1 //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64PromoteConstant pass which promotes constants 10 // to global variables when this is likely to be more efficient. Currently only 11 // types related to constant vector (i.e., constant vector, array of constant 12 // vectors, constant structure with a constant vector field, etc.) are promoted 13 // to global variables. Constant vectors are likely to be lowered in target 14 // constant pool during instruction selection already; therefore, the access 15 // will remain the same (memory load), but the structure types are not split 16 // into different constant pool accesses for each field. A bonus side effect is 17 // that created globals may be merged by the global merge pass. 18 // 19 // FIXME: This pass may be useful for other targets too. 20 //===----------------------------------------------------------------------===// 21 22 #include "AArch64.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalValue.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "aarch64-promote-const" 54 55 // Stress testing mode - disable heuristics. 56 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, 57 cl::desc("Promote all vector constants")); 58 59 STATISTIC(NumPromoted, "Number of promoted constants"); 60 STATISTIC(NumPromotedUses, "Number of promoted constants uses"); 61 62 //===----------------------------------------------------------------------===// 63 // AArch64PromoteConstant 64 //===----------------------------------------------------------------------===// 65 66 namespace { 67 68 /// Promotes interesting constant into global variables. 69 /// The motivating example is: 70 /// static const uint16_t TableA[32] = { 71 /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, 72 /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, 73 /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, 74 /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, 75 /// }; 76 /// 77 /// uint8x16x4_t LoadStatic(void) { 78 /// uint8x16x4_t ret; 79 /// ret.val[0] = vld1q_u16(TableA + 0); 80 /// ret.val[1] = vld1q_u16(TableA + 8); 81 /// ret.val[2] = vld1q_u16(TableA + 16); 82 /// ret.val[3] = vld1q_u16(TableA + 24); 83 /// return ret; 84 /// } 85 /// 86 /// The constants in this example are folded into the uses. Thus, 4 different 87 /// constants are created. 88 /// 89 /// As their type is vector the cheapest way to create them is to load them 90 /// for the memory. 91 /// 92 /// Therefore the final assembly final has 4 different loads. With this pass 93 /// enabled, only one load is issued for the constants. 94 class AArch64PromoteConstant : public ModulePass { 95 public: 96 struct PromotedConstant { 97 bool ShouldConvert = false; 98 GlobalVariable *GV = nullptr; 99 }; 100 using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>; 101 102 struct UpdateRecord { 103 Constant *C; 104 Instruction *User; 105 unsigned Op; 106 107 UpdateRecord(Constant *C, Instruction *User, unsigned Op) 108 : C(C), User(User), Op(Op) {} 109 }; 110 111 static char ID; 112 113 AArch64PromoteConstant() : ModulePass(ID) { 114 initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry()); 115 } 116 117 StringRef getPassName() const override { return "AArch64 Promote Constant"; } 118 119 /// Iterate over the functions and promote the interesting constants into 120 /// global variables with module scope. 121 bool runOnModule(Module &M) override { 122 LLVM_DEBUG(dbgs() << getPassName() << '\n'); 123 if (skipModule(M)) 124 return false; 125 bool Changed = false; 126 PromotionCacheTy PromotionCache; 127 for (auto &MF : M) { 128 Changed |= runOnFunction(MF, PromotionCache); 129 } 130 return Changed; 131 } 132 133 private: 134 /// Look for interesting constants used within the given function. 135 /// Promote them into global variables, load these global variables within 136 /// the related function, so that the number of inserted load is minimal. 137 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); 138 139 // This transformation requires dominator info 140 void getAnalysisUsage(AnalysisUsage &AU) const override { 141 AU.setPreservesCFG(); 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 } 145 146 /// Type to store a list of Uses. 147 using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>; 148 /// Map an insertion point to all the uses it dominates. 