1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/BinaryFormat/Wasm.h" 15 #include "llvm/BinaryFormat/WasmTraits.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/MC/MCAsmBackend.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCAssembler.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCExpr.h" 22 #include "llvm/MC/MCFixupKindInfo.h" 23 #include "llvm/MC/MCObjectWriter.h" 24 #include "llvm/MC/MCSectionWasm.h" 25 #include "llvm/MC/MCSymbolWasm.h" 26 #include "llvm/MC/MCValue.h" 27 #include "llvm/MC/MCWasmObjectWriter.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/EndianStream.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/LEB128.h" 33 #include <vector> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "mc" 38 39 namespace { 40 41 // When we create the indirect function table we start at 1, so that there is 42 // and empty slot at 0 and therefore calling a null function pointer will trap. 43 static const uint32_t InitialTableOffset = 1; 44 45 // For patching purposes, we need to remember where each section starts, both 46 // for patching up the section size field, and for patching up references to 47 // locations within the section. 48 struct SectionBookkeeping { 49 // Where the size of the section is written. 50 uint64_t SizeOffset; 51 // Where the section header ends (without custom section name). 52 uint64_t PayloadOffset; 53 // Where the contents of the section starts. 54 uint64_t ContentsOffset; 55 uint32_t Index; 56 }; 57 58 // A wasm data segment. A wasm binary contains only a single data section 59 // but that can contain many segments, each with their own virtual location 60 // in memory. Each MCSection data created by llvm is modeled as its own 61 // wasm data segment. 62 struct WasmDataSegment { 63 MCSectionWasm *Section; 64 StringRef Name; 65 uint32_t InitFlags; 66 uint64_t Offset; 67 uint32_t Alignment; 68 uint32_t LinkingFlags; 69 SmallVector<char, 4> Data; 70 }; 71 72 // A wasm function to be written into the function section. 73 struct WasmFunction { 74 uint32_t SigIndex; 75 MCSection *Section; 76 }; 77 78 // A wasm global to be written into the global section. 79 struct WasmGlobal { 80 wasm::WasmGlobalType Type; 81 uint64_t InitialValue; 82 }; 83 84 // Information about a single item which is part of a COMDAT. For each data 85 // segment or function which is in the COMDAT, there is a corresponding 86 // WasmComdatEntry. 87 struct WasmComdatEntry { 88 unsigned Kind; 89 uint32_t Index; 90 }; 91 92 // Information about a single relocation. 93 struct WasmRelocationEntry { 94 uint64_t Offset; // Where is the relocation. 95 const MCSymbolWasm *Symbol; // The symbol to relocate with. 96 int64_t Addend; // A value to add to the symbol. 97 unsigned Type; // The type of the relocation. 98 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 99 100 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 101 int64_t Addend, unsigned Type, 102 const MCSectionWasm *FixupSection) 103 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 104 FixupSection(FixupSection) {} 105 106 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 107 108 void print(raw_ostream &Out) const { 109 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 110 << ", Sym=" << *Symbol << ", Addend=" << Addend 111 << ", FixupSection=" << FixupSection->getName(); 112 } 113 114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 115 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 116 #endif 117 }; 118 119 static const uint32_t InvalidIndex = -1; 120 121 struct WasmCustomSection { 122 123 StringRef Name; 124 MCSectionWasm *Section; 125 126 uint32_t OutputContentsOffset = 0; 127 uint32_t OutputIndex = InvalidIndex; 128 129 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 130 : Name(Name), Section(Section) {} 131 }; 132 133 #if !defined(NDEBUG) 134 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 135 Rel.print(OS); 136 return OS; 137 } 138 #endif 139 140 // Write Value as an (unsigned) LEB value at offset Offset in Stream, padded 141 // to allow patching. 142 template <typename T, int W> 143 void writePatchableULEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { 144 uint8_t Buffer[W]; 145 unsigned SizeLen = encodeULEB128(Value, Buffer, W); 146 assert(SizeLen == W); 147 Stream.pwrite((char *)Buffer, SizeLen, Offset); 148 } 149 150 // Write Value as an signed LEB value at offset Offset in Stream, padded 151 // to allow patching. 152 template <typename T, int W> 153 void writePatchableSLEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { 154 uint8_t Buffer[W]; 155 unsigned SizeLen = encodeSLEB128(Value, Buffer, W); 156 assert(SizeLen == W); 157 Stream.pwrite((char *)Buffer, SizeLen, Offset); 158 } 159 160 static void writePatchableU32(raw_pwrite_stream &Stream, uint32_t Value, 161 uint64_t Offset) { 162 writePatchableULEB<uint32_t, 5>(Stream, Value, Offset); 163 } 164 165 static void writePatchableS32(raw_pwrite_stream &Stream, int32_t Value, 166 uint64_t Offset) { 167 writePatchableSLEB<int32_t, 5>(Stream, Value, Offset); 168 } 169 170 static void writePatchableU64(raw_pwrite_stream &Stream, uint64_t Value, 171 uint64_t Offset) { 172 writePatchableSLEB<uint64_t, 10>(Stream, Value, Offset); 173 } 174 175 static void writePatchableS64(raw_pwrite_stream &Stream, int64_t Value, 176 uint64_t Offset) { 177 writePatchableSLEB<int64_t, 10>(Stream, Value, Offset); 178 } 179 180 // Write Value as a plain integer value at offset Offset in Stream. 181 static void patchI32(raw_pwrite_stream &Stream, uint32_t Value, 182 uint64_t Offset) { 183 uint8_t Buffer[4]; 184 support::endian::write32le(Buffer, Value); 185 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 186 } 187 188 static void patchI64(raw_pwrite_stream &Stream, uint64_t Value, 189 uint64_t Offset) { 190 uint8_t Buffer[8]; 191 support::endian::write64le(Buffer, Value); 192 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 193 } 194 195 bool isDwoSection(const MCSection &Sec) { 196 return Sec.getName().ends_with(".dwo"); 197 } 198 199 class WasmObjectWriter : public MCObjectWriter { 200 support::endian::Writer *W = nullptr; 201 202 /// The target specific Wasm writer instance. 203 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 204 205 // Relocations for fixing up references in the code section. 206 std::vector<WasmRelocationEntry> CodeRelocations; 207 // Relocations for fixing up references in the data section. 208 std::vector<WasmRelocationEntry> DataRelocations; 209 210 // Index values to use for fixing up call_indirect type indices. 211 // Maps function symbols to the index of the type of the function 212 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 213 // Maps function symbols to the table element index space. Used 214 // for TABLE_INDEX relocation types (i.e. address taken functions). 215 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 216 // Maps function/global/table symbols to the 217 // function/global/table/tag/section index space. 218 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 219 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 220 // Maps data symbols to the Wasm segment and offset/size with the segment. 221 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 222 223 // Stores output data (index, relocations, content offset) for custom 224 // section. 225 std::vector<WasmCustomSection> CustomSections; 226 std::unique_ptr<WasmCustomSection> ProducersSection; 227 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 228 // Relocations for fixing up references in the custom sections. 229 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 230 CustomSectionsRelocations; 231 232 // Map from section to defining function symbol. 233 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 234 235 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 236 SmallVector<wasm::WasmSignature, 4> Signatures; 237 SmallVector<WasmDataSegment, 4> DataSegments; 238 unsigned NumFunctionImports = 0; 239 unsigned NumGlobalImports = 0; 240 unsigned NumTableImports = 0; 241 unsigned NumTagImports = 0; 242 uint32_t SectionCount = 0; 243 244 enum class DwoMode { 245 AllSections, 246 NonDwoOnly, 247 DwoOnly, 248 }; 249 bool IsSplitDwarf = false; 250 raw_pwrite_stream *OS = nullptr; 251 raw_pwrite_stream *DwoOS = nullptr; 252 253 // TargetObjectWriter wranppers. 