1 //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a class for representing known zeros and ones used by 10 // computeKnownBits. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/KnownBits.h" 15 #include "llvm/Support/Debug.h" 16 #include "llvm/Support/raw_ostream.h" 17 #include <cassert> 18 19 using namespace llvm; 20 21 static KnownBits computeForAddCarry( 22 const KnownBits &LHS, const KnownBits &RHS, 23 bool CarryZero, bool CarryOne) { 24 assert(!(CarryZero && CarryOne) && 25 "Carry can't be zero and one at the same time"); 26 27 APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; 28 APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; 29 30 // Compute known bits of the carry. 31 APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); 32 APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; 33 34 // Compute set of known bits (where all three relevant bits are known). 35 APInt LHSKnownUnion = LHS.Zero | LHS.One; 36 APInt RHSKnownUnion = RHS.Zero | RHS.One; 37 APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; 38 APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; 39 40 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 41 "known bits of sum differ"); 42 43 // Compute known bits of the result. 44 KnownBits KnownOut; 45 KnownOut.Zero = ~std::move(PossibleSumZero) & Known; 46 KnownOut.One = std::move(PossibleSumOne) & Known; 47 return KnownOut; 48 } 49 50 KnownBits KnownBits::computeForAddCarry( 51 const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { 52 assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); 53 return ::computeForAddCarry( 54 LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); 55 } 56 57 KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, 58 const KnownBits &LHS, KnownBits RHS) { 59 KnownBits KnownOut; 60 if (Add) { 61 // Sum = LHS + RHS + 0 62 KnownOut = ::computeForAddCarry( 63 LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); 64 } else { 65 // Sum = LHS + ~RHS + 1 66 std::swap(RHS.Zero, RHS.One); 67 KnownOut = ::computeForAddCarry( 68 LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); 69 } 70 71 // Are we still trying to solve for the sign bit? 72 if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { 73 if (NSW) { 74 // Adding two non-negative numbers, or subtracting a negative number from 75 // a non-negative one, can't wrap into negative. 76 if (LHS.isNonNegative() && RHS.isNonNegative()) 77 KnownOut.makeNonNegative(); 78 // Adding two negative numbers, or subtracting a non-negative number from 79 // a negative one, can't wrap into non-negative. 80 else if (LHS.isNegative() && RHS.isNegative()) 81 KnownOut.makeNegative(); 82 } 83 } 84 85 return KnownOut; 86 } 87 88 KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const { 89 unsigned BitWidth = getBitWidth(); 90 assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth && 91 "Illegal sext-in-register"); 92 93 if (SrcBitWidth == BitWidth) 94 return *this; 95 96 unsigned ExtBits = BitWidth - SrcBitWidth; 97 KnownBits Result; 98 Result.One = One << ExtBits; 99 Result.Zero = Zero << ExtBits; 100 Result.One.ashrInPlace(ExtBits); 101 Result.Zero.ashrInPlace(ExtBits); 102 return Result; 103 } 104 105 KnownBits KnownBits::makeGE(const APInt &Val) const { 106 // Count the number of leading bit positions where our underlying value is 107 // known to be less than or equal to Val. 108 unsigned N = (Zero | Val).countLeadingOnes(); 109 110 // For each of those bit positions, if Val has a 1 in that bit then our 111 // underlying value must also have a 1. 112 APInt MaskedVal(Val); 113 MaskedVal.clearLowBits(getBitWidth() - N); 114 return KnownBits(Zero, One | MaskedVal); 115 } 116 117 KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { 118 // If we can prove that LHS >= RHS then use LHS as the result. Likewise for 119 // RHS. Ideally our caller would already have spotted these cases and 120 // optimized away the umax operation, but we handle them here for 121 // completeness. 122 if (LHS.getMinValue().uge(RHS.getMaxValue())) 123 return LHS; 124 if (RHS.getMinValue().uge(LHS.getMaxValue())) 125 return RHS; 126 127 // If the result of the umax is LHS then it must be greater than or equal to 128 // the minimum possible value of RHS. Likewise for RHS. Any known bits that 129 // are common to these two values are also known in the result. 