149 using InsertionPoints = DenseMap<Instruction *, Uses>; 150 151 /// Find the closest point that dominates the given Use. 152 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); 153 154 /// Check if the given insertion point is dominated by an existing 155 /// insertion point. 156 /// If true, the given use is added to the list of dominated uses for 157 /// the related existing point. 158 /// \param NewPt the insertion point to be checked 159 /// \param User the user of the constant 160 /// \param OpNo the operand number of the use 161 /// \param InsertPts existing insertion points 162 /// \pre NewPt and all instruction in InsertPts belong to the same function 163 /// \return true if one of the insertion point in InsertPts dominates NewPt, 164 /// false otherwise 165 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, 166 InsertionPoints &InsertPts); 167 168 /// Check if the given insertion point can be merged with an existing 169 /// insertion point in a common dominator. 170 /// If true, the given use is added to the list of the created insertion 171 /// point. 172 /// \param NewPt the insertion point to be checked 173 /// \param User the user of the constant 174 /// \param OpNo the operand number of the use 175 /// \param InsertPts existing insertion points 176 /// \pre NewPt and all instruction in InsertPts belong to the same function 177 /// \pre isDominated returns false for the exact same parameters. 178 /// \return true if it exists an insertion point in InsertPts that could 179 /// have been merged with NewPt in a common dominator, 180 /// false otherwise 181 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, 182 InsertionPoints &InsertPts); 183 184 /// Compute the minimal insertion points to dominates all the interesting 185 /// uses of value. 186 /// Insertion points are group per function and each insertion point 187 /// contains a list of all the uses it dominates within the related function 188 /// \param User the user of the constant 189 /// \param OpNo the operand number of the constant 190 /// \param[out] InsertPts output storage of the analysis 191 void computeInsertionPoint(Instruction *User, unsigned OpNo, 192 InsertionPoints &InsertPts); 193 194 /// Insert a definition of a new global variable at each point contained in 195 /// InsPtsPerFunc and update the related uses (also contained in 196 /// InsPtsPerFunc). 197 void insertDefinitions(Function &F, GlobalVariable &GV, 198 InsertionPoints &InsertPts); 199 200 /// Do the constant promotion indicated by the Updates records, keeping track 201 /// of globals in PromotionCache. 202 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, 203 PromotionCacheTy &PromotionCache); 204 205 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. 206 /// Append Use to this list and delete the entry of IPI in InsertPts. 207 static void appendAndTransferDominatedUses(Instruction *NewPt, 208 Instruction *User, unsigned OpNo, 209 InsertionPoints::iterator &IPI, 210 InsertionPoints &InsertPts) { 211 // Record the dominated use. 212 IPI->second.emplace_back(User, OpNo); 213 // Transfer the dominated uses of IPI to NewPt 214 // Inserting into the DenseMap may invalidate existing iterator. 215 // Keep a copy of the key to find the iterator to erase. Keep a copy of the 216 // value so that we don't have to dereference IPI->second. 217 Instruction *OldInstr = IPI->first; 218 Uses OldUses = std::move(IPI->second); 219 InsertPts[NewPt] = std::move(OldUses); 220 // Erase IPI. 221 InsertPts.erase(OldInstr); 222 } 223 }; 224 225 } // end anonymous namespace 226 227 char AArch64PromoteConstant::ID = 0; 228 229 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", 230 "AArch64 Promote Constant Pass", false, false) 231 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 232 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", 233 "AArch64 Promote Constant Pass", false, false) 234 235 ModulePass *llvm::createAArch64PromoteConstantPass() { 236 return new AArch64PromoteConstant(); 237 } 238 239 /// Check if the given type uses a vector type. 240 static bool isConstantUsingVectorTy(const Type *CstTy) { 241 if (CstTy->isVectorTy()) 242 return true; 243 if (CstTy->isStructTy()) { 244 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); 245 EltIdx < EndEltIdx; ++EltIdx) 246 if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) 247 return true; 248 } else if (CstTy->isArrayTy()) 249 return isConstantUsingVectorTy(CstTy->getArrayElementType()); 250 return false; 251 } 252 253 // Returns true if \p C contains only ConstantData leafs and no global values, 254 // block addresses or constant expressions. Traverses ConstantAggregates. 