1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCCodeEmitter.h" 19 #include "llvm/MC/MCCodeView.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCDwarf.h" 22 #include "llvm/MC/MCExpr.h" 23 #include "llvm/MC/MCFixup.h" 24 #include "llvm/MC/MCFixupKindInfo.h" 25 #include "llvm/MC/MCFragment.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCSection.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/MC/MCValue.h" 31 #include "llvm/Support/Alignment.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/EndianStream.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <tuple> 41 #include <utility> 42 43 using namespace llvm; 44 45 namespace llvm { 46 class MCSubtargetInfo; 47 } 48 49 #define DEBUG_TYPE "assembler" 50 51 namespace { 52 namespace stats { 53 54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 55 STATISTIC(EmittedRelaxableFragments, 56 "Number of emitted assembler fragments - relaxable"); 57 STATISTIC(EmittedDataFragments, 58 "Number of emitted assembler fragments - data"); 59 STATISTIC(EmittedCompactEncodedInstFragments, 60 "Number of emitted assembler fragments - compact encoded inst"); 61 STATISTIC(EmittedAlignFragments, 62 "Number of emitted assembler fragments - align"); 63 STATISTIC(EmittedFillFragments, 64 "Number of emitted assembler fragments - fill"); 65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); 66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); 67 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 68 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 71 72 } // end namespace stats 73 } // end anonymous namespace 74 75 // FIXME FIXME FIXME: There are number of places in this file where we convert 76 // what is a 64-bit assembler value used for computation into a value in the 77 // object file, which may truncate it. We should detect that truncation where 78 // invalid and report errors back. 79 80 /* *** */ 81 82 MCAssembler::MCAssembler(MCContext &Context, 83 std::unique_ptr<MCAsmBackend> Backend, 84 std::unique_ptr<MCCodeEmitter> Emitter, 85 std::unique_ptr<MCObjectWriter> Writer) 86 : Context(Context), Backend(std::move(Backend)), 87 Emitter(std::move(Emitter)), Writer(std::move(Writer)) {} 88 89 void MCAssembler::reset() { 90 RelaxAll = false; 91 Sections.clear(); 92 Symbols.clear(); 93 ThumbFuncs.clear(); 94 BundleAlignSize = 0; 95 96 // reset objects owned by us 97 if (getBackendPtr()) 98 getBackendPtr()->reset(); 99 if (getEmitterPtr()) 100 getEmitterPtr()->reset(); 101 if (Writer) 102 Writer->reset(); 103 } 104 105 bool MCAssembler::registerSection(MCSection &Section) { 106 if (Section.isRegistered()) 107 return false; 108 assert(Section.curFragList()->Head && "allocInitialFragment not called"); 109 Sections.push_back(&Section); 110 Section.setIsRegistered(true); 111 return true; 112 } 113 114 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 115 if (ThumbFuncs.count(Symbol)) 116 return true; 117 118 if (!Symbol->isVariable()) 119 return false; 120 121 const MCExpr *Expr = Symbol->getVariableValue(); 122 123 MCValue V; 124 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 125 return false; 126 127 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 128 return false; 129 130 const MCSymbolRefExpr *Ref = V.getSymA(); 131 if (!Ref) 132 return false; 133 134 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 135 return false; 136 137 const MCSymbol &Sym = Ref->getSymbol(); 138 if (!isThumbFunc(&Sym)) 139 return false; 140 141 ThumbFuncs.insert(Symbol); // Cache it. 142 return true; 143 } 144 145 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF, 146 MCValue &Target, const MCSubtargetInfo *STI, 147 uint64_t &Value, bool &WasForced) const { 148 ++stats::evaluateFixup; 149 150 // FIXME: This code has some duplication with recordRelocation. We should 151 // probably merge the two into a single callback that tries to evaluate a 152 // fixup and records a relocation if one is needed. 153 154 // On error claim to have completely evaluated the fixup, to prevent any 155 // further processing from being done. 156 const MCExpr *Expr = Fixup.getValue(); 157 MCContext &Ctx = getContext(); 158 Value = 0; 159 WasForced = false; 160 if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) { 161 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 162 return true; 163 } 164 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 165 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 166 Ctx.reportError(Fixup.getLoc(), 167 "unsupported subtraction of qualified symbol"); 168 return true; 169 } 170 } 171 172 assert(getBackendPtr() && "Expected assembler backend"); 173 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 174 MCFixupKindInfo::FKF_IsTarget; 175 176 if (IsTarget) 177 return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI, 178 Value, WasForced); 179 180 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 181 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 182 MCFixupKindInfo::FKF_IsPCRel; 183 184 bool IsResolved = false; 185 if (IsPCRel) { 186 if (Target.getSymB()) { 187 IsResolved = false; 188 } else if (!Target.getSymA()) { 189 IsResolved = false; 190 } else { 191 const MCSymbolRefExpr *A = Target.getSymA(); 192 const MCSymbol &SA = A->getSymbol(); 193 