1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a hash set that can be used to remove duplication of 10 // nodes in a graph. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/FoldingSet.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/Support/Allocator.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/Host.h" 19 #include "llvm/Support/MathExtras.h" 20 #include <cassert> 21 #include <cstring> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // FoldingSetNodeIDRef Implementation 26 27 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, 28 /// used to lookup the node in the FoldingSetBase. 29 unsigned FoldingSetNodeIDRef::ComputeHash() const { 30 return static_cast<unsigned>(hash_combine_range(Data, Data+Size)); 31 } 32 33 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const { 34 if (Size != RHS.Size) return false; 35 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0; 36 } 37 38 /// Used to compare the "ordering" of two nodes as defined by the 39 /// profiled bits and their ordering defined by memcmp(). 40 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const { 41 if (Size != RHS.Size) 42 return Size < RHS.Size; 43 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0; 44 } 45 46 //===----------------------------------------------------------------------===// 47 // FoldingSetNodeID Implementation 48 49 /// Add* - Add various data types to Bit data. 50 /// 51 void FoldingSetNodeID::AddPointer(const void *Ptr) { 52 // Note: this adds pointers to the hash using sizes and endianness that 53 // depend on the host. It doesn't matter, however, because hashing on 54 // pointer values is inherently unstable. Nothing should depend on the 55 // ordering of nodes in the folding set. 56 static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), 57 "unexpected pointer size"); 58 AddInteger(reinterpret_cast<uintptr_t>(Ptr)); 59 } 60 void FoldingSetNodeID::AddInteger(signed I) { 61 Bits.push_back(I); 62 } 63 void FoldingSetNodeID::AddInteger(unsigned I) { 64 Bits.push_back(I); 65 } 66 void FoldingSetNodeID::AddInteger(long I) { 67 AddInteger((unsigned long)I); 68 } 69 void FoldingSetNodeID::AddInteger(unsigned long I) { 70 if (sizeof(long) == sizeof(int)) 71 AddInteger(unsigned(I)); 72 else if (sizeof(long) == sizeof(long long)) { 73 AddInteger((unsigned long long)I); 74 } else { 75 llvm_unreachable("unexpected sizeof(long)"); 76 } 77 } 78 void FoldingSetNodeID::AddInteger(long long I) { 79 AddInteger((unsigned long long)I); 80 } 81 void FoldingSetNodeID::AddInteger(unsigned long long I) { 82 AddInteger(unsigned(I)); 83 AddInteger(unsigned(I >> 32)); 84 } 85 86 void FoldingSetNodeID::AddString(StringRef String) { 87 unsigned Size = String.size(); 88 Bits.push_back(Size); 89 if (!Size) return; 90 91 unsigned Units = Size / 4; 92 unsigned Pos = 0; 93 const unsigned *Base = (const unsigned*) String.data(); 94 95 // If the string is aligned do a bulk transfer. 96 if (!((intptr_t)Base & 3)) { 97 Bits.append(Base, Base + Units); 98 Pos = (Units + 1) * 4; 99 } else { 100 // Otherwise do it the hard way. 101 // To be compatible with above bulk transfer, we need to take endianness 102 // into account. 103 static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost, 104 "Unexpected host endianness"); 105 if (sys::IsBigEndianHost) { 106 for (Pos += 4; Pos <= Size; Pos += 4) { 107 unsigned V = ((unsigned char)String[Pos - 4] << 24) | 108 ((unsigned char)String[Pos - 3] << 16) | 109 ((unsigned char)String[Pos - 2] << 8) | 110 (unsigned char)String[Pos - 1]; 111 Bits.push_back(V); 112 } 113 } else { // Little-endian host 114 for (Pos += 4; Pos <= Size; Pos += 4) { 115 unsigned V = ((unsigned char)String[Pos - 1] << 24) | 116 ((unsigned char)String[Pos - 2] << 16) | 117 ((unsigned char)String[Pos - 3] << 8) | 118 (unsigned char)String[Pos - 4]; 119 Bits.push_back(V); 120 } 121 } 122 } 123 124 // With the leftover bits. 125 unsigned V = 0; 126 // Pos will have overshot size by 4 - #bytes left over. 127 // No need to take endianness into account here - this is always executed. 