130 KnownBits L = LHS.makeGE(RHS.getMinValue()); 131 KnownBits R = RHS.makeGE(LHS.getMinValue()); 132 return KnownBits::commonBits(L, R); 133 } 134 135 KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { 136 // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] 137 auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; 138 return Flip(umax(Flip(LHS), Flip(RHS))); 139 } 140 141 KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { 142 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] 143 auto Flip = [](const KnownBits &Val) { 144 unsigned SignBitPosition = Val.getBitWidth() - 1; 145 APInt Zero = Val.Zero; 146 APInt One = Val.One; 147 Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 148 One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 149 return KnownBits(Zero, One); 150 }; 151 return Flip(umax(Flip(LHS), Flip(RHS))); 152 } 153 154 KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { 155 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] 156 auto Flip = [](const KnownBits &Val) { 157 unsigned SignBitPosition = Val.getBitWidth() - 1; 158 APInt Zero = Val.One; 159 APInt One = Val.Zero; 160 Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 161 One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 162 return KnownBits(Zero, One); 163 }; 164 return Flip(umax(Flip(LHS), Flip(RHS))); 165 } 166 167 KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS) { 168 unsigned BitWidth = LHS.getBitWidth(); 169 KnownBits Known(BitWidth); 170 171 // If the shift amount is a valid constant then transform LHS directly. 172 if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { 173 unsigned Shift = RHS.getConstant().getZExtValue(); 174 Known = LHS; 175 Known.Zero <<= Shift; 176 Known.One <<= Shift; 177 // Low bits are known zero. 178 Known.Zero.setLowBits(Shift); 179 return Known; 180 } 181 182 // No matter the shift amount, the trailing zeros will stay zero. 183 unsigned MinTrailingZeros = LHS.countMinTrailingZeros(); 184 185 // Minimum shift amount low bits are known zero. 186 APInt MinShiftAmount = RHS.getMinValue(); 187 if (MinShiftAmount.ult(BitWidth)) { 188 MinTrailingZeros += MinShiftAmount.getZExtValue(); 189 MinTrailingZeros = std::min(MinTrailingZeros, BitWidth); 190 } 191 192 // If the maximum shift is in range, then find the common bits from all 193 // possible shifts. 194 APInt MaxShiftAmount = RHS.getMaxValue(); 195 if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) { 196 uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue(); 197 uint64_t ShiftAmtOneMask = RHS.One.getZExtValue(); 198 assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range"); 199 Known.Zero.setAllBits(); 200 Known.One.setAllBits(); 201 for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(), 202 MaxShiftAmt = MaxShiftAmount.getZExtValue(); 203 ShiftAmt <= MaxShiftAmt; ++ShiftAmt) { 204 // Skip if the shift amount is impossible. 205 if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt || 206 (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) 207 continue; 208 KnownBits SpecificShift; 209 SpecificShift.Zero = LHS.Zero << ShiftAmt; 210 SpecificShift.One = LHS.One << ShiftAmt; 211 Known = KnownBits::commonBits(Known, SpecificShift); 212 if (Known.isUnknown()) 213 break; 214 } 215 } 216 217 Known.Zero.setLowBits(MinTrailingZeros); 218 return Known; 219 } 220 221 KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS) { 222 unsigned BitWidth = LHS.getBitWidth(); 223 KnownBits Known(BitWidth); 224 225 if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { 226 unsigned Shift = RHS.getConstant().getZExtValue(); 227 Known = LHS; 228 Known.Zero.lshrInPlace(Shift); 229 Known.One.lshrInPlace(Shift); 230 // High bits are known zero. 231 Known.Zero.setHighBits(Shift); 232 return Known; 233 } 234 235 // No matter the shift amount, the leading zeros will stay zero. 236 unsigned MinLeadingZeros = LHS.countMinLeadingZeros(); 237 238 // Minimum shift amount high bits are known zero. 239 APInt MinShiftAmount = RHS.getMinValue(); 240 if (MinShiftAmount.ult(BitWidth)) { 241 MinLeadingZeros += MinShiftAmount.getZExtValue(); 242 MinLeadingZeros = std::min(MinLeadingZeros, BitWidth); 243 } 244 245 // If the maximum shift is in range, then find the common bits from all 246 // possible shifts. 247 APInt MaxShiftAmount = RHS.getMaxValue(); 248 if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) { 249 uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue(); 250 uint64_t ShiftAmtOneMask = RHS.One.getZExtValue(); 251 assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range"); 252 Known.Zero.setAllBits(); 253 Known.One.setAllBits(); 254 for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(), 255 MaxShiftAmt = MaxShiftAmount.getZExtValue(); 256 ShiftAmt <= MaxShiftAmt; ++ShiftAmt) { 257 // Skip if the shift amount is impossible. 