1 //===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing profiling data for clang's 10 // instrumentation based PGO and coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProfWriter.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/IR/ProfileSummary.h" 18 #include "llvm/ProfileData/InstrProf.h" 19 #include "llvm/ProfileData/MemProf.h" 20 #include "llvm/ProfileData/ProfileCommon.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/Error.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/OnDiskHashTable.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <cstdint> 28 #include <memory> 29 #include <string> 30 #include <tuple> 31 #include <utility> 32 #include <vector> 33 34 using namespace llvm; 35 36 // A struct to define how the data stream should be patched. For Indexed 37 // profiling, only uint64_t data type is needed. 38 struct PatchItem { 39 uint64_t Pos; // Where to patch. 40 uint64_t *D; // Pointer to an array of source data. 41 int N; // Number of elements in \c D array. 42 }; 43 44 namespace llvm { 45 46 // A wrapper class to abstract writer stream with support of bytes 47 // back patching. 48 class ProfOStream { 49 public: 50 ProfOStream(raw_fd_ostream &FD) 51 : IsFDOStream(true), OS(FD), LE(FD, support::little) {} 52 ProfOStream(raw_string_ostream &STR) 53 : IsFDOStream(false), OS(STR), LE(STR, support::little) {} 54 55 uint64_t tell() { return OS.tell(); } 56 void write(uint64_t V) { LE.write<uint64_t>(V); } 57 void writeByte(uint8_t V) { LE.write<uint8_t>(V); } 58 59 // \c patch can only be called when all data is written and flushed. 60 // For raw_string_ostream, the patch is done on the target string 61 // directly and it won't be reflected in the stream's internal buffer. 62 void patch(PatchItem *P, int NItems) { 63 using namespace support; 64 65 if (IsFDOStream) { 66 raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS); 67 const uint64_t LastPos = FDOStream.tell(); 68 for (int K = 0; K < NItems; K++) { 69 FDOStream.seek(P[K].Pos); 70 for (int I = 0; I < P[K].N; I++) 71 write(P[K].D[I]); 72 } 73 // Reset the stream to the last position after patching so that users 74 // don't accidentally overwrite data. This makes it consistent with 75 // the string stream below which replaces the data directly. 76 FDOStream.seek(LastPos); 77 } else { 78 raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS); 79 std::string &Data = SOStream.str(); // with flush 80 for (int K = 0; K < NItems; K++) { 81 for (int I = 0; I < P[K].N; I++) { 82 uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]); 83 Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t), 84 (const char *)&Bytes, sizeof(uint64_t)); 85 } 86 } 87 } 88 } 89 90 // If \c OS is an instance of \c raw_fd_ostream, this field will be 91 // true. Otherwise, \c OS will be an raw_string_ostream. 92 bool IsFDOStream; 93 raw_ostream &OS; 94 support::endian::Writer LE; 95 }; 96 97 class InstrProfRecordWriterTrait { 98 public: 99 using key_type = StringRef; 100 using key_type_ref = StringRef; 101 102 using data_type = const InstrProfWriter::ProfilingData *const; 103 using data_type_ref = const InstrProfWriter::ProfilingData *const; 104 105 using hash_value_type = uint64_t; 106 using offset_type = uint64_t; 107 108 support::endianness ValueProfDataEndianness = support::little; 109 InstrProfSummaryBuilder *SummaryBuilder; 110 InstrProfSummaryBuilder *CSSummaryBuilder; 111 112 InstrProfRecordWriterTrait() = default; 113 114 static hash_value_type ComputeHash(key_type_ref K) { 115 return IndexedInstrProf::ComputeHash(K); 116 } 117 118 static std::pair<offset_type, offset_type> 119 EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { 120 using namespace support; 121 122 endian::Writer LE(Out, little); 123 124 offset_type N = K.size(); 125 LE.write<offset_type>(N); 126 127 offset_type M = 0; 128 for (const auto &ProfileData : *V) { 129 const InstrProfRecord &ProfRecord = ProfileData.second; 130 M += sizeof(uint64_t); // The function hash 131 M += sizeof(uint64_t); // The size of the Counts vector 132 M += ProfRecord.Counts.size() * sizeof(uint64_t); 133 134 // Value data 135 M += ValueProfData::getSize(ProfileData.second); 136 } 137 LE.write<offset_type>(M); 138 139 return std::make_pair(N, M); 140 } 141 142 void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) { 143 Out.write(K.data(), N); 144 } 145 146 void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) { 147 using namespace support; 148 149 endian::Writer LE(Out, little); 150 for (const auto &ProfileData : *V) { 151 const InstrProfRecord &ProfRecord = ProfileData.second; 152 if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first)) 153 CSSummaryBuilder->addRecord(ProfRecord); 154 else 155 SummaryBuilder->addRecord(ProfRecord); 156 157 LE.write<uint64_t>(ProfileData.first); // Function hash 158 LE.write<uint64_t>(ProfRecord.Counts.size()); 159 for (uint64_t I : ProfRecord.Counts) 160 LE.write<uint64_t>(I); 161 162 // Write value data 163 std::unique_ptr<ValueProfData> VDataPtr = 164 ValueProfData::serializeFrom(ProfileData.second); 165 uint32_t S = VDataPtr->getSize(); 166 VDataPtr->swapBytesFromHost(ValueProfDataEndianness); 167 Out.write((const char *)VDataPtr.get(), S); 168 } 169 } 170 }; 171 172 } // end namespace llvm 173 174 InstrProfWriter::InstrProfWriter(bool Sparse) 175 : Sparse(Sparse), InfoObj(new InstrProfRecordWriterTrait()) {} 176 177 InstrProfWriter::~InstrProfWriter() { delete InfoObj; } 178 179 // Internal interface for testing purpose only. 180 void InstrProfWriter::setValueProfDataEndianness( 181 support::endianness Endianness) { 182 InfoObj->ValueProfDataEndianness = Endianness; 183 } 184 185 void InstrProfWriter::setOutputSparse(bool Sparse) { 186 this->Sparse = Sparse; 187 } 188 189 void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight, 190 function_ref<void(Error)> Warn) { 191 auto Name = I.Name; 192 auto Hash = I.Hash; 193 addRecord(Name, Hash, std::move(I), Weight, Warn); 194 } 195 196 void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other, 197 OverlapStats &Overlap, 198 OverlapStats &FuncLevelOverlap, 199 const OverlapFuncFilters &FuncFilter) { 200 auto Name = Other.Name; 201 auto Hash = Other.Hash; 202 Other.accumulateCounts(FuncLevelOverlap.Test); 203 if (FunctionData.find(Name) == FunctionData.end()) { 204 Overlap.addOneUnique(FuncLevelOverlap.Test); 205 return; 206 } 207 if (FuncLevelOverlap.Test.CountSum < 1.0f) { 208 Overlap.Overlap.NumEntries += 1; 209 return; 210 } 211 auto &ProfileDataMap = FunctionData[Name]; 212 bool NewFunc; 213 ProfilingData::iterator Where; 214 std::tie(Where, NewFunc) = 215 ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); 216 if (NewFunc) { 217 Overlap.addOneMismatch(FuncLevelOverlap.Test); 218 return; 219 } 220 InstrProfRecord &Dest = Where->second; 221 222 uint64_t ValueCutoff = FuncFilter.ValueCutoff; 223 if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter)) 224 ValueCutoff = 0; 225 226 Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff); 227 } 228 229 void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash, 230 InstrProfRecord &&I, uint64_t Weight, 231 function_ref<void(Error)> Warn) { 232 auto &ProfileDataMap = FunctionData[Name]; 233 234 bool NewFunc; 235 ProfilingData::iterator Where; 236 std::tie(Where, NewFunc) = 237 ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); 238 InstrProfRecord &Dest = Where->second; 239 240 auto MapWarn = [&](instrprof_error E) { 241 Warn(make_error<InstrProfError>(E)); 242 }; 243 244 if (NewFunc) { 245 // We've never seen a function with this name and hash, add it. 246 Dest = std::move(I); 247 if (Weight > 1) 248 Dest.scale(Weight, 1, MapWarn); 249 } else { 250 // We're updating a function we've seen before. 