128 switch (Pos - Size) { 129 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH; 130 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH; 131 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break; 132 default: return; // Nothing left. 133 } 134 135 Bits.push_back(V); 136 } 137 138 // AddNodeID - Adds the Bit data of another ID to *this. 139 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) { 140 Bits.append(ID.Bits.begin(), ID.Bits.end()); 141 } 142 143 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to 144 /// lookup the node in the FoldingSetBase. 145 unsigned FoldingSetNodeID::ComputeHash() const { 146 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash(); 147 } 148 149 /// operator== - Used to compare two nodes to each other. 150 /// 151 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const { 152 return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); 153 } 154 155 /// operator== - Used to compare two nodes to each other. 156 /// 157 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const { 158 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS; 159 } 160 161 /// Used to compare the "ordering" of two nodes as defined by the 162 /// profiled bits and their ordering defined by memcmp(). 163 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const { 164 return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); 165 } 166 167 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const { 168 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS; 169 } 170 171 /// Intern - Copy this node's data to a memory region allocated from the 172 /// given allocator and return a FoldingSetNodeIDRef describing the 173 /// interned data. 174 FoldingSetNodeIDRef 175 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const { 176 unsigned *New = Allocator.Allocate<unsigned>(Bits.size()); 177 std::uninitialized_copy(Bits.begin(), Bits.end(), New); 178 return FoldingSetNodeIDRef(New, Bits.size()); 179 } 180 181 //===----------------------------------------------------------------------===// 182 /// Helper functions for FoldingSetBase. 183 184 /// GetNextPtr - In order to save space, each bucket is a 185 /// singly-linked-list. In order to make deletion more efficient, we make 186 /// the list circular, so we can delete a node without computing its hash. 187 /// The problem with this is that the start of the hash buckets are not 188 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null: 189 /// use GetBucketPtr when this happens. 190 static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) { 191 // The low bit is set if this is the pointer back to the bucket. 192 if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1) 193 return nullptr; 194 195 return static_cast<FoldingSetBase::Node*>(NextInBucketPtr); 196 } 197 198 199 /// testing. 200 static void **GetBucketPtr(void *NextInBucketPtr) { 201 intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr); 202 assert((Ptr & 1) && "Not a bucket pointer"); 203 return reinterpret_cast<void**>(Ptr & ~intptr_t(1)); 204 } 205 206 /// GetBucketFor - Hash the specified node ID and return the hash bucket for 207 /// the specified ID. 208 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) { 209 // NumBuckets is always a power of 2. 210 unsigned BucketNum = Hash & (NumBuckets-1); 211 return Buckets + BucketNum; 212 } 213 214 /// AllocateBuckets - Allocated initialized bucket memory. 215 static void **AllocateBuckets(unsigned NumBuckets) { 216 void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1, 217 sizeof(void*))); 218 // Set the very last bucket to be a non-null "pointer". 