xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64CallingConvention.td (revision cab6a39d7b343596a5823e65c0f7b426551ec22d)
1//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for AArch64 architecture.
10//
11//===----------------------------------------------------------------------===//
12
13/// CCIfBigEndian - Match only if we're in big endian mode.
14class CCIfBigEndian<CCAction A> :
15  CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
16
17class CCIfILP32<CCAction A> :
18  CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
19
20
21//===----------------------------------------------------------------------===//
22// ARM AAPCS64 Calling Convention
23//===----------------------------------------------------------------------===//
24
25let Entry = 1 in
26def CC_AArch64_AAPCS : CallingConv<[
27  CCIfType<[iPTR], CCBitConvertToType<i64>>,
28  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
29  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
30
31  // Big endian vectors must be passed as if they were 1-element vectors so that
32  // their lanes are in a consistent order.
33  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
34                         CCBitConvertToType<f64>>>,
35  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
36                         CCBitConvertToType<f128>>>,
37
38  // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
39  // However, on windows, in some circumstances, the SRet is passed in X0 or X1
40  // instead.  The presence of the inreg attribute indicates that SRet is
41  // passed in the alternative register (X0 or X1), not X8:
42  // - X0 for non-instance methods.
43  // - X1 for instance methods.
44
45  // The "sret" attribute identifies indirect returns.
46  // The "inreg" attribute identifies non-aggregate types.
47  // The position of the "sret" attribute identifies instance/non-instance
48  // methods.
49  // "sret" on argument 0 means non-instance methods.
50  // "sret" on argument 1 means instance methods.
51
52  CCIfInReg<CCIfType<[i64],
53    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1], [W0, W1]>>>>>,
54
55  CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
56
57  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
58  // slot is 64-bit.
59  CCIfByVal<CCPassByVal<8, 8>>,
60
61  // The 'nest' parameter, if any, is passed in X18.
62  // Darwin uses X18 as the platform register and hence 'nest' isn't currently
63  // supported there.
64  CCIfNest<CCAssignToReg<[X18]>>,
65
66  // Pass SwiftSelf in a callee saved register.
67  CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
68
69  // A SwiftError is passed in X21.
70  CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
71
72  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
73
74  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
75            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
76           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
77  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
78            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
79           CCPassIndirect<i64>>,
80
81  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
82           CCAssignToReg<[P0, P1, P2, P3]>>,
83  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
84           CCPassIndirect<i64>>,
85
86  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
87  // up to eight each of GPR and FPR.
88  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
89  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
90                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
91  // i128 is split to two i64s, we can't fit half to register X7.
92  CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
93                                                    [X0, X1, X3, X5]>>>,
94
95  // i128 is split to two i64s, and its stack alignment is 16 bytes.
96  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
97
98  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
99                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
100  CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
101                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
102  CCIfType<[bf16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
103                                           [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
104  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
105                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
106  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
107                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
108  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
109           CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
110                                   [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
111  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
112           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
113
114  // If more than will fit in registers, pass them on the stack instead.
115  CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
116  CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
117  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
118           CCAssignToStack<8, 8>>,
119  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
120           CCAssignToStack<16, 16>>
121]>;
122
123let Entry = 1 in
124def RetCC_AArch64_AAPCS : CallingConv<[
125  CCIfType<[iPTR], CCBitConvertToType<i64>>,
126  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
127  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
128
129  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
130  CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
131
132  // Big endian vectors must be passed as if they were 1-element vectors so that
133  // their lanes are in a consistent order.
134  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
135                         CCBitConvertToType<f64>>>,
136  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
137                         CCBitConvertToType<f128>>>,
138
139  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
140  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
141                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
142  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
143                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
144  CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
145                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
146  CCIfType<[bf16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
147                                           [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
148  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
149                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
150  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
151                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
152  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
153      CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
154                              [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
155  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
156      CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
157
158  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
159            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
160           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
161
162  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
163           CCAssignToReg<[P0, P1, P2, P3]>>
164]>;
165
166// Vararg functions on windows pass floats in integer registers
167let Entry = 1 in
168def CC_AArch64_Win64_VarArg : CallingConv<[
169  CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
170  CCIfType<[f64], CCBitConvertToType<i64>>,
171  CCDelegateTo<CC_AArch64_AAPCS>
172]>;
173
174// Windows Control Flow Guard checks take a single argument (the target function
175// address) and have no return value.
176let Entry = 1 in
177def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
178  CCIfType<[i64], CCAssignToReg<[X15]>>
179]>;
180
181
182// Darwin uses a calling convention which differs in only two ways
183// from the standard one at this level:
184//     + i128s (i.e. split i64s) don't need even registers.
185//     + Stack slots are sized as needed rather than being at least 64-bit.