251 Dest.merge(I, Weight, MapWarn); 252 } 253 254 Dest.sortValueData(); 255 } 256 257 void InstrProfWriter::addMemProfRecord( 258 const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) { 259 auto Result = MemProfRecordData.insert({Id, Record}); 260 // If we inserted a new record then we are done. 261 if (Result.second) { 262 return; 263 } 264 memprof::IndexedMemProfRecord &Existing = Result.first->second; 265 Existing.merge(Record); 266 } 267 268 bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id, 269 const memprof::Frame &Frame, 270 function_ref<void(Error)> Warn) { 271 auto Result = MemProfFrameData.insert({Id, Frame}); 272 // If a mapping already exists for the current frame id and it does not 273 // match the new mapping provided then reset the existing contents and bail 274 // out. We don't support the merging of memprof data whose Frame -> Id 275 // mapping across profiles is inconsistent. 276 if (!Result.second && Result.first->second != Frame) { 277 Warn(make_error<InstrProfError>(instrprof_error::malformed, 278 "frame to id mapping mismatch")); 279 return false; 280 } 281 return true; 282 } 283 284 void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) { 285 llvm::append_range(BinaryIds, BIs); 286 } 287 288 void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW, 289 function_ref<void(Error)> Warn) { 290 for (auto &I : IPW.FunctionData) 291 for (auto &Func : I.getValue()) 292 addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn); 293 294 BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size()); 295 for (auto &I : IPW.BinaryIds) 296 addBinaryIds(I); 297 298 MemProfFrameData.reserve(IPW.MemProfFrameData.size()); 299 for (auto &I : IPW.MemProfFrameData) { 300 // If we weren't able to add the frame mappings then it doesn't make sense 301 // to try to merge the records from this profile. 302 if (!addMemProfFrame(I.first, I.second, Warn)) 303 return; 304 } 305 306 MemProfRecordData.reserve(IPW.MemProfRecordData.size()); 307 for (auto &I : IPW.MemProfRecordData) { 308 addMemProfRecord(I.first, I.second); 309 } 310 } 311 312 bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) { 313 if (!Sparse) 314 return true; 315 for (const auto &Func : PD) { 316 const InstrProfRecord &IPR = Func.second; 317 if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; })) 318 return true; 319 } 320 return false; 321 } 322 323 static void setSummary(IndexedInstrProf::Summary *TheSummary, 324 ProfileSummary &PS) { 325 using namespace IndexedInstrProf; 326 327 const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary(); 328 TheSummary->NumSummaryFields = Summary::NumKinds; 329 TheSummary->NumCutoffEntries = Res.size(); 330 TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount()); 331 TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount()); 332 TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount()); 333 TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount()); 334 TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts()); 335 TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions()); 336 for (unsigned I = 0; I < Res.size(); I++) 337 TheSummary->setEntry(I, Res[I]); 338 } 339 340 Error InstrProfWriter::writeImpl(ProfOStream &OS) { 341 using namespace IndexedInstrProf; 342 using namespace support; 343 344 OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator; 345 346 InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs); 347 InfoObj->SummaryBuilder = &ISB; 348 InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs); 349 InfoObj->CSSummaryBuilder = &CSISB; 350 351 // Populate the hash table generator. 352 for (const auto &I : FunctionData) 353 if (shouldEncodeData(I.getValue())) 354 Generator.insert(I.getKey(), &I.getValue()); 355 356 // Write the header. 