRI.use_nodbg_empty(Unmerge.getReg(1)))
1098     return false;
1099 
1100   LLT DstTy = MRI.getType(Unmerge.getReg(0));
1101   if (!DstTy.isVector())
1102     return false;
1103 
1104   MachineInstr *Ext = getOpcodeDef(AArch64::G_EXT, Unmerge.getSourceReg(), MRI);
1105   if (!Ext)
1106     return false;
1107 
1108   Register ExtSrc1 = Ext->getOperand(1).getReg();
1109   Register ExtSrc2 = Ext->getOperand(2).getReg();
1110   auto LowestVal =
1111       getIConstantVRegValWithLookThrough(Ext->getOperand(3).getReg(), MRI);
1112   if (!LowestVal || LowestVal->Value.getZExtValue() != DstTy.getSizeInBytes())
1113     return false;
1114 
1115   if (!getOpcodeDef<GImplicitDef>(ExtSrc2, MRI))
1116     return false;
1117 
1118   MatchInfo = ExtSrc1;
1119   return true;
1120 }
1121 
1122 void applyUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1123                               MachineIRBuilder &B,
1124                               GISelChangeObserver &Observer, Register &SrcReg) {
1125   Observer.changingInstr(MI);
1126   // Swap dst registers.
1127   Register Dst1 = MI.getOperand(0).getReg();
1128   MI.getOperand(0).setReg(MI.getOperand(1).getReg());
1129   MI.getOperand(1).setReg(Dst1);
1130   MI.getOperand(2).setReg(SrcReg);
1131   Observer.changedInstr(MI);
1132 }
1133 
1134 // Match mul({z/s}ext , {z/s}ext) => {u/s}mull OR
1135 // Match v2s64 mul instructions, which will then be scalarised later on
1136 // Doing these two matches in one function to ensure that the order of matching
1137 // will always be the same.
1138 // Try lowering MUL to MULL before trying to scalarize if needed.
1139 bool matchExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI) {
1140   // Get the instructions that defined the source operand
1141   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1142   MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1143   MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1144 
1145   if (DstTy.isVector()) {
1146     // If the source operands were EXTENDED before, then {U/S}MULL can be used
1147     unsigned I1Opc = I1->getOpcode();
1148     unsigned I2Opc = I2->getOpcode();
1149     if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1150          (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1151         (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1152          MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1153         (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1154          MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1155       return true;
1156     }
1157     // If result type is v2s64, scalarise the instruction
1158     else if (DstTy == LLT::fixed_vector(2, 64)) {
1159       return true;
1160     }
1161   }
1162   return false;
1163 }
1164 
1165 void applyExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI,
1166                        MachineIRBuilder &B, GISelChangeObserver &Observer) {
1167   assert(MI.getOpcode() == TargetOpcode::G_MUL &&
1168          "Expected a G_MUL instruction");
1169 
1170   // Get the instructions that defined the source operand
1171   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1172   MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1173   MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1174 
1175   // If the source operands were EXTENDED before, then {U/S}MULL can be used
1176   unsigned I1Opc = I1->getOpcode();
1177   unsigned I2Opc = I2->getOpcode();
1178   if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1179        (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1180       (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1181        MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1182       (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1183        MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1184 
1185     B.setInstrAndDebugLoc(MI);
1186     B.buildInstr(I1->getOpcode() == TargetOpcode::G_ZEXT ? AArch64::G_UMULL
1187                                                          : AArch64::G_SMULL,
1188                  {MI.getOperand(0).getReg()},
1189                  {I1->getOperand(1).getReg(), I2->getOperand(1).getReg()});
1190     MI.eraseFromParent();
1191   }
1192   // If result type is v2s64, scalarise the instruction
1193   else if (DstTy == LLT::fixed_vector(2, 64)) {
1194     LegalizerHelper Helper(*MI.getMF(), Observer, B);
1195     B.setInstrAndDebugLoc(MI);
1196     Helper.fewerElementsVector(
1197         MI, 0,
1198         DstTy.changeElementCount(
1199             DstTy.getElementCount().divideCoefficientBy(2)));
1200   }
1201 }
1202 
1203 class AArch64PostLegalizerLoweringImpl : public Combiner {
1204 protected:
1205   // TODO: Make CombinerHelper methods const.