186let Entry = 1 in
187def CC_AArch64_DarwinPCS : CallingConv<[
188  CCIfType<[iPTR], CCBitConvertToType<i64>>,
189  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
190  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
191
192  // An SRet is passed in X8, not X0 like a normal pointer parameter.
193  CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
194
195  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
196  // slot is 64-bit.
197  CCIfByVal<CCPassByVal<8, 8>>,
198
199  // Pass SwiftSelf in a callee saved register.
200  CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
201
202  // A SwiftError is passed in X21.
203  CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
204
205  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
206
207  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
208  // up to eight each of GPR and FPR.
209  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
210  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
211                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
212  // i128 is split to two i64s, we can't fit half to register X7.
213  CCIfType<[i64],
214           CCIfSplit<CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6],
215                                             [W0, W1, W2, W3, W4, W5, W6]>>>,
216  // i128 is split to two i64s, and its stack alignment is 16 bytes.
217  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
218
219  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
220                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
221  CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
222                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
223  CCIfType<[bf16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
224                                           [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
225  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
226                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
227  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
228                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
229  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
230           CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
231                                   [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
232  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
233           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
234
235  // If more than will fit in registers, pass them on the stack instead.
236  CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
237  CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
238  CCAssignToStack<2, 2>>,
239  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
240
241  // Re-demote pointers to 32-bits so we don't end up storing 64-bit
242  // values and clobbering neighbouring stack locations. Not very pretty.
243  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
244  CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
245
246  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
247           CCAssignToStack<8, 8>>,
248  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
249           CCAssignToStack<16, 16>>
250]>;
251
252let Entry = 1 in
253def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
254  CCIfType<[iPTR], CCBitConvertToType<i64>>,
255  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
256  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
257
258  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
259
260  // Handle all scalar types as either i64 or f64.
261  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
262  CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
263
264  // Everything is on the stack.
265  // i128 is split to two i64s, and its stack alignment is 16 bytes.
266  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
267  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
268           CCAssignToStack<8, 8>>,
269  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
270           CCAssignToStack<16, 16>>
271]>;
272
273// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
274// same as the normal Darwin VarArgs handling.
275let Entry = 1 in
276def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
277  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
278  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
279
280  // Handle all scalar types as either i32 or f32.
281  CCIfType<[i8, i16], CCPromoteToType<i32>>,
282  CCIfType<[f16, bf16], CCPromoteToType<f32>>,
283
284  // Everything is on the stack.
285  // i128 is split to two i64s, and its stack alignment is 16 bytes.
286  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
287  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
288  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
289  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
290           CCAssignToStack<8, 8>>,
291  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
292           CCAssignToStack<16, 16>>
293]>;
294
295
296// The WebKit_JS calling convention only passes the first argument (the callee)
297// in register and the remaining arguments on stack. We allow 32bit stack slots,
298// so that WebKit can write partial values in the stack and define the other
299// 32bit quantity as undef.
300let Entry = 1 in
301def CC_AArch64_WebKit_JS : CallingConv<[
302  // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
303  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
304  CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>,
305  CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>,
306
307  // Pass the remaining arguments on the stack instead.
308  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
309  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
310]>;
311
312let Entry = 1 in
313def RetCC_AArch64_WebKit_JS : CallingConv<[
314  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
315                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
316  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
317                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
318  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
319                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
320  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
321                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
322]>;
323
324//===----------------------------------------------------------------------===//
325// ARM64 Calling Convention for GHC
326//===----------------------------------------------------------------------===//
327
328// This calling convention is specific to the Glasgow Haskell Compiler.
329// The only documentation is the GHC source code, specifically the C header
330// file:
331//
332//     https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
333//
334// which defines the registers for the Spineless Tagless G-Machine (STG) that
335// GHC uses to implement lazy evaluation. The generic STG machine has a set of
336// registers which are mapped to appropriate set of architecture specific
337// registers for each CPU architecture.
338//
339// The STG Machine is documented here:
340//
341//    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
342//
343// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
344// register mapping".
345
346let Entry = 1 in
347def CC_AArch64_GHC : CallingConv<[
348  CCIfType<[iPTR], CCBitConvertToType<i64>>,
349
350  // Handle all vector types as either f64 or v2f64.
351  CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
352  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
353
354  CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
355  CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
356  CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
357
358  // Promote i8/i16/i32 arguments to i64.
359  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
360
361  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
362  CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
363]>;
364
365// The order of the callee-saves in this file is important, because the
366// FrameLowering code will use this order to determine the layout the
367// callee-save area in the stack frame. As can be observed below, Darwin
368// requires the frame-record (LR, FP) to be at the top the callee-save area,
369// whereas for other platforms they are at the bottom.
370
371// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
372// presumably a callee to someone. External functions may not do so, but this
373// is currently safe since BL has LR as an implicit-def and what happens after a
374// tail call doesn't matter.