357 IndexedInstrProf::Header Header; 358 Header.Magic = IndexedInstrProf::Magic; 359 Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion; 360 if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation)) 361 Header.Version |= VARIANT_MASK_IR_PROF; 362 if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) 363 Header.Version |= VARIANT_MASK_CSIR_PROF; 364 if (static_cast<bool>(ProfileKind & 365 InstrProfKind::FunctionEntryInstrumentation)) 366 Header.Version |= VARIANT_MASK_INSTR_ENTRY; 367 if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage)) 368 Header.Version |= VARIANT_MASK_BYTE_COVERAGE; 369 if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly)) 370 Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY; 371 if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) 372 Header.Version |= VARIANT_MASK_MEMPROF; 373 374 Header.Unused = 0; 375 Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType); 376 Header.HashOffset = 0; 377 Header.MemProfOffset = 0; 378 Header.BinaryIdOffset = 0; 379 int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); 380 381 // Only write out all the fields except 'HashOffset', 'MemProfOffset' and 382 // 'BinaryIdOffset'. We need to remember the offset of these fields to allow 383 // back patching later. 384 for (int I = 0; I < N - 3; I++) 385 OS.write(reinterpret_cast<uint64_t *>(&Header)[I]); 386 387 // Save the location of Header.HashOffset field in \c OS. 388 uint64_t HashTableStartFieldOffset = OS.tell(); 389 // Reserve the space for HashOffset field. 390 OS.write(0); 391 392 // Save the location of MemProf profile data. This is stored in two parts as 393 // the schema and as a separate on-disk chained hashtable. 394 uint64_t MemProfSectionOffset = OS.tell(); 395 // Reserve space for the MemProf table field to be patched later if this 396 // profile contains memory profile information. 397 OS.write(0); 398 399 // Save the location of binary ids section. 400 uint64_t BinaryIdSectionOffset = OS.tell(); 401 // Reserve space for the BinaryIdOffset field to be patched later if this 402 // profile contains binary ids. 403 OS.write(0); 404 405 // Reserve space to write profile summary data. 406 uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size(); 407 uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries); 408 // Remember the summary offset. 409 uint64_t SummaryOffset = OS.tell(); 410 for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++) 411 OS.write(0); 412 uint64_t CSSummaryOffset = 0; 413 uint64_t CSSummarySize = 0; 414 if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) { 415 CSSummaryOffset = OS.tell(); 416 CSSummarySize = SummarySize / sizeof(uint64_t); 417 for (unsigned I = 0; I < CSSummarySize; I++) 418 OS.write(0); 419 } 420 421 // Write the hash table. 422 uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj); 423 424 // Write the MemProf profile data if we have it. This includes a simple schema 425 // with the format described below followed by the hashtable: 426 // uint64_t RecordTableOffset = RecordTableGenerator.Emit 427 // uint64_t FramePayloadOffset = Stream offset before emitting the frame table 428 // uint64_t FrameTableOffset = FrameTableGenerator.Emit 429 // uint64_t Num schema entries 430 // uint64_t Schema entry 0 431 // uint64_t Schema entry 1 432 // .... 433 // uint64_t Schema entry N - 1 434 // OnDiskChainedHashTable MemProfRecordData 435 // OnDiskChainedHashTable MemProfFrameData 436 uint64_t MemProfSectionStart = 0; 437 if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) { 438 MemProfSectionStart = OS.tell(); 439 OS.write(0ULL); // Reserve space for the memprof record table offset. 440 OS.write(0ULL); // Reserve space for the memprof frame payload offset. 441 OS.write(0ULL); // Reserve space for the memprof frame table offset. 442 443 auto Schema = memprof::PortableMemInfoBlock::getSchema(); 444 OS.write(static_cast<uint64_t>(Schema.size())); 445 for (const auto Id : Schema) { 446 OS.write(static_cast<uint64_t>(Id)); 447 } 448 449 auto RecordWriter = std::make_unique<memprof::RecordWriterTrait>(); 450 RecordWriter->Schema = &Schema; 451 OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait> 452 RecordTableGenerator; 453 for (auto &I : MemProfRecordData) { 454 // Insert the key (func hash) and value (memprof record). 