1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <cmath> 28 #include <cstring> 29 using namespace llvm; 30 31 #define DEBUG_TYPE "apint" 32 33 /// A utility function for allocating memory, checking for allocation failures, 34 /// and ensuring the contents are zeroed. 35 inline static uint64_t* getClearedMemory(unsigned numWords) { 36 uint64_t *result = new uint64_t[numWords]; 37 memset(result, 0, numWords * sizeof(uint64_t)); 38 return result; 39 } 40 41 /// A utility function for allocating memory and checking for allocation 42 /// failure. The content is not zeroed. 43 inline static uint64_t* getMemory(unsigned numWords) { 44 return new uint64_t[numWords]; 45 } 46 47 /// A utility function that converts a character to a digit. 48 inline static unsigned getDigit(char cdigit, uint8_t radix) { 49 unsigned r; 50 51 if (radix == 16 || radix == 36) { 52 r = cdigit - '0'; 53 if (r <= 9) 54 return r; 55 56 r = cdigit - 'A'; 57 if (r <= radix - 11U) 58 return r + 10; 59 60 r = cdigit - 'a'; 61 if (r <= radix - 11U) 62 return r + 10; 63 64 radix = 10; 65 } 66 67 r = cdigit - '0'; 68 if (r < radix) 69 return r; 70 71 return -1U; 72 } 73 74 75 void APInt::initSlowCase(uint64_t val, bool isSigned) { 76 U.pVal = getClearedMemory(getNumWords()); 77 U.pVal[0] = val; 78 if (isSigned && int64_t(val) < 0) 79 for (unsigned i = 1; i < getNumWords(); ++i) 80 U.pVal[i] = WORDTYPE_MAX; 81 clearUnusedBits(); 82 } 83 84 void APInt::initSlowCase(const APInt& that) { 85 U.pVal = getMemory(getNumWords()); 86 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 87 } 88 89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 90 assert(bigVal.data() && "Null pointer detected!"); 91 if (isSingleWord()) 92 U.VAL = bigVal[0]; 93 else { 94 // Get memory, cleared to 0 95 U.pVal = getClearedMemory(getNumWords()); 96 // Calculate the number of words to copy 97 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 98 // Copy the words from bigVal to pVal 99 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 100 } 101 // Make sure unused high bits are cleared 102 clearUnusedBits(); 103 } 104 105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 106 initFromArray(bigVal); 107 } 108 109 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 110 : BitWidth(numBits) { 111 initFromArray(makeArrayRef(bigVal, numWords)); 112 } 113 114 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 115 : BitWidth(numbits) { 116 fromString(numbits, Str, radix); 117 } 118 119 void APInt::reallocate(unsigned NewBitWidth) { 120 // If the number of words is the same we can just change the width and stop. 121 if (getNumWords() == getNumWords(NewBitWidth)) { 122 BitWidth = NewBitWidth; 123 return; 124 } 125 126 // If we have an allocation, delete it. 127 if (!isSingleWord()) 128 delete [] U.pVal; 129 130 // Update BitWidth. 131 BitWidth = NewBitWidth; 132 133 // If we are supposed to have an allocation, create it. 134 if (!isSingleWord()) 135 U.pVal = getMemory(getNumWords()); 136 } 137 138 void APInt::assignSlowCase(const APInt &RHS) { 139 // Don't do anything for X = X 140 if (this == &RHS) 141 return; 142 143 // Adjust the bit width and handle allocations as necessary. 144 reallocate(RHS.getBitWidth()); 145 146 // Copy the data. 147 if (isSingleWord()) 148 U.VAL = RHS.U.VAL; 149 else 150 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 151 } 152 153 /// This method 'profiles' an APInt for use with FoldingSet. 154 void APInt::Profile(FoldingSetNodeID& ID) const { 155 ID.AddInteger(BitWidth); 156 157 if (isSingleWord()) { 158 ID.AddInteger(U.VAL); 159 return; 160 } 161 162 unsigned NumWords = getNumWords(); 163 for (unsigned i = 0; i < NumWords; ++i) 164 ID.AddInteger(U.pVal[i]); 165 } 166 167 /// Prefix increment operator. Increments the APInt by one. 168 APInt& APInt::operator++() { 169 if (isSingleWord()) 170 ++U.VAL; 171 else 172 tcIncrement(U.pVal, getNumWords()); 173 return clearUnusedBits(); 174 } 175 176 /// Prefix decrement operator. Decrements the APInt by one. 177 APInt& APInt::operator--() { 178 if (isSingleWord()) 179 --U.VAL; 180 else 181 tcDecrement(U.pVal, getNumWords()); 182 return clearUnusedBits(); 183 } 184 185 /// Adds the RHS APInt to this APInt. 186 /// @returns this, after addition of RHS. 187 /// Addition assignment operator. 188 APInt& APInt::operator+=(const APInt& RHS) { 189 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 190 if (isSingleWord()) 191 U.VAL += RHS.U.VAL; 192 else 193 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 194 return clearUnusedBits(); 195 } 196 197 APInt& APInt::operator+=(uint64_t RHS) { 198 if (isSingleWord()) 199 U.VAL += RHS; 200 else 201 tcAddPart(U.pVal, RHS, getNumWords()); 202 return clearUnusedBits(); 203 } 204 205 /// Subtracts the RHS APInt from this APInt 206 /// @returns this, after subtraction 207 /// Subtraction assignment operator. 208 APInt& APInt::operator-=(const APInt& RHS) { 209 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 210 if (isSingleWord()) 211 U.VAL -= RHS.U.VAL; 212 else 213 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 214 return clearUnusedBits(); 215 } 216 217 APInt& APInt::operator-=(uint64_t RHS) { 218 if (isSingleWord()) 219 U.VAL -= RHS; 220 else 221 tcSubtractPart(U.pVal, RHS, getNumWords()); 222 return clearUnusedBits(); 223 } 224 225 APInt APInt::operator*(const APInt& RHS) const { 226 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 227 if (isSingleWord()) 228 return APInt(BitWidth, U.VAL * RHS.U.VAL); 229 230 APInt Result(getMemory(getNumWords()), getBitWidth()); 231 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 232 Result.clearUnusedBits(); 233 return Result; 234 } 235 236 void APInt::andAssignSlowCase(const APInt &RHS) { 237 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 238 for (size_t i = 0, e = getNumWords(); i != e; ++i) 239 dst[i] &= rhs[i]; 240 } 241 242 void APInt::orAssignSlowCase(const APInt &RHS) { 243 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 244 for (size_t i = 0, e = getNumWords(); i != e; ++i) 245 dst[i] |= rhs[i]; 246 } 247 248 void APInt::xorAssignSlowCase(const APInt &RHS) { 249 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 250 for (size_t i = 0, e = getNumWords(); i != e; ++i) 251 dst[i] ^= rhs[i]; 252 } 253 254 APInt &APInt::operator*=(const APInt &RHS) { 255 *this = *this * RHS; 256 return *this; 257 } 258 259 APInt& APInt::operator*=(uint64_t RHS) { 260 if (isSingleWord()) { 261 U.VAL *= RHS; 262 } else { 263 unsigned NumWords = getNumWords(); 264 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 265 } 266 return clearUnusedBits(); 267 } 268 269 bool APInt::equalSlowCase(const APInt &RHS) const { 270 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 271 } 272 273 int APInt::compare(const APInt& RHS) const { 274 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 275 if (isSingleWord()) 276 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 277 278 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 279 } 280 281 int APInt::compareSigned(const APInt& RHS) const { 282 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 283 if (isSingleWord()) { 284 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 285 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 286 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 287 } 288 289 bool lhsNeg = isNegative(); 290 bool rhsNeg = RHS.isNegative(); 291 292 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 293 if (lhsNeg != rhsNeg) 294 return lhsNeg ? -1 : 1; 295 296 // Otherwise we can just use an unsigned comparison, because even negative 297 // numbers compare correctly this way if both have the same signed-ness. 298 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 299 } 300 301 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 302 unsigned loWord = whichWord(loBit); 303 unsigned hiWord = whichWord(hiBit); 304 305 // Create an initial mask for the low word with zeros below loBit. 306 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 307 308 // If hiBit is not aligned, we need a high mask. 309 unsigned hiShiftAmt = whichBit(hiBit); 310 if (hiShiftAmt != 0) { 311 // Create a high mask with zeros above hiBit. 312 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 313 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 314 // set the bits in hiWord. 315 if (hiWord == loWord) 316 loMask &= hiMask; 317 else 318 U.pVal[hiWord] |= hiMask; 319 } 320 // Apply the mask to the low word. 321 U.pVal[loWord] |= loMask; 322 323 // Fill any words between loWord and hiWord with all ones. 324 for (unsigned word = loWord + 1; word < hiWord; ++word) 325 U.pVal[word] = WORDTYPE_MAX; 326 } 327 328 // Complement a bignum in-place. 329 static void tcComplement(APInt::WordType *dst, unsigned parts) { 330 for (unsigned i = 0; i < parts; i++) 331 dst[i] = ~dst[i]; 332 } 333 334 /// Toggle every bit to its opposite value. 335 void APInt::flipAllBitsSlowCase() { 336 tcComplement(U.pVal, getNumWords()); 337 clearUnusedBits(); 338 } 339 340 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 341 /// equivalent to: 342 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) 343 /// In the slow case, we know the result is large. 344 APInt APInt::concatSlowCase(const APInt &NewLSB) const { 345 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 346 APInt Result = NewLSB.zext(NewWidth); 347 Result.insertBits(*this, NewLSB.getBitWidth()); 348 return Result; 349 } 350 351 /// Toggle a given bit to its opposite value whose position is given 352 /// as "bitPosition". 353 /// Toggles a given bit to its opposite value. 354 void APInt::flipBit(unsigned bitPosition) { 355 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 356 setBitVal(bitPosition, !(*this)[bitPosition]); 357 } 358 359 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 360 unsigned subBitWidth = subBits.getBitWidth(); 361 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); 362 363 // inserting no bits is a noop. 364 if (subBitWidth == 0) 365 return; 366 367 // Insertion is a direct copy. 368 if (subBitWidth == BitWidth) { 369 *this = subBits; 370 return; 371 } 372 373 // Single word result can be done as a direct bitmask. 374 if (isSingleWord()) { 375 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 376 U.VAL &= ~(mask << bitPosition); 377 U.VAL |= (subBits.U.VAL << bitPosition); 378 return; 379 } 380 381 unsigned loBit = whichBit(bitPosition); 382 unsigned loWord = whichWord(bitPosition); 383 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 384 385 // Insertion within a single word can be done as a direct bitmask. 386 if (loWord == hi1Word) { 387 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 388 U.pVal[loWord] &= ~(mask << loBit); 389 U.pVal[loWord] |= (subBits.U.VAL << loBit); 390 return; 391 } 392 393 // Insert on word boundaries. 394 if (loBit == 0) { 395 // Direct copy whole words. 396 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 397 memcpy(U.pVal + loWord, subBits.getRawData(), 398 numWholeSubWords * APINT_WORD_SIZE); 399 400 // Mask+insert remaining bits. 401 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 402 if (remainingBits != 0) { 403 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 404 U.pVal[hi1Word] &= ~mask; 405 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 406 } 407 return; 408 } 409 410 // General case - set/clear individual bits in dst based on src. 411 // TODO - there is scope for optimization here, but at the moment this code 412 // path is barely used so prefer readability over performance. 413 for (unsigned i = 0; i != subBitWidth; ++i) 414 setBitVal(bitPosition + i, subBits[i]); 415 } 416 417 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 418 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 419 subBits &= maskBits; 420 if (isSingleWord()) { 421 U.VAL &= ~(maskBits << bitPosition); 422 U.VAL |= subBits << bitPosition; 423 return; 424 } 425 426 unsigned loBit = whichBit(bitPosition); 427 unsigned loWord = whichWord(bitPosition); 428 unsigned hiWord = whichWord(bitPosition + numBits - 1); 429 if (loWord == hiWord) { 430 U.pVal[loWord] &= ~(maskBits << loBit); 431 U.pVal[loWord] |= subBits << loBit; 432 return; 433 } 434 435 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 436 unsigned wordBits = 8 * sizeof(WordType); 437 U.pVal[loWord] &= ~(maskBits << loBit); 438 U.pVal[loWord] |= subBits << loBit; 439 440 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 441 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 442 } 443 444 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 445 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 446 "Illegal bit extraction"); 447 448 if (isSingleWord()) 449 return APInt(numBits, U.VAL >> bitPosition); 450 451 unsigned loBit = whichBit(bitPosition); 452 unsigned loWord = whichWord(bitPosition); 453 unsigned hiWord = whichWord(bitPosition + numBits - 1); 454 455 // Single word result extracting bits from a single word source. 