1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MachineScheduler.h" 16 #include "AArch64MacroFusion.h" 17 #include "AArch64Subtarget.h" 18 #include "AArch64TargetObjectFile.h" 19 #include "AArch64TargetTransformInfo.h" 20 #include "MCTargetDesc/AArch64MCTargetDesc.h" 21 #include "TargetInfo/AArch64TargetInfo.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/CFIFixup.h" 26 #include "llvm/CodeGen/CSEConfigBase.h" 27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCTargetOptions.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/CFGuard.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include <memory> 53 #include <optional> 54 #include <string> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 59 cl::desc("Enable the CCMP formation pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> 63 EnableCondBrTuning("aarch64-enable-cond-br-tune", 64 cl::desc("Enable the conditional branch tuning pass"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<bool> EnableAArch64CopyPropagation( 68 "aarch64-enable-copy-propagation", 69 cl::desc("Enable the copy propagation with AArch64 copy instr"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 73 cl::desc("Enable the machine combiner pass"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 77 cl::desc("Suppress STP for AArch64"), 78 cl::init(true), cl::Hidden); 79 80 static cl::opt<bool> EnableAdvSIMDScalar( 81 "aarch64-enable-simd-scalar", 82 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<bool> 86 EnablePromoteConstant("aarch64-enable-promote-const", 87 cl::desc("Enable the promote constant pass"), 88 cl::init(true), cl::Hidden); 89 90 static cl::opt<bool> EnableCollectLOH( 91 "aarch64-enable-collect-loh", 92 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 93 cl::init(true), cl::Hidden); 94 95 static cl::opt<bool> 96 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 97 cl::desc("Enable the pass that removes dead" 98 " definitons and replaces stores to" 99 " them with stores to the zero" 100 " register"), 101 cl::init(true)); 102 103 static cl::opt<bool> EnableRedundantCopyElimination( 104 "aarch64-enable-copyelim", 105 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 106 cl::Hidden); 107 108 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 109 cl::desc("Enable the load/store pair" 110 " optimization pass"), 111 cl::init(true), cl::Hidden); 112 113 static cl::opt<bool> EnableAtomicTidy( 114 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 115 cl::desc("Run SimplifyCFG after expanding atomic operations" 116 " to make use of cmpxchg flow-based information"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 121 cl::desc("Run early if-conversion"), 122 cl::init(true)); 123 124 static cl::opt<bool> 125 EnableCondOpt("aarch64-enable-condopt", 126 cl::desc("Enable the condition optimizer pass"), 127 cl::init(true), cl::Hidden); 128 129 static cl::opt<bool> 130 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 131 cl::desc("Enable optimizations on complex GEPs"), 132 cl::init(false)); 133 134 static cl::opt<bool> 135 EnableSelectOpt("aarch64-select-opt", cl::Hidden, 136 cl::desc("Enable select to branch optimizations"), 137 cl::init(true)); 138 139 static cl::opt<bool> 140 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 141 cl::desc("Relax out of range conditional branches")); 142 143 static cl::opt<bool> EnableCompressJumpTables( 144 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 145 cl::desc("Use smallest entry possible for jump tables")); 146 147 // FIXME: Unify control over GlobalMerge. 148 static cl::opt<cl::boolOrDefault> 149 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 150 cl::desc("Enable the global merge pass")); 151 152 static cl::opt<bool> 153 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 154 cl::desc("Enable the loop data prefetch pass"), 155 cl::init(true)); 156 157 static cl::opt<int> EnableGlobalISelAtO( 158 "aarch64-enable-global-isel-at-O", cl::Hidden, 159 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 160 cl::init(0)); 161 162 static cl::opt<bool> 163 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 164 cl::desc("Enable SVE intrinsic opts"), 165 cl::init(true)); 166 167 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 168 cl::init(true), cl::Hidden); 169 170 static cl::opt<bool> 171 