258 if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt || 259 (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) 260 continue; 261 KnownBits SpecificShift = LHS; 262 SpecificShift.Zero.lshrInPlace(ShiftAmt); 263 SpecificShift.One.lshrInPlace(ShiftAmt); 264 Known = KnownBits::commonBits(Known, SpecificShift); 265 if (Known.isUnknown()) 266 break; 267 } 268 } 269 270 Known.Zero.setHighBits(MinLeadingZeros); 271 return Known; 272 } 273 274 KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS) { 275 unsigned BitWidth = LHS.getBitWidth(); 276 KnownBits Known(BitWidth); 277 278 if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { 279 unsigned Shift = RHS.getConstant().getZExtValue(); 280 Known = LHS; 281 Known.Zero.ashrInPlace(Shift); 282 Known.One.ashrInPlace(Shift); 283 return Known; 284 } 285 286 // No matter the shift amount, the leading sign bits will stay. 287 unsigned MinLeadingZeros = LHS.countMinLeadingZeros(); 288 unsigned MinLeadingOnes = LHS.countMinLeadingOnes(); 289 290 // Minimum shift amount high bits are known sign bits. 291 APInt MinShiftAmount = RHS.getMinValue(); 292 if (MinShiftAmount.ult(BitWidth)) { 293 if (MinLeadingZeros) { 294 MinLeadingZeros += MinShiftAmount.getZExtValue(); 295 MinLeadingZeros = std::min(MinLeadingZeros, BitWidth); 296 } 297 if (MinLeadingOnes) { 298 MinLeadingOnes += MinShiftAmount.getZExtValue(); 299 MinLeadingOnes = std::min(MinLeadingOnes, BitWidth); 300 } 301 } 302 303 // If the maximum shift is in range, then find the common bits from all 304 // possible shifts. 305 APInt MaxShiftAmount = RHS.getMaxValue(); 306 if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) { 307 uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue(); 308 uint64_t ShiftAmtOneMask = RHS.One.getZExtValue(); 309 assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range"); 310 Known.Zero.setAllBits(); 311 Known.One.setAllBits(); 312 for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(), 313 MaxShiftAmt = MaxShiftAmount.getZExtValue(); 314 ShiftAmt <= MaxShiftAmt; ++ShiftAmt) { 315 // Skip if the shift amount is impossible. 316 if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt || 317 (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) 318 continue; 319 KnownBits SpecificShift = LHS; 320 SpecificShift.Zero.ashrInPlace(ShiftAmt); 321 SpecificShift.One.ashrInPlace(ShiftAmt); 322 Known = KnownBits::commonBits(Known, SpecificShift); 323 if (Known.isUnknown()) 324 break; 325 } 326 } 327 328 Known.Zero.setHighBits(MinLeadingZeros); 329 Known.One.setHighBits(MinLeadingOnes); 330 return Known; 331 } 332 333 Optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) { 334 if (LHS.isConstant() && RHS.isConstant()) 335 return Optional<bool>(LHS.getConstant() == RHS.getConstant()); 336 if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero)) 337 return Optional<bool>(false); 338 return None; 339 } 340 341 Optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) { 342 if (Optional<bool> KnownEQ = eq(LHS, RHS)) 343 return Optional<bool>(!KnownEQ.getValue()); 344 return None; 345 } 346 347 Optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) { 348 // LHS >u RHS -> false if umax(LHS) <= umax(RHS) 349 if (LHS.getMaxValue().ule(RHS.getMinValue())) 350 return Optional<bool>(false); 351 // LHS >u RHS -> true if umin(LHS) > umax(RHS) 352 if (LHS.getMinValue().ugt(RHS.getMaxValue())) 353 return Optional<bool>(true); 354 return None; 355 } 356 357 Optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) { 358 if (Optional<bool> IsUGT = ugt(RHS, LHS)) 359 return Optional<bool>(!IsUGT.getValue()); 360 return None; 361 } 362 363 Optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) { 364 return ugt(RHS, LHS); 365 } 366 367 Optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) { 368 return uge(RHS, LHS); 369 } 370 371 Optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) { 372 // LHS >s RHS -> false if smax(LHS) <= smax(RHS) 373 if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue())) 374 return Optional<bool>(false); 375 // LHS >s RHS -> true if smin(LHS) > smax(RHS) 376 if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue())) 377 return Optional<bool>(true); 378 return None; 379 } 380 381 Optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) { 382 if (Optional<bool> KnownSGT = sgt(RHS, LHS)) 383 return Optional<bool>(!KnownSGT.getValue()); 384 return None; 385 } 386 387 Optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) { 388 return sgt(RHS, LHS); 389 } 390 391 Optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) { 392 return sge(RHS, LHS); 393 } 394 395 KnownBits KnownBits::abs(bool IntMinIsPoison) const { 396 // If the source's MSB is zero then we know the rest of the bits already. 