455 RecordTableGenerator.insert(I.first, I.second); 456 } 457 458 uint64_t RecordTableOffset = 459 RecordTableGenerator.Emit(OS.OS, *RecordWriter); 460 461 uint64_t FramePayloadOffset = OS.tell(); 462 463 auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>(); 464 OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait> 465 FrameTableGenerator; 466 for (auto &I : MemProfFrameData) { 467 // Insert the key (frame id) and value (frame contents). 468 FrameTableGenerator.insert(I.first, I.second); 469 } 470 471 uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter); 472 473 PatchItem PatchItems[] = { 474 {MemProfSectionStart, &RecordTableOffset, 1}, 475 {MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1}, 476 {MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1}, 477 }; 478 OS.patch(PatchItems, 3); 479 } 480 481 // BinaryIdSection has two parts: 482 // 1. uint64_t BinaryIdsSectionSize 483 // 2. list of binary ids that consist of: 484 // a. uint64_t BinaryIdLength 485 // b. uint8_t BinaryIdData 486 // c. uint8_t Padding (if necessary) 487 uint64_t BinaryIdSectionStart = OS.tell(); 488 // Calculate size of binary section. 489 uint64_t BinaryIdsSectionSize = 0; 490 491 // Remove duplicate binary ids. 492 llvm::sort(BinaryIds); 493 BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()), 494 BinaryIds.end()); 495 496 for (auto BI : BinaryIds) { 497 // Increment by binary id length data type size. 498 BinaryIdsSectionSize += sizeof(uint64_t); 499 // Increment by binary id data length, aligned to 8 bytes. 500 BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t)); 501 } 502 // Write binary ids section size. 503 OS.write(BinaryIdsSectionSize); 504 505 for (auto BI : BinaryIds) { 506 uint64_t BILen = BI.size(); 507 // Write binary id length. 508 OS.write(BILen); 509 // Write binary id data. 510 for (unsigned K = 0; K < BILen; K++) 511 OS.writeByte(BI[K]); 512 // Write padding if necessary. 513 uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen; 514 for (unsigned K = 0; K < PaddingSize; K++) 515 OS.writeByte(0); 516 } 517 518 // Allocate space for data to be serialized out. 519 std::unique_ptr<IndexedInstrProf::Summary> TheSummary = 520 IndexedInstrProf::allocSummary(SummarySize); 521 // Compute the Summary and copy the data to the data 522 // structure to be serialized out (to disk or buffer). 523 std::unique_ptr<ProfileSummary> PS = ISB.getSummary(); 524 setSummary(TheSummary.get(), *PS); 525 InfoObj->SummaryBuilder = nullptr; 526 527 // For Context Sensitive summary. 528 std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr; 529 if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) { 530 TheCSSummary = IndexedInstrProf::allocSummary(SummarySize); 531 std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary(); 532 setSummary(TheCSSummary.get(), *CSPS); 533 } 534 InfoObj->CSSummaryBuilder = nullptr; 535 536 // Now do the final patch: 537 PatchItem PatchItems[] = { 538 // Patch the Header.HashOffset field. 539 {HashTableStartFieldOffset, &HashTableStart, 1}, 540 // Patch the Header.MemProfOffset (=0 for profiles without MemProf 541 // data). 542 {MemProfSectionOffset, &MemProfSectionStart, 1}, 543 // Patch the Header.BinaryIdSectionOffset. 544 {BinaryIdSectionOffset, &BinaryIdSectionStart, 1}, 545 // Patch the summary data. 546 {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()), 547 (int)(SummarySize / sizeof(uint64_t))}, 548 {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()), 549 (int)CSSummarySize}}; 550 551 OS.patch(PatchItems, std::size(PatchItems)); 552 553 for (const auto &I : FunctionData) 554 for (const auto &F : I.getValue()) 555 if (Error E = validateRecord(F.second)) 556 return E; 557 558 return Error::success(); 559 } 560 561 Error InstrProfWriter::write(raw_fd_ostream &OS) { 562 // Write the hash table. 