456 if (loWord == hiWord) 457 return APInt(numBits, U.pVal[loWord] >> loBit); 458 459 // Extracting bits that start on a source word boundary can be done 460 // as a fast memory copy. 461 if (loBit == 0) 462 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 463 464 // General case - shift + copy source words directly into place. 465 APInt Result(numBits, 0); 466 unsigned NumSrcWords = getNumWords(); 467 unsigned NumDstWords = Result.getNumWords(); 468 469 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 470 for (unsigned word = 0; word < NumDstWords; ++word) { 471 uint64_t w0 = U.pVal[loWord + word]; 472 uint64_t w1 = 473 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 474 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 475 } 476 477 return Result.clearUnusedBits(); 478 } 479 480 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 481 unsigned bitPosition) const { 482 assert(numBits > 0 && "Can't extract zero bits"); 483 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 484 "Illegal bit extraction"); 485 assert(numBits <= 64 && "Illegal bit extraction"); 486 487 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 488 if (isSingleWord()) 489 return (U.VAL >> bitPosition) & maskBits; 490 491 unsigned loBit = whichBit(bitPosition); 492 unsigned loWord = whichWord(bitPosition); 493 unsigned hiWord = whichWord(bitPosition + numBits - 1); 494 if (loWord == hiWord) 495 return (U.pVal[loWord] >> loBit) & maskBits; 496 497 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 498 unsigned wordBits = 8 * sizeof(WordType); 499 uint64_t retBits = U.pVal[loWord] >> loBit; 500 retBits |= U.pVal[hiWord] << (wordBits - loBit); 501 retBits &= maskBits; 502 return retBits; 503 } 504 505 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { 506 assert(!Str.empty() && "Invalid string length"); 507 size_t StrLen = Str.size(); 508 509 // Each computation below needs to know if it's negative. 510 unsigned IsNegative = false; 511 if (Str[0] == '-' || Str[0] == '+') { 512 IsNegative = Str[0] == '-'; 513 StrLen--; 514 assert(StrLen && "String is only a sign, needs a value."); 515 } 516 517 // For radixes of power-of-two values, the bits required is accurately and 518 // easily computed. 519 if (Radix == 2) 520 return StrLen + IsNegative; 521 if (Radix == 8) 522 return StrLen * 3 + IsNegative; 523 if (Radix == 16) 524 return StrLen * 4 + IsNegative; 525 526 // Compute a sufficient number of bits that is always large enough but might 527 // be too large. This avoids the assertion in the constructor. This 528 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 529 // bits in that case. 530 if (Radix == 10) 531 return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; 532 533 assert(Radix == 36); 534 return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; 535 } 536 537 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 538 // Compute a sufficient number of bits that is always large enough but might 539 // be too large. 540 unsigned sufficient = getSufficientBitsNeeded(str, radix); 541 542 // For bases 2, 8, and 16, the sufficient number of bits is exact and we can 543 // return the value directly. For bases 10 and 36, we need to do extra work. 544 if (radix == 2 || radix == 8 || radix == 16) 545 return sufficient; 546 547 // This is grossly inefficient but accurate. We could probably do something 548 // with a computation of roughly slen*64/20 and then adjust by the value of 549 // the first few digits. But, I'm not sure how accurate that could be. 550 size_t slen = str.size(); 551 552 // Each computation below needs to know if it's negative. 553 StringRef::iterator p = str.begin(); 554 unsigned isNegative = *p == '-'; 555 if (*p == '-' || *p == '+') { 556 p++; 557 slen--; 558 assert(slen && "String is only a sign, needs a value."); 559 } 560 561 562 // Convert to the actual binary value. 563 APInt tmp(sufficient, StringRef(p, slen), radix); 564 565 // Compute how many bits are required. If the log is infinite, assume we need 566 // just bit. If the log is exact and value is negative, then the value is 567 // MinSignedValue with (log + 1) bits. 568 unsigned log = tmp.logBase2(); 569 if (log == (unsigned)-1) { 570 return isNegative + 1; 571 } else if (isNegative && tmp.isPowerOf2()) { 572 return isNegative + log; 573 } else { 574 return isNegative + log + 1; 575 } 576 } 577 578 hash_code llvm::hash_value(const APInt &Arg) { 579 if (Arg.isSingleWord()) 580 return hash_combine(Arg.BitWidth, Arg.U.VAL); 581 582 return hash_combine( 583 Arg.BitWidth, 584 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 585 } 586 587 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) { 588 return static_cast<unsigned>(hash_value(Key)); 589 } 590 591 bool APInt::isSplat(unsigned SplatSizeInBits) const { 592 assert(getBitWidth() % SplatSizeInBits == 0 && 593 "SplatSizeInBits must divide width!"); 594 // We can check that all parts of an integer are equal by making use of a 595 // little trick: rotate and check if it's still the same value. 596 return *this == rotl(SplatSizeInBits); 597 } 598 599 /// This function returns the high "numBits" bits of this APInt. 600 APInt APInt::getHiBits(unsigned numBits) const { 601 return this->lshr(BitWidth - numBits); 602 } 603 604 /// This function returns the low "numBits" bits of this APInt. 605 APInt APInt::getLoBits(unsigned numBits) const { 606 APInt Result(getLowBitsSet(BitWidth, numBits)); 607 Result &= *this; 608 return Result; 609 } 610 611 /// Return a value containing V broadcasted over NewLen bits. 612 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 613 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 614 615 APInt Val = V.zext(NewLen); 616 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 617 Val |= Val << I; 618 619 return Val; 620 } 621 622 unsigned APInt::countLeadingZerosSlowCase() const { 623 unsigned Count = 0; 624 for (int i = getNumWords()-1; i >= 0; --i) { 625 uint64_t V = U.pVal[i]; 626 if (V == 0) 627 Count += APINT_BITS_PER_WORD; 628 else { 629 Count += llvm::countLeadingZeros(V); 630 break; 631 } 632 } 633 // Adjust for unused bits in the most significant word (they are zero). 634 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 635 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 636 return Count; 637 } 638 639 unsigned APInt::countLeadingOnesSlowCase() const { 640 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 641 unsigned shift; 642 if (!highWordBits) { 643 highWordBits = APINT_BITS_PER_WORD; 644 shift = 0; 645 } else { 646 shift = APINT_BITS_PER_WORD - highWordBits; 647 } 648 int i = getNumWords() - 1; 649 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 650 if (Count == highWordBits) { 651 for (i--; i >= 0; --i) { 652 if (U.pVal[i] == WORDTYPE_MAX) 653 Count += APINT_BITS_PER_WORD; 654 else { 655 Count += llvm::countLeadingOnes(U.pVal[i]); 656 break; 657 } 658 } 659 } 660 return Count; 661 } 662 663 unsigned APInt::countTrailingZerosSlowCase() const { 664 unsigned Count = 0; 665 unsigned i = 0; 666 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 667 Count += APINT_BITS_PER_WORD; 668 if (i < getNumWords()) 669 Count += llvm::countTrailingZeros(U.pVal[i]); 670 return std::min(Count, BitWidth); 671 } 672 673 unsigned APInt::countTrailingOnesSlowCase() const { 674 unsigned Count = 0; 675 unsigned i = 0; 676 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 677 Count += APINT_BITS_PER_WORD; 678 if (i < getNumWords()) 679 Count += llvm::countTrailingOnes(U.pVal[i]); 680 assert(Count <= BitWidth); 681 return Count; 682 } 683 684 unsigned APInt::countPopulationSlowCase() const { 685 unsigned Count = 0; 686 for (unsigned i = 0; i < getNumWords(); ++i) 687 Count += llvm::countPopulation(U.pVal[i]); 688 return Count; 689 } 690 691 bool APInt::intersectsSlowCase(const APInt &RHS) const { 692 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 693 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 694 return true; 695 696 return false; 697 } 698 699 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 700 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 701 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 702 return false; 703 704 return true; 705 } 706 707 APInt APInt::byteSwap() const { 708 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 709 if (BitWidth == 16) 710 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 711 if (BitWidth == 32) 712 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 713 if (BitWidth <= 64) { 714 uint64_t Tmp1 = ByteSwap_64(U.VAL); 715 Tmp1 >>= (64 - BitWidth); 716 return APInt(BitWidth, Tmp1); 717 } 718 719 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 720 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 721 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 722 if (Result.BitWidth != BitWidth) { 723 Result.lshrInPlace(Result.BitWidth - BitWidth); 724 Result.BitWidth = BitWidth; 725 } 726 return Result; 727 } 728 729 APInt APInt::reverseBits() const { 730 switch (BitWidth) { 731 case 64: 732 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 733 case 32: 734 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 735 case 16: 736 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 737 case 8: 738 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 739 case 0: 740 return *this; 741 default: 742 break; 743 } 744 745 APInt Val(*this); 746 APInt Reversed(BitWidth, 0); 747 unsigned S = BitWidth; 748 749 for (; Val != 0; Val.lshrInPlace(1)) { 750 Reversed <<= 1; 751 Reversed |= Val[0]; 752 --S; 753 } 754 755 Reversed <<= S; 756 return Reversed; 757 } 758 759 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 760 // Fast-path a common case. 761 if (A == B) return A; 762 763 // Corner cases: if either operand is zero, the other is the gcd. 764 if (!A) return B; 765 if (!B) return A; 766 767 // Count common powers of 2 and remove all other powers of 2. 768 unsigned Pow2; 769 { 770 unsigned Pow2_A = A.countTrailingZeros(); 771 unsigned Pow2_B = B.countTrailingZeros(); 772 if (Pow2_A > Pow2_B) { 773 A.lshrInPlace(Pow2_A - Pow2_B); 774 Pow2 = Pow2_B; 775 } else if (Pow2_B > Pow2_A) { 776 B.lshrInPlace(Pow2_B - Pow2_A); 777 Pow2 = Pow2_A; 778 } else { 779 Pow2 = Pow2_A; 780 } 781 } 782 783 // Both operands are odd multiples of 2^Pow_2: 784 // 785 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 786 // 787 // This is a modified version of Stein's algorithm, taking advantage of 788 // efficient countTrailingZeros(). 789 while (A != B) { 790 if (A.ugt(B)) { 791 A -= B; 792 A.lshrInPlace(A.countTrailingZeros() - Pow2); 793 } else { 794 B -= A; 795 B.lshrInPlace(B.countTrailingZeros() - Pow2); 796 } 797 } 798 799 return A; 800 } 801 802 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 803 uint64_t I = bit_cast<uint64_t>(Double); 804 805 // Get the sign bit from the highest order bit 806 bool isNeg = I >> 63; 807 808 // Get the 11-bit exponent and adjust for the 1023 bit bias 809 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 810 811 // If the exponent is negative, the value is < 0 so just return 0. 812 if (exp < 0) 813 return APInt(width, 0u); 814 815 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 816 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 817 818 // If the exponent doesn't shift all bits out of the mantissa 819 if (exp < 52) 820 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 821 APInt(width, mantissa >> (52 - exp)); 822 823 // If the client didn't provide enough bits for us to shift the mantissa into 824 // then the result is undefined, just return 0 825 if (width <= exp - 52) 826 return APInt(width, 0); 827 828 // Otherwise, we have to shift the mantissa bits up to the right location 829 APInt Tmp(width, mantissa); 830 Tmp <<= (unsigned)exp - 52; 831 return isNeg ? -Tmp : Tmp; 832 } 833 834 /// This function converts this APInt to a double. 