255 static bool containsOnlyConstantData(const Constant *C) { 256 if (isa<ConstantData>(C)) 257 return true; 258 259 if (isa<GlobalValue>(C) || isa<BlockAddress>(C) || isa<ConstantExpr>(C)) 260 return false; 261 262 return all_of(C->operands(), [](const Use &U) { 263 return containsOnlyConstantData(cast<Constant>(&U)); 264 }); 265 } 266 267 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into 268 /// a load of a global variable initialized with Cst. 269 /// A use should be converted if it is legal to do so. 270 /// For instance, it is not legal to turn the mask operand of a shuffle vector 271 /// into a load of a global variable. 272 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, 273 unsigned OpIdx) { 274 // shufflevector instruction expects a const for the mask argument, i.e., the 275 // third argument. Do not promote this use in that case. 276 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) 277 return false; 278 279 // extractvalue instruction expects a const idx. 280 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) 281 return false; 282 283 // extractvalue instruction expects a const idx. 284 if (isa<const InsertValueInst>(Instr) && OpIdx > 1) 285 return false; 286 287 if (isa<const AllocaInst>(Instr) && OpIdx > 0) 288 return false; 289 290 // Alignment argument must be constant. 291 if (isa<const LoadInst>(Instr) && OpIdx > 0) 292 return false; 293 294 // Alignment argument must be constant. 295 if (isa<const StoreInst>(Instr) && OpIdx > 1) 296 return false; 297 298 // Index must be constant. 299 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) 300 return false; 301 302 // Personality function and filters must be constant. 303 // Give up on that instruction. 304 if (isa<const LandingPadInst>(Instr)) 305 return false; 306 307 // Switch instruction expects constants to compare to. 308 if (isa<const SwitchInst>(Instr)) 309 return false; 310 311 // Expected address must be a constant. 312 if (isa<const IndirectBrInst>(Instr)) 313 return false; 314 315 // Do not mess with intrinsics. 316 if (isa<const IntrinsicInst>(Instr)) 317 return false; 318 319 // Do not mess with inline asm. 320 const CallInst *CI = dyn_cast<const CallInst>(Instr); 321 return !(CI && CI->isInlineAsm()); 322 } 323 324 /// Check if the given Cst should be converted into 325 /// a load of a global variable initialized with Cst. 326 /// A constant should be converted if it is likely that the materialization of 327 /// the constant will be tricky. Thus, we give up on zero or undef values. 328 /// 329 /// \todo Currently, accept only vector related types. 330 /// Also we give up on all simple vector type to keep the existing 331 /// behavior. Otherwise, we should push here all the check of the lowering of 332 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging 333 /// constant via global merge and the fact that the same constant is stored 334 /// only once with this method (versus, as many function that uses the constant 335 /// for the regular approach, even for float). 336 /// Again, the simplest solution would be to promote every 337 /// constant and rematerialize them when they are actually cheap to create. 338 static bool shouldConvertImpl(const Constant *Cst) { 339 if (isa<const UndefValue>(Cst)) 340 return false; 341 342 // FIXME: In some cases, it may be interesting to promote in memory 343 // a zero initialized constant. 