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 172 cl::desc("Enable the AArch64 branch target pass"), 173 cl::init(true)); 174 175 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 176 "aarch64-sve-vector-bits-max", 177 cl::desc("Assume SVE vector registers are at most this big, " 178 "with zero meaning no maximum size is assumed."), 179 cl::init(0), cl::Hidden); 180 181 static cl::opt<unsigned> SVEVectorBitsMinOpt( 182 "aarch64-sve-vector-bits-min", 183 cl::desc("Assume SVE vector registers are at least this big, " 184 "with zero meaning no minimum size is assumed."), 185 cl::init(0), cl::Hidden); 186 187 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 188 189 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 190 "aarch64-enable-gisel-ldst-prelegal", 191 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 192 cl::init(true), cl::Hidden); 193 194 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 195 "aarch64-enable-gisel-ldst-postlegal", 196 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 197 cl::init(false), cl::Hidden); 198 199 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 200 // Register the target. 201 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 202 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 203 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 204 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 205 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 206 auto PR = PassRegistry::getPassRegistry(); 207 initializeGlobalISel(*PR); 208 initializeAArch64A53Fix835769Pass(*PR); 209 initializeAArch64A57FPLoadBalancingPass(*PR); 210 initializeAArch64AdvSIMDScalarPass(*PR); 211 initializeAArch64BranchTargetsPass(*PR); 212 initializeAArch64CollectLOHPass(*PR); 213 initializeAArch64CompressJumpTablesPass(*PR); 214 initializeAArch64ConditionalComparesPass(*PR); 215 initializeAArch64ConditionOptimizerPass(*PR); 216 initializeAArch64DeadRegisterDefinitionsPass(*PR); 217 initializeAArch64ExpandPseudoPass(*PR); 218 initializeAArch64KCFIPass(*PR); 219 initializeAArch64LoadStoreOptPass(*PR); 220 initializeAArch64MIPeepholeOptPass(*PR); 221 initializeAArch64SIMDInstrOptPass(*PR); 222 initializeAArch64O0PreLegalizerCombinerPass(*PR); 223 initializeAArch64PreLegalizerCombinerPass(*PR); 224 initializeAArch64PostLegalizerCombinerPass(*PR); 225 initializeAArch64PostLegalizerLoweringPass(*PR); 226 initializeAArch64PostSelectOptimizePass(*PR); 227 initializeAArch64PromoteConstantPass(*PR); 228 initializeAArch64RedundantCopyEliminationPass(*PR); 229 initializeAArch64StorePairSuppressPass(*PR); 230 initializeFalkorHWPFFixPass(*PR); 231 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 232 initializeLDTLSCleanupPass(*PR); 233 initializeSMEABIPass(*PR); 234 initializeSVEIntrinsicOptsPass(*PR); 235 initializeAArch64SpeculationHardeningPass(*PR); 236 initializeAArch64SLSHardeningPass(*PR); 237 initializeAArch64StackTaggingPass(*PR); 238 initializeAArch64StackTaggingPreRAPass(*PR); 239 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 240 initializeAArch64DAGToDAGISelPass(*PR); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // AArch64 Lowering public interface. 245 //===----------------------------------------------------------------------===// 246 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 247 if (TT.isOSBinFormatMachO()) 248 return std::make_unique<AArch64_MachoTargetObjectFile>(); 249 if (TT.isOSBinFormatCOFF()) 250 return std::make_unique<AArch64_COFFTargetObjectFile>(); 251 252 return std::make_unique<AArch64_ELFTargetObjectFile>(); 253 } 254 255 // Helper function to build a DataLayout string 256 static std::string computeDataLayout(const Triple &TT, 257 const MCTargetOptions &Options, 258 bool LittleEndian) { 259 if (TT.isOSBinFormatMachO()) { 260 if (TT.getArch() == Triple::aarch64_32) 261 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 262 return "e-m:o-i64:64-i128:128-n32:64-S128"; 263 } 264 if (TT.isOSBinFormatCOFF()) 265 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 266 std::string Endian = LittleEndian ? "e" : "E"; 267 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 268 return Endian + "-m:e" + Ptr32 + 269 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 270 } 271 272 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 273 if (CPU.empty() && TT.isArm64e()) 