219 Buckets[NumBuckets] = reinterpret_cast<void*>(-1); 220 return Buckets; 221 } 222 223 //===----------------------------------------------------------------------===// 224 // FoldingSetBase Implementation 225 226 void FoldingSetBase::anchor() {} 227 228 FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) { 229 assert(5 < Log2InitSize && Log2InitSize < 32 && 230 "Initial hash table size out of range"); 231 NumBuckets = 1 << Log2InitSize; 232 Buckets = AllocateBuckets(NumBuckets); 233 NumNodes = 0; 234 } 235 236 FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg) 237 : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) { 238 Arg.Buckets = nullptr; 239 Arg.NumBuckets = 0; 240 Arg.NumNodes = 0; 241 } 242 243 FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) { 244 free(Buckets); // This may be null if the set is in a moved-from state. 245 Buckets = RHS.Buckets; 246 NumBuckets = RHS.NumBuckets; 247 NumNodes = RHS.NumNodes; 248 RHS.Buckets = nullptr; 249 RHS.NumBuckets = 0; 250 RHS.NumNodes = 0; 251 return *this; 252 } 253 254 FoldingSetBase::~FoldingSetBase() { 255 free(Buckets); 256 } 257 258 void FoldingSetBase::clear() { 259 // Set all but the last bucket to null pointers. 260 memset(Buckets, 0, NumBuckets*sizeof(void*)); 261 262 // Set the very last bucket to be a non-null "pointer". 263 Buckets[NumBuckets] = reinterpret_cast<void*>(-1); 264 265 // Reset the node count to zero. 266 NumNodes = 0; 267 } 268 269 void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount) { 270 assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount"); 271 assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!"); 272 void **OldBuckets = Buckets; 273 unsigned OldNumBuckets = NumBuckets; 274 275 // Clear out new buckets. 276 Buckets = AllocateBuckets(NewBucketCount); 277 // Set NumBuckets only if allocation of new buckets was successful. 278 NumBuckets = NewBucketCount; 279 NumNodes = 0; 280 281 // Walk the old buckets, rehashing nodes into their new place. 282 FoldingSetNodeID TempID; 283 for (unsigned i = 0; i != OldNumBuckets; ++i) { 284 void *Probe = OldBuckets[i]; 285 if (!Probe) continue; 286 while (Node *NodeInBucket = GetNextPtr(Probe)) { 287 // Figure out the next link, remove NodeInBucket from the old link. 288 Probe = NodeInBucket->getNextInBucket(); 289 NodeInBucket->SetNextInBucket(nullptr); 290 291 // Insert the node into the new bucket, after recomputing the hash. 292 InsertNode(NodeInBucket, 293 GetBucketFor(ComputeNodeHash(NodeInBucket, TempID), 294 Buckets, NumBuckets)); 295 TempID.clear(); 296 } 297 } 298 299 free(OldBuckets); 300 } 301 302 /// GrowHashTable - Double the size of the hash table and rehash everything. 303 /// 304 void FoldingSetBase::GrowHashTable() { 305 GrowBucketCount(NumBuckets * 2); 306 } 307 308 void FoldingSetBase::reserve(unsigned EltCount) { 309 // This will give us somewhere between EltCount / 2 and 310 // EltCount buckets. This puts us in the load factor 311 // range of 1.0 - 2.0. 312 if(EltCount < capacity()) 313 return; 314 GrowBucketCount(PowerOf2Floor(EltCount)); 315 } 316 317 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 318 /// return it. If not, return the insertion token that will make insertion 319 /// faster. 320 FoldingSetBase::Node * 321 FoldingSetBase::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 322 void *&InsertPos) { 323 unsigned IDHash = ID.ComputeHash(); 324 void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets); 325 void *Probe = *Bucket; 326 327 InsertPos = nullptr; 328 329 FoldingSetNodeID TempID; 330 while (Node *NodeInBucket = GetNextPtr(Probe)) { 331 if (NodeEquals(NodeInBucket, ID, IDHash, TempID)) 332 return NodeInBucket; 333 TempID.clear(); 334 335 Probe = NodeInBucket->getNextInBucket(); 336 } 337 338 // Didn't find the node, return null with the bucket as the InsertPos. 339 InsertPos = Bucket; 340 return nullptr; 341 } 342 343 /// InsertNode - Insert the specified node into the folding set, knowing that it 344 /// is not already in the map. InsertPos must be obtained from 345 /// FindNodeOrInsertPos. 