835 /// The layout for double is as following (IEEE Standard 754): 836 /// -------------------------------------- 837 /// | Sign Exponent Fraction Bias | 838 /// |-------------------------------------- | 839 /// | 1[63] 11[62-52] 52[51-00] 1023 | 840 /// -------------------------------------- 841 double APInt::roundToDouble(bool isSigned) const { 842 843 // Handle the simple case where the value is contained in one uint64_t. 844 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 845 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 846 if (isSigned) { 847 int64_t sext = SignExtend64(getWord(0), BitWidth); 848 return double(sext); 849 } else 850 return double(getWord(0)); 851 } 852 853 // Determine if the value is negative. 854 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 855 856 // Construct the absolute value if we're negative. 857 APInt Tmp(isNeg ? -(*this) : (*this)); 858 859 // Figure out how many bits we're using. 860 unsigned n = Tmp.getActiveBits(); 861 862 // The exponent (without bias normalization) is just the number of bits 863 // we are using. Note that the sign bit is gone since we constructed the 864 // absolute value. 865 uint64_t exp = n; 866 867 // Return infinity for exponent overflow 868 if (exp > 1023) { 869 if (!isSigned || !isNeg) 870 return std::numeric_limits<double>::infinity(); 871 else 872 return -std::numeric_limits<double>::infinity(); 873 } 874 exp += 1023; // Increment for 1023 bias 875 876 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 877 // extract the high 52 bits from the correct words in pVal. 878 uint64_t mantissa; 879 unsigned hiWord = whichWord(n-1); 880 if (hiWord == 0) { 881 mantissa = Tmp.U.pVal[0]; 882 if (n > 52) 883 mantissa >>= n - 52; // shift down, we want the top 52 bits. 884 } else { 885 assert(hiWord > 0 && "huh?"); 886 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 887 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 888 mantissa = hibits | lobits; 889 } 890 891 // The leading bit of mantissa is implicit, so get rid of it. 892 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 893 uint64_t I = sign | (exp << 52) | mantissa; 894 return bit_cast<double>(I); 895 } 896 897 // Truncate to new width. 898 APInt APInt::trunc(unsigned width) const { 899 assert(width <= BitWidth && "Invalid APInt Truncate request"); 900 901 if (width <= APINT_BITS_PER_WORD) 902 return APInt(width, getRawData()[0]); 903 904 if (width == BitWidth) 905 return *this; 906 907 APInt Result(getMemory(getNumWords(width)), width); 908 909 // Copy full words. 910 unsigned i; 911 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 912 Result.U.pVal[i] = U.pVal[i]; 913 914 // Truncate and copy any partial word. 915 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 916 if (bits != 0) 917 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 918 919 return Result; 920 } 921 922 // Truncate to new width with unsigned saturation. 923 APInt APInt::truncUSat(unsigned width) const { 924 assert(width <= BitWidth && "Invalid APInt Truncate request"); 925 926 // Can we just losslessly truncate it? 927 if (isIntN(width)) 928 return trunc(width); 929 // If not, then just return the new limit. 930 return APInt::getMaxValue(width); 931 } 932 933 // Truncate to new width with signed saturation. 934 APInt APInt::truncSSat(unsigned width) const { 935 assert(width <= BitWidth && "Invalid APInt Truncate request"); 936 937 // Can we just losslessly truncate it? 938 if (isSignedIntN(width)) 939 return trunc(width); 940 // If not, then just return the new limits. 941 return isNegative() ? APInt::getSignedMinValue(width) 942 : APInt::getSignedMaxValue(width); 943 } 944 945 // Sign extend to a new width. 946 APInt APInt::sext(unsigned Width) const { 947 assert(Width >= BitWidth && "Invalid APInt SignExtend request"); 948 949 if (Width <= APINT_BITS_PER_WORD) 950 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 951 952 if (Width == BitWidth) 953 return *this; 954 955 APInt Result(getMemory(getNumWords(Width)), Width); 956 957 // Copy words. 958 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 959 960 // Sign extend the last word since there may be unused bits in the input. 961 Result.U.pVal[getNumWords() - 1] = 962 SignExtend64(Result.U.pVal[getNumWords() - 1], 963 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 964 965 // Fill with sign bits. 966 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 967 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 968 Result.clearUnusedBits(); 969 return Result; 970 } 971 972 // Zero extend to a new width. 973 APInt APInt::zext(unsigned width) const { 974 assert(width >= BitWidth && "Invalid APInt ZeroExtend request"); 975 976 if (width <= APINT_BITS_PER_WORD) 977 return APInt(width, U.VAL); 978 979 if (width == BitWidth) 980 return *this; 981 982 APInt Result(getMemory(getNumWords(width)), width); 983 984 // Copy words. 985 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 986 987 // Zero remaining words. 988 std::memset(Result.U.pVal + getNumWords(), 0, 989 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 990 991 return Result; 992 } 993 994 APInt APInt::zextOrTrunc(unsigned width) const { 995 if (BitWidth < width) 996 return zext(width); 997 if (BitWidth > width) 998 return trunc(width); 999 return *this; 1000 } 1001 1002 APInt APInt::sextOrTrunc(unsigned width) const { 1003 if (BitWidth < width) 1004 return sext(width); 1005 if (BitWidth > width) 1006 return trunc(width); 1007 return *this; 1008 } 1009 1010 /// Arithmetic right-shift this APInt by shiftAmt. 1011 /// Arithmetic right-shift function. 1012 void APInt::ashrInPlace(const APInt &shiftAmt) { 1013 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1014 } 1015 1016 /// Arithmetic right-shift this APInt by shiftAmt. 1017 /// Arithmetic right-shift function. 1018 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1019 // Don't bother performing a no-op shift. 1020 if (!ShiftAmt) 1021 return; 1022 1023 // Save the original sign bit for later. 1024 bool Negative = isNegative(); 1025 1026 // WordShift is the inter-part shift; BitShift is intra-part shift. 1027 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1028 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1029 1030 unsigned WordsToMove = getNumWords() - WordShift; 1031 if (WordsToMove != 0) { 1032 // Sign extend the last word to fill in the unused bits. 1033 U.pVal[getNumWords() - 1] = SignExtend64( 1034 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1035 1036 // Fastpath for moving by whole words. 1037 if (BitShift == 0) { 1038 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1039 } else { 1040 // Move the words containing significant bits. 1041 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1042 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1043 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1044 1045 // Handle the last word which has no high bits to copy. 1046 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1047 // Sign extend one more time. 1048 U.pVal[WordsToMove - 1] = 1049 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1050 } 1051 } 1052 1053 // Fill in the remainder based on the original sign. 1054 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1055 WordShift * APINT_WORD_SIZE); 1056 clearUnusedBits(); 1057 } 1058 1059 /// Logical right-shift this APInt by shiftAmt. 1060 /// Logical right-shift function. 1061 void APInt::lshrInPlace(const APInt &shiftAmt) { 1062 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1063 } 1064 1065 /// Logical right-shift this APInt by shiftAmt. 1066 /// Logical right-shift function. 1067 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1068 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1069 } 1070 1071 /// Left-shift this APInt by shiftAmt. 1072 /// Left-shift function. 1073 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1074 // It's undefined behavior in C to shift by BitWidth or greater. 1075 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1076 return *this; 1077 } 1078 1079 void APInt::shlSlowCase(unsigned ShiftAmt) { 1080 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1081 clearUnusedBits(); 1082 } 1083 1084 // Calculate the rotate amount modulo the bit width. 1085 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1086 if (LLVM_UNLIKELY(BitWidth == 0)) 1087 return 0; 1088 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1089 APInt rot = rotateAmt; 1090 if (rotBitWidth < BitWidth) { 1091 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1092 // e.g. APInt(1, 32) would give APInt(1, 0). 1093 rot = rotateAmt.zext(BitWidth); 1094 } 1095 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1096 return rot.getLimitedValue(BitWidth); 1097 } 1098 1099 APInt APInt::rotl(const APInt &rotateAmt) const { 1100 return rotl(rotateModulo(BitWidth, rotateAmt)); 1101 } 1102 1103 APInt APInt::rotl(unsigned rotateAmt) const { 1104 if (LLVM_UNLIKELY(BitWidth == 0)) 1105 return *this; 1106 rotateAmt %= BitWidth; 1107 if (rotateAmt == 0) 1108 return *this; 1109 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1110 } 1111 1112 APInt APInt::rotr(const APInt &rotateAmt) const { 1113 return rotr(rotateModulo(BitWidth, rotateAmt)); 1114 } 1115 1116 APInt APInt::rotr(unsigned rotateAmt) const { 1117 if (BitWidth == 0) 1118 return *this; 1119 rotateAmt %= BitWidth; 1120 if (rotateAmt == 0) 1121 return *this; 1122 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1123 } 1124 1125 /// \returns the nearest log base 2 of this APInt. Ties round up. 1126 /// 1127 /// NOTE: When we have a BitWidth of 1, we define: 1128 /// 1129 /// log2(0) = UINT32_MAX 1130 /// log2(1) = 0 1131 /// 1132 /// to get around any mathematical concerns resulting from 1133 /// referencing 2 in a space where 2 does no exist. 1134 unsigned APInt::nearestLogBase2() const { 1135 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1136 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1137 // UINT32_MAX. 1138 if (BitWidth == 1) 1139 return U.VAL - 1; 1140 1141 // Handle the zero case. 1142 if (isZero()) 1143 return UINT32_MAX; 1144 1145 // The non-zero case is handled by computing: 1146 // 1147 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1148 // 1149 // where x[i] is referring to the value of the ith bit of x. 1150 unsigned lg = logBase2(); 1151 return lg + unsigned((*this)[lg - 1]); 1152 } 1153 1154 // Square Root - this method computes and returns the square root of "this". 1155 // Three mechanisms are used for computation. For small values (<= 5 bits), 1156 // a table lookup is done. This gets some performance for common cases. For 1157 // values using less than 52 bits, the value is converted to double and then 1158 // the libc sqrt function is called. The result is rounded and then converted 1159 // back to a uint64_t which is then used to construct the result. Finally, 1160 // the Babylonian method for computing square roots is used. 1161 APInt APInt::sqrt() const { 1162 1163 // Determine the magnitude of the value. 1164 unsigned magnitude = getActiveBits(); 1165 1166 // Use a fast table for some small values. This also gets rid of some 1167 // rounding errors in libc sqrt for small values. 1168 if (magnitude <= 5) { 1169 static const uint8_t results[32] = { 1170 /* 0 */ 0, 1171 /* 1- 2 */ 1, 1, 1172 /* 3- 6 */ 2, 2, 2, 2, 1173 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1174 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1175 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1176 /* 31 */ 6 1177 }; 1178 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1179 } 1180 1181 // If the magnitude of the value fits in less than 52 bits (the precision of 1182 // an IEEE double precision floating point value), then we can use the 1183 // libc sqrt function which will probably use a hardware sqrt computation. 1184 // This should be faster than the algorithm below. 1185 if (magnitude < 52) { 1186 return APInt(BitWidth, 1187 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1188 : U.pVal[0]))))); 1189 } 1190 1191 // Okay, all the short cuts are exhausted. We must compute it. The following 1192 // is a classical Babylonian method for computing the square root. This code 1193 // was adapted to APInt from a wikipedia article on such computations. 