397 if (isNonNegative()) 398 return *this; 399 400 // Absolute value preserves trailing zero count. 401 KnownBits KnownAbs(getBitWidth()); 402 KnownAbs.Zero.setLowBits(countMinTrailingZeros()); 403 404 // We only know that the absolute values's MSB will be zero if INT_MIN is 405 // poison, or there is a set bit that isn't the sign bit (otherwise it could 406 // be INT_MIN). 407 if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue())) 408 KnownAbs.Zero.setSignBit(); 409 410 // FIXME: Handle known negative input? 411 // FIXME: Calculate the negated Known bits and combine them? 412 return KnownAbs; 413 } 414 415 KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS, 416 bool SelfMultiply) { 417 unsigned BitWidth = LHS.getBitWidth(); 418 assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && 419 !RHS.hasConflict() && "Operand mismatch"); 420 assert((!SelfMultiply || (LHS.One == RHS.One && LHS.Zero == RHS.Zero)) && 421 "Self multiplication knownbits mismatch"); 422 423 // Compute the high known-0 bits by multiplying the unsigned max of each side. 424 // Conservatively, M active bits * N active bits results in M + N bits in the 425 // result. But if we know a value is a power-of-2 for example, then this 426 // computes one more leading zero. 427 // TODO: This could be generalized to number of sign bits (negative numbers). 428 APInt UMaxLHS = LHS.getMaxValue(); 429 APInt UMaxRHS = RHS.getMaxValue(); 430 431 // For leading zeros in the result to be valid, the unsigned max product must 432 // fit in the bitwidth (it must not overflow). 433 bool HasOverflow; 434 APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow); 435 unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countLeadingZeros(); 436 437 // The result of the bottom bits of an integer multiply can be 438 // inferred by looking at the bottom bits of both operands and 439 // multiplying them together. 440 // We can infer at least the minimum number of known trailing bits 441 // of both operands. Depending on number of trailing zeros, we can 442 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 443 // a and b are divisible by m and n respectively. 444 // We then calculate how many of those bits are inferrable and set 445 // the output. For example, the i8 mul: 446 // a = XXXX1100 (12) 447 // b = XXXX1110 (14) 448 // We know the bottom 3 bits are zero since the first can be divided by 449 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 450 // Applying the multiplication to the trimmed arguments gets: 451 // XX11 (3) 452 // X111 (7) 453 // ------- 454 // XX11 455 // XX11 456 // XX11 457 // XX11 458 // ------- 459 // XXXXX01 460 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 461 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 462 // The proof for this can be described as: 463 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 464 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 465 // umin(countTrailingZeros(C2), C6) + 466 // umin(C5 - umin(countTrailingZeros(C1), C5), 467 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 468 // %aa = shl i8 %a, C5 469 // %bb = shl i8 %b, C6 470 // %aaa = or i8 %aa, C1 471 // %bbb = or i8 %bb, C2 472 // %mul = mul i8 %aaa, %bbb 473 // %mask = and i8 %mul, C7 474 // => 475 // %mask = i8 ((C1*C2)&C7) 476 // Where C5, C6 describe the known bits of %a, %b 477 // C1, C2 describe the known bottom bits of %a, %b. 478 // C7 describes the mask of the known bits of the result. 479 const APInt &Bottom0 = LHS.One; 480 const APInt &Bottom1 = RHS.One; 481 482 // How many times we'd be able to divide each argument by 2 (shr by 1). 483 // This gives us the number of trailing zeros on the multiplication result. 484 unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes(); 485 unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes(); 486 unsigned TrailZero0 = LHS.countMinTrailingZeros(); 487 unsigned TrailZero1 = RHS.countMinTrailingZeros(); 488 unsigned TrailZ = TrailZero0 + TrailZero1; 489 490 // Figure out the fewest known-bits operand. 