1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // When profitable, replace GPR targeting i64 instructions with their 9 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined 10 // as minimizing the number of cross-class register copies. 11 //===----------------------------------------------------------------------===// 12 13 //===----------------------------------------------------------------------===// 14 // TODO: Graph based predicate heuristics. 15 // Walking the instruction list linearly will get many, perhaps most, of 16 // the cases, but to do a truly thorough job of this, we need a more 17 // wholistic approach. 18 // 19 // This optimization is very similar in spirit to the register allocator's 20 // spill placement, only here we're determining where to place cross-class 21 // register copies rather than spills. As such, a similar approach is 22 // called for. 23 // 24 // We want to build up a set of graphs of all instructions which are candidates 25 // for transformation along with instructions which generate their inputs and 26 // consume their outputs. For each edge in the graph, we assign a weight 27 // based on whether there is a copy required there (weight zero if not) and 28 // the block frequency of the block containing the defining or using 29 // instruction, whichever is less. Our optimization is then a graph problem 30 // to minimize the total weight of all the graphs, then transform instructions 31 // and add or remove copy instructions as called for to implement the 32 // solution. 33 //===----------------------------------------------------------------------===// 34 35 #include "AArch64.h" 36 #include "AArch64InstrInfo.h" 37 #include "AArch64RegisterInfo.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 using namespace llvm; 48 49 #define DEBUG_TYPE "aarch64-simd-scalar" 50 51 // Allow forcing all i64 operations with equivalent SIMD instructions to use 52 // them. For stress-testing the transformation function. 53 static cl::opt<bool> 54 TransformAll("aarch64-simd-scalar-force-all", 55 cl::desc("Force use of AdvSIMD scalar instructions everywhere"), 56 cl::init(false), cl::Hidden); 57 58 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used"); 59 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted"); 60 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted"); 61 62 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization" 63 64 namespace { 65 class AArch64AdvSIMDScalar : public MachineFunctionPass { 66 MachineRegisterInfo *MRI; 67 const TargetInstrInfo *TII; 68 69 private: 70 // isProfitableToTransform - Predicate function to determine whether an 71 // instruction should be transformed to its equivalent AdvSIMD scalar 72 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. 73 bool isProfitableToTransform(const MachineInstr &MI) const; 74 75 // transformInstruction - Perform the transformation of an instruction 76 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs 77 // to be the correct register class, minimizing cross-class copies. 78 void transformInstruction(MachineInstr &MI); 79 80 // processMachineBasicBlock - Main optimzation loop. 81 bool processMachineBasicBlock(MachineBasicBlock *MBB); 82 83 public: 84 static char ID; // Pass identification, replacement for typeid. 85 explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) { 86 initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry()); 87 } 88 89 bool runOnMachineFunction(MachineFunction &F) override; 90 91 StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; } 92 93 void getAnalysisUsage(AnalysisUsage &AU) const override { 94 AU.setPreservesCFG(); 95 MachineFunctionPass::getAnalysisUsage(AU); 96 } 97 }; 98 char AArch64AdvSIMDScalar::ID = 0; 99 } // end anonymous namespace 100 101 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar", 102 AARCH64_ADVSIMD_NAME, false, false) 103 104 static bool isGPR64(unsigned Reg, unsigned SubReg, 105 const MachineRegisterInfo *MRI) { 106 if (SubReg) 107 return false; 108 if (Register::isVirtualRegister(Reg)) 109 return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass); 110 return AArch64::GPR64RegClass.contains(Reg); 111 } 112 113 static bool isFPR64(unsigned Reg, unsigned SubReg, 114 const MachineRegisterInfo *MRI) { 115 if (Register::isVirtualRegister(Reg)) 116 return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) && 117 SubReg == 0) || 118 (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) && 119 SubReg == AArch64::dsub); 120 // Physical register references just check the register class directly. 121 return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) || 122 (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub); 123 } 124 125 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64 126 // copy instruction. Return nullptr if the instruction is not a copy. 127 static MachineOperand *getSrcFromCopy(MachineInstr *MI, 128 const MachineRegisterInfo *MRI, 129 unsigned &SubReg) { 130 SubReg = 0; 131 // The "FMOV Xd, Dn" instruction is the typical form. 132 if (MI->getOpcode() == AArch64::FMOVDXr || 133 MI->getOpcode() == AArch64::FMOVXDr) 134 return &MI->getOperand(1); 135 // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see 136 // these at this stage, but it's easy to check for. 137 if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) { 138 SubReg = AArch64::dsub; 139 return &MI->getOperand(1); 140 } 141 // Or just a plain COPY instruction. This can be directly to/from FPR64, 142 // or it can be a dsub subreg reference to an FPR128. 