1194 // See http://www.wikipedia.org/ and go to the page named 1195 // Calculate_an_integer_square_root. 1196 unsigned nbits = BitWidth, i = 4; 1197 APInt testy(BitWidth, 16); 1198 APInt x_old(BitWidth, 1); 1199 APInt x_new(BitWidth, 0); 1200 APInt two(BitWidth, 2); 1201 1202 // Select a good starting value using binary logarithms. 1203 for (;; i += 2, testy = testy.shl(2)) 1204 if (i >= nbits || this->ule(testy)) { 1205 x_old = x_old.shl(i / 2); 1206 break; 1207 } 1208 1209 // Use the Babylonian method to arrive at the integer square root: 1210 for (;;) { 1211 x_new = (this->udiv(x_old) + x_old).udiv(two); 1212 if (x_old.ule(x_new)) 1213 break; 1214 x_old = x_new; 1215 } 1216 1217 // Make sure we return the closest approximation 1218 // NOTE: The rounding calculation below is correct. It will produce an 1219 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1220 // determined to be a rounding issue with pari/gp as it begins to use a 1221 // floating point representation after 192 bits. There are no discrepancies 1222 // between this algorithm and pari/gp for bit widths < 192 bits. 1223 APInt square(x_old * x_old); 1224 APInt nextSquare((x_old + 1) * (x_old +1)); 1225 if (this->ult(square)) 1226 return x_old; 1227 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1228 APInt midpoint((nextSquare - square).udiv(two)); 1229 APInt offset(*this - square); 1230 if (offset.ult(midpoint)) 1231 return x_old; 1232 return x_old + 1; 1233 } 1234 1235 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1236 /// iterative extended Euclidean algorithm is used to solve for this value, 1237 /// however we simplify it to speed up calculating only the inverse, and take 1238 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1239 /// (potentially large) APInts around. 1240 /// WARNING: a value of '0' may be returned, 1241 /// signifying that no multiplicative inverse exists! 1242 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1243 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1244 1245 // Using the properties listed at the following web page (accessed 06/21/08): 1246 // http://www.numbertheory.org/php/euclid.html 1247 // (especially the properties numbered 3, 4 and 9) it can be proved that 1248 // BitWidth bits suffice for all the computations in the algorithm implemented 1249 // below. More precisely, this number of bits suffice if the multiplicative 1250 // inverse exists, but may not suffice for the general extended Euclidean 1251 // algorithm. 1252 1253 APInt r[2] = { modulo, *this }; 1254 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1255 APInt q(BitWidth, 0); 1256 1257 unsigned i; 1258 for (i = 0; r[i^1] != 0; i ^= 1) { 1259 // An overview of the math without the confusing bit-flipping: 1260 // q = r[i-2] / r[i-1] 1261 // r[i] = r[i-2] % r[i-1] 1262 // t[i] = t[i-2] - t[i-1] * q 1263 udivrem(r[i], r[i^1], q, r[i]); 1264 t[i] -= t[i^1] * q; 1265 } 1266 1267 // If this APInt and the modulo are not coprime, there is no multiplicative 1268 // inverse, so return 0. We check this by looking at the next-to-last 1269 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1270 // algorithm. 1271 if (r[i] != 1) 1272 return APInt(BitWidth, 0); 1273 1274 // The next-to-last t is the multiplicative inverse. However, we are 1275 // interested in a positive inverse. Calculate a positive one from a negative 1276 // one if necessary. A simple addition of the modulo suffices because 1277 // abs(t[i]) is known to be less than *this/2 (see the link above). 1278 if (t[i].isNegative()) 1279 t[i] += modulo; 1280 1281 return std::move(t[i]); 1282 } 1283 1284 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1285 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1286 /// variables here have the same names as in the algorithm. Comments explain 1287 /// the algorithm and any deviation from it. 1288 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1289 unsigned m, unsigned n) { 1290 assert(u && "Must provide dividend"); 1291 assert(v && "Must provide divisor"); 1292 assert(q && "Must provide quotient"); 1293 assert(u != v && u != q && v != q && "Must use different memory"); 1294 assert(n>1 && "n must be > 1"); 1295 1296 // b denotes the base of the number system. In our case b is 2^32. 1297 const uint64_t b = uint64_t(1) << 32; 1298 1299 // The DEBUG macros here tend to be spam in the debug output if you're not 1300 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1301 #ifdef KNUTH_DEBUG 1302 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1303 #else 1304 #define DEBUG_KNUTH(X) do {} while(false) 1305 #endif 1306 1307 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1308 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1309 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1310 DEBUG_KNUTH(dbgs() << " by"); 1311 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1312 DEBUG_KNUTH(dbgs() << '\n'); 1313 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1314 // u and v by d. Note that we have taken Knuth's advice here to use a power 1315 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1316 // 2 allows us to shift instead of multiply and it is easy to determine the 1317 // shift amount from the leading zeros. We are basically normalizing the u 1318 // and v so that its high bits are shifted to the top of v's range without 1319 // overflow. Note that this can require an extra word in u so that u must 1320 // be of length m+n+1. 1321 unsigned shift = countLeadingZeros(v[n-1]); 1322 uint32_t v_carry = 0; 1323 uint32_t u_carry = 0; 1324 if (shift) { 1325 for (unsigned i = 0; i < m+n; ++i) { 1326 uint32_t u_tmp = u[i] >> (32 - shift); 1327 u[i] = (u[i] << shift) | u_carry; 1328 u_carry = u_tmp; 1329 } 1330 for (unsigned i = 0; i < n; ++i) { 1331 uint32_t v_tmp = v[i] >> (32 - shift); 1332 v[i] = (v[i] << shift) | v_carry; 1333 v_carry = v_tmp; 1334 } 1335 } 1336 u[m+n] = u_carry; 1337 1338 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1339 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1340 DEBUG_KNUTH(dbgs() << " by"); 1341 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1342 DEBUG_KNUTH(dbgs() << '\n'); 1343 1344 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1345 int j = m; 1346 do { 1347 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1348 // D3. [Calculate q'.]. 1349 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1350 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1351 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1352 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1353 // on v[n-2] determines at high speed most of the cases in which the trial 1354 // value qp is one too large, and it eliminates all cases where qp is two 1355 // too large. 1356 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1357 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1358 uint64_t qp = dividend / v[n-1]; 1359 uint64_t rp = dividend % v[n-1]; 1360 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1361 qp--; 1362 rp += v[n-1]; 1363 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1364 qp--; 1365 } 1366 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1367 1368 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1369 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1370 // consists of a simple multiplication by a one-place number, combined with 1371 // a subtraction. 1372 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1373 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1374 // true value plus b**(n+1), namely as the b's complement of 1375 // the true value, and a "borrow" to the left should be remembered. 1376 int64_t borrow = 0; 1377 for (unsigned i = 0; i < n; ++i) { 1378 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1379 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1380 u[j+i] = Lo_32(subres); 1381 borrow = Hi_32(p) - Hi_32(subres); 1382 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1383 << ", borrow = " << borrow << '\n'); 1384 } 1385 bool isNeg = u[j+n] < borrow; 1386 u[j+n] -= Lo_32(borrow); 1387 1388 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1389 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1390 DEBUG_KNUTH(dbgs() << '\n'); 1391 1392 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1393 // negative, go to step D6; otherwise go on to step D7. 1394 q[j] = Lo_32(qp); 1395 if (isNeg) { 1396 // D6. [Add back]. The probability that this step is necessary is very 1397 // small, on the order of only 2/b. Make sure that test data accounts for 1398 // this possibility. Decrease q[j] by 1 1399 q[j]--; 1400 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1401 // A carry will occur to the left of u[j+n], and it should be ignored 1402 // since it cancels with the borrow that occurred in D4. 1403 bool carry = false; 1404 for (unsigned i = 0; i < n; i++) { 1405 uint32_t limit = std::min(u[j+i],v[i]); 1406 u[j+i] += v[i] + carry; 1407 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1408 } 1409 u[j+n] += carry; 1410 } 1411 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1412 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1413 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1414 1415 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1416 } while (--j >= 0); 1417 1418 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1419 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1420 DEBUG_KNUTH(dbgs() << '\n'); 1421 1422 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1423 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1424 // compute the remainder (urem uses this). 1425 if (r) { 1426 // The value d is expressed by the "shift" value above since we avoided 1427 // multiplication by d by using a shift left. So, all we have to do is 1428 // shift right here. 1429 if (shift) { 1430 uint32_t carry = 0; 1431 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1432 for (int i = n-1; i >= 0; i--) { 1433 r[i] = (u[i] >> shift) | carry; 1434 carry = u[i] << (32 - shift); 1435 DEBUG_KNUTH(dbgs() << " " << r[i]); 1436 } 1437 } else { 1438 for (int i = n-1; i >= 0; i--) { 1439 r[i] = u[i]; 1440 DEBUG_KNUTH(dbgs() << " " << r[i]); 1441 } 1442 } 1443 DEBUG_KNUTH(dbgs() << '\n'); 1444 } 1445 DEBUG_KNUTH(dbgs() << '\n'); 1446 } 1447 1448 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1449 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1450 assert(lhsWords >= rhsWords && "Fractional result"); 1451 1452 // First, compose the values into an array of 32-bit words instead of 1453 // 64-bit words. This is a necessity of both the "short division" algorithm 1454 // and the Knuth "classical algorithm" which requires there to be native 1455 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1456 // can't use 64-bit operands here because we don't have native results of 1457 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1458 // work on large-endian machines. 1459 unsigned n = rhsWords * 2; 1460 unsigned m = (lhsWords * 2) - n; 1461 1462 // Allocate space for the temporary values we need either on the stack, if 1463 // it will fit, or on the heap if it won't. 1464 uint32_t SPACE[128]; 1465 uint32_t *U = nullptr; 1466 uint32_t *V = nullptr; 1467 uint32_t *Q = nullptr; 1468 uint32_t *R = nullptr; 1469 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1470 U = &SPACE[0]; 1471 V = &SPACE[m+n+1]; 1472 Q = &SPACE[(m+n+1) + n]; 1473 if (Remainder) 1474 R = &SPACE[(m+n+1) + n + (m+n)]; 1475 } else { 1476 U = new uint32_t[m + n + 1]; 1477 V = new uint32_t[n]; 1478 Q = new uint32_t[m+n]; 1479 if (Remainder) 1480 R = new uint32_t[n]; 1481 } 1482 1483 // Initialize the dividend 1484 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1485 for (unsigned i = 0; i < lhsWords; ++i) { 1486 uint64_t tmp = LHS[i]; 1487 U[i * 2] = Lo_32(tmp); 1488 U[i * 2 + 1] = Hi_32(tmp); 1489 } 1490 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1491 1492 // Initialize the divisor 1493 memset(V, 0, (n)*sizeof(uint32_t)); 1494 for (unsigned i = 0; i < rhsWords; ++i) { 1495 uint64_t tmp = RHS[i]; 1496 V[i * 2] = Lo_32(tmp); 1497 V[i * 2 + 1] = Hi_32(tmp); 1498 } 1499 1500 // initialize the quotient and remainder 1501 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1502 if (Remainder) 1503 memset(R, 0, n * sizeof(uint32_t)); 1504 1505 // Now, adjust m and n for the Knuth division. n is the number of words in 1506 // the divisor. m is the number of words by which the dividend exceeds the 1507 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1508 // contain any zero words or the Knuth algorithm fails. 