346 void FoldingSetBase::InsertNode(Node *N, void *InsertPos) { 347 assert(!N->getNextInBucket()); 348 // Do we need to grow the hashtable? 349 if (NumNodes+1 > capacity()) { 350 GrowHashTable(); 351 FoldingSetNodeID TempID; 352 InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets); 353 } 354 355 ++NumNodes; 356 357 /// The insert position is actually a bucket pointer. 358 void **Bucket = static_cast<void**>(InsertPos); 359 360 void *Next = *Bucket; 361 362 // If this is the first insertion into this bucket, its next pointer will be 363 // null. Pretend as if it pointed to itself, setting the low bit to indicate 364 // that it is a pointer to the bucket. 365 if (!Next) 366 Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1); 367 368 // Set the node's next pointer, and make the bucket point to the node. 369 N->SetNextInBucket(Next); 370 *Bucket = N; 371 } 372 373 /// RemoveNode - Remove a node from the folding set, returning true if one was 374 /// removed or false if the node was not in the folding set. 375 bool FoldingSetBase::RemoveNode(Node *N) { 376 // Because each bucket is a circular list, we don't need to compute N's hash 377 // to remove it. 378 void *Ptr = N->getNextInBucket(); 379 if (!Ptr) return false; // Not in folding set. 380 381 --NumNodes; 382 N->SetNextInBucket(nullptr); 383 384 // Remember what N originally pointed to, either a bucket or another node. 385 void *NodeNextPtr = Ptr; 386 387 // Chase around the list until we find the node (or bucket) which points to N. 388 while (true) { 389 if (Node *NodeInBucket = GetNextPtr(Ptr)) { 390 // Advance pointer. 391 Ptr = NodeInBucket->getNextInBucket(); 392 393 // We found a node that points to N, change it to point to N's next node, 394 // removing N from the list. 395 if (Ptr == N) { 396 NodeInBucket->SetNextInBucket(NodeNextPtr); 397 return true; 398 } 399 } else { 400 void **Bucket = GetBucketPtr(Ptr); 401 Ptr = *Bucket; 402 403 // If we found that the bucket points to N, update the bucket to point to 404 // whatever is next. 405 if (Ptr == N) { 406 *Bucket = NodeNextPtr; 407 return true; 408 } 409 } 410 } 411 } 412 413 /// GetOrInsertNode - If there is an existing simple Node exactly 414 /// equal to the specified node, return it. Otherwise, insert 'N' and it 415 /// instead. 416 FoldingSetBase::Node *FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N) { 417 FoldingSetNodeID ID; 418 GetNodeProfile(N, ID); 419 void *IP; 420 if (Node *E = FindNodeOrInsertPos(ID, IP)) 421 return E; 422 InsertNode(N, IP); 423 return N; 424 } 425 426 //===----------------------------------------------------------------------===// 427 // FoldingSetIteratorImpl Implementation 428 429 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) { 430 // Skip to the first non-null non-self-cycle bucket. 431 while (*Bucket != reinterpret_cast<void*>(-1) && 432 (!*Bucket || !GetNextPtr(*Bucket))) 433 ++Bucket; 434 435 NodePtr = static_cast<FoldingSetNode*>(*Bucket); 436 } 437 438 void FoldingSetIteratorImpl::advance() { 439 // If there is another link within this bucket, go to it. 440 void *Probe = NodePtr->getNextInBucket(); 441 442 if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe)) 443 NodePtr = NextNodeInBucket; 444 else { 445 // Otherwise, this is the last link in this bucket. 446 void **Bucket = GetBucketPtr(Probe); 447 448 // Skip to the next non-null non-self-cycle bucket. 449 do { 450 ++Bucket; 451 } while (*Bucket != reinterpret_cast<void*>(-1) && 452 (!*Bucket || !GetNextPtr(*Bucket))); 453 454 NodePtr = static_cast<FoldingSetNode*>(*Bucket); 455 } 456 } 457 458 //===----------------------------------------------------------------------===// 459 // FoldingSetBucketIteratorImpl Implementation 460 461 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) { 462 Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket; 463 } 464