254 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 255 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 256 257 void startSection(SectionBookkeeping &Section, unsigned SectionId); 258 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 259 void endSection(SectionBookkeeping &Section); 260 261 public: 262 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 263 raw_pwrite_stream &OS_) 264 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 265 266 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 267 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 268 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 269 DwoOS(&DwoOS_) {} 270 271 private: 272 void reset() override { 273 CodeRelocations.clear(); 274 DataRelocations.clear(); 275 TypeIndices.clear(); 276 WasmIndices.clear(); 277 GOTIndices.clear(); 278 TableIndices.clear(); 279 DataLocations.clear(); 280 CustomSections.clear(); 281 ProducersSection.reset(); 282 TargetFeaturesSection.reset(); 283 CustomSectionsRelocations.clear(); 284 SignatureIndices.clear(); 285 Signatures.clear(); 286 DataSegments.clear(); 287 SectionFunctions.clear(); 288 NumFunctionImports = 0; 289 NumGlobalImports = 0; 290 NumTableImports = 0; 291 MCObjectWriter::reset(); 292 } 293 294 void writeHeader(const MCAssembler &Asm); 295 296 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 297 const MCFragment *Fragment, const MCFixup &Fixup, 298 MCValue Target, uint64_t &FixedValue) override; 299 300 void executePostLayoutBinding(MCAssembler &Asm, 301 const MCAsmLayout &Layout) override; 302 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 303 MCAssembler &Asm, const MCAsmLayout &Layout); 304 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 305 306 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout, 307 DwoMode Mode); 308 309 void writeString(const StringRef Str) { 310 encodeULEB128(Str.size(), W->OS); 311 W->OS << Str; 312 } 313 314 void writeStringWithAlignment(const StringRef Str, unsigned Alignment); 315 316 void writeI32(int32_t val) { 317 char Buffer[4]; 318 support::endian::write32le(Buffer, val); 319 W->OS.write(Buffer, sizeof(Buffer)); 320 } 321 322 void writeI64(int64_t val) { 323 char Buffer[8]; 324 support::endian::write64le(Buffer, val); 325 W->OS.write(Buffer, sizeof(Buffer)); 326 } 327 328 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 329 330 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 331 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 332 uint32_t NumElements); 333 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 334 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 335 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, 336 ArrayRef<uint32_t> TableElems); 337 void writeDataCountSection(); 338 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, 339 ArrayRef<WasmFunction> Functions); 340 uint32_t writeDataSection(const MCAsmLayout &Layout); 341 void writeTagSection(ArrayRef<uint32_t> TagTypes); 342 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 343 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 344 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 345 std::vector<WasmRelocationEntry> &Relocations); 346 void writeLinkingMetaDataSection( 347 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 348 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 349 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 350 void writeCustomSection(WasmCustomSection &CustomSection, 351 const MCAssembler &Asm, const MCAsmLayout &Layout); 352 void writeCustomRelocSections(); 353 354 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry, 355 const MCAsmLayout &Layout); 356 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 357 uint64_t ContentsOffset, const MCAsmLayout &Layout); 358 359 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 360 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 361 uint32_t getTagType(const MCSymbolWasm &Symbol); 362 void registerFunctionType(const MCSymbolWasm &Symbol); 363 void registerTagType(const MCSymbolWasm &Symbol); 364 }; 365 366 } // end anonymous namespace 367 368 // Write out a section header and a patchable section size field. 369 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 370 unsigned SectionId) { 371 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 372 W->OS << char(SectionId); 373 374 Section.SizeOffset = W->OS.tell(); 375 376 // The section size. We don't know the size yet, so reserve enough space 377 // for any 32-bit value; we'll patch it later. 378 encodeULEB128(0, W->OS, 5); 379 380 // The position where the section starts, for measuring its size. 381 Section.ContentsOffset = W->OS.tell(); 382 Section.PayloadOffset = W->OS.tell(); 383 Section.Index = SectionCount++; 384 } 385 386 // Write a string with extra paddings for trailing alignment 387 // TODO: support alignment at asm and llvm level? 388 void WasmObjectWriter::writeStringWithAlignment(const StringRef Str, 389 unsigned Alignment) { 390 391 // Calculate the encoded size of str length and add pads based on it and 392 // alignment. 393 raw_null_ostream NullOS; 394 uint64_t StrSizeLength = encodeULEB128(Str.size(), NullOS); 395 uint64_t Offset = W->OS.tell() + StrSizeLength + Str.size(); 396 uint64_t Paddings = offsetToAlignment(Offset, Align(Alignment)); 397 Offset += Paddings; 398 399 // LEB128 greater than 5 bytes is invalid 400 assert((StrSizeLength + Paddings) <= 5 && "too long string to align"); 401 402 encodeSLEB128(Str.size(), W->OS, StrSizeLength + Paddings); 403 W->OS << Str; 404 405 assert(W->OS.tell() == Offset && "invalid padding"); 406 } 407 408 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 409 StringRef Name) { 410 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 411 startSection(Section, wasm::WASM_SEC_CUSTOM); 412 413 // The position where the section header ends, for measuring its size. 414 Section.PayloadOffset = W->OS.tell(); 415 416 // Custom sections in wasm also have a string identifier. 417 if (Name != "__clangast") { 418 writeString(Name); 419 } else { 420 // The on-disk hashtable in clangast needs to be aligned by 4 bytes. 421 writeStringWithAlignment(Name, 4); 422 } 423 424 // The position where the custom section starts. 425 Section.ContentsOffset = W->OS.tell(); 426 } 427 428 // Now that the section is complete and we know how big it is, patch up the 429 // section size field at the start of the section. 430 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 431 uint64_t Size = W->OS.tell(); 432 // /dev/null doesn't support seek/tell and can report offset of 0. 433 // Simply skip this patching in that case. 434 if (!Size) 435 return; 436 437 Size -= Section.PayloadOffset; 438 if (uint32_t(Size) != Size) 439 report_fatal_error("section size does not fit in a uint32_t"); 440 441 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 442 443 // Write the final section size to the payload_len field, which follows 444 // the section id byte. 445 writePatchableU32(static_cast<raw_pwrite_stream &>(W->OS), Size, 446 Section.SizeOffset); 447 } 448 449 // Emit the Wasm header. 450 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 451 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 452 W->write<uint32_t>(wasm::WasmVersion); 453 } 454 455 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 456 const MCAsmLayout &Layout) { 457 // Some compilation units require the indirect function table to be present 458 // but don't explicitly reference it. This is the case for call_indirect 459 // without the reference-types feature, and also function bitcasts in all 460 // cases. In those cases the __indirect_function_table has the 461 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to 462 // the assembler, if needed. 463 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) { 464 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); 465 if (WasmSym->isNoStrip()) 466 Asm.registerSymbol(*Sym); 467 } 468 469 // Build a map of sections to the function that defines them, for use 470 // in recordRelocation. 