143 if (MI->getOpcode() == AArch64::COPY) { 144 if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), 145 MRI) && 146 isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) 147 return &MI->getOperand(1); 148 if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), 149 MRI) && 150 isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), 151 MRI)) { 152 SubReg = MI->getOperand(1).getSubReg(); 153 return &MI->getOperand(1); 154 } 155 } 156 157 // Otherwise, this is some other kind of instruction. 158 return nullptr; 159 } 160 161 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent 162 // that we're considering transforming to, return that AdvSIMD opcode. For all 163 // others, return the original opcode. 164 static unsigned getTransformOpcode(unsigned Opc) { 165 switch (Opc) { 166 default: 167 break; 168 // FIXME: Lots more possibilities. 169 case AArch64::ADDXrr: 170 return AArch64::ADDv1i64; 171 case AArch64::SUBXrr: 172 return AArch64::SUBv1i64; 173 case AArch64::ANDXrr: 174 return AArch64::ANDv8i8; 175 case AArch64::EORXrr: 176 return AArch64::EORv8i8; 177 case AArch64::ORRXrr: 178 return AArch64::ORRv8i8; 179 } 180 // No AdvSIMD equivalent, so just return the original opcode. 181 return Opc; 182 } 183 184 static bool isTransformable(const MachineInstr &MI) { 185 unsigned Opc = MI.getOpcode(); 186 return Opc != getTransformOpcode(Opc); 187 } 188 189 // isProfitableToTransform - Predicate function to determine whether an 190 // instruction should be transformed to its equivalent AdvSIMD scalar 191 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. 192 bool AArch64AdvSIMDScalar::isProfitableToTransform( 193 const MachineInstr &MI) const { 194 // If this instruction isn't eligible to be transformed (no SIMD equivalent), 195 // early exit since that's the common case. 196 if (!isTransformable(MI)) 197 return false; 198 199 // Count the number of copies we'll need to add and approximate the number 200 // of copies that a transform will enable us to remove. 201 unsigned NumNewCopies = 3; 202 unsigned NumRemovableCopies = 0; 203 204 Register OrigSrc0 = MI.getOperand(1).getReg(); 205 Register OrigSrc1 = MI.getOperand(2).getReg(); 206 unsigned SubReg0; 207 unsigned SubReg1; 208 if (!MRI->def_empty(OrigSrc0)) { 209 MachineRegisterInfo::def_instr_iterator Def = 210 MRI->def_instr_begin(OrigSrc0); 211 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); 212 MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); 213 // If the source was from a copy, we don't need to insert a new copy. 214 if (MOSrc0) 215 --NumNewCopies; 216 // If there are no other users of the original source, we can delete 217 // that instruction. 218 if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0)) 219 ++NumRemovableCopies; 220 } 221 if (!MRI->def_empty(OrigSrc1)) { 222 MachineRegisterInfo::def_instr_iterator Def = 223 MRI->def_instr_begin(OrigSrc1); 224 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); 225 MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); 226 if (MOSrc1) 227 --NumNewCopies; 228 // If there are no other users of the original source, we can delete 229 // that instruction. 230 if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1)) 231 ++NumRemovableCopies; 232 } 233 234 // If any of the uses of the original instructions is a cross class copy, 235 // that's a copy that will be removable if we transform. Likewise, if 236 // any of the uses is a transformable instruction, it's likely the tranforms 237 // will chain, enabling us to save a copy there, too. This is an aggressive 238 // heuristic that approximates the graph based cost analysis described above. 239 Register Dst = MI.getOperand(0).getReg(); 240 bool AllUsesAreCopies = true; 241 for (MachineRegisterInfo::use_instr_nodbg_iterator 242 Use = MRI->use_instr_nodbg_begin(Dst), 243 E = MRI->use_instr_nodbg_end(); 244 Use != E; ++Use) { 245 unsigned SubReg; 246 if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use)) 247 ++NumRemovableCopies; 248 // If the use is an INSERT_SUBREG, that's still something that can 249 // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's 250 // preferable to have it use the FPR64 in most cases, as if the source 251 // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely. 252 // Ditto for a lane insert. 253 else if (Use->getOpcode() == AArch64::INSERT_SUBREG || 254 Use->getOpcode() == AArch64::INSvi64gpr) 255 ; 256 else 257 AllUsesAreCopies = false; 258 } 259 // If all of the uses of the original destination register are copies to 260 // FPR64, then we won't end up having a new copy back to GPR64 either. 261 if (AllUsesAreCopies) 262 --NumNewCopies; 263 264 // If a transform will not increase the number of cross-class copies required, 265 // return true. 266 if (NumNewCopies <= NumRemovableCopies) 267 return true; 268 269 // Finally, even if we otherwise wouldn't transform, check if we're forcing 270 // transformation of everything. 