1509 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1510 n--; 1511 m++; 1512 } 1513 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1514 m--; 1515 1516 // If we're left with only a single word for the divisor, Knuth doesn't work 1517 // so we implement the short division algorithm here. This is much simpler 1518 // and faster because we are certain that we can divide a 64-bit quantity 1519 // by a 32-bit quantity at hardware speed and short division is simply a 1520 // series of such operations. This is just like doing short division but we 1521 // are using base 2^32 instead of base 10. 1522 assert(n != 0 && "Divide by zero?"); 1523 if (n == 1) { 1524 uint32_t divisor = V[0]; 1525 uint32_t remainder = 0; 1526 for (int i = m; i >= 0; i--) { 1527 uint64_t partial_dividend = Make_64(remainder, U[i]); 1528 if (partial_dividend == 0) { 1529 Q[i] = 0; 1530 remainder = 0; 1531 } else if (partial_dividend < divisor) { 1532 Q[i] = 0; 1533 remainder = Lo_32(partial_dividend); 1534 } else if (partial_dividend == divisor) { 1535 Q[i] = 1; 1536 remainder = 0; 1537 } else { 1538 Q[i] = Lo_32(partial_dividend / divisor); 1539 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1540 } 1541 } 1542 if (R) 1543 R[0] = remainder; 1544 } else { 1545 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1546 // case n > 1. 1547 KnuthDiv(U, V, Q, R, m, n); 1548 } 1549 1550 // If the caller wants the quotient 1551 if (Quotient) { 1552 for (unsigned i = 0; i < lhsWords; ++i) 1553 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1554 } 1555 1556 // If the caller wants the remainder 1557 if (Remainder) { 1558 for (unsigned i = 0; i < rhsWords; ++i) 1559 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1560 } 1561 1562 // Clean up the memory we allocated. 1563 if (U != &SPACE[0]) { 1564 delete [] U; 1565 delete [] V; 1566 delete [] Q; 1567 delete [] R; 1568 } 1569 } 1570 1571 APInt APInt::udiv(const APInt &RHS) const { 1572 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1573 1574 // First, deal with the easy case 1575 if (isSingleWord()) { 1576 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1577 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1578 } 1579 1580 // Get some facts about the LHS and RHS number of bits and words 1581 unsigned lhsWords = getNumWords(getActiveBits()); 1582 unsigned rhsBits = RHS.getActiveBits(); 1583 unsigned rhsWords = getNumWords(rhsBits); 1584 assert(rhsWords && "Divided by zero???"); 1585 1586 // Deal with some degenerate cases 1587 if (!lhsWords) 1588 // 0 / X ===> 0 1589 return APInt(BitWidth, 0); 1590 if (rhsBits == 1) 1591 // X / 1 ===> X 1592 return *this; 1593 if (lhsWords < rhsWords || this->ult(RHS)) 1594 // X / Y ===> 0, iff X < Y 1595 return APInt(BitWidth, 0); 1596 if (*this == RHS) 1597 // X / X ===> 1 1598 return APInt(BitWidth, 1); 1599 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1600 // All high words are zero, just use native divide 1601 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1602 1603 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1604 APInt Quotient(BitWidth, 0); // to hold result. 1605 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1606 return Quotient; 1607 } 1608 1609 APInt APInt::udiv(uint64_t RHS) const { 1610 assert(RHS != 0 && "Divide by zero?"); 1611 1612 // First, deal with the easy case 1613 if (isSingleWord()) 1614 return APInt(BitWidth, U.VAL / RHS); 1615 1616 // Get some facts about the LHS words. 1617 unsigned lhsWords = getNumWords(getActiveBits()); 1618 1619 // Deal with some degenerate cases 1620 if (!lhsWords) 1621 // 0 / X ===> 0 1622 return APInt(BitWidth, 0); 1623 if (RHS == 1) 1624 // X / 1 ===> X 1625 return *this; 1626 if (this->ult(RHS)) 1627 // X / Y ===> 0, iff X < Y 1628 return APInt(BitWidth, 0); 1629 if (*this == RHS) 1630 // X / X ===> 1 1631 return APInt(BitWidth, 1); 1632 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1633 // All high words are zero, just use native divide 1634 return APInt(BitWidth, this->U.pVal[0] / RHS); 1635 1636 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1637 APInt Quotient(BitWidth, 0); // to hold result. 1638 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1639 return Quotient; 1640 } 1641 1642 APInt APInt::sdiv(const APInt &RHS) const { 1643 if (isNegative()) { 1644 if (RHS.isNegative()) 1645 return (-(*this)).udiv(-RHS); 1646 return -((-(*this)).udiv(RHS)); 1647 } 1648 if (RHS.isNegative()) 1649 return -(this->udiv(-RHS)); 1650 return this->udiv(RHS); 1651 } 1652 1653 APInt APInt::sdiv(int64_t RHS) const { 1654 if (isNegative()) { 1655 if (RHS < 0) 1656 return (-(*this)).udiv(-RHS); 1657 return -((-(*this)).udiv(RHS)); 1658 } 1659 if (RHS < 0) 1660 return -(this->udiv(-RHS)); 1661 return this->udiv(RHS); 1662 } 1663 1664 APInt APInt::urem(const APInt &RHS) const { 1665 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1666 if (isSingleWord()) { 1667 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1668 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1669 } 1670 1671 // Get some facts about the LHS 1672 unsigned lhsWords = getNumWords(getActiveBits()); 1673 1674 // Get some facts about the RHS 1675 unsigned rhsBits = RHS.getActiveBits(); 1676 unsigned rhsWords = getNumWords(rhsBits); 1677 assert(rhsWords && "Performing remainder operation by zero ???"); 1678 1679 // Check the degenerate cases 1680 if (lhsWords == 0) 1681 // 0 % Y ===> 0 1682 return APInt(BitWidth, 0); 1683 if (rhsBits == 1) 1684 // X % 1 ===> 0 1685 return APInt(BitWidth, 0); 1686 if (lhsWords < rhsWords || this->ult(RHS)) 1687 // X % Y ===> X, iff X < Y 1688 return *this; 1689 if (*this == RHS) 1690 // X % X == 0; 1691 return APInt(BitWidth, 0); 1692 if (lhsWords == 1) 1693 // All high words are zero, just use native remainder 1694 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1695 1696 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1697 APInt Remainder(BitWidth, 0); 1698 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1699 return Remainder; 1700 } 1701 1702 uint64_t APInt::urem(uint64_t RHS) const { 1703 assert(RHS != 0 && "Remainder by zero?"); 1704 1705 if (isSingleWord()) 1706 return U.VAL % RHS; 1707 1708 // Get some facts about the LHS 1709 unsigned lhsWords = getNumWords(getActiveBits()); 1710 1711 // Check the degenerate cases 1712 if (lhsWords == 0) 1713 // 0 % Y ===> 0 1714 return 0; 1715 if (RHS == 1) 1716 // X % 1 ===> 0 1717 return 0; 1718 if (this->ult(RHS)) 1719 // X % Y ===> X, iff X < Y 1720 return getZExtValue(); 1721 if (*this == RHS) 1722 // X % X == 0; 1723 return 0; 1724 if (lhsWords == 1) 1725 // All high words are zero, just use native remainder 1726 return U.pVal[0] % RHS; 1727 1728 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1729 uint64_t Remainder; 1730 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1731 return Remainder; 1732 } 1733 1734 APInt APInt::srem(const APInt &RHS) const { 1735 if (isNegative()) { 1736 if (RHS.isNegative()) 1737 return -((-(*this)).urem(-RHS)); 1738 return -((-(*this)).urem(RHS)); 1739 } 1740 if (RHS.isNegative()) 1741 return this->urem(-RHS); 1742 return this->urem(RHS); 1743 } 1744 1745 int64_t APInt::srem(int64_t RHS) const { 1746 if (isNegative()) { 1747 if (RHS < 0) 1748 return -((-(*this)).urem(-RHS)); 1749 return -((-(*this)).urem(RHS)); 1750 } 1751 if (RHS < 0) 1752 return this->urem(-RHS); 1753 return this->urem(RHS); 1754 } 1755 1756 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1757 APInt &Quotient, APInt &Remainder) { 1758 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1759 unsigned BitWidth = LHS.BitWidth; 1760 1761 // First, deal with the easy case 1762 if (LHS.isSingleWord()) { 1763 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1764 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1765 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1766 Quotient = APInt(BitWidth, QuotVal); 1767 Remainder = APInt(BitWidth, RemVal); 1768 return; 1769 } 1770 1771 // Get some size facts about the dividend and divisor 1772 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1773 unsigned rhsBits = RHS.getActiveBits(); 1774 unsigned rhsWords = getNumWords(rhsBits); 1775 assert(rhsWords && "Performing divrem operation by zero ???"); 1776 1777 // Check the degenerate cases 1778 if (lhsWords == 0) { 1779 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1780 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1781 return; 1782 } 1783 1784 if (rhsBits == 1) { 1785 Quotient = LHS; // X / 1 ===> X 1786 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1787 } 1788 1789 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1790 Remainder = LHS; // X % Y ===> X, iff X < Y 1791 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1792 return; 1793 } 1794 1795 if (LHS == RHS) { 1796 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1797 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1798 return; 1799 } 1800 1801 // Make sure there is enough space to hold the results. 1802 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1803 // change the size. This is necessary if Quotient or Remainder is aliased 1804 // with LHS or RHS. 1805 Quotient.reallocate(BitWidth); 1806 Remainder.reallocate(BitWidth); 1807 1808 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1809 // There is only one word to consider so use the native versions. 1810 uint64_t lhsValue = LHS.U.pVal[0]; 1811 uint64_t rhsValue = RHS.U.pVal[0]; 1812 Quotient = lhsValue / rhsValue; 1813 Remainder = lhsValue % rhsValue; 1814 return; 1815 } 1816 1817 // Okay, lets do it the long way 1818 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1819 Remainder.U.pVal); 1820 // Clear the rest of the Quotient and Remainder. 1821 std::memset(Quotient.U.pVal + lhsWords, 0, 1822 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1823 std::memset(Remainder.U.pVal + rhsWords, 0, 1824 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1825 } 1826 1827 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1828 uint64_t &Remainder) { 1829 assert(RHS != 0 && "Divide by zero?"); 1830 unsigned BitWidth = LHS.BitWidth; 1831 1832 // First, deal with the easy case 1833 if (LHS.isSingleWord()) { 1834 uint64_t QuotVal = LHS.U.VAL / RHS; 1835 Remainder = LHS.U.VAL % RHS; 1836 Quotient = APInt(BitWidth, QuotVal); 1837 return; 1838 } 1839 1840 // Get some size facts about the dividend and divisor 1841 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1842 1843 // Check the degenerate cases 1844 if (lhsWords == 0) { 1845 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1846 Remainder = 0; // 0 % Y ===> 0 1847 return; 1848 } 1849 1850 if (RHS == 1) { 1851 Quotient = LHS; // X / 1 ===> X 1852 Remainder = 0; // X % 1 ===> 0 1853 return; 1854 } 1855 1856 if (LHS.ult(RHS)) { 1857 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1858 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1859 return; 1860 } 1861 1862 if (LHS == RHS) { 1863 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1864 Remainder = 0; // X % X ===> 0; 1865 return; 1866 } 1867 1868 // Make sure there is enough space to hold the results. 1869 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1870 // change the size. This is necessary if Quotient is aliased with LHS. 1871 Quotient.reallocate(BitWidth); 1872 1873 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1874 // There is only one word to consider so use the native versions. 1875 uint64_t lhsValue = LHS.U.pVal[0]; 1876 Quotient = lhsValue / RHS; 1877 Remainder = lhsValue % RHS; 1878 return; 1879 } 1880 1881 // Okay, lets do it the long way 1882 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1883 // Clear the rest of the Quotient. 