471 for (const MCSymbol &S : Asm.symbols()) { 472 const auto &WS = static_cast<const MCSymbolWasm &>(S); 473 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 474 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 475 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 476 if (!Pair.second) 477 report_fatal_error("section already has a defining function: " + 478 Sec.getName()); 479 } 480 } 481 } 482 483 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 484 const MCAsmLayout &Layout, 485 const MCFragment *Fragment, 486 const MCFixup &Fixup, MCValue Target, 487 uint64_t &FixedValue) { 488 // The WebAssembly backend should never generate FKF_IsPCRel fixups 489 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 490 MCFixupKindInfo::FKF_IsPCRel)); 491 492 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 493 uint64_t C = Target.getConstant(); 494 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 495 MCContext &Ctx = Asm.getContext(); 496 bool IsLocRel = false; 497 498 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 499 500 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 501 502 if (FixupSection.getKind().isText()) { 503 Ctx.reportError(Fixup.getLoc(), 504 Twine("symbol '") + SymB.getName() + 505 "' unsupported subtraction expression used in " 506 "relocation in code section."); 507 return; 508 } 509 510 if (SymB.isUndefined()) { 511 Ctx.reportError(Fixup.getLoc(), 512 Twine("symbol '") + SymB.getName() + 513 "' can not be undefined in a subtraction expression"); 514 return; 515 } 516 const MCSection &SecB = SymB.getSection(); 517 if (&SecB != &FixupSection) { 518 Ctx.reportError(Fixup.getLoc(), 519 Twine("symbol '") + SymB.getName() + 520 "' can not be placed in a different section"); 521 return; 522 } 523 IsLocRel = true; 524 C += FixupOffset - Layout.getSymbolOffset(SymB); 525 } 526 527 // We either rejected the fixup or folded B into C at this point. 528 const MCSymbolRefExpr *RefA = Target.getSymA(); 529 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 530 531 // The .init_array isn't translated as data, so don't do relocations in it. 532 if (FixupSection.getName().starts_with(".init_array")) { 533 SymA->setUsedInInitArray(); 534 return; 535 } 536 537 if (SymA->isVariable()) { 538 const MCExpr *Expr = SymA->getVariableValue(); 539 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 540 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 541 llvm_unreachable("weakref used in reloc not yet implemented"); 542 } 543 544 // Put any constant offset in an addend. Offsets can be negative, and 545 // LLVM expects wrapping, in contrast to wasm's immediates which can't 546 // be negative and don't wrap. 547 FixedValue = 0; 548 549 unsigned Type = 550 TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel); 551 552 // Absolute offset within a section or a function. 553 // Currently only supported for metadata sections. 554 // See: test/MC/WebAssembly/blockaddress.ll 555 if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 556 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 557 Type == wasm::R_WASM_SECTION_OFFSET_I32) && 558 SymA->isDefined()) { 559 // SymA can be a temp data symbol that represents a function (in which case 560 // it needs to be replaced by the section symbol), [XXX and it apparently 561 // later gets changed again to a func symbol?] or it can be a real 562 // function symbol, in which case it can be left as-is. 563 564 if (!FixupSection.getKind().isMetadata()) 565 report_fatal_error("relocations for function or section offsets are " 566 "only supported in metadata sections"); 567 568 const MCSymbol *SectionSymbol = nullptr; 569 const MCSection &SecA = SymA->getSection(); 570 if (SecA.getKind().isText()) { 571 auto SecSymIt = SectionFunctions.find(&SecA); 572 if (SecSymIt == SectionFunctions.end()) 573 report_fatal_error("section doesn\'t have defining symbol"); 574 SectionSymbol = SecSymIt->second; 575 } else { 576 SectionSymbol = SecA.getBeginSymbol(); 577 } 578 if (!SectionSymbol) 579 report_fatal_error("section symbol is required for relocation"); 580 581 C += Layout.getSymbolOffset(*SymA); 582 SymA = cast<MCSymbolWasm>(SectionSymbol); 583 } 584 585 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 586 Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 || 587 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 588 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 589 Type == wasm::R_WASM_TABLE_INDEX_I32 || 590 Type == wasm::R_WASM_TABLE_INDEX_I64) { 591 // TABLE_INDEX relocs implicitly use the default indirect function table. 592 // We require the function table to have already been defined. 593 auto TableName = "__indirect_function_table"; 594 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 595 if (!Sym) { 596 report_fatal_error("missing indirect function table symbol"); 597 } else { 598 if (!Sym->isFunctionTable()) 599 report_fatal_error("__indirect_function_table symbol has wrong type"); 600 // Ensure that __indirect_function_table reaches the output. 601 Sym->setNoStrip(); 602 Asm.registerSymbol(*Sym); 603 } 604 } 605 606 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 607 // against a named symbol. 608 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 609 if (SymA->getName().empty()) 610 report_fatal_error("relocations against un-named temporaries are not yet " 611 "supported by wasm"); 612 613 SymA->setUsedInReloc(); 614 } 615 616 switch (RefA->getKind()) { 617 case MCSymbolRefExpr::VK_GOT: 618 case MCSymbolRefExpr::VK_WASM_GOT_TLS: 619 SymA->setUsedInGOT(); 620 break; 621 default: 622 break; 623 } 624 625 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 626 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 627 628 if (FixupSection.isWasmData()) { 629 DataRelocations.push_back(Rec); 630 } else if (FixupSection.getKind().isText()) { 631 CodeRelocations.push_back(Rec); 632 } else if (FixupSection.getKind().isMetadata()) { 633 CustomSectionsRelocations[&FixupSection].push_back(Rec); 634 } else { 635 llvm_unreachable("unexpected section type"); 636 } 637 } 638 639 // Compute a value to write into the code at the location covered 640 // by RelEntry. This value isn't used by the static linker; it just serves 641 // to make the object format more readable and more likely to be directly 642 // useable. 643 uint64_t 644 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry, 645 const MCAsmLayout &Layout) { 646 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 647 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 648 !RelEntry.Symbol->isGlobal()) { 649 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 650 return GOTIndices[RelEntry.Symbol]; 651 } 652 653 switch (RelEntry.Type) { 654 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 655 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 656 case wasm::R_WASM_TABLE_INDEX_SLEB: 657 case wasm::R_WASM_TABLE_INDEX_SLEB64: 658 case wasm::R_WASM_TABLE_INDEX_I32: 659 case wasm::R_WASM_TABLE_INDEX_I64: { 660 // Provisional value is table address of the resolved symbol itself 661 const MCSymbolWasm *Base = 662 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 663 assert(Base->isFunction()); 664 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 665 RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 666 return TableIndices[Base] - InitialTableOffset; 667 else 668 return TableIndices[Base]; 669 } 670 case wasm::R_WASM_TYPE_INDEX_LEB: 671 // Provisional value is same as the index 672 return getRelocationIndexValue(RelEntry); 673 case wasm::R_WASM_FUNCTION_INDEX_LEB: 674 case wasm::R_WASM_FUNCTION_INDEX_I32: 675 case wasm::R_WASM_GLOBAL_INDEX_LEB: 676 case wasm::R_WASM_GLOBAL_INDEX_I32: 677 case wasm::R_WASM_TAG_INDEX_LEB: 678 case wasm::R_WASM_TABLE_NUMBER_LEB: 679 // Provisional value is function/global/tag Wasm index 680 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 681 return WasmIndices[RelEntry.Symbol]; 682 case wasm::R_WASM_FUNCTION_OFFSET_I32: 683 case wasm::R_WASM_FUNCTION_OFFSET_I64: 684 case wasm::R_WASM_SECTION_OFFSET_I32: { 685 if (!RelEntry.Symbol->isDefined()) 686 return 0; 687 const auto &Section = 688 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 689 return Section.getSectionOffset() + RelEntry.Addend; 690 } 691 case wasm::R_WASM_MEMORY_ADDR_LEB: 692 case wasm::R_WASM_MEMORY_ADDR_LEB64: 693 case wasm::R_WASM_MEMORY_ADDR_SLEB: 694 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 695 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 696 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 697 case wasm::R_WASM_MEMORY_ADDR_I32: 698 case wasm::R_WASM_MEMORY_ADDR_I64: 699 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 700 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 701 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { 702 // Provisional value is address of the global plus the offset 703 // For undefined symbols, use zero 704 if (!RelEntry.Symbol->isDefined()) 705 return 0; 706 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; 707 const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; 708 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 709 return Segment.Offset + SymRef.Offset + RelEntry.Addend; 710 } 711 default: 712 llvm_unreachable("invalid relocation type"); 713 } 714 } 715 716 static void addData(SmallVectorImpl<char> &DataBytes, 717 MCSectionWasm &DataSection) { 718 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 719 720 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlign())); 721 722 for (const MCFragment &Frag : DataSection) { 723 if (Frag.hasInstructions()) 724 report_fatal_error("only data supported in data sections"); 725 726 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 727 if (Align->getValueSize() != 1) 728 report_fatal_error("only byte values supported for alignment"); 729 // If nops are requested, use zeros, as this is the data section. 