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 194 IsResolved = false; 195 } else { 196 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 197 getWriter().isSymbolRefDifferenceFullyResolvedImpl( 198 *this, SA, *DF, false, true); 199 } 200 } 201 } else { 202 IsResolved = Target.isAbsolute(); 203 } 204 205 Value = Target.getConstant(); 206 207 if (const MCSymbolRefExpr *A = Target.getSymA()) { 208 const MCSymbol &Sym = A->getSymbol(); 209 if (Sym.isDefined()) 210 Value += getSymbolOffset(Sym); 211 } 212 if (const MCSymbolRefExpr *B = Target.getSymB()) { 213 const MCSymbol &Sym = B->getSymbol(); 214 if (Sym.isDefined()) 215 Value -= getSymbolOffset(Sym); 216 } 217 218 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 219 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 220 assert((ShouldAlignPC ? IsPCRel : true) && 221 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 222 223 if (IsPCRel) { 224 uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset(); 225 226 // A number of ARM fixups in Thumb mode require that the effective PC 227 // address be determined as the 32-bit aligned version of the actual offset. 228 if (ShouldAlignPC) Offset &= ~0x3; 229 Value -= Offset; 230 } 231 232 // Let the backend force a relocation if needed. 233 if (IsResolved && 234 getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) { 235 IsResolved = false; 236 WasForced = true; 237 } 238 239 // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let 240 // recordRelocation handle non-VK_None cases like A@plt-B+C. 241 if (!IsResolved && Target.getSymA() && Target.getSymB() && 242 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None && 243 getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value)) 244 return true; 245 246 return IsResolved; 247 } 248 249 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const { 250 assert(getBackendPtr() && "Requires assembler backend"); 251 switch (F.getKind()) { 252 case MCFragment::FT_Data: 253 return cast<MCDataFragment>(F).getContents().size(); 254 case MCFragment::FT_Relaxable: 255 return cast<MCRelaxableFragment>(F).getContents().size(); 256 case MCFragment::FT_CompactEncodedInst: 257 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 258 case MCFragment::FT_Fill: { 259 auto &FF = cast<MCFillFragment>(F); 260 int64_t NumValues = 0; 261 if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) { 262 getContext().reportError(FF.getLoc(), 263 "expected assembly-time absolute expression"); 264 return 0; 265 } 266 int64_t Size = NumValues * FF.getValueSize(); 267 if (Size < 0) { 268 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 269 return 0; 270 } 271 return Size; 272 } 273 274 case MCFragment::FT_Nops: 275 return cast<MCNopsFragment>(F).getNumBytes(); 276 277 case MCFragment::FT_LEB: 278 return cast<MCLEBFragment>(F).getContents().size(); 279 280 case MCFragment::FT_BoundaryAlign: 281 return cast<MCBoundaryAlignFragment>(F).getSize(); 282 283 case MCFragment::FT_SymbolId: 284 return 4; 285 286 case MCFragment::FT_Align: { 287 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 288 unsigned Offset = getFragmentOffset(AF); 289 unsigned Size = offsetToAlignment(Offset, AF.getAlignment()); 290 291 // Insert extra Nops for code alignment if the target define 292 // shouldInsertExtraNopBytesForCodeAlign target hook. 293 if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() && 294 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 295 return Size; 296 297 // If we are padding with nops, force the padding to be larger than the 298 // minimum nop size. 299 if (Size > 0 && AF.hasEmitNops()) { 300 while (Size % getBackend().getMinimumNopSize()) 301 Size += AF.getAlignment().value(); 302 } 303 if (Size > AF.getMaxBytesToEmit()) 304 return 0; 305 return Size; 306 } 307 308 case MCFragment::FT_Org: { 309 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 310 MCValue Value; 311 if (!OF.getOffset().evaluateAsValue(Value, *this)) { 312 getContext().reportError(OF.getLoc(), 313 "expected assembly-time absolute expression"); 314 return 0; 315 } 316 317 uint64_t FragmentOffset = getFragmentOffset(OF); 318 int64_t TargetLocation = Value.getConstant(); 319 if (const MCSymbolRefExpr *A = Value.getSymA()) { 320 uint64_t Val; 321 if (!getSymbolOffset(A->getSymbol(), Val)) { 322 getContext().reportError(OF.getLoc(), "expected absolute expression"); 323 return 0; 324 } 325 TargetLocation += Val; 326 } 327 int64_t Size = TargetLocation - FragmentOffset; 328 if (Size < 0 || Size >= 0x40000000) { 329 getContext().reportError( 330 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 331 "' (at offset '" + Twine(FragmentOffset) + "')"); 332 return 0; 333 } 334 return Size; 335 } 336 337 case MCFragment::FT_Dwarf: 338 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 339 case MCFragment::FT_DwarfFrame: 340 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 341 case MCFragment::FT_CVInlineLines: 342 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 343 case MCFragment::FT_CVDefRange: 344 return cast<MCCVDefRangeFragment>(F).getContents().size(); 345 case MCFragment::FT_PseudoProbe: 346 return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); 347 case MCFragment::FT_Dummy: 348 llvm_unreachable("Should not have been added"); 349 } 350 351 llvm_unreachable("invalid fragment kind"); 352 } 353 354 // Compute the amount of padding required before the fragment \p F to 355 // obey bundling restrictions, where \p FOffset is the fragment's offset in 356 // its section and \p FSize is the fragment's size. 357 static uint64_t computeBundlePadding(unsigned BundleSize, 358 const MCEncodedFragment *F, 359 uint64_t FOffset, uint64_t FSize) { 360 uint64_t OffsetInBundle = FOffset & (BundleSize - 1); 361 uint64_t EndOfFragment = OffsetInBundle + FSize; 362 363 // There are two kinds of bundling restrictions: 364 // 365 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will 366 // *end* on a bundle boundary. 