1884 std::memset(Quotient.U.pVal + lhsWords, 0, 1885 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1886 } 1887 1888 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1889 APInt &Quotient, APInt &Remainder) { 1890 if (LHS.isNegative()) { 1891 if (RHS.isNegative()) 1892 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1893 else { 1894 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1895 Quotient.negate(); 1896 } 1897 Remainder.negate(); 1898 } else if (RHS.isNegative()) { 1899 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1900 Quotient.negate(); 1901 } else { 1902 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1903 } 1904 } 1905 1906 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1907 APInt &Quotient, int64_t &Remainder) { 1908 uint64_t R = Remainder; 1909 if (LHS.isNegative()) { 1910 if (RHS < 0) 1911 APInt::udivrem(-LHS, -RHS, Quotient, R); 1912 else { 1913 APInt::udivrem(-LHS, RHS, Quotient, R); 1914 Quotient.negate(); 1915 } 1916 R = -R; 1917 } else if (RHS < 0) { 1918 APInt::udivrem(LHS, -RHS, Quotient, R); 1919 Quotient.negate(); 1920 } else { 1921 APInt::udivrem(LHS, RHS, Quotient, R); 1922 } 1923 Remainder = R; 1924 } 1925 1926 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1927 APInt Res = *this+RHS; 1928 Overflow = isNonNegative() == RHS.isNonNegative() && 1929 Res.isNonNegative() != isNonNegative(); 1930 return Res; 1931 } 1932 1933 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1934 APInt Res = *this+RHS; 1935 Overflow = Res.ult(RHS); 1936 return Res; 1937 } 1938 1939 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1940 APInt Res = *this - RHS; 1941 Overflow = isNonNegative() != RHS.isNonNegative() && 1942 Res.isNonNegative() != isNonNegative(); 1943 return Res; 1944 } 1945 1946 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1947 APInt Res = *this-RHS; 1948 Overflow = Res.ugt(*this); 1949 return Res; 1950 } 1951 1952 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1953 // MININT/-1 --> overflow. 1954 Overflow = isMinSignedValue() && RHS.isAllOnes(); 1955 return sdiv(RHS); 1956 } 1957 1958 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1959 APInt Res = *this * RHS; 1960 1961 if (RHS != 0) 1962 Overflow = Res.sdiv(RHS) != *this || 1963 (isMinSignedValue() && RHS.isAllOnes()); 1964 else 1965 Overflow = false; 1966 return Res; 1967 } 1968 1969 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1970 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { 1971 Overflow = true; 1972 return *this * RHS; 1973 } 1974 1975 APInt Res = lshr(1) * RHS; 1976 Overflow = Res.isNegative(); 1977 Res <<= 1; 1978 if ((*this)[0]) { 1979 Res += RHS; 1980 if (Res.ult(RHS)) 1981 Overflow = true; 1982 } 1983 return Res; 1984 } 1985 1986 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1987 Overflow = ShAmt.uge(getBitWidth()); 1988 if (Overflow) 1989 return APInt(BitWidth, 0); 1990 1991 if (isNonNegative()) // Don't allow sign change. 1992 Overflow = ShAmt.uge(countLeadingZeros()); 1993 else 1994 Overflow = ShAmt.uge(countLeadingOnes()); 1995 1996 return *this << ShAmt; 1997 } 1998 1999 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2000 Overflow = ShAmt.uge(getBitWidth()); 2001 if (Overflow) 2002 return APInt(BitWidth, 0); 2003 2004 Overflow = ShAmt.ugt(countLeadingZeros()); 2005 2006 return *this << ShAmt; 2007 } 2008 2009 APInt APInt::sadd_sat(const APInt &RHS) const { 2010 bool Overflow; 2011 APInt Res = sadd_ov(RHS, Overflow); 2012 if (!Overflow) 2013 return Res; 2014 2015 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2016 : APInt::getSignedMaxValue(BitWidth); 2017 } 2018 2019 APInt APInt::uadd_sat(const APInt &RHS) const { 2020 bool Overflow; 2021 APInt Res = uadd_ov(RHS, Overflow); 2022 if (!Overflow) 2023 return Res; 2024 2025 return APInt::getMaxValue(BitWidth); 2026 } 2027 2028 APInt APInt::ssub_sat(const APInt &RHS) const { 2029 bool Overflow; 2030 APInt Res = ssub_ov(RHS, Overflow); 2031 if (!Overflow) 2032 return Res; 2033 2034 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2035 : APInt::getSignedMaxValue(BitWidth); 2036 } 2037 2038 APInt APInt::usub_sat(const APInt &RHS) const { 2039 bool Overflow; 2040 APInt Res = usub_ov(RHS, Overflow); 2041 if (!Overflow) 2042 return Res; 2043 2044 return APInt(BitWidth, 0); 2045 } 2046 2047 APInt APInt::smul_sat(const APInt &RHS) const { 2048 bool Overflow; 2049 APInt Res = smul_ov(RHS, Overflow); 2050 if (!Overflow) 2051 return Res; 2052 2053 // The result is negative if one and only one of inputs is negative. 2054 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2055 2056 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2057 : APInt::getSignedMaxValue(BitWidth); 2058 } 2059 2060 APInt APInt::umul_sat(const APInt &RHS) const { 2061 bool Overflow; 2062 APInt Res = umul_ov(RHS, Overflow); 2063 if (!Overflow) 2064 return Res; 2065 2066 return APInt::getMaxValue(BitWidth); 2067 } 2068 2069 APInt APInt::sshl_sat(const APInt &RHS) const { 2070 bool Overflow; 2071 APInt Res = sshl_ov(RHS, Overflow); 2072 if (!Overflow) 2073 return Res; 2074 2075 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2076 : APInt::getSignedMaxValue(BitWidth); 2077 } 2078 2079 APInt APInt::ushl_sat(const APInt &RHS) const { 2080 bool Overflow; 2081 APInt Res = ushl_ov(RHS, Overflow); 2082 if (!Overflow) 2083 return Res; 2084 2085 return APInt::getMaxValue(BitWidth); 2086 } 2087 2088 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2089 // Check our assumptions here 2090 assert(!str.empty() && "Invalid string length"); 2091 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2092 radix == 36) && 2093 "Radix should be 2, 8, 10, 16, or 36!"); 2094 2095 StringRef::iterator p = str.begin(); 2096 size_t slen = str.size(); 2097 bool isNeg = *p == '-'; 2098 if (*p == '-' || *p == '+') { 2099 p++; 2100 slen--; 2101 assert(slen && "String is only a sign, needs a value."); 2102 } 2103 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2104 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2105 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2106 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2107 "Insufficient bit width"); 2108 2109 // Allocate memory if needed 2110 if (isSingleWord()) 2111 U.VAL = 0; 2112 else 2113 U.pVal = getClearedMemory(getNumWords()); 2114 2115 // Figure out if we can shift instead of multiply 2116 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2117 2118 // Enter digit traversal loop 2119 for (StringRef::iterator e = str.end(); p != e; ++p) { 2120 unsigned digit = getDigit(*p, radix); 2121 assert(digit < radix && "Invalid character in digit string"); 2122 2123 // Shift or multiply the value by the radix 2124 if (slen > 1) { 2125 if (shift) 2126 *this <<= shift; 2127 else 2128 *this *= radix; 2129 } 2130 2131 // Add in the digit we just interpreted 2132 *this += digit; 2133 } 2134 // If its negative, put it in two's complement form 2135 if (isNeg) 2136 this->negate(); 2137 } 2138 2139 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2140 bool Signed, bool formatAsCLiteral) const { 2141 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2142 Radix == 36) && 2143 "Radix should be 2, 8, 10, 16, or 36!"); 2144 2145 const char *Prefix = ""; 2146 if (formatAsCLiteral) { 2147 switch (Radix) { 2148 case 2: 2149 // Binary literals are a non-standard extension added in gcc 4.3: 2150 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2151 Prefix = "0b"; 2152 break; 2153 case 8: 2154 Prefix = "0"; 2155 break; 2156 case 10: 2157 break; // No prefix 2158 case 16: 2159 Prefix = "0x"; 2160 break; 2161 default: 2162 llvm_unreachable("Invalid radix!"); 2163 } 2164 } 2165 2166 // First, check for a zero value and just short circuit the logic below. 2167 if (isZero()) { 2168 while (*Prefix) { 2169 Str.push_back(*Prefix); 2170 ++Prefix; 2171 }; 2172 Str.push_back('0'); 2173 return; 2174 } 2175 2176 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2177 2178 if (isSingleWord()) { 2179 char Buffer[65]; 2180 char *BufPtr = std::end(Buffer); 2181 2182 uint64_t N; 2183 if (!Signed) { 2184 N = getZExtValue(); 2185 } else { 2186 int64_t I = getSExtValue(); 2187 if (I >= 0) { 2188 N = I; 2189 } else { 2190 Str.push_back('-'); 2191 N = -(uint64_t)I; 2192 } 2193 } 2194 2195 while (*Prefix) { 2196 Str.push_back(*Prefix); 2197 ++Prefix; 2198 }; 2199 2200 while (N) { 2201 *--BufPtr = Digits[N % Radix]; 2202 N /= Radix; 2203 } 2204 Str.append(BufPtr, std::end(Buffer)); 2205 return; 2206 } 2207 2208 APInt Tmp(*this); 2209 2210 if (Signed && isNegative()) { 2211 // They want to print the signed version and it is a negative value 2212 // Flip the bits and add one to turn it into the equivalent positive 2213 // value and put a '-' in the result. 2214 Tmp.negate(); 2215 Str.push_back('-'); 2216 } 2217 2218 while (*Prefix) { 2219 Str.push_back(*Prefix); 2220 ++Prefix; 2221 }; 2222 2223 // We insert the digits backward, then reverse them to get the right order. 2224 unsigned StartDig = Str.size(); 2225 2226 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2227 // because the number of bits per digit (1, 3 and 4 respectively) divides 2228 // equally. We just shift until the value is zero. 2229 if (Radix == 2 || Radix == 8 || Radix == 16) { 2230 // Just shift tmp right for each digit width until it becomes zero 2231 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2232 unsigned MaskAmt = Radix - 1; 2233 2234 while (Tmp.getBoolValue()) { 2235 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2236 Str.push_back(Digits[Digit]); 2237 Tmp.lshrInPlace(ShiftAmt); 2238 } 2239 } else { 2240 while (Tmp.getBoolValue()) { 2241 uint64_t Digit; 2242 udivrem(Tmp, Radix, Tmp, Digit); 2243 assert(Digit < Radix && "divide failed"); 2244 Str.push_back(Digits[Digit]); 2245 } 2246 } 2247 2248 // Reverse the digits before returning. 2249 std::reverse(Str.begin()+StartDig, Str.end()); 2250 } 2251 2252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2253 LLVM_DUMP_METHOD void APInt::dump() const { 2254 SmallString<40> S, U; 2255 this->toStringUnsigned(U); 2256 this->toStringSigned(S); 2257 dbgs() << "APInt(" << BitWidth << "b, " 2258 << U << "u " << S << "s)\n"; 2259 } 2260 #endif 2261 2262 void APInt::print(raw_ostream &OS, bool isSigned) const { 2263 SmallString<40> S; 2264 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2265 OS << S; 2266 } 2267 2268 // This implements a variety of operations on a representation of 2269 // arbitrary precision, two's-complement, bignum integer values. 2270 2271 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2272 // and unrestricting assumption. 2273 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2274 "Part width must be divisible by 2!"); 2275 2276 // Returns the integer part with the least significant BITS set. 2277 // BITS cannot be zero. 2278 static inline APInt::WordType lowBitMask(unsigned bits) { 2279 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2280 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2281 } 2282 2283 /// Returns the value of the lower half of PART. 2284 static inline APInt::WordType lowHalf(APInt::WordType part) { 2285 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2286 } 2287 2288 /// Returns the value of the upper half of PART. 2289 static inline APInt::WordType highHalf(APInt::WordType part) { 2290 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2291 } 2292 2293 /// Returns the bit number of the most significant set bit of a part. 2294 /// If the input number has no bits set -1U is returned. 2295 static unsigned partMSB(APInt::WordType value) { 2296 return findLastSet(value, ZB_Max); 2297 } 2298 2299 /// Returns the bit number of the least significant set bit of a part. If the 2300 /// input number has no bits set -1U is returned. 2301 static unsigned partLSB(APInt::WordType value) { 2302 return findFirstSet(value, ZB_Max); 2303 } 2304 2305 /// Sets the least significant part of a bignum to the input value, and zeroes 2306 /// out higher parts. 2307 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2308 assert(parts > 0); 2309 dst[0] = part; 2310 for (unsigned i = 1; i < parts; i++) 2311 dst[i] = 0; 2312 } 2313 2314 /// Assign one bignum to another. 2315 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2316 for (unsigned i = 0; i < parts; i++) 2317 dst[i] = src[i]; 2318 } 2319 2320 /// Returns true if a bignum is zero, false otherwise. 2321 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2322 for (unsigned i = 0; i < parts; i++) 2323 if (src[i]) 2324 return false; 2325 2326 return true; 2327 } 2328 2329 /// Extract the given bit of a bignum; returns 0 or 1. 2330 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2331 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2332 } 2333 2334 /// Set the given bit of a bignum. 2335 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2336 parts[whichWord(bit)] |= maskBit(bit); 2337 } 2338 2339 /// Clears the given bit of a bignum. 2340 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2341 parts[whichWord(bit)] &= ~maskBit(bit); 2342 } 2343 2344 /// Returns the bit number of the least significant set bit of a number. If the 2345 /// input number has no bits set -1U is returned. 