730 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 731 uint64_t Size = 732 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 733 DataBytes.size() + Align->getMaxBytesToEmit()); 734 DataBytes.resize(Size, Value); 735 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 736 int64_t NumValues; 737 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 738 llvm_unreachable("The fill should be an assembler constant"); 739 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 740 Fill->getValue()); 741 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 742 const SmallVectorImpl<char> &Contents = LEB->getContents(); 743 llvm::append_range(DataBytes, Contents); 744 } else { 745 const auto &DataFrag = cast<MCDataFragment>(Frag); 746 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 747 llvm::append_range(DataBytes, Contents); 748 } 749 } 750 751 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 752 } 753 754 uint32_t 755 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 756 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 757 if (!TypeIndices.count(RelEntry.Symbol)) 758 report_fatal_error("symbol not found in type index space: " + 759 RelEntry.Symbol->getName()); 760 return TypeIndices[RelEntry.Symbol]; 761 } 762 763 return RelEntry.Symbol->getIndex(); 764 } 765 766 // Apply the portions of the relocation records that we can handle ourselves 767 // directly. 768 void WasmObjectWriter::applyRelocations( 769 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 770 const MCAsmLayout &Layout) { 771 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 772 for (const WasmRelocationEntry &RelEntry : Relocations) { 773 uint64_t Offset = ContentsOffset + 774 RelEntry.FixupSection->getSectionOffset() + 775 RelEntry.Offset; 776 777 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 778 uint64_t Value = getProvisionalValue(RelEntry, Layout); 779 780 switch (RelEntry.Type) { 781 case wasm::R_WASM_FUNCTION_INDEX_LEB: 782 case wasm::R_WASM_TYPE_INDEX_LEB: 783 case wasm::R_WASM_GLOBAL_INDEX_LEB: 784 case wasm::R_WASM_MEMORY_ADDR_LEB: 785 case wasm::R_WASM_TAG_INDEX_LEB: 786 case wasm::R_WASM_TABLE_NUMBER_LEB: 787 writePatchableU32(Stream, Value, Offset); 788 break; 789 case wasm::R_WASM_MEMORY_ADDR_LEB64: 790 writePatchableU64(Stream, Value, Offset); 791 break; 792 case wasm::R_WASM_TABLE_INDEX_I32: 793 case wasm::R_WASM_MEMORY_ADDR_I32: 794 case wasm::R_WASM_FUNCTION_OFFSET_I32: 795 case wasm::R_WASM_FUNCTION_INDEX_I32: 796 case wasm::R_WASM_SECTION_OFFSET_I32: 797 case wasm::R_WASM_GLOBAL_INDEX_I32: 798 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: 799 patchI32(Stream, Value, Offset); 800 break; 801 case wasm::R_WASM_TABLE_INDEX_I64: 802 case wasm::R_WASM_MEMORY_ADDR_I64: 803 case wasm::R_WASM_FUNCTION_OFFSET_I64: 804 patchI64(Stream, Value, Offset); 805 break; 806 case wasm::R_WASM_TABLE_INDEX_SLEB: 807 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 808 case wasm::R_WASM_MEMORY_ADDR_SLEB: 809 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 810 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 811 writePatchableS32(Stream, Value, Offset); 812 break; 813 case wasm::R_WASM_TABLE_INDEX_SLEB64: 814 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 815 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 816 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 817 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 818 writePatchableS64(Stream, Value, Offset); 819 break; 820 default: 821 llvm_unreachable("invalid relocation type"); 822 } 823 } 824 } 825 826 void WasmObjectWriter::writeTypeSection( 827 ArrayRef<wasm::WasmSignature> Signatures) { 828 if (Signatures.empty()) 829 return; 830 831 SectionBookkeeping Section; 832 startSection(Section, wasm::WASM_SEC_TYPE); 833 834 encodeULEB128(Signatures.size(), W->OS); 835 836 for (const wasm::WasmSignature &Sig : Signatures) { 837 W->OS << char(wasm::WASM_TYPE_FUNC); 838 encodeULEB128(Sig.Params.size(), W->OS); 839 for (wasm::ValType Ty : Sig.Params) 840 writeValueType(Ty); 841 encodeULEB128(Sig.Returns.size(), W->OS); 842 for (wasm::ValType Ty : Sig.Returns) 843 writeValueType(Ty); 844 } 845 846 endSection(Section); 847 } 848 849 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 850 uint64_t DataSize, 851 uint32_t NumElements) { 852 if (Imports.empty()) 853 return; 854 855 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 856 857 SectionBookkeeping Section; 858 startSection(Section, wasm::WASM_SEC_IMPORT); 859 860 encodeULEB128(Imports.size(), W->OS); 861 for (const wasm::WasmImport &Import : Imports) { 862 writeString(Import.Module); 863 writeString(Import.Field); 864 W->OS << char(Import.Kind); 865 866 switch (Import.Kind) { 867 case wasm::WASM_EXTERNAL_FUNCTION: 868 encodeULEB128(Import.SigIndex, W->OS); 869 break; 870 case wasm::WASM_EXTERNAL_GLOBAL: 871 W->OS << char(Import.Global.Type); 872 W->OS << char(Import.Global.Mutable ? 1 : 0); 873 break; 874 case wasm::WASM_EXTERNAL_MEMORY: 875 encodeULEB128(Import.Memory.Flags, W->OS); 876 encodeULEB128(NumPages, W->OS); // initial 877 break; 878 case wasm::WASM_EXTERNAL_TABLE: 879 W->OS << char(Import.Table.ElemType); 880 encodeULEB128(0, W->OS); // flags 881 encodeULEB128(NumElements, W->OS); // initial 882 break; 883 case wasm::WASM_EXTERNAL_TAG: 884 W->OS << char(0); // Reserved 'attribute' field 885 encodeULEB128(Import.SigIndex, W->OS); 886 break; 887 default: 888 llvm_unreachable("unsupported import kind"); 889 } 890 } 891 892 endSection(Section); 893 } 894 895 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 896 if (Functions.empty()) 897 return; 898 899 SectionBookkeeping Section; 900 startSection(Section, wasm::WASM_SEC_FUNCTION); 901 902 encodeULEB128(Functions.size(), W->OS); 903 for (const WasmFunction &Func : Functions) 904 encodeULEB128(Func.SigIndex, W->OS); 905 906 endSection(Section); 907 } 908 909 void WasmObjectWriter::writeTagSection(ArrayRef<uint32_t> TagTypes) { 910 if (TagTypes.empty()) 911 return; 912 913 SectionBookkeeping Section; 914 startSection(Section, wasm::WASM_SEC_TAG); 915 916 encodeULEB128(TagTypes.size(), W->OS); 917 for (uint32_t Index : TagTypes) { 918 W->OS << char(0); // Reserved 'attribute' field 919 encodeULEB128(Index, W->OS); 920 } 921 922 endSection(Section); 923 } 924 925 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 926 if (Globals.empty()) 927 return; 928 929 SectionBookkeeping Section; 930 startSection(Section, wasm::WASM_SEC_GLOBAL); 931 932 encodeULEB128(Globals.size(), W->OS); 933 for (const wasm::WasmGlobal &Global : Globals) { 934 encodeULEB128(Global.Type.Type, W->OS); 935 W->OS << char(Global.Type.Mutable); 936 if (Global.InitExpr.Extended) { 937 llvm_unreachable("extected init expressions not supported"); 938 } else { 939 W->OS << char(Global.InitExpr.Inst.Opcode); 940 switch (Global.Type.Type) { 941 case wasm::WASM_TYPE_I32: 942 encodeSLEB128(0, W->OS); 943 break; 944 case wasm::WASM_TYPE_I64: 945 encodeSLEB128(0, W->OS); 946 break; 947 case wasm::WASM_TYPE_F32: 948 writeI32(0); 949 break; 950 case wasm::WASM_TYPE_F64: 951 writeI64(0); 952 break; 953 case wasm::WASM_TYPE_EXTERNREF: 954 writeValueType(wasm::ValType::EXTERNREF); 955 break; 956 default: 957 llvm_unreachable("unexpected type"); 958 } 959 } 960 W->OS << char(wasm::WASM_OPCODE_END); 961 } 962 963 endSection(Section); 964 } 965 966 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 967 if (Tables.empty()) 968 return; 969 970 SectionBookkeeping Section; 971 startSection(Section, wasm::WASM_SEC_TABLE); 972 973 encodeULEB128(Tables.size(), W->OS); 974 for (const wasm::WasmTable &Table : Tables) { 975 encodeULEB128(Table.Type.ElemType, W->OS); 976 encodeULEB128(Table.Type.Limits.Flags, W->OS); 977 encodeULEB128(Table.Type.Limits.Minimum, W->OS); 978 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 979 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 980 } 981 endSection(Section); 982 } 983 984 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 985 if (Exports.empty()) 986 return; 987 988 SectionBookkeeping Section; 989 startSection(Section, wasm::WASM_SEC_EXPORT); 990 991 encodeULEB128(Exports.size(), W->OS); 992 for (const wasm::WasmExport &Export : Exports) { 993 writeString(Export.Name); 994 W->OS << char(Export.Kind); 995 encodeULEB128(Export.Index, W->OS); 996 } 997 998 endSection(Section); 999 } 1000 1001 void WasmObjectWriter::writeElemSection( 1002 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { 1003 if (TableElems.empty()) 1004 return; 1005 1006 assert(IndirectFunctionTable); 1007 1008 SectionBookkeeping Section; 1009 startSection(Section, wasm::WASM_SEC_ELEM); 1010 1011 encodeULEB128(1, W->OS); // number of "segments" 1012 1013 assert(WasmIndices.count(IndirectFunctionTable)); 1014 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second; 1015 uint32_t Flags = 0; 1016 if (TableNumber) 1017 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; 1018 encodeULEB128(Flags, W->OS); 1019 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) 1020 encodeULEB128(TableNumber, W->OS); // the table number 1021 1022 // init expr for starting offset 1023 W->OS << char(wasm::WASM_OPCODE_I32_CONST); 1024 encodeSLEB128(InitialTableOffset, W->OS); 1025 W->OS << char(wasm::WASM_OPCODE_END); 1026 1027 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) { 1028 // We only write active function table initializers, for which the elem kind 1029 // is specified to be written as 0x00 and interpreted to mean "funcref". 