344 // E.g., when the type of Cst require more instructions than the 345 // adrp/add/load sequence or when this sequence can be shared by several 346 // instances of Cst. 347 // Ideally, we could promote this into a global and rematerialize the constant 348 // when it was a bad idea. 349 if (Cst->isZeroValue()) 350 return false; 351 352 if (Stress) 353 return true; 354 355 // FIXME: see function \todo 356 if (Cst->getType()->isVectorTy()) 357 return false; 358 return isConstantUsingVectorTy(Cst->getType()); 359 } 360 361 static bool 362 shouldConvert(Constant &C, 363 AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { 364 auto Converted = PromotionCache.insert( 365 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); 366 if (Converted.second) 367 Converted.first->second.ShouldConvert = shouldConvertImpl(&C); 368 return Converted.first->second.ShouldConvert; 369 } 370 371 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, 372 unsigned OpNo) { 373 // If this user is a phi, the insertion point is in the related 374 // incoming basic block. 375 if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) 376 return PhiInst->getIncomingBlock(OpNo)->getTerminator(); 377 378 return &User; 379 } 380 381 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, 382 unsigned OpNo, 383 InsertionPoints &InsertPts) { 384 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( 385 *NewPt->getParent()->getParent()).getDomTree(); 386 387 // Traverse all the existing insertion points and check if one is dominating 388 // NewPt. If it is, remember that. 389 for (auto &IPI : InsertPts) { 390 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || 391 // When IPI.first is a terminator instruction, DT may think that 392 // the result is defined on the edge. 393 // Here we are testing the insertion point, not the definition. 394 (IPI.first->getParent() != NewPt->getParent() && 395 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { 396 // No need to insert this point. Just record the dominated use. 397 LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n"); 398 LLVM_DEBUG(IPI.first->print(dbgs())); 399 LLVM_DEBUG(dbgs() << '\n'); 400 IPI.second.emplace_back(User, OpNo); 401 return true; 402 } 403 } 404 return false; 405 } 406 407 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, 408 unsigned OpNo, 409 InsertionPoints &InsertPts) { 410 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( 411 *NewPt->getParent()->getParent()).getDomTree(); 412 BasicBlock *NewBB = NewPt->getParent(); 413 414 // Traverse all the existing insertion point and check if one is dominated by 415 // NewPt and thus useless or can be combined with NewPt into a common 416 // dominator. 417 for (InsertionPoints::iterator IPI = InsertPts.begin(), 418 EndIPI = InsertPts.end(); 419 IPI != EndIPI; ++IPI) { 420 BasicBlock *CurBB = IPI->first->getParent(); 421 if (NewBB == CurBB) { 422 // Instructions are in the same block. 423 // By construction, NewPt is dominating the other. 424 // Indeed, isDominated returned false with the exact same arguments. 425 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); 426 LLVM_DEBUG(IPI->first->print(dbgs())); 427 LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n"); 428 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); 429 return true; 430 } 431 432 // Look for a common dominator 433 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); 434 // If none exists, we cannot merge these two points. 435 if (!CommonDominator) 436 continue; 437 438 if (CommonDominator != NewBB) { 439 // By construction, the CommonDominator cannot be CurBB. 440 assert(CommonDominator != CurBB && 441 "Instruction has not been rejected during isDominated check!"); 442 // Take the last instruction of the CommonDominator as insertion point 443 NewPt = CommonDominator->getTerminator(); 444 } 445 // else, CommonDominator is the block of NewBB, hence NewBB is the last 446 // possible insertion point in that block. 447 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); 448 LLVM_DEBUG(IPI->first->print(dbgs())); 449 LLVM_DEBUG(dbgs() << '\n'); 450 LLVM_DEBUG(NewPt->print(dbgs())); 451 LLVM_DEBUG(dbgs() << '\n'); 452 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); 453 return true; 454 } 455 return false; 456 } 457 458 void AArch64PromoteConstant::computeInsertionPoint( 459 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { 460 LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); 461 LLVM_DEBUG(User->print(dbgs())); 462 LLVM_DEBUG(dbgs() << '\n'); 463 464 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); 465 466 LLVM_DEBUG(dbgs() << "Considered insertion point:\n"); 467 