274 return "apple-a12"; 275 return CPU; 276 } 277 278 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 279 std::optional<Reloc::Model> RM) { 280 // AArch64 Darwin and Windows are always PIC. 281 if (TT.isOSDarwin() || TT.isOSWindows()) 282 return Reloc::PIC_; 283 // On ELF platforms the default static relocation model has a smart enough 284 // linker to cope with referencing external symbols defined in a shared 285 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 286 if (!RM || *RM == Reloc::DynamicNoPIC) 287 return Reloc::Static; 288 return *RM; 289 } 290 291 static CodeModel::Model 292 getEffectiveAArch64CodeModel(const Triple &TT, 293 std::optional<CodeModel::Model> CM, bool JIT) { 294 if (CM) { 295 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 296 *CM != CodeModel::Large) { 297 report_fatal_error( 298 "Only small, tiny and large code models are allowed on AArch64"); 299 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 300 report_fatal_error("tiny code model is only supported on ELF"); 301 return *CM; 302 } 303 // The default MCJIT memory managers make no guarantees about where they can 304 // find an executable page; JITed code needs to be able to refer to globals 305 // no matter how far away they are. 306 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 307 // since with large code model LLVM generating 4 MOV instructions, and 308 // Windows doesn't support relocating these long branch (4 MOVs). 309 if (JIT && !TT.isOSWindows()) 310 return CodeModel::Large; 311 return CodeModel::Small; 312 } 313 314 /// Create an AArch64 architecture model. 315 /// 316 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 317 StringRef CPU, StringRef FS, 318 const TargetOptions &Options, 319 std::optional<Reloc::Model> RM, 320 std::optional<CodeModel::Model> CM, 321 CodeGenOpt::Level OL, bool JIT, 322 bool LittleEndian) 323 : LLVMTargetMachine(T, 324 computeDataLayout(TT, Options.MCOptions, LittleEndian), 325 TT, computeDefaultCPU(TT, CPU), FS, Options, 326 getEffectiveRelocModel(TT, RM), 327 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 328 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 329 initAsmInfo(); 330 331 if (TT.isOSBinFormatMachO()) { 332 this->Options.TrapUnreachable = true; 333 this->Options.NoTrapAfterNoreturn = true; 334 } 335 336 if (getMCAsmInfo()->usesWindowsCFI()) { 337 // Unwinding can get confused if the last instruction in an 338 // exception-handling region (function, funclet, try block, etc.) 339 // is a call. 340 // 341 // FIXME: We could elide the trap if the next instruction would be in 342 // the same region anyway. 343 this->Options.TrapUnreachable = true; 344 } 345 346 if (this->Options.TLSSize == 0) // default 347 this->Options.TLSSize = 24; 348 if ((getCodeModel() == CodeModel::Small || 349 getCodeModel() == CodeModel::Kernel) && 350 this->Options.TLSSize > 32) 351 // for the small (and kernel) code model, the maximum TLS size is 4GiB 352 this->Options.TLSSize = 32; 353 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 354 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 355 this->Options.TLSSize = 24; 356 357 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 358 // MachO/CodeModel::Large, which GlobalISel does not support. 359 if (getOptLevel() <= EnableGlobalISelAtO && 360 TT.getArch() != Triple::aarch64_32 && 361 TT.getEnvironment() != Triple::GNUILP32 && 362 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 363 setGlobalISel(true); 364 setGlobalISelAbort(GlobalISelAbortMode::Disable); 365 } 366 367 // AArch64 supports the MachineOutliner. 368 setMachineOutliner(true); 369 370 // AArch64 supports default outlining behaviour. 371 setSupportsDefaultOutlining(true); 372 373 // AArch64 supports the debug entry values. 374 setSupportsDebugEntryValues(true); 375 376 // AArch64 supports fixing up the DWARF unwind information. 