1206   mutable CombinerHelper Helper;
1207   const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig;
1208   const AArch64Subtarget &STI;
1209 
1210 public:
1211   AArch64PostLegalizerLoweringImpl(
1212       MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1213       GISelCSEInfo *CSEInfo,
1214       const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1215       const AArch64Subtarget &STI);
1216 
1217   static const char *getName() { return "AArch6400PreLegalizerCombiner"; }
1218 
1219   bool tryCombineAll(MachineInstr &I) const override;
1220 
1221 private:
1222 #define GET_GICOMBINER_CLASS_MEMBERS
1223 #include "AArch64GenPostLegalizeGILowering.inc"
1224 #undef GET_GICOMBINER_CLASS_MEMBERS
1225 };
1226 
1227 #define GET_GICOMBINER_IMPL
1228 #include "AArch64GenPostLegalizeGILowering.inc"
1229 #undef GET_GICOMBINER_IMPL
1230 
1231 AArch64PostLegalizerLoweringImpl::AArch64PostLegalizerLoweringImpl(
1232     MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1233     GISelCSEInfo *CSEInfo,
1234     const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1235     const AArch64Subtarget &STI)
1236     : Combiner(MF, CInfo, TPC, /*KB*/ nullptr, CSEInfo),
1237       Helper(Observer, B, /*IsPreLegalize*/ true), RuleConfig(RuleConfig),
1238       STI(STI),
1239 #define GET_GICOMBINER_CONSTRUCTOR_INITS
1240 #include "AArch64GenPostLegalizeGILowering.inc"
1241 #undef GET_GICOMBINER_CONSTRUCTOR_INITS
1242 {
1243 }
1244 
1245 class AArch64PostLegalizerLowering : public MachineFunctionPass {
1246 public:
1247   static char ID;
1248 
1249   AArch64PostLegalizerLowering();
1250 
1251   StringRef getPassName() const override {
1252     return "AArch64PostLegalizerLowering";
1253   }
1254 
1255   bool runOnMachineFunction(MachineFunction &MF) override;
1256   void getAnalysisUsage(AnalysisUsage &AU) const override;
1257 
1258 private:
1259   AArch64PostLegalizerLoweringImplRuleConfig RuleConfig;
1260 };
1261 } // end anonymous namespace
1262 
1263 void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
1264   AU.addRequired<TargetPassConfig>();
1265   AU.setPreservesCFG();
1266   getSelectionDAGFallbackAnalysisUsage(AU);
1267   MachineFunctionPass::getAnalysisUsage(AU);
1268 }
1269 
1270 AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
1271     : MachineFunctionPass(ID) {
1272   initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
1273 
1274   if (!RuleConfig.parseCommandLineOption())
1275     report_fatal_error("Invalid rule identifier");
1276 }
1277 
1278 bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
1279   if (MF.getProperties().hasProperty(
1280           MachineFunctionProperties::Property::FailedISel))
1281     return false;
1282   assert(MF.getProperties().hasProperty(
1283              MachineFunctionProperties::Property::Legalized) &&
1284          "Expected a legalized function?");
1285   auto *TPC = &getAnalysis<TargetPassConfig>();
1286   const Function &F = MF.getFunction();
1287 
1288   const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>();
1289   CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
1290                      /*LegalizerInfo*/ nullptr, /*OptEnabled=*/true,
1291                      F.hasOptSize(), F.hasMinSize());
1292   AArch64PostLegalizerLoweringImpl Impl(MF, CInfo, TPC, /*CSEInfo*/ nullptr,
1293                                         RuleConfig, ST);
1294   return Impl.combineMachineInstrs();
1295 }
1296 
1297 char AArch64PostLegalizerLowering::ID = 0;
1298 INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
1299                       "Lower AArch64 MachineInstrs after legalization", false,
1300                       false)
1301 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1302 INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
1303                     "Lower AArch64 MachineInstrs after legalization", false,
1304                     false)
1305 
1306 namespace llvm {
1307 FunctionPass *createAArch64PostLegalizerLowering() {
1308   return new AArch64PostLegalizerLowering();
1309 }
1310 } // end namespace llvm
1311