563 ProfOStream POS(OS); 564 return writeImpl(POS); 565 } 566 567 std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() { 568 std::string Data; 569 raw_string_ostream OS(Data); 570 ProfOStream POS(OS); 571 // Write the hash table. 572 if (Error E = writeImpl(POS)) 573 return nullptr; 574 // Return this in an aligned memory buffer. 575 return MemoryBuffer::getMemBufferCopy(Data); 576 } 577 578 static const char *ValueProfKindStr[] = { 579 #define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator, 580 #include "llvm/ProfileData/InstrProfData.inc" 581 }; 582 583 Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) { 584 for (uint32_t VK = 0; VK <= IPVK_Last; VK++) { 585 uint32_t NS = Func.getNumValueSites(VK); 586 if (!NS) 587 continue; 588 for (uint32_t S = 0; S < NS; S++) { 589 uint32_t ND = Func.getNumValueDataForSite(VK, S); 590 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S); 591 DenseSet<uint64_t> SeenValues; 592 for (uint32_t I = 0; I < ND; I++) 593 if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second) 594 return make_error<InstrProfError>(instrprof_error::invalid_prof); 595 } 596 } 597 598 return Error::success(); 599 } 600 601 void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash, 602 const InstrProfRecord &Func, 603 InstrProfSymtab &Symtab, 604 raw_fd_ostream &OS) { 605 OS << Name << "\n"; 606 OS << "# Func Hash:\n" << Hash << "\n"; 607 OS << "# Num Counters:\n" << Func.Counts.size() << "\n"; 608 OS << "# Counter Values:\n"; 609 for (uint64_t Count : Func.Counts) 610 OS << Count << "\n"; 611 612 uint32_t NumValueKinds = Func.getNumValueKinds(); 613 if (!NumValueKinds) { 614 OS << "\n"; 615 return; 616 } 617 618 OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n"; 619 for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) { 620 uint32_t NS = Func.getNumValueSites(VK); 621 if (!NS) 622 continue; 623 OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n"; 624 OS << "# NumValueSites:\n" << NS << "\n"; 625 for (uint32_t S = 0; S < NS; S++) { 626 uint32_t ND = Func.getNumValueDataForSite(VK, S); 627 OS << ND << "\n"; 628 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S); 629 for (uint32_t I = 0; I < ND; I++) { 630 if (VK == IPVK_IndirectCallTarget) 631 OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":" 632 << VD[I].Count << "\n"; 633 else 634 OS << VD[I].Value << ":" << VD[I].Count << "\n"; 635 } 636 } 637 } 638 639 OS << "\n"; 640 } 641 642 Error InstrProfWriter::writeText(raw_fd_ostream &OS) { 643 // Check CS first since it implies an IR level profile. 644 if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) 645 OS << "# CSIR level Instrumentation Flag\n:csir\n"; 646 else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation)) 647 OS << "# IR level Instrumentation Flag\n:ir\n"; 648 649 if (static_cast<bool>(ProfileKind & 650 InstrProfKind::FunctionEntryInstrumentation)) 651 OS << "# Always instrument the function entry block\n:entry_first\n"; 652 InstrProfSymtab Symtab; 653 654 using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>; 655 using RecordType = std::pair<StringRef, FuncPair>; 656 SmallVector<RecordType, 4> OrderedFuncData; 657 658 for (const auto &I : FunctionData) { 659 if (shouldEncodeData(I.getValue())) { 660 if (Error E = Symtab.addFuncName(I.getKey())) 661 return E; 662 for (const auto &Func : I.getValue()) 663 OrderedFuncData.push_back(std::make_pair(I.getKey(), Func)); 664 } 665 } 666 667 llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) { 668 return std::tie(A.first, A.second.first) < 669 std::tie(B.first, B.second.first); 670 }); 671 672 for (const auto &record : OrderedFuncData) { 673 const StringRef &Name = record.first; 674 const FuncPair &Func = record.second; 675 writeRecordInText(Name, Func.first, Func.second, Symtab, OS); 676 } 677 678 for (const auto &record : OrderedFuncData) { 679 const FuncPair &Func = record.second; 680 if (Error E = validateRecord(Func.second)) 681 return E; 682 } 683 684 return Error::success(); 685 } 686