LLVM_DEBUG(InsertionPoint->print(dbgs())); 468 LLVM_DEBUG(dbgs() << '\n'); 469 470 if (isDominated(InsertionPoint, User, OpNo, InsertPts)) 471 return; 472 // This insertion point is useful, check if we can merge some insertion 473 // point in a common dominator or if NewPt dominates an existing one. 474 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) 475 return; 476 477 LLVM_DEBUG(dbgs() << "Keep considered insertion point\n"); 478 479 // It is definitely useful by its own 480 InsertPts[InsertionPoint].emplace_back(User, OpNo); 481 } 482 483 static void ensurePromotedGV(Function &F, Constant &C, 484 AArch64PromoteConstant::PromotedConstant &PC) { 485 assert(PC.ShouldConvert && 486 "Expected that we should convert this to a global"); 487 if (PC.GV) 488 return; 489 PC.GV = new GlobalVariable( 490 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, 491 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); 492 PC.GV->setInitializer(&C); 493 LLVM_DEBUG(dbgs() << "Global replacement: "); 494 LLVM_DEBUG(PC.GV->print(dbgs())); 495 LLVM_DEBUG(dbgs() << '\n'); 496 ++NumPromoted; 497 } 498 499 void AArch64PromoteConstant::insertDefinitions(Function &F, 500 GlobalVariable &PromotedGV, 501 InsertionPoints &InsertPts) { 502 #ifndef NDEBUG 503 // Do more checking for debug purposes. 504 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 505 #endif 506 assert(!InsertPts.empty() && "Empty uses does not need a definition"); 507 508 for (const auto &IPI : InsertPts) { 509 // Create the load of the global variable. 510 IRBuilder<> Builder(IPI.first); 511 LoadInst *LoadedCst = 512 Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV); 513 LLVM_DEBUG(dbgs() << "**********\n"); 514 LLVM_DEBUG(dbgs() << "New def: "); 515 LLVM_DEBUG(LoadedCst->print(dbgs())); 516 LLVM_DEBUG(dbgs() << '\n'); 517 518 // Update the dominated uses. 519 for (auto Use : IPI.second) { 520 #ifndef NDEBUG 521 assert(DT.dominates(LoadedCst, 522 findInsertionPoint(*Use.first, Use.second)) && 523 "Inserted definition does not dominate all its uses!"); 524 #endif 525 LLVM_DEBUG({ 526 dbgs() << "Use to update " << Use.second << ":"; 527 Use.first->print(dbgs()); 528 dbgs() << '\n'; 529 }); 530 Use.first->setOperand(Use.second, LoadedCst); 531 ++NumPromotedUses; 532 } 533 } 534 } 535 536 void AArch64PromoteConstant::promoteConstants( 537 Function &F, SmallVectorImpl<UpdateRecord> &Updates, 538 PromotionCacheTy &PromotionCache) { 539 // Promote the constants. 540 for (auto U = Updates.begin(), E = Updates.end(); U != E;) { 541 LLVM_DEBUG(dbgs() << "** Compute insertion points **\n"); 542 auto First = U; 543 Constant *C = First->C; 544 InsertionPoints InsertPts; 545 do { 546 computeInsertionPoint(U->User, U->Op, InsertPts); 547 } while (++U != E && U->C == C); 548 549 auto &Promotion = PromotionCache[C]; 550 ensurePromotedGV(F, *C, Promotion); 551 insertDefinitions(F, *Promotion.GV, InsertPts); 552 } 553 } 554 555 bool AArch64PromoteConstant::runOnFunction(Function &F, 556 PromotionCacheTy &PromotionCache) { 557 // Look for instructions using constant vector. Promote that constant to a 558 // global variable. Create as few loads of this variable as possible and 559 // update the uses accordingly. 560 SmallVector<UpdateRecord, 64> Updates; 561 for (Instruction &I : instructions(&F)) { 562 // Traverse the operand, looking for constant vectors. Replace them by a 563 // load of a global variable of constant vector type. 564 for (Use &U : I.operands()) { 565 Constant *Cst = dyn_cast<Constant>(U); 566 // There is no point in promoting global values as they are already 567 // global. Do not promote constants containing constant expression, global 568 // values or blockaddresses either, as they may require some code 569 // expansion. 570 if (!Cst || isa<GlobalValue>(Cst) || !containsOnlyConstantData(Cst)) 571 continue; 572 573 // Check if this constant is worth promoting. 574 if (!shouldConvert(*Cst, PromotionCache)) 575 continue; 576 577 // Check if this use should be promoted. 578 unsigned OpNo = &U - I.op_begin(); 579 if (!shouldConvertUse(Cst, &I, OpNo)) 580 continue; 581 582 Updates.emplace_back(Cst, &I, OpNo); 583 } 584 } 585 586 if (Updates.empty()) 587 return false; 588 589 promoteConstants(F, Updates, PromotionCache); 590 return true; 591 } 592