2346 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2347 for (unsigned i = 0; i < n; i++) { 2348 if (parts[i] != 0) { 2349 unsigned lsb = partLSB(parts[i]); 2350 return lsb + i * APINT_BITS_PER_WORD; 2351 } 2352 } 2353 2354 return -1U; 2355 } 2356 2357 /// Returns the bit number of the most significant set bit of a number. 2358 /// If the input number has no bits set -1U is returned. 2359 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2360 do { 2361 --n; 2362 2363 if (parts[n] != 0) { 2364 unsigned msb = partMSB(parts[n]); 2365 2366 return msb + n * APINT_BITS_PER_WORD; 2367 } 2368 } while (n); 2369 2370 return -1U; 2371 } 2372 2373 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2374 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2375 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2376 /// */ 2377 void 2378 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2379 unsigned srcBits, unsigned srcLSB) { 2380 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2381 assert(dstParts <= dstCount); 2382 2383 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2384 tcAssign(dst, src + firstSrcPart, dstParts); 2385 2386 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2387 tcShiftRight(dst, dstParts, shift); 2388 2389 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2390 // in DST. If this is less that srcBits, append the rest, else 2391 // clear the high bits. 2392 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2393 if (n < srcBits) { 2394 WordType mask = lowBitMask (srcBits - n); 2395 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2396 << n % APINT_BITS_PER_WORD); 2397 } else if (n > srcBits) { 2398 if (srcBits % APINT_BITS_PER_WORD) 2399 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2400 } 2401 2402 // Clear high parts. 2403 while (dstParts < dstCount) 2404 dst[dstParts++] = 0; 2405 } 2406 2407 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2408 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2409 WordType c, unsigned parts) { 2410 assert(c <= 1); 2411 2412 for (unsigned i = 0; i < parts; i++) { 2413 WordType l = dst[i]; 2414 if (c) { 2415 dst[i] += rhs[i] + 1; 2416 c = (dst[i] <= l); 2417 } else { 2418 dst[i] += rhs[i]; 2419 c = (dst[i] < l); 2420 } 2421 } 2422 2423 return c; 2424 } 2425 2426 /// This function adds a single "word" integer, src, to the multiple 2427 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2428 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2429 /// @returns the carry of the addition. 2430 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2431 unsigned parts) { 2432 for (unsigned i = 0; i < parts; ++i) { 2433 dst[i] += src; 2434 if (dst[i] >= src) 2435 return 0; // No need to carry so exit early. 2436 src = 1; // Carry one to next digit. 2437 } 2438 2439 return 1; 2440 } 2441 2442 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2443 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2444 WordType c, unsigned parts) { 2445 assert(c <= 1); 2446 2447 for (unsigned i = 0; i < parts; i++) { 2448 WordType l = dst[i]; 2449 if (c) { 2450 dst[i] -= rhs[i] + 1; 2451 c = (dst[i] >= l); 2452 } else { 2453 dst[i] -= rhs[i]; 2454 c = (dst[i] > l); 2455 } 2456 } 2457 2458 return c; 2459 } 2460 2461 /// This function subtracts a single "word" (64-bit word), src, from 2462 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2463 /// no further borrowing is needed or it runs out of "words" in dst. The result 2464 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2465 /// exhausted. In other words, if src > dst then this function returns 1, 2466 /// otherwise 0. 2467 /// @returns the borrow out of the subtraction 2468 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2469 unsigned parts) { 2470 for (unsigned i = 0; i < parts; ++i) { 2471 WordType Dst = dst[i]; 2472 dst[i] -= src; 2473 if (src <= Dst) 2474 return 0; // No need to borrow so exit early. 2475 src = 1; // We have to "borrow 1" from next "word" 2476 } 2477 2478 return 1; 2479 } 2480 2481 /// Negate a bignum in-place. 2482 void APInt::tcNegate(WordType *dst, unsigned parts) { 2483 tcComplement(dst, parts); 2484 tcIncrement(dst, parts); 2485 } 2486 2487 /// DST += SRC * MULTIPLIER + CARRY if add is true 2488 /// DST = SRC * MULTIPLIER + CARRY if add is false 2489 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2490 /// they must start at the same point, i.e. DST == SRC. 2491 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2492 /// returned. Otherwise DST is filled with the least significant 2493 /// DSTPARTS parts of the result, and if all of the omitted higher 2494 /// parts were zero return zero, otherwise overflow occurred and 2495 /// return one. 2496 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2497 WordType multiplier, WordType carry, 2498 unsigned srcParts, unsigned dstParts, 2499 bool add) { 2500 // Otherwise our writes of DST kill our later reads of SRC. 2501 assert(dst <= src || dst >= src + srcParts); 2502 assert(dstParts <= srcParts + 1); 2503 2504 // N loops; minimum of dstParts and srcParts. 2505 unsigned n = std::min(dstParts, srcParts); 2506 2507 for (unsigned i = 0; i < n; i++) { 2508 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2509 // This cannot overflow, because: 2510 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2511 // which is less than n^2. 2512 WordType srcPart = src[i]; 2513 WordType low, mid, high; 2514 if (multiplier == 0 || srcPart == 0) { 2515 low = carry; 2516 high = 0; 2517 } else { 2518 low = lowHalf(srcPart) * lowHalf(multiplier); 2519 high = highHalf(srcPart) * highHalf(multiplier); 2520 2521 mid = lowHalf(srcPart) * highHalf(multiplier); 2522 high += highHalf(mid); 2523 mid <<= APINT_BITS_PER_WORD / 2; 2524 if (low + mid < low) 2525 high++; 2526 low += mid; 2527 2528 mid = highHalf(srcPart) * lowHalf(multiplier); 2529 high += highHalf(mid); 2530 mid <<= APINT_BITS_PER_WORD / 2; 2531 if (low + mid < low) 2532 high++; 2533 low += mid; 2534 2535 // Now add carry. 2536 if (low + carry < low) 2537 high++; 2538 low += carry; 2539 } 2540 2541 if (add) { 2542 // And now DST[i], and store the new low part there. 2543 if (low + dst[i] < low) 2544 high++; 2545 dst[i] += low; 2546 } else 2547 dst[i] = low; 2548 2549 carry = high; 2550 } 2551 2552 if (srcParts < dstParts) { 2553 // Full multiplication, there is no overflow. 2554 assert(srcParts + 1 == dstParts); 2555 dst[srcParts] = carry; 2556 return 0; 2557 } 2558 2559 // We overflowed if there is carry. 2560 if (carry) 2561 return 1; 2562 2563 // We would overflow if any significant unwritten parts would be 2564 // non-zero. This is true if any remaining src parts are non-zero 2565 // and the multiplier is non-zero. 2566 if (multiplier) 2567 for (unsigned i = dstParts; i < srcParts; i++) 2568 if (src[i]) 2569 return 1; 2570 2571 // We fitted in the narrow destination. 2572 return 0; 2573 } 2574 2575 /// DST = LHS * RHS, where DST has the same width as the operands and 2576 /// is filled with the least significant parts of the result. Returns 2577 /// one if overflow occurred, otherwise zero. DST must be disjoint 2578 /// from both operands. 2579 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2580 const WordType *rhs, unsigned parts) { 2581 assert(dst != lhs && dst != rhs); 2582 2583 int overflow = 0; 2584 tcSet(dst, 0, parts); 2585 2586 for (unsigned i = 0; i < parts; i++) 2587 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2588 parts - i, true); 2589 2590 return overflow; 2591 } 2592 2593 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2594 /// operands. No overflow occurs. DST must be disjoint from both operands. 2595 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2596 const WordType *rhs, unsigned lhsParts, 2597 unsigned rhsParts) { 2598 // Put the narrower number on the LHS for less loops below. 2599 if (lhsParts > rhsParts) 2600 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2601 2602 assert(dst != lhs && dst != rhs); 2603 2604 tcSet(dst, 0, rhsParts); 2605 2606 for (unsigned i = 0; i < lhsParts; i++) 2607 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2608 } 2609 2610 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2611 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2612 // set REMAINDER to the remainder, return zero. i.e. 2613 // 2614 // OLD_LHS = RHS * LHS + REMAINDER 2615 // 2616 // SCRATCH is a bignum of the same size as the operands and result for 2617 // use by the routine; its contents need not be initialized and are 2618 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2619 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2620 WordType *remainder, WordType *srhs, 2621 unsigned parts) { 2622 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2623 2624 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2625 if (shiftCount == 0) 2626 return true; 2627 2628 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2629 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2630 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2631 2632 tcAssign(srhs, rhs, parts); 2633 tcShiftLeft(srhs, parts, shiftCount); 2634 tcAssign(remainder, lhs, parts); 2635 tcSet(lhs, 0, parts); 2636 2637 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2638 // total. 2639 for (;;) { 2640 int compare = tcCompare(remainder, srhs, parts); 2641 if (compare >= 0) { 2642 tcSubtract(remainder, srhs, 0, parts); 2643 lhs[n] |= mask; 2644 } 2645 2646 if (shiftCount == 0) 2647 break; 2648 shiftCount--; 2649 tcShiftRight(srhs, parts, 1); 2650 if ((mask >>= 1) == 0) { 2651 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2652 n--; 2653 } 2654 } 2655 2656 return false; 2657 } 2658 2659 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2660 /// no restrictions on Count. 2661 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2662 // Don't bother performing a no-op shift. 2663 if (!Count) 2664 return; 2665 2666 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2667 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2668 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2669 2670 // Fastpath for moving by whole words. 2671 if (BitShift == 0) { 2672 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2673 } else { 2674 while (Words-- > WordShift) { 2675 Dst[Words] = Dst[Words - WordShift] << BitShift; 2676 if (Words > WordShift) 2677 Dst[Words] |= 2678 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2679 } 2680 } 2681 2682 // Fill in the remainder with 0s. 2683 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2684 } 2685 2686 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2687 /// are no restrictions on Count. 2688 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2689 // Don't bother performing a no-op shift. 2690 if (!Count) 2691 return; 2692 2693 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2694 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2695 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2696 2697 unsigned WordsToMove = Words - WordShift; 2698 // Fastpath for moving by whole words. 2699 if (BitShift == 0) { 2700 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2701 } else { 2702 for (unsigned i = 0; i != WordsToMove; ++i) { 2703 Dst[i] = Dst[i + WordShift] >> BitShift; 2704 if (i + 1 != WordsToMove) 2705 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2706 } 2707 } 2708 2709 // Fill in the remainder with 0s. 2710 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2711 } 2712 2713 // Comparison (unsigned) of two bignums. 