491 unsigned SmallestOperand = 492 std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1); 493 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 494 495 APInt BottomKnown = 496 Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1); 497 498 KnownBits Res(BitWidth); 499 Res.Zero.setHighBits(LeadZ); 500 Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 501 Res.One = BottomKnown.getLoBits(ResultBitsKnown); 502 503 // If we're self-multiplying then bit[1] is guaranteed to be zero. 504 if (SelfMultiply && BitWidth > 1) { 505 assert(Res.One[1] == 0 && 506 "Self-multiplication failed Quadratic Reciprocity!"); 507 Res.Zero.setBit(1); 508 } 509 510 return Res; 511 } 512 513 KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) { 514 unsigned BitWidth = LHS.getBitWidth(); 515 assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && 516 !RHS.hasConflict() && "Operand mismatch"); 517 KnownBits WideLHS = LHS.sext(2 * BitWidth); 518 KnownBits WideRHS = RHS.sext(2 * BitWidth); 519 return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth); 520 } 521 522 KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) { 523 unsigned BitWidth = LHS.getBitWidth(); 524 assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && 525 !RHS.hasConflict() && "Operand mismatch"); 526 KnownBits WideLHS = LHS.zext(2 * BitWidth); 527 KnownBits WideRHS = RHS.zext(2 * BitWidth); 528 return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth); 529 } 530 531 KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS) { 532 unsigned BitWidth = LHS.getBitWidth(); 533 assert(!LHS.hasConflict() && !RHS.hasConflict()); 534 KnownBits Known(BitWidth); 535 536 // For the purposes of computing leading zeros we can conservatively 537 // treat a udiv as a logical right shift by the power of 2 known to 538 // be less than the denominator. 539 unsigned LeadZ = LHS.countMinLeadingZeros(); 540 unsigned RHSMaxLeadingZeros = RHS.countMaxLeadingZeros(); 541 542 if (RHSMaxLeadingZeros != BitWidth) 543 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 544 545 Known.Zero.setHighBits(LeadZ); 546 return Known; 547 } 548 549 KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) { 550 unsigned BitWidth = LHS.getBitWidth(); 551 assert(!LHS.hasConflict() && !RHS.hasConflict()); 552 KnownBits Known(BitWidth); 553 554 if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { 555 // The upper bits are all zero, the lower ones are unchanged. 556 APInt LowBits = RHS.getConstant() - 1; 557 Known.Zero = LHS.Zero | ~LowBits; 558 Known.One = LHS.One & LowBits; 559 return Known; 560 } 561 562 // Since the result is less than or equal to either operand, any leading 563 // zero bits in either operand must also exist in the result. 564 uint32_t Leaders = 565 std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros()); 566 Known.Zero.setHighBits(Leaders); 567 return Known; 568 } 569 570 KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) { 571 unsigned BitWidth = LHS.getBitWidth(); 572 assert(!LHS.hasConflict() && !RHS.hasConflict()); 573 KnownBits Known(BitWidth); 574 575 if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { 576 // The low bits of the first operand are unchanged by the srem. 577 APInt LowBits = RHS.getConstant() - 1; 578 Known.Zero = LHS.Zero & LowBits; 579 Known.One = LHS.One & LowBits; 580 581 // If the first operand is non-negative or has all low bits zero, then 582 // the upper bits are all zero. 583 if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero)) 584 Known.Zero |= ~LowBits; 585 586 // If the first operand is negative and not all low bits are zero, then 587 // the upper bits are all one. 588 if (LHS.isNegative() && LowBits.intersects(LHS.One)) 589 Known.One |= ~LowBits; 590 return Known; 591 } 592 593 // The sign bit is the LHS's sign bit, except when the result of the 594 // remainder is zero. The magnitude of the result should be less than or 595 // equal to the magnitude of the LHS. Therefore any leading zeros that exist 596 // in the left hand side must also exist in the result. 597 Known.Zero.setHighBits(LHS.countMinLeadingZeros()); 598 return Known; 599 } 600 601 KnownBits &KnownBits::operator&=(const KnownBits &RHS) { 602 // Result bit is 0 if either operand bit is 0. 603 Zero |= RHS.Zero; 604 // Result bit is 1 if both operand bits are 1. 605 One &= RHS.One; 606 return *this; 607 } 608 609 KnownBits &KnownBits::operator|=(const KnownBits &RHS) { 610 // Result bit is 0 if both operand bits are 0. 611 Zero &= RHS.Zero; 612 // Result bit is 1 if either operand bit is 1. 613 One |= RHS.One; 614 return *this; 615 } 616 617 KnownBits &KnownBits::operator^=(const KnownBits &RHS) { 618 // Result bit is 0 if both operand bits are 0 or both are 1. 619 APInt Z = (Zero & RHS.Zero) | (One & RHS.One); 620 // Result bit is 1 if one operand bit is 0 and the other is 1. 621 One = (Zero & RHS.One) | (One & RHS.Zero); 622 Zero = std::move(Z); 623 return *this; 624 } 625 626 void KnownBits::print(raw_ostream &OS) const { 627 OS << "{Zero=" << Zero << ", One=" << One << "}"; 628 } 629 void KnownBits::dump() const { 630 print(dbgs()); 631 dbgs() << "\n"; 632 } 633