271 return TransformAll; 272 } 273 274 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI, 275 unsigned Dst, unsigned Src, bool IsKill) { 276 MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 277 TII->get(AArch64::COPY), Dst) 278 .addReg(Src, getKillRegState(IsKill)); 279 LLVM_DEBUG(dbgs() << " adding copy: " << *MIB); 280 ++NumCopiesInserted; 281 return MIB; 282 } 283 284 // transformInstruction - Perform the transformation of an instruction 285 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs 286 // to be the correct register class, minimizing cross-class copies. 287 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) { 288 LLVM_DEBUG(dbgs() << "Scalar transform: " << MI); 289 290 MachineBasicBlock *MBB = MI.getParent(); 291 unsigned OldOpc = MI.getOpcode(); 292 unsigned NewOpc = getTransformOpcode(OldOpc); 293 assert(OldOpc != NewOpc && "transform an instruction to itself?!"); 294 295 // Check if we need a copy for the source registers. 296 Register OrigSrc0 = MI.getOperand(1).getReg(); 297 Register OrigSrc1 = MI.getOperand(2).getReg(); 298 unsigned Src0 = 0, SubReg0; 299 unsigned Src1 = 0, SubReg1; 300 bool KillSrc0 = false, KillSrc1 = false; 301 if (!MRI->def_empty(OrigSrc0)) { 302 MachineRegisterInfo::def_instr_iterator Def = 303 MRI->def_instr_begin(OrigSrc0); 304 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); 305 MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); 306 // If there are no other users of the original source, we can delete 307 // that instruction. 308 if (MOSrc0) { 309 Src0 = MOSrc0->getReg(); 310 KillSrc0 = MOSrc0->isKill(); 311 // Src0 is going to be reused, thus, it cannot be killed anymore. 312 MOSrc0->setIsKill(false); 313 if (MRI->hasOneNonDBGUse(OrigSrc0)) { 314 assert(MOSrc0 && "Can't delete copy w/o a valid original source!"); 315 Def->eraseFromParent(); 316 ++NumCopiesDeleted; 317 } 318 } 319 } 320 if (!MRI->def_empty(OrigSrc1)) { 321 MachineRegisterInfo::def_instr_iterator Def = 322 MRI->def_instr_begin(OrigSrc1); 323 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); 324 MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); 325 // If there are no other users of the original source, we can delete 326 // that instruction. 327 if (MOSrc1) { 328 Src1 = MOSrc1->getReg(); 329 KillSrc1 = MOSrc1->isKill(); 330 // Src0 is going to be reused, thus, it cannot be killed anymore. 331 MOSrc1->setIsKill(false); 332 if (MRI->hasOneNonDBGUse(OrigSrc1)) { 333 assert(MOSrc1 && "Can't delete copy w/o a valid original source!"); 334 Def->eraseFromParent(); 335 ++NumCopiesDeleted; 336 } 337 } 338 } 339 // If we weren't able to reference the original source directly, create a 340 // copy. 341 if (!Src0) { 342 SubReg0 = 0; 343 Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); 344 insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0); 345 KillSrc0 = true; 346 } 347 if (!Src1) { 348 SubReg1 = 0; 349 Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); 350 insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1); 351 KillSrc1 = true; 352 } 353 354 // Create a vreg for the destination. 355 // FIXME: No need to do this if the ultimate user expects an FPR64. 356 // Check for that and avoid the copy if possible. 357 Register Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass); 358 359 // For now, all of the new instructions have the same simple three-register 360 // form, so no need to special case based on what instruction we're 361 // building. 362 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst) 363 .addReg(Src0, getKillRegState(KillSrc0), SubReg0) 364 .addReg(Src1, getKillRegState(KillSrc1), SubReg1); 365 366 // Now copy the result back out to a GPR. 367 // FIXME: Try to avoid this if all uses could actually just use the FPR64 368 // directly. 369 insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true); 370 371 // Erase the old instruction. 372 MI.eraseFromParent(); 373 374 ++NumScalarInsnsUsed; 375 } 376 377 // processMachineBasicBlock - Main optimzation loop. 378 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { 379 bool Changed = false; 380 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { 381 MachineInstr &MI = *I++; 382 if (isProfitableToTransform(MI)) { 383 transformInstruction(MI); 384 Changed = true; 385 } 386 } 387 return Changed; 388 } 389 390 // runOnMachineFunction - Pass entry point from PassManager. 391 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { 392 bool Changed = false; 393 LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n"); 394 395 if (skipFunction(mf.getFunction())) 396 return false; 397 398 MRI = &mf.getRegInfo(); 399 TII = mf.getSubtarget().getInstrInfo(); 400 401 // Just check things on a one-block-at-a-time basis. 402 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) 403 if (processMachineBasicBlock(&*I)) 404 Changed = true; 405 return Changed; 406 } 407 408 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine 409 // to add the pass to the PassManager. 410 FunctionPass *llvm::createAArch64AdvSIMDScalar() { 411 return new AArch64AdvSIMDScalar(); 412 } 413