377 if (!getMCAsmInfo()->usesWindowsCFI()) 378 setCFIFixup(true); 379 } 380 381 AArch64TargetMachine::~AArch64TargetMachine() = default; 382 383 const AArch64Subtarget * 384 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 385 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 386 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 387 Attribute FSAttr = F.getFnAttribute("target-features"); 388 389 StringRef CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString() : TargetCPU; 390 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() : CPU; 391 StringRef FS = FSAttr.isValid() ? FSAttr.getValueAsString() : TargetFS; 392 393 bool StreamingSVEModeDisabled = 394 !F.hasFnAttribute("aarch64_pstate_sm_enabled") && 395 !F.hasFnAttribute("aarch64_pstate_sm_compatible") && 396 !F.hasFnAttribute("aarch64_pstate_sm_body"); 397 398 unsigned MinSVEVectorSize = 0; 399 unsigned MaxSVEVectorSize = 0; 400 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 401 if (VScaleRangeAttr.isValid()) { 402 std::optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax(); 403 MinSVEVectorSize = VScaleRangeAttr.getVScaleRangeMin() * 128; 404 MaxSVEVectorSize = VScaleMax ? *VScaleMax * 128 : 0; 405 } else { 406 MinSVEVectorSize = SVEVectorBitsMinOpt; 407 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 408 } 409 410 assert(MinSVEVectorSize % 128 == 0 && 411 "SVE requires vector length in multiples of 128!"); 412 assert(MaxSVEVectorSize % 128 == 0 && 413 "SVE requires vector length in multiples of 128!"); 414 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 415 "Minimum SVE vector size should not be larger than its maximum!"); 416 417 // Sanitize user input in case of no asserts 418 if (MaxSVEVectorSize == 0) 419 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 420 else { 421 MinSVEVectorSize = 422 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 423 MaxSVEVectorSize = 424 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 425 } 426 427 SmallString<512> Key; 428 raw_svector_ostream(Key) << "SVEMin" << MinSVEVectorSize << "SVEMax" 429 << MaxSVEVectorSize << "StreamingSVEModeDisabled=" 430 << StreamingSVEModeDisabled << CPU << TuneCPU << FS; 431 432 auto &I = SubtargetMap[Key]; 433 if (!I) { 434 // This needs to be done before we create a new subtarget since any 435 // creation will depend on the TM and the code generation flags on the 436 // function that reside in TargetOptions. 437 resetTargetOptions(F); 438 I = std::make_unique<AArch64Subtarget>( 439 TargetTriple, CPU, TuneCPU, FS, *this, isLittle, MinSVEVectorSize, 440 MaxSVEVectorSize, StreamingSVEModeDisabled); 441 } 442 return I.get(); 443 } 444 445 void AArch64leTargetMachine::anchor() { } 446 447 AArch64leTargetMachine::AArch64leTargetMachine( 448 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 449 const TargetOptions &Options, std::optional<Reloc::Model> RM, 450 std::optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 451 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 452 453 void AArch64beTargetMachine::anchor() { } 454 455 AArch64beTargetMachine::AArch64beTargetMachine( 456 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 457 const TargetOptions &Options, std::optional<Reloc::Model> RM, 458 std::optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 459 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 460 461 namespace { 462 463 /// AArch64 Code Generator Pass Configuration Options. 464 class AArch64PassConfig : public TargetPassConfig { 465 public: 466 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 467 : TargetPassConfig(TM, PM) { 468 if (TM.getOptLevel() != CodeGenOpt::None) 469 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 470 } 471 472 AArch64TargetMachine &getAArch64TargetMachine() const { 473 return getTM<AArch64TargetMachine>(); 474 } 475 476 ScheduleDAGInstrs * 477 createMachineScheduler(MachineSchedContext *C) const override { 478 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 479 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 480 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 481 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 482 if (ST.hasFusion()) 483 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 484 return DAG; 485 } 486 487 ScheduleDAGInstrs * 488 createPostMachineScheduler(MachineSchedContext *C) const override { 489 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 490 ScheduleDAGMI *DAG = 491 new ScheduleDAGMI(C, std::make_unique<AArch64PostRASchedStrategy>(C), 492 /* RemoveKillFlags=*/true); 493 if (ST.hasFusion()) { 494 // Run the Macro Fusion after RA again since literals are expanded from 495 // pseudos then (v. addPreSched2()). 