1030 const uint8_t ElemKind = 0; 1031 W->OS << ElemKind; 1032 } 1033 1034 encodeULEB128(TableElems.size(), W->OS); 1035 for (uint32_t Elem : TableElems) 1036 encodeULEB128(Elem, W->OS); 1037 1038 endSection(Section); 1039 } 1040 1041 void WasmObjectWriter::writeDataCountSection() { 1042 if (DataSegments.empty()) 1043 return; 1044 1045 SectionBookkeeping Section; 1046 startSection(Section, wasm::WASM_SEC_DATACOUNT); 1047 encodeULEB128(DataSegments.size(), W->OS); 1048 endSection(Section); 1049 } 1050 1051 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 1052 const MCAsmLayout &Layout, 1053 ArrayRef<WasmFunction> Functions) { 1054 if (Functions.empty()) 1055 return 0; 1056 1057 SectionBookkeeping Section; 1058 startSection(Section, wasm::WASM_SEC_CODE); 1059 1060 encodeULEB128(Functions.size(), W->OS); 1061 1062 for (const WasmFunction &Func : Functions) { 1063 auto *FuncSection = static_cast<MCSectionWasm *>(Func.Section); 1064 1065 int64_t Size = Layout.getSectionAddressSize(FuncSection); 1066 encodeULEB128(Size, W->OS); 1067 FuncSection->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1068 Asm.writeSectionData(W->OS, FuncSection, Layout); 1069 } 1070 1071 // Apply fixups. 1072 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout); 1073 1074 endSection(Section); 1075 return Section.Index; 1076 } 1077 1078 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) { 1079 if (DataSegments.empty()) 1080 return 0; 1081 1082 SectionBookkeeping Section; 1083 startSection(Section, wasm::WASM_SEC_DATA); 1084 1085 encodeULEB128(DataSegments.size(), W->OS); // count 1086 1087 for (const WasmDataSegment &Segment : DataSegments) { 1088 encodeULEB128(Segment.InitFlags, W->OS); // flags 1089 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) 1090 encodeULEB128(0, W->OS); // memory index 1091 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { 1092 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1093 : wasm::WASM_OPCODE_I32_CONST); 1094 encodeSLEB128(Segment.Offset, W->OS); // offset 1095 W->OS << char(wasm::WASM_OPCODE_END); 1096 } 1097 encodeULEB128(Segment.Data.size(), W->OS); // size 1098 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1099 W->OS << Segment.Data; // data 1100 } 1101 1102 // Apply fixups. 1103 applyRelocations(DataRelocations, Section.ContentsOffset, Layout); 1104 1105 endSection(Section); 1106 return Section.Index; 1107 } 1108 1109 void WasmObjectWriter::writeRelocSection( 1110 uint32_t SectionIndex, StringRef Name, 1111 std::vector<WasmRelocationEntry> &Relocs) { 1112 // See: https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md 1113 // for descriptions of the reloc sections. 1114 1115 if (Relocs.empty()) 1116 return; 1117 1118 // First, ensure the relocations are sorted in offset order. In general they 1119 // should already be sorted since `recordRelocation` is called in offset 1120 // order, but for the code section we combine many MC sections into single 1121 // wasm section, and this order is determined by the order of Asm.Symbols() 1122 // not the sections order. 1123 llvm::stable_sort( 1124 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1125 return (A.Offset + A.FixupSection->getSectionOffset()) < 1126 (B.Offset + B.FixupSection->getSectionOffset()); 1127 }); 1128 1129 SectionBookkeeping Section; 1130 startCustomSection(Section, std::string("reloc.") + Name.str()); 1131 1132 encodeULEB128(SectionIndex, W->OS); 1133 encodeULEB128(Relocs.size(), W->OS); 1134 for (const WasmRelocationEntry &RelEntry : Relocs) { 1135 uint64_t Offset = 1136 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1137 uint32_t Index = getRelocationIndexValue(RelEntry); 1138 1139 W->OS << char(RelEntry.Type); 1140 encodeULEB128(Offset, W->OS); 1141 encodeULEB128(Index, W->OS); 1142 if (RelEntry.hasAddend()) 1143 encodeSLEB128(RelEntry.Addend, W->OS); 1144 } 1145 1146 endSection(Section); 1147 } 1148 1149 void WasmObjectWriter::writeCustomRelocSections() { 1150 for (const auto &Sec : CustomSections) { 1151 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1152 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1153 } 1154 } 1155 1156 void WasmObjectWriter::writeLinkingMetaDataSection( 1157 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1158 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1159 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1160 SectionBookkeeping Section; 1161 startCustomSection(Section, "linking"); 1162 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1163 1164 SectionBookkeeping SubSection; 1165 if (SymbolInfos.size() != 0) { 1166 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1167 encodeULEB128(SymbolInfos.size(), W->OS); 1168 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1169 encodeULEB128(Sym.Kind, W->OS); 1170 encodeULEB128(Sym.Flags, W->OS); 1171 switch (Sym.Kind) { 1172 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1173 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1174 case wasm::WASM_SYMBOL_TYPE_TAG: 1175 case wasm::WASM_SYMBOL_TYPE_TABLE: 1176 encodeULEB128(Sym.ElementIndex, W->OS); 1177 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1178 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1179 writeString(Sym.Name); 1180 break; 1181 case wasm::WASM_SYMBOL_TYPE_DATA: 1182 writeString(Sym.Name); 1183 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1184 encodeULEB128(Sym.DataRef.Segment, W->OS); 1185 encodeULEB128(Sym.DataRef.Offset, W->OS); 1186 encodeULEB128(Sym.DataRef.Size, W->OS); 1187 } 1188 break; 1189 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1190 const uint32_t SectionIndex = 1191 CustomSections[Sym.ElementIndex].OutputIndex; 1192 encodeULEB128(SectionIndex, W->OS); 1193 break; 1194 } 1195 default: 1196 llvm_unreachable("unexpected kind"); 1197 } 1198 } 1199 endSection(SubSection); 1200 } 1201 1202 if (DataSegments.size()) { 1203 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1204 encodeULEB128(DataSegments.size(), W->OS); 1205 for (const WasmDataSegment &Segment : DataSegments) { 1206 writeString(Segment.Name); 1207 encodeULEB128(Segment.Alignment, W->OS); 1208 encodeULEB128(Segment.LinkingFlags, W->OS); 1209 } 1210 endSection(SubSection); 1211 } 1212 1213 if (!InitFuncs.empty()) { 1214 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1215 encodeULEB128(InitFuncs.size(), W->OS); 1216 for (auto &StartFunc : InitFuncs) { 1217 encodeULEB128(StartFunc.first, W->OS); // priority 1218 encodeULEB128(StartFunc.second, W->OS); // function index 1219 } 1220 endSection(SubSection); 1221 } 1222 1223 if (Comdats.size()) { 1224 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1225 encodeULEB128(Comdats.size(), W->OS); 1226 for (const auto &C : Comdats) { 1227 writeString(C.first); 1228 encodeULEB128(0, W->OS); // flags for future use 1229 encodeULEB128(C.second.size(), W->OS); 1230 for (const WasmComdatEntry &Entry : C.second) { 1231 encodeULEB128(Entry.Kind, W->OS); 1232 encodeULEB128(Entry.Index, W->OS); 1233 } 1234 } 1235 endSection(SubSection); 1236 } 1237 1238 endSection(Section); 1239 } 1240 1241 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1242 const MCAssembler &Asm, 1243 const MCAsmLayout &Layout) { 1244 SectionBookkeeping Section; 1245 auto *Sec = CustomSection.Section; 1246 startCustomSection(Section, CustomSection.Name); 1247 1248 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1249 Asm.writeSectionData(W->OS, Sec, Layout); 1250 1251 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1252 CustomSection.OutputIndex = Section.Index; 1253 1254 endSection(Section); 1255 1256 // Apply fixups. 