375//
376// It would be better to model its preservation semantics properly (create a
377// vreg on entry, use it in RET & tail call generation; make that vreg def if we
378// end up saving LR as part of a call frame). Watch this space...
379def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
380                                           X25, X26, X27, X28, LR, FP,
381                                           D8,  D9,  D10, D11,
382                                           D12, D13, D14, D15)>;
383
384// A variant for treating X18 as callee saved, when interfacing with
385// code that needs X18 to be preserved.
386def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
387
388// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
389// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
390// and not (LR,FP) pairs.
391def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
392                                               X25, X26, X27, X28, FP, LR,
393                                               D8, D9, D10, D11,
394                                               D12, D13, D14, D15)>;
395
396// The Control Flow Guard check call uses a custom calling convention that also
397// preserves X0-X8 and Q0-Q7.
398def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
399                                               (sequence "X%u", 0, 8),
400                                               (sequence "Q%u", 0, 7))>;
401
402// AArch64 PCS for vector functions (VPCS)
403// must (additionally) preserve full Q8-Q23 registers
404def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
405                                          X25, X26, X27, X28, LR, FP,
406                                          (sequence "Q%u", 8, 23))>;
407
408// Functions taking SVE arguments or returning an SVE type
409// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
410def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
411                                                 (sequence "P%u", 4, 15),
412                                                 X19, X20, X21, X22, X23, X24,
413                                                 X25, X26, X27, X28, LR, FP)>;
414
415// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
416// 'this' and the pointer return value are both passed in X0 in these cases,
417// this can be partially modelled by treating X0 as a callee-saved register;
418// only the resulting RegMask is used; the SaveList is ignored
419//
420// (For generic ARM 64-bit ABI code, clang will not generate constructors or
421// destructors with 'this' returns, so this RegMask will not be used in that
422// case)
423def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
424
425def CSR_AArch64_AAPCS_SwiftError
426    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
427
428// The ELF stub used for TLS-descriptor access saves every feasible
429// register. Only X0 and LR are clobbered.
430def CSR_AArch64_TLS_ELF
431    : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
432                           (sequence "Q%u", 0, 31))>;
433
434def CSR_AArch64_AllRegs
435    : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
436                           (sequence "X%u", 0, 28), FP, LR, SP,
437                           (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
438                           (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
439                           (sequence "Q%u", 0, 31))>;
440
441def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
442
443def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS,
444                                                (sequence "X%u", 9, 15))>;
445
446def CSR_AArch64_StackProbe_Windows
447    : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
448                           (sequence "X%u", 18, 28), FP, SP,
449                           (sequence "Q%u", 0, 31))>;
450
451// Darwin variants of AAPCS.
452// Darwin puts the frame-record at the top of the callee-save area.
453def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
454                                                X23, X24, X25, X26, X27, X28,
455                                                D8,  D9,  D10, D11,
456                                                D12, D13, D14, D15)>;
457
458def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
459                                                 X22, X23, X24, X25, X26, X27,
460                                                 X28, (sequence "Q%u", 8, 23))>;
461def CSR_Darwin_AArch64_AAPCS_ThisReturn
462    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
463
464def CSR_Darwin_AArch64_AAPCS_SwiftError
465    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
466
467// The function used by Darwin to obtain the address of a thread-local variable
468// guarantees more than a normal AAPCS function. x16 and x17 are used on the
469// fast path for calculation, but other registers except X0 (argument/return)
470// and LR (it is a call, after all) are preserved.
471def CSR_Darwin_AArch64_TLS
472    : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
473                           FP,
474                           (sequence "Q%u", 0, 31))>;
475
476// We can only handle a register pair with adjacent registers, the register pair
477// should belong to the same class as well. Since the access function on the
478// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
479// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
480def CSR_Darwin_AArch64_CXX_TLS
481    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
482                           (sub (sequence "X%u", 1, 28), X15, X16, X17, X18),
483                           (sequence "D%u", 0, 31))>;
484
485// CSRs that are handled by prologue, epilogue.
486def CSR_Darwin_AArch64_CXX_TLS_PE
487    : CalleeSavedRegs<(add LR, FP)>;
488
489// CSRs that are handled explicitly via copies.
490def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
491    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
492
493def CSR_Darwin_AArch64_RT_MostRegs
494    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
495
496// Variants of the standard calling conventions for shadow call stack.
497// These all preserve x18 in addition to any other registers.
498def CSR_AArch64_NoRegs_SCS
499    : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
500def CSR_AArch64_AllRegs_SCS
501    : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
502def CSR_AArch64_AAPCS_SwiftError_SCS
503    : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
504def CSR_AArch64_RT_MostRegs_SCS
505    : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
506def CSR_AArch64_AAVPCS_SCS
507    : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
508def CSR_AArch64_SVE_AAPCS_SCS
509    : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
510def CSR_AArch64_AAPCS_SCS
511    : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
512