496 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 497 return DAG; 498 } 499 500 return DAG; 501 } 502 503 void addIRPasses() override; 504 bool addPreISel() override; 505 void addCodeGenPrepare() override; 506 bool addInstSelector() override; 507 bool addIRTranslator() override; 508 void addPreLegalizeMachineIR() override; 509 bool addLegalizeMachineIR() override; 510 void addPreRegBankSelect() override; 511 bool addRegBankSelect() override; 512 void addPreGlobalInstructionSelect() override; 513 bool addGlobalInstructionSelect() override; 514 void addMachineSSAOptimization() override; 515 bool addILPOpts() override; 516 void addPreRegAlloc() override; 517 void addPostRegAlloc() override; 518 void addPreSched2() override; 519 void addPreEmitPass() override; 520 void addPreEmitPass2() override; 521 522 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 523 }; 524 525 } // end anonymous namespace 526 527 TargetTransformInfo 528 AArch64TargetMachine::getTargetTransformInfo(const Function &F) const { 529 return TargetTransformInfo(AArch64TTIImpl(this, F)); 530 } 531 532 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 533 return new AArch64PassConfig(*this, PM); 534 } 535 536 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 537 return getStandardCSEConfigForOpt(TM->getOptLevel()); 538 } 539 540 void AArch64PassConfig::addIRPasses() { 541 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 542 // ourselves. 543 addPass(createAtomicExpandPass()); 544 545 // Expand any SVE vector library calls that we can't code generate directly. 546 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 547 addPass(createSVEIntrinsicOptsPass()); 548 549 // Cmpxchg instructions are often used with a subsequent comparison to 550 // determine whether it succeeded. We can exploit existing control-flow in 551 // ldrex/strex loops to simplify this, but it needs tidying up. 552 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 553 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 554 .forwardSwitchCondToPhi(true) 555 .convertSwitchRangeToICmp(true) 556 .convertSwitchToLookupTable(true) 557 .needCanonicalLoops(false) 558 .hoistCommonInsts(true) 559 .sinkCommonInsts(true))); 560 561 // Run LoopDataPrefetch 562 // 563 // Run this before LSR to remove the multiplies involved in computing the 564 // pointer values N iterations ahead. 565 if (TM->getOptLevel() != CodeGenOpt::None) { 566 if (EnableLoopDataPrefetch) 567 addPass(createLoopDataPrefetchPass()); 568 if (EnableFalkorHWPFFix) 569 addPass(createFalkorMarkStridedAccessesPass()); 570 } 571 572 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 573 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 574 // and lower a GEP with multiple indices to either arithmetic operations or 575 // multiple GEPs with single index. 576 addPass(createSeparateConstOffsetFromGEPPass(true)); 577 // Call EarlyCSE pass to find and remove subexpressions in the lowered 578 // result. 579 addPass(createEarlyCSEPass()); 580 // Do loop invariant code motion in case part of the lowered result is 581 // invariant. 582 addPass(createLICMPass()); 583 } 584 585 TargetPassConfig::addIRPasses(); 586 587 if (getOptLevel() == CodeGenOpt::Aggressive && EnableSelectOpt) 588 addPass(createSelectOptimizePass()); 589 590 addPass(createAArch64StackTaggingPass( 591 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 592 593 // Match complex arithmetic patterns 594 if (TM->getOptLevel() >= CodeGenOpt::Default) 595 addPass(createComplexDeinterleavingPass(TM)); 596 597 // Match interleaved memory accesses to ldN/stN intrinsics. 598 if (TM->getOptLevel() != CodeGenOpt::None) { 599 addPass(createInterleavedLoadCombinePass()); 600 addPass(createInterleavedAccessPass()); 601 } 602 603 // Expand any functions marked with SME attributes which require special 604 // changes for the calling convention or that require the lazy-saving 605 // mechanism specified in the SME ABI. 606 addPass(createSMEABIPass()); 607 608 // Add Control Flow Guard checks. 609 if (TM->getTargetTriple().isOSWindows()) 610 addPass(createCFGuardCheckPass()); 611 612 if (TM->Options.JMCInstrument) 613 addPass(createJMCInstrumenterPass()); 614 } 615 616 // Pass Pipeline Configuration 617 bool AArch64PassConfig::addPreISel() { 618 // Run promote constant before global merge, so that the promoted constants 619 // get a chance to be merged 620 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 621 addPass(createAArch64PromoteConstantPass()); 622 // FIXME: On AArch64, this depends on the type. 623 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 624 // and the offset has to be a multiple of the related size in bytes. 