1257 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1258 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout); 1259 } 1260 1261 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1262 assert(Symbol.isFunction()); 1263 assert(TypeIndices.count(&Symbol)); 1264 return TypeIndices[&Symbol]; 1265 } 1266 1267 uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) { 1268 assert(Symbol.isTag()); 1269 assert(TypeIndices.count(&Symbol)); 1270 return TypeIndices[&Symbol]; 1271 } 1272 1273 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1274 assert(Symbol.isFunction()); 1275 1276 wasm::WasmSignature S; 1277 1278 if (auto *Sig = Symbol.getSignature()) { 1279 S.Returns = Sig->Returns; 1280 S.Params = Sig->Params; 1281 } 1282 1283 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1284 if (Pair.second) 1285 Signatures.push_back(S); 1286 TypeIndices[&Symbol] = Pair.first->second; 1287 1288 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1289 << " new:" << Pair.second << "\n"); 1290 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1291 } 1292 1293 void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) { 1294 assert(Symbol.isTag()); 1295 1296 // TODO Currently we don't generate imported exceptions, but if we do, we 1297 // should have a way of infering types of imported exceptions. 1298 wasm::WasmSignature S; 1299 if (auto *Sig = Symbol.getSignature()) { 1300 S.Returns = Sig->Returns; 1301 S.Params = Sig->Params; 1302 } 1303 1304 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1305 if (Pair.second) 1306 Signatures.push_back(S); 1307 TypeIndices[&Symbol] = Pair.first->second; 1308 1309 LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second 1310 << "\n"); 1311 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1312 } 1313 1314 static bool isInSymtab(const MCSymbolWasm &Sym) { 1315 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1316 return true; 1317 1318 if (Sym.isComdat() && !Sym.isDefined()) 1319 return false; 1320 1321 if (Sym.isTemporary()) 1322 return false; 1323 1324 if (Sym.isSection()) 1325 return false; 1326 1327 if (Sym.omitFromLinkingSection()) 1328 return false; 1329 1330 return true; 1331 } 1332 1333 void WasmObjectWriter::prepareImports( 1334 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm, 1335 const MCAsmLayout &Layout) { 1336 // For now, always emit the memory import, since loads and stores are not 1337 // valid without it. In the future, we could perhaps be more clever and omit 1338 // it if there are no loads or stores. 1339 wasm::WasmImport MemImport; 1340 MemImport.Module = "env"; 1341 MemImport.Field = "__linear_memory"; 1342 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1343 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1344 : wasm::WASM_LIMITS_FLAG_NONE; 1345 Imports.push_back(MemImport); 1346 1347 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1348 // symbols. This must be done before populating WasmIndices for defined 1349 // symbols. 1350 for (const MCSymbol &S : Asm.symbols()) { 1351 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1352 1353 // Register types for all functions, including those with private linkage 1354 // (because wasm always needs a type signature). 1355 if (WS.isFunction()) { 1356 const auto *BS = Layout.getBaseSymbol(S); 1357 if (!BS) 1358 report_fatal_error(Twine(S.getName()) + 1359 ": absolute addressing not supported!"); 1360 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1361 } 1362 1363 if (WS.isTag()) 1364 registerTagType(WS); 1365 1366 if (WS.isTemporary()) 1367 continue; 1368 1369 // If the symbol is not defined in this translation unit, import it. 1370 if (!WS.isDefined() && !WS.isComdat()) { 1371 if (WS.isFunction()) { 1372 wasm::WasmImport Import; 1373 Import.Module = WS.getImportModule(); 1374 Import.Field = WS.getImportName(); 1375 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1376 Import.SigIndex = getFunctionType(WS); 1377 Imports.push_back(Import); 1378 assert(WasmIndices.count(&WS) == 0); 1379 WasmIndices[&WS] = NumFunctionImports++; 1380 } else if (WS.isGlobal()) { 1381 if (WS.isWeak()) 1382 report_fatal_error("undefined global symbol cannot be weak"); 1383 1384 wasm::WasmImport Import; 1385 Import.Field = WS.getImportName(); 1386 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1387 Import.Module = WS.getImportModule(); 1388 Import.Global = WS.getGlobalType(); 1389 Imports.push_back(Import); 1390 assert(WasmIndices.count(&WS) == 0); 1391 WasmIndices[&WS] = NumGlobalImports++; 1392 } else if (WS.isTag()) { 1393 if (WS.isWeak()) 1394 report_fatal_error("undefined tag symbol cannot be weak"); 1395 1396 wasm::WasmImport Import; 1397 Import.Module = WS.getImportModule(); 1398 Import.Field = WS.getImportName(); 1399 Import.Kind = wasm::WASM_EXTERNAL_TAG; 1400 Import.SigIndex = getTagType(WS); 1401 Imports.push_back(Import); 1402 assert(WasmIndices.count(&WS) == 0); 1403 WasmIndices[&WS] = NumTagImports++; 1404 } else if (WS.isTable()) { 1405 if (WS.isWeak()) 1406 report_fatal_error("undefined table symbol cannot be weak"); 1407 1408 wasm::WasmImport Import; 1409 Import.Module = WS.getImportModule(); 1410 Import.Field = WS.getImportName(); 1411 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1412 Import.Table = WS.getTableType(); 1413 Imports.push_back(Import); 1414 assert(WasmIndices.count(&WS) == 0); 1415 WasmIndices[&WS] = NumTableImports++; 1416 } 1417 } 1418 } 1419 1420 // Add imports for GOT globals 1421 for (const MCSymbol &S : Asm.symbols()) { 1422 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1423 if (WS.isUsedInGOT()) { 1424 wasm::WasmImport Import; 1425 if (WS.isFunction()) 1426 Import.Module = "GOT.func"; 1427 else 1428 Import.Module = "GOT.mem"; 1429 Import.Field = WS.getName(); 1430 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1431 Import.Global = {wasm::WASM_TYPE_I32, true}; 1432 Imports.push_back(Import); 1433 assert(GOTIndices.count(&WS) == 0); 1434 GOTIndices[&WS] = NumGlobalImports++; 1435 } 1436 } 1437 } 1438 1439 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm, 1440 const MCAsmLayout &Layout) { 1441 support::endian::Writer MainWriter(*OS, llvm::endianness::little); 1442 W = &MainWriter; 1443 if (IsSplitDwarf) { 1444 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly); 1445 assert(DwoOS); 1446 support::endian::Writer DwoWriter(*DwoOS, llvm::endianness::little); 1447 W = &DwoWriter; 1448 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly); 1449 } else { 1450 return writeOneObject(Asm, Layout, DwoMode::AllSections); 1451 } 1452 } 1453 1454 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1455 const MCAsmLayout &Layout, 1456 DwoMode Mode) { 1457 uint64_t StartOffset = W->OS.tell(); 1458 SectionCount = 0; 1459 CustomSections.clear(); 1460 1461 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1462 1463 // Collect information from the available symbols. 1464 SmallVector<WasmFunction, 4> Functions; 1465 SmallVector<uint32_t, 4> TableElems; 1466 SmallVector<wasm::WasmImport, 4> Imports; 1467 SmallVector<wasm::WasmExport, 4> Exports; 1468 SmallVector<uint32_t, 2> TagTypes; 1469 SmallVector<wasm::WasmGlobal, 1> Globals; 1470 SmallVector<wasm::WasmTable, 1> Tables; 1471 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1472 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1473 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1474 uint64_t DataSize = 0; 1475 if (Mode != DwoMode::DwoOnly) { 1476 prepareImports(Imports, Asm, Layout); 1477 } 1478 1479 // Populate DataSegments and CustomSections, which must be done before 1480 // populating DataLocations. 1481 for (MCSection &Sec : Asm) { 1482 auto &Section = static_cast<MCSectionWasm &>(Sec); 1483 StringRef SectionName = Section.getName(); 1484 1485 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1486 continue; 1487 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1488 continue; 1489 1490 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1491 << Section.getGroup() << "\n";); 1492 1493 // .init_array sections are handled specially elsewhere. 