2714 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2715 unsigned parts) { 2716 while (parts) { 2717 parts--; 2718 if (lhs[parts] != rhs[parts]) 2719 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2720 } 2721 2722 return 0; 2723 } 2724 2725 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2726 APInt::Rounding RM) { 2727 // Currently udivrem always rounds down. 2728 switch (RM) { 2729 case APInt::Rounding::DOWN: 2730 case APInt::Rounding::TOWARD_ZERO: 2731 return A.udiv(B); 2732 case APInt::Rounding::UP: { 2733 APInt Quo, Rem; 2734 APInt::udivrem(A, B, Quo, Rem); 2735 if (Rem.isZero()) 2736 return Quo; 2737 return Quo + 1; 2738 } 2739 } 2740 llvm_unreachable("Unknown APInt::Rounding enum"); 2741 } 2742 2743 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2744 APInt::Rounding RM) { 2745 switch (RM) { 2746 case APInt::Rounding::DOWN: 2747 case APInt::Rounding::UP: { 2748 APInt Quo, Rem; 2749 APInt::sdivrem(A, B, Quo, Rem); 2750 if (Rem.isZero()) 2751 return Quo; 2752 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2753 // We want to check whether the non-integer part of the mathematical value 2754 // is negative or not. If the non-integer part is negative, we need to round 2755 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2756 // already rounded down. 2757 if (RM == APInt::Rounding::DOWN) { 2758 if (Rem.isNegative() != B.isNegative()) 2759 return Quo - 1; 2760 return Quo; 2761 } 2762 if (Rem.isNegative() != B.isNegative()) 2763 return Quo; 2764 return Quo + 1; 2765 } 2766 // Currently sdiv rounds towards zero. 2767 case APInt::Rounding::TOWARD_ZERO: 2768 return A.sdiv(B); 2769 } 2770 llvm_unreachable("Unknown APInt::Rounding enum"); 2771 } 2772 2773 Optional<APInt> 2774 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2775 unsigned RangeWidth) { 2776 unsigned CoeffWidth = A.getBitWidth(); 2777 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2778 assert(RangeWidth <= CoeffWidth && 2779 "Value range width should be less than coefficient width"); 2780 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2781 2782 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2783 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2784 2785 // Identify 0 as a (non)solution immediately. 2786 if (C.sextOrTrunc(RangeWidth).isZero()) { 2787 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2788 return APInt(CoeffWidth, 0); 2789 } 2790 2791 // The result of APInt arithmetic has the same bit width as the operands, 2792 // so it can actually lose high bits. A product of two n-bit integers needs 2793 // 2n-1 bits to represent the full value. 2794 // The operation done below (on quadratic coefficients) that can produce 2795 // the largest value is the evaluation of the equation during bisection, 2796 // which needs 3 times the bitwidth of the coefficient, so the total number 2797 // of required bits is 3n. 2798 // 2799 // The purpose of this extension is to simulate the set Z of all integers, 2800 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2801 // and negative numbers (not so much in a modulo arithmetic). The method 2802 // used to solve the equation is based on the standard formula for real 2803 // numbers, and uses the concepts of "positive" and "negative" with their 2804 // usual meanings. 2805 CoeffWidth *= 3; 2806 A = A.sext(CoeffWidth); 2807 B = B.sext(CoeffWidth); 2808 C = C.sext(CoeffWidth); 2809 2810 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2811 // the bit width has increased. 2812 if (A.isNegative()) { 2813 A.negate(); 2814 B.negate(); 2815 C.negate(); 2816 } 2817 2818 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2819 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2820 // and R = 2^BitWidth. 2821 // Since we're trying not only to find exact solutions, but also values 2822 // that "wrap around", such a set will always have a solution, i.e. an x 2823 // that satisfies at least one of the equations, or such that |q(x)| 2824 // exceeds kR, while |q(x-1)| for the same k does not. 2825 // 2826 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2827 // positive solution n (in the above sense), and also such that the n 2828 // will be the least among all solutions corresponding to k = 0, 1, ... 2829 // (more precisely, the least element in the set 2830 // { n(k) | k is such that a solution n(k) exists }). 2831 // 2832 // Consider the parabola (over real numbers) that corresponds to the 2833 // quadratic equation. Since A > 0, the arms of the parabola will point 2834 // up. Picking different values of k will shift it up and down by R. 2835 // 2836 // We want to shift the parabola in such a way as to reduce the problem 2837 // of solving q(x) = kR to solving shifted_q(x) = 0. 2838 // (The interesting solutions are the ceilings of the real number 2839 // solutions.) 2840 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2841 APInt TwoA = 2 * A; 2842 APInt SqrB = B * B; 2843 bool PickLow; 2844 2845 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2846 assert(A.isStrictlyPositive()); 2847 APInt T = V.abs().urem(A); 2848 if (T.isZero()) 2849 return V; 2850 return V.isNegative() ? V+T : V+(A-T); 2851 }; 2852 2853 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2854 // iff B is positive. 2855 if (B.isNonNegative()) { 2856 // If B >= 0, the vertex it at a negative location (or at 0), so in 2857 // order to have a non-negative solution we need to pick k that makes 2858 // C-kR negative. To satisfy all the requirements for the solution 2859 // that we are looking for, it needs to be closest to 0 of all k. 2860 C = C.srem(R); 2861 if (C.isStrictlyPositive()) 2862 C -= R; 2863 // Pick the greater solution. 2864 PickLow = false; 2865 } else { 2866 // If B < 0, the vertex is at a positive location. For any solution 2867 // to exist, the discriminant must be non-negative. This means that 2868 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2869 // lower bound on values of k: kR >= C - B^2/4A. 2870 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2871 // Round LowkR up (towards +inf) to the nearest kR. 2872 LowkR = RoundUp(LowkR, R); 2873 2874 // If there exists k meeting the condition above, and such that 2875 // C-kR > 0, there will be two positive real number solutions of 2876 // q(x) = kR. Out of all such values of k, pick the one that makes 2877 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2878 // In other words, find maximum k such that LowkR <= kR < C. 2879 if (C.sgt(LowkR)) { 2880 // If LowkR < C, then such a k is guaranteed to exist because 2881 // LowkR itself is a multiple of R. 2882 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2883 // Pick the smaller solution. 2884 PickLow = true; 2885 } else { 2886 // If C-kR < 0 for all potential k's, it means that one solution 2887 // will be negative, while the other will be positive. The positive 2888 // solution will shift towards 0 if the parabola is moved up. 2889 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2890 // to 0, or in other words, out of all parabolas that have solutions, 2891 // pick the one that is the farthest "up"). 2892 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2893 C -= LowkR; 2894 // Pick the greater solution. 2895 PickLow = false; 2896 } 2897 } 2898 2899 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2900 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2901 2902 APInt D = SqrB - 4*A*C; 2903 assert(D.isNonNegative() && "Negative discriminant"); 2904 APInt SQ = D.sqrt(); 2905 2906 APInt Q = SQ * SQ; 2907 bool InexactSQ = Q != D; 2908 // The calculated SQ may actually be greater than the exact (non-integer) 2909 // value. If that's the case, decrement SQ to get a value that is lower. 2910 if (Q.sgt(D)) 2911 SQ -= 1; 2912 2913 APInt X; 2914 APInt Rem; 2915 2916 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2917 // When using the quadratic formula directly, the calculated low root 2918 // may be greater than the exact one, since we would be subtracting SQ. 2919 // To make sure that the calculated root is not greater than the exact 2920 // one, subtract SQ+1 when calculating the low root (for inexact value 2921 // of SQ). 2922 if (PickLow) 2923 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2924 else 2925 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2926 2927 // The updated coefficients should be such that the (exact) solution is 2928 // positive. Since APInt division rounds towards 0, the calculated one 2929 // can be 0, but cannot be negative. 2930 assert(X.isNonNegative() && "Solution should be non-negative"); 2931 2932 if (!InexactSQ && Rem.isZero()) { 2933 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2934 return X; 2935 } 2936 2937 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2938 // The exact value of the square root of D should be between SQ and SQ+1. 2939 // This implies that the solution should be between that corresponding to 2940 // SQ (i.e. X) and that corresponding to SQ+1. 2941 // 2942 // The calculated X cannot be greater than the exact (real) solution. 2943 // Actually it must be strictly less than the exact solution, while 2944 // X+1 will be greater than or equal to it. 2945 2946 APInt VX = (A*X + B)*X + C; 2947 APInt VY = VX + TwoA*X + A + B; 2948 bool SignChange = 2949 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 2950 // If the sign did not change between X and X+1, X is not a valid solution. 2951 // This could happen when the actual (exact) roots don't have an integer 2952 // between them, so they would both be contained between X and X+1. 2953 if (!SignChange) { 2954 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2955 return None; 2956 } 2957 2958 X += 1; 2959 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2960 return X; 2961 } 2962 2963 Optional<unsigned> 2964 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2965 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2966 if (A == B) 2967 return llvm::None; 2968 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); 2969 } 2970 2971 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth, 2972 bool MatchAllBits) { 2973 unsigned OldBitWidth = A.getBitWidth(); 2974 assert((((OldBitWidth % NewBitWidth) == 0) || 2975 ((NewBitWidth % OldBitWidth) == 0)) && 2976 "One size should be a multiple of the other one. " 2977 "Can't do fractional scaling."); 2978 2979 // Check for matching bitwidths. 2980 if (OldBitWidth == NewBitWidth) 2981 return A; 2982 2983 APInt NewA = APInt::getZero(NewBitWidth); 2984 2985 // Check for null input. 2986 if (A.isZero()) 2987 return NewA; 2988 2989 if (NewBitWidth > OldBitWidth) { 2990 // Repeat bits. 2991 unsigned Scale = NewBitWidth / OldBitWidth; 2992 for (unsigned i = 0; i != OldBitWidth; ++i) 2993 if (A[i]) 2994 NewA.setBits(i * Scale, (i + 1) * Scale); 2995 } else { 2996 unsigned Scale = OldBitWidth / NewBitWidth; 2997 for (unsigned i = 0; i != NewBitWidth; ++i) { 2998 if (MatchAllBits) { 2999 if (A.extractBits(Scale, i * Scale).isAllOnes()) 3000 NewA.setBit(i); 3001 } else { 3002 if (!A.extractBits(Scale, i * Scale).isZero()) 3003 NewA.setBit(i); 3004 } 3005 } 3006 } 3007 3008 return NewA; 3009 } 3010 3011 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 3012 /// with the integer held in IntVal. 3013 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 3014 unsigned StoreBytes) { 3015 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 3016 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 3017 3018 if (sys::IsLittleEndianHost) { 3019 // Little-endian host - the source is ordered from LSB to MSB. Order the 3020 // destination from LSB to MSB: Do a straight copy. 3021 memcpy(Dst, Src, StoreBytes); 3022 } else { 3023 // Big-endian host - the source is an array of 64 bit words ordered from 3024 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 3025 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 3026 while (StoreBytes > sizeof(uint64_t)) { 3027 StoreBytes -= sizeof(uint64_t); 3028 // May not be aligned so use memcpy. 3029 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 3030 Src += sizeof(uint64_t); 3031 } 3032 3033 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 3034 } 3035 } 3036 3037 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 3038 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 3039 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 3040 unsigned LoadBytes) { 3041 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 3042 uint8_t *Dst = reinterpret_cast<uint8_t *>( 3043 const_cast<uint64_t *>(IntVal.getRawData())); 3044 3045 if (sys::IsLittleEndianHost) 3046 // Little-endian host - the destination must be ordered from LSB to MSB. 3047 // The source is ordered from LSB to MSB: Do a straight copy. 3048 memcpy(Dst, Src, LoadBytes); 3049 else { 3050 // Big-endian - the destination is an array of 64 bit words ordered from 3051 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 3052 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 3053 // a word. 3054 while (LoadBytes > sizeof(uint64_t)) { 3055 LoadBytes -= sizeof(uint64_t); 3056 // May not be aligned so use memcpy. 3057 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 3058 Dst += sizeof(uint64_t); 3059 } 3060 3061 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3062 } 3063 } 3064