625 if ((TM->getOptLevel() != CodeGenOpt::None && 626 EnableGlobalMerge == cl::BOU_UNSET) || 627 EnableGlobalMerge == cl::BOU_TRUE) { 628 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 629 (EnableGlobalMerge == cl::BOU_UNSET); 630 631 // Merging of extern globals is enabled by default on non-Mach-O as we 632 // expect it to be generally either beneficial or harmless. On Mach-O it 633 // is disabled as we emit the .subsections_via_symbols directive which 634 // means that merging extern globals is not safe. 635 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 636 637 // FIXME: extern global merging is only enabled when we optimise for size 638 // because there are some regressions with it also enabled for performance. 639 if (!OnlyOptimizeForSize) 640 MergeExternalByDefault = false; 641 642 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 643 MergeExternalByDefault)); 644 } 645 646 return false; 647 } 648 649 void AArch64PassConfig::addCodeGenPrepare() { 650 if (getOptLevel() != CodeGenOpt::None) 651 addPass(createTypePromotionLegacyPass()); 652 TargetPassConfig::addCodeGenPrepare(); 653 } 654 655 bool AArch64PassConfig::addInstSelector() { 656 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 657 658 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 659 // references to _TLS_MODULE_BASE_ as possible. 660 if (TM->getTargetTriple().isOSBinFormatELF() && 661 getOptLevel() != CodeGenOpt::None) 662 addPass(createAArch64CleanupLocalDynamicTLSPass()); 663 664 return false; 665 } 666 667 bool AArch64PassConfig::addIRTranslator() { 668 addPass(new IRTranslator(getOptLevel())); 669 return false; 670 } 671 672 void AArch64PassConfig::addPreLegalizeMachineIR() { 673 if (getOptLevel() == CodeGenOpt::None) 674 addPass(createAArch64O0PreLegalizerCombiner()); 675 else { 676 addPass(createAArch64PreLegalizerCombiner()); 677 if (EnableGISelLoadStoreOptPreLegal) 678 addPass(new LoadStoreOpt()); 679 } 680 } 681 682 bool AArch64PassConfig::addLegalizeMachineIR() { 683 addPass(new Legalizer()); 684 return false; 685 } 686 687 void AArch64PassConfig::addPreRegBankSelect() { 688 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 689 if (!IsOptNone) { 690 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 691 if (EnableGISelLoadStoreOptPostLegal) 692 addPass(new LoadStoreOpt()); 693 } 694 addPass(createAArch64PostLegalizerLowering()); 695 } 696 697 bool AArch64PassConfig::addRegBankSelect() { 698 addPass(new RegBankSelect()); 699 return false; 700 } 701 702 void AArch64PassConfig::addPreGlobalInstructionSelect() { 703 addPass(new Localizer()); 704 } 705 706 bool AArch64PassConfig::addGlobalInstructionSelect() { 707 addPass(new InstructionSelect(getOptLevel())); 708 if (getOptLevel() != CodeGenOpt::None) 709 addPass(createAArch64PostSelectOptimize()); 710 return false; 711 } 712 713 void AArch64PassConfig::addMachineSSAOptimization() { 714 // Run default MachineSSAOptimization first. 715 TargetPassConfig::addMachineSSAOptimization(); 716 717 if (TM->getOptLevel() != CodeGenOpt::None) 718 addPass(createAArch64MIPeepholeOptPass()); 719 } 720 721 bool AArch64PassConfig::addILPOpts() { 722 if (EnableCondOpt) 723 addPass(createAArch64ConditionOptimizerPass()); 724 if (EnableCCMP) 725 addPass(createAArch64ConditionalCompares()); 726 if (EnableMCR) 727 addPass(&MachineCombinerID); 728 if (EnableCondBrTuning) 729 addPass(createAArch64CondBrTuning()); 730 if (EnableEarlyIfConversion) 731 addPass(&EarlyIfConverterID); 732 if (EnableStPairSuppress) 733 addPass(createAArch64StorePairSuppressPass()); 734 addPass(createAArch64SIMDInstrOptPass()); 735 if (TM->getOptLevel() != CodeGenOpt::None) 736 addPass(createAArch64StackTaggingPreRAPass()); 737 return true; 738 } 739 740 void AArch64PassConfig::addPreRegAlloc() { 741 // Change dead register definitions to refer to the zero register. 742 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 743 addPass(createAArch64DeadRegisterDefinitions()); 744 745 // Use AdvSIMD scalar instructions whenever profitable. 