1494 if (SectionName.starts_with(".init_array")) 1495 continue; 1496 1497 // Code is handled separately 1498 if (Section.getKind().isText()) 1499 continue; 1500 1501 if (Section.isWasmData()) { 1502 uint32_t SegmentIndex = DataSegments.size(); 1503 DataSize = alignTo(DataSize, Section.getAlign()); 1504 DataSegments.emplace_back(); 1505 WasmDataSegment &Segment = DataSegments.back(); 1506 Segment.Name = SectionName; 1507 Segment.InitFlags = Section.getPassive() 1508 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE 1509 : 0; 1510 Segment.Offset = DataSize; 1511 Segment.Section = &Section; 1512 addData(Segment.Data, Section); 1513 Segment.Alignment = Log2(Section.getAlign()); 1514 Segment.LinkingFlags = Section.getSegmentFlags(); 1515 DataSize += Segment.Data.size(); 1516 Section.setSegmentIndex(SegmentIndex); 1517 1518 if (const MCSymbolWasm *C = Section.getGroup()) { 1519 Comdats[C->getName()].emplace_back( 1520 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1521 } 1522 } else { 1523 // Create custom sections 1524 assert(Sec.getKind().isMetadata()); 1525 1526 StringRef Name = SectionName; 1527 1528 // For user-defined custom sections, strip the prefix 1529 Name.consume_front(".custom_section."); 1530 1531 MCSymbol *Begin = Sec.getBeginSymbol(); 1532 if (Begin) { 1533 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); 1534 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1535 } 1536 1537 // Separate out the producers and target features sections 1538 if (Name == "producers") { 1539 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1540 continue; 1541 } 1542 if (Name == "target_features") { 1543 TargetFeaturesSection = 1544 std::make_unique<WasmCustomSection>(Name, &Section); 1545 continue; 1546 } 1547 1548 // Custom sections can also belong to COMDAT groups. In this case the 1549 // decriptor's "index" field is the section index (in the final object 1550 // file), but that is not known until after layout, so it must be fixed up 1551 // later 1552 if (const MCSymbolWasm *C = Section.getGroup()) { 1553 Comdats[C->getName()].emplace_back( 1554 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1555 static_cast<uint32_t>(CustomSections.size())}); 1556 } 1557 1558 CustomSections.emplace_back(Name, &Section); 1559 } 1560 } 1561 1562 if (Mode != DwoMode::DwoOnly) { 1563 // Populate WasmIndices and DataLocations for defined symbols. 1564 for (const MCSymbol &S : Asm.symbols()) { 1565 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1566 // or used in relocations. 1567 if (S.isTemporary() && S.getName().empty()) 1568 continue; 1569 1570 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1571 LLVM_DEBUG( 1572 dbgs() << "MCSymbol: " 1573 << toString(WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA)) 1574 << " '" << S << "'" 1575 << " isDefined=" << S.isDefined() << " isExternal=" 1576 << S.isExternal() << " isTemporary=" << S.isTemporary() 1577 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1578 << " isVariable=" << WS.isVariable() << "\n"); 1579 1580 if (WS.isVariable()) 1581 continue; 1582 if (WS.isComdat() && !WS.isDefined()) 1583 continue; 1584 1585 if (WS.isFunction()) { 1586 unsigned Index; 1587 if (WS.isDefined()) { 1588 if (WS.getOffset() != 0) 1589 report_fatal_error( 1590 "function sections must contain one function each"); 1591 1592 // A definition. Write out the function body. 1593 Index = NumFunctionImports + Functions.size(); 1594 WasmFunction Func; 1595 Func.SigIndex = getFunctionType(WS); 1596 Func.Section = &WS.getSection(); 1597 assert(WasmIndices.count(&WS) == 0); 1598 WasmIndices[&WS] = Index; 1599 Functions.push_back(Func); 1600 1601 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1602 if (const MCSymbolWasm *C = Section.getGroup()) { 1603 Comdats[C->getName()].emplace_back( 1604 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1605 } 1606 1607 if (WS.hasExportName()) { 1608 wasm::WasmExport Export; 1609 Export.Name = WS.getExportName(); 1610 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1611 Export.Index = Index; 1612 Exports.push_back(Export); 1613 } 1614 } else { 1615 // An import; the index was assigned above. 1616 Index = WasmIndices.find(&WS)->second; 1617 } 1618 1619 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1620 1621 } else if (WS.isData()) { 1622 if (!isInSymtab(WS)) 1623 continue; 1624 1625 if (!WS.isDefined()) { 1626 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1627 << "\n"); 1628 continue; 1629 } 1630 1631 if (!WS.getSize()) 1632 report_fatal_error("data symbols must have a size set with .size: " + 1633 WS.getName()); 1634 1635 int64_t Size = 0; 1636 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) 1637 report_fatal_error(".size expression must be evaluatable"); 1638 1639 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1640 if (!DataSection.isWasmData()) 1641 report_fatal_error("data symbols must live in a data section: " + 1642 WS.getName()); 1643 1644 // For each data symbol, export it in the symtab as a reference to the 1645 // corresponding Wasm data segment. 1646 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1647 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS), 1648 static_cast<uint64_t>(Size)}; 1649 assert(DataLocations.count(&WS) == 0); 1650 DataLocations[&WS] = Ref; 1651 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1652 1653 } else if (WS.isGlobal()) { 1654 // A "true" Wasm global (currently just __stack_pointer) 1655 if (WS.isDefined()) { 1656 wasm::WasmGlobal Global; 1657 Global.Type = WS.getGlobalType(); 1658 Global.Index = NumGlobalImports + Globals.size(); 1659 Global.InitExpr.Extended = false; 1660 switch (Global.Type.Type) { 1661 case wasm::WASM_TYPE_I32: 1662 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST; 1663 break; 1664 case wasm::WASM_TYPE_I64: 1665 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I64_CONST; 1666 break; 1667 case wasm::WASM_TYPE_F32: 1668 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F32_CONST; 1669 break; 1670 case wasm::WASM_TYPE_F64: 1671 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F64_CONST; 1672 break; 1673 case wasm::WASM_TYPE_EXTERNREF: 1674 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_REF_NULL; 1675 break; 1676 default: 1677 llvm_unreachable("unexpected type"); 1678 } 1679 assert(WasmIndices.count(&WS) == 0); 1680 WasmIndices[&WS] = Global.Index; 1681 Globals.push_back(Global); 1682 } else { 1683 // An import; the index was assigned above 1684 LLVM_DEBUG(dbgs() << " -> global index: " 1685 << WasmIndices.find(&WS)->second << "\n"); 1686 } 1687 } else if (WS.isTable()) { 1688 if (WS.isDefined()) { 1689 wasm::WasmTable Table; 1690 Table.Index = NumTableImports + Tables.size(); 1691 Table.Type = WS.getTableType(); 1692 assert(WasmIndices.count(&WS) == 0); 1693 WasmIndices[&WS] = Table.Index; 1694 Tables.push_back(Table); 1695 } 1696 LLVM_DEBUG(dbgs() << " -> table index: " 1697 << WasmIndices.find(&WS)->second << "\n"); 1698 } else if (WS.isTag()) { 1699 // C++ exception symbol (__cpp_exception) or longjmp symbol 1700 // (__c_longjmp) 1701 unsigned Index; 1702 if (WS.isDefined()) { 1703 Index = NumTagImports + TagTypes.size(); 1704 uint32_t SigIndex = getTagType(WS); 1705 assert(WasmIndices.count(&WS) == 0); 1706 WasmIndices[&WS] = Index; 1707 TagTypes.push_back(SigIndex); 1708 } else { 1709 // An import; the index was assigned above. 1710 assert(WasmIndices.count(&WS) > 0); 1711 } 1712 LLVM_DEBUG(dbgs() << " -> tag index: " << WasmIndices.find(&WS)->second 1713 << "\n"); 1714 1715 } else { 1716 assert(WS.isSection()); 1717 } 1718 } 1719 1720 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1721 // process these in a separate pass because we need to have processed the 1722 // target of the alias before the alias itself and the symbols are not 1723 // necessarily ordered in this way. 1724 for (const MCSymbol &S : Asm.symbols()) { 1725 if (!S.isVariable()) 1726 continue; 1727 1728 assert(S.isDefined()); 1729 1730 const auto *BS = Layout.getBaseSymbol(S); 1731 if (!BS) 1732 report_fatal_error(Twine(S.getName()) + 1733 ": absolute addressing not supported!"); 1734 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1735 1736 // Find the target symbol of this weak alias and export that index 1737 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1738 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base 1739 << "'\n"); 1740 1741 if (Base->isFunction()) { 1742 assert(WasmIndices.count(Base) > 0); 1743 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1744 assert(WasmIndices.count(&WS) == 0); 1745 WasmIndices[&WS] = WasmIndex; 1746 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1747 } else if (Base->isData()) { 1748 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1749 uint64_t Offset = Layout.getSymbolOffset(S); 1750 int64_t Size = 0; 1751 // For data symbol alias we use the size of the base symbol as the 1752 // size of the alias. When an offset from the base is involved this 1753 // can result in a offset + size goes past the end of the data section 1754 // which out object format doesn't support. So we must clamp it. 1755 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout)) 1756 report_fatal_error(".size expression must be evaluatable"); 1757 const WasmDataSegment &Segment = 1758 DataSegments[DataSection.getSegmentIndex()]; 1759 Size = 1760 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1761 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1762 DataSection.getSegmentIndex(), 1763 static_cast<uint32_t>(Layout.getSymbolOffset(S)), 1764 static_cast<uint32_t>(Size)}; 1765 DataLocations[&WS] = Ref; 1766 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1767 } else { 1768 report_fatal_error("don't yet support global/tag aliases"); 1769 } 1770 } 1771 } 1772 1773 // Finally, populate the symbol table itself, in its "natural" order. 