746 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 747 addPass(createAArch64AdvSIMDScalar()); 748 // The AdvSIMD pass may produce copies that can be rewritten to 749 // be register coalescer friendly. 750 addPass(&PeepholeOptimizerID); 751 } 752 } 753 754 void AArch64PassConfig::addPostRegAlloc() { 755 // Remove redundant copy instructions. 756 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 757 addPass(createAArch64RedundantCopyEliminationPass()); 758 759 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 760 // Improve performance for some FP/SIMD code for A57. 761 addPass(createAArch64A57FPLoadBalancing()); 762 } 763 764 void AArch64PassConfig::addPreSched2() { 765 // Lower homogeneous frame instructions 766 if (EnableHomogeneousPrologEpilog) 767 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 768 // Expand some pseudo instructions to allow proper scheduling. 769 addPass(createAArch64ExpandPseudoPass()); 770 // Use load/store pair instructions when possible. 771 if (TM->getOptLevel() != CodeGenOpt::None) { 772 if (EnableLoadStoreOpt) 773 addPass(createAArch64LoadStoreOptimizationPass()); 774 } 775 // Emit KCFI checks for indirect calls. 776 addPass(createAArch64KCFIPass()); 777 778 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 779 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 780 // Therefore, run the AArch64SpeculationHardeningPass before the 781 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 782 // info. 783 addPass(createAArch64SpeculationHardeningPass()); 784 785 addPass(createAArch64IndirectThunks()); 786 addPass(createAArch64SLSHardeningPass()); 787 788 if (TM->getOptLevel() != CodeGenOpt::None) { 789 if (EnableFalkorHWPFFix) 790 addPass(createFalkorHWPFFixPass()); 791 } 792 } 793 794 void AArch64PassConfig::addPreEmitPass() { 795 // Machine Block Placement might have created new opportunities when run 796 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 797 // Run the load/store optimizer once more. 798 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 799 addPass(createAArch64LoadStoreOptimizationPass()); 800 801 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && 802 EnableAArch64CopyPropagation) 803 addPass(createMachineCopyPropagationPass(true)); 804 805 addPass(createAArch64A53Fix835769()); 806 807 if (EnableBranchTargets) 808 addPass(createAArch64BranchTargetsPass()); 809 810 // Relax conditional branch instructions if they're otherwise out of 811 // range of their destination. 812 if (BranchRelaxation) 813 addPass(&BranchRelaxationPassID); 814 815 if (TM->getTargetTriple().isOSWindows()) { 816 // Identify valid longjmp targets for Windows Control Flow Guard. 817 addPass(createCFGuardLongjmpPass()); 818 // Identify valid eh continuation targets for Windows EHCont Guard. 819 addPass(createEHContGuardCatchretPass()); 820 } 821 822 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 823 addPass(createAArch64CompressJumpTablesPass()); 824 825 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 826 TM->getTargetTriple().isOSBinFormatMachO()) 827 addPass(createAArch64CollectLOHPass()); 828 } 829 830 void AArch64PassConfig::addPreEmitPass2() { 831 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 832 // instructions are lowered to bundles as well. 833 addPass(createUnpackMachineBundles(nullptr)); 834 } 835 836 MachineFunctionInfo *AArch64TargetMachine::createMachineFunctionInfo( 837 BumpPtrAllocator &Allocator, const Function &F, 838 const TargetSubtargetInfo *STI) const { 839 return AArch64FunctionInfo::create<AArch64FunctionInfo>( 840 Allocator, F, static_cast<const AArch64Subtarget *>(STI)); 841 } 842 843 yaml::MachineFunctionInfo * 844 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 845 return new yaml::AArch64FunctionInfo(); 846 } 847 848 yaml::MachineFunctionInfo * 849 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 850 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 851 return new yaml::AArch64FunctionInfo(*MFI); 852 } 853 854 bool AArch64TargetMachine::parseMachineFunctionInfo( 855 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 856 SMDiagnostic &Error, SMRange &SourceRange) const { 857 const auto &YamlMFI = static_cast<const yaml::AArch64FunctionInfo &>(MFI); 858 MachineFunction &MF = PFS.MF; 859 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 860 return false; 861 } 862