1774 for (const MCSymbol &S : Asm.symbols()) { 1775 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1776 if (!isInSymtab(WS)) { 1777 WS.setIndex(InvalidIndex); 1778 continue; 1779 } 1780 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1781 1782 uint32_t Flags = 0; 1783 if (WS.isWeak()) 1784 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1785 if (WS.isHidden()) 1786 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1787 if (!WS.isExternal() && WS.isDefined()) 1788 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1789 if (WS.isUndefined()) 1790 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1791 if (WS.isNoStrip()) { 1792 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1793 if (isEmscripten()) { 1794 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1795 } 1796 } 1797 if (WS.hasImportName()) 1798 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1799 if (WS.hasExportName()) 1800 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1801 if (WS.isTLS()) 1802 Flags |= wasm::WASM_SYMBOL_TLS; 1803 1804 wasm::WasmSymbolInfo Info; 1805 Info.Name = WS.getName(); 1806 Info.Kind = WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA); 1807 Info.Flags = Flags; 1808 if (!WS.isData()) { 1809 assert(WasmIndices.count(&WS) > 0); 1810 Info.ElementIndex = WasmIndices.find(&WS)->second; 1811 } else if (WS.isDefined()) { 1812 assert(DataLocations.count(&WS) > 0); 1813 Info.DataRef = DataLocations.find(&WS)->second; 1814 } 1815 WS.setIndex(SymbolInfos.size()); 1816 SymbolInfos.emplace_back(Info); 1817 } 1818 1819 { 1820 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1821 // Functions referenced by a relocation need to put in the table. This is 1822 // purely to make the object file's provisional values readable, and is 1823 // ignored by the linker, which re-calculates the relocations itself. 1824 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1825 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1826 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1827 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1828 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB && 1829 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 1830 return; 1831 assert(Rel.Symbol->isFunction()); 1832 const MCSymbolWasm *Base = 1833 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol)); 1834 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1835 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1836 if (TableIndices.try_emplace(Base, TableIndex).second) { 1837 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1838 << " to table: " << TableIndex << "\n"); 1839 TableElems.push_back(FunctionIndex); 1840 registerFunctionType(*Base); 1841 } 1842 }; 1843 1844 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1845 HandleReloc(RelEntry); 1846 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1847 HandleReloc(RelEntry); 1848 } 1849 1850 // Translate .init_array section contents into start functions. 1851 for (const MCSection &S : Asm) { 1852 const auto &WS = static_cast<const MCSectionWasm &>(S); 1853 if (WS.getName().starts_with(".fini_array")) 1854 report_fatal_error(".fini_array sections are unsupported"); 1855 if (!WS.getName().starts_with(".init_array")) 1856 continue; 1857 if (WS.getFragmentList().empty()) 1858 continue; 1859 1860 // init_array is expected to contain a single non-empty data fragment 1861 if (WS.getFragmentList().size() != 3) 1862 report_fatal_error("only one .init_array section fragment supported"); 1863 1864 auto IT = WS.begin(); 1865 const MCFragment &EmptyFrag = *IT; 1866 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1867 report_fatal_error(".init_array section should be aligned"); 1868 1869 IT = std::next(IT); 1870 const MCFragment &AlignFrag = *IT; 1871 if (AlignFrag.getKind() != MCFragment::FT_Align) 1872 report_fatal_error(".init_array section should be aligned"); 1873 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != 1874 Align(is64Bit() ? 8 : 4)) 1875 report_fatal_error(".init_array section should be aligned for pointers"); 1876 1877 const MCFragment &Frag = *std::next(IT); 1878 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1879 report_fatal_error("only data supported in .init_array section"); 1880 1881 uint16_t Priority = UINT16_MAX; 1882 unsigned PrefixLength = strlen(".init_array"); 1883 if (WS.getName().size() > PrefixLength) { 1884 if (WS.getName()[PrefixLength] != '.') 1885 report_fatal_error( 1886 ".init_array section priority should start with '.'"); 1887 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1888 report_fatal_error("invalid .init_array section priority"); 1889 } 1890 const auto &DataFrag = cast<MCDataFragment>(Frag); 1891 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1892 for (const uint8_t * 1893 P = (const uint8_t *)Contents.data(), 1894 *End = (const uint8_t *)Contents.data() + Contents.size(); 1895 P != End; ++P) { 1896 if (*P != 0) 1897 report_fatal_error("non-symbolic data in .init_array section"); 1898 } 1899 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1900 assert(Fixup.getKind() == 1901 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1902 const MCExpr *Expr = Fixup.getValue(); 1903 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1904 if (!SymRef) 1905 report_fatal_error("fixups in .init_array should be symbol references"); 1906 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1907 if (TargetSym.getIndex() == InvalidIndex) 1908 report_fatal_error("symbols in .init_array should exist in symtab"); 1909 if (!TargetSym.isFunction()) 1910 report_fatal_error("symbols in .init_array should be for functions"); 1911 InitFuncs.push_back( 1912 std::make_pair(Priority, TargetSym.getIndex())); 1913 } 1914 } 1915 1916 // Write out the Wasm header. 1917 writeHeader(Asm); 1918 1919 uint32_t CodeSectionIndex, DataSectionIndex; 1920 if (Mode != DwoMode::DwoOnly) { 1921 writeTypeSection(Signatures); 1922 writeImportSection(Imports, DataSize, TableElems.size()); 1923 writeFunctionSection(Functions); 1924 writeTableSection(Tables); 1925 // Skip the "memory" section; we import the memory instead. 1926 writeTagSection(TagTypes); 1927 writeGlobalSection(Globals); 1928 writeExportSection(Exports); 1929 const MCSymbol *IndirectFunctionTable = 1930 Asm.getContext().lookupSymbol("__indirect_function_table"); 1931 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable), 1932 TableElems); 1933 writeDataCountSection(); 1934 1935 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions); 1936 DataSectionIndex = writeDataSection(Layout); 1937 } 1938 1939 // The Sections in the COMDAT list have placeholder indices (their index among 1940 // custom sections, rather than among all sections). Fix them up here. 1941 for (auto &Group : Comdats) { 1942 for (auto &Entry : Group.second) { 1943 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1944 Entry.Index += SectionCount; 1945 } 1946 } 1947 } 1948 for (auto &CustomSection : CustomSections) 1949 writeCustomSection(CustomSection, Asm, Layout); 1950 1951 if (Mode != DwoMode::DwoOnly) { 1952 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1953 1954 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1955 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1956 } 1957 writeCustomRelocSections(); 1958 if (ProducersSection) 1959 writeCustomSection(*ProducersSection, Asm, Layout); 1960 if (TargetFeaturesSection) 1961 writeCustomSection(*TargetFeaturesSection, Asm, Layout); 1962 1963 // TODO: Translate the .comment section to the output. 1964 return W->OS.tell() - StartOffset; 1965 } 1966 1967 std::unique_ptr<MCObjectWriter> 1968 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1969 raw_pwrite_stream &OS) { 1970 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1971 } 1972 1973 std::unique_ptr<MCObjectWriter> 1974 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1975 raw_pwrite_stream &OS, 1976 raw_pwrite_stream &DwoOS) { 1977 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1978 } 1979