367 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it 368 // would, add padding until the end of the bundle so that the fragment 369 // will start in a new one. 370 if (F->alignToBundleEnd()) { 371 // Three possibilities here: 372 // 373 // A) The fragment just happens to end at a bundle boundary, so we're good. 374 // B) The fragment ends before the current bundle boundary: pad it just 375 // enough to reach the boundary. 376 // C) The fragment ends after the current bundle boundary: pad it until it 377 // reaches the end of the next bundle boundary. 378 // 379 // Note: this code could be made shorter with some modulo trickery, but it's 380 // intentionally kept in its more explicit form for simplicity. 381 if (EndOfFragment == BundleSize) 382 return 0; 383 else if (EndOfFragment < BundleSize) 384 return BundleSize - EndOfFragment; 385 else { // EndOfFragment > BundleSize 386 return 2 * BundleSize - EndOfFragment; 387 } 388 } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize) 389 return BundleSize - OffsetInBundle; 390 else 391 return 0; 392 } 393 394 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const { 395 // If bundling is enabled and this fragment has instructions in it, it has to 396 // obey the bundling restrictions. With padding, we'll have: 397 // 398 // 399 // BundlePadding 400 // ||| 401 // ------------------------------------- 402 // Prev |##########| F | 403 // ------------------------------------- 404 // ^ 405 // | 406 // F->Offset 407 // 408 // The fragment's offset will point to after the padding, and its computed 409 // size won't include the padding. 410 // 411 // ".align N" is an example of a directive that introduces multiple 412 // fragments. We could add a special case to handle ".align N" by emitting 413 // within-fragment padding (which would produce less padding when N is less 414 // than the bundle size), but for now we don't. 415 // 416 assert(isa<MCEncodedFragment>(F) && 417 "Only MCEncodedFragment implementations have instructions"); 418 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 419 uint64_t FSize = computeFragmentSize(*EF); 420 421 if (FSize > getBundleAlignSize()) 422 report_fatal_error("Fragment can't be larger than a bundle size"); 423 424 uint64_t RequiredBundlePadding = 425 computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize); 426 if (RequiredBundlePadding > UINT8_MAX) 427 report_fatal_error("Padding cannot exceed 255 bytes"); 428 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 429 EF->Offset += RequiredBundlePadding; 430 if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev)) 431 if (DF->getContents().empty()) 432 DF->Offset = EF->Offset; 433 } 434 435 void MCAssembler::ensureValid(MCSection &Sec) const { 436 if (Sec.hasLayout()) 437 return; 438 Sec.setHasLayout(true); 439 MCFragment *Prev = nullptr; 440 uint64_t Offset = 0; 441 for (MCFragment &F : Sec) { 442 F.Offset = Offset; 443 if (isBundlingEnabled() && F.hasInstructions()) { 444 layoutBundle(Prev, &F); 445 Offset = F.Offset; 446 } 447 Offset += computeFragmentSize(F); 448 Prev = &F; 449 } 450 } 451 452 uint64_t MCAssembler::getFragmentOffset(const MCFragment &F) const { 453 ensureValid(*F.getParent()); 454 return F.Offset; 455 } 456 457 // Simple getSymbolOffset helper for the non-variable case. 458 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S, 459 bool ReportError, uint64_t &Val) { 460 if (!S.getFragment()) { 461 if (ReportError) 462 report_fatal_error("unable to evaluate offset to undefined symbol '" + 463 S.getName() + "'"); 464 return false; 465 } 466 Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset(); 467 return true; 468 } 469 470 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S, 471 bool ReportError, uint64_t &Val) { 472 if (!S.isVariable()) 473 return getLabelOffset(Asm, S, ReportError, Val); 474 475 // If SD is a variable, evaluate it. 476 MCValue Target; 477 if (!S.getVariableValue()->evaluateAsValue(Target, Asm)) 478 report_fatal_error("unable to evaluate offset for variable '" + 479 S.getName() + "'"); 480 481 uint64_t Offset = Target.getConstant(); 482 483 const MCSymbolRefExpr *A = Target.getSymA(); 484 if (A) { 485 uint64_t ValA; 486 // FIXME: On most platforms, `Target`'s component symbols are labels from 487 // having been simplified during evaluation, but on Mach-O they can be 488 // variables due to PR19203. This, and the line below for `B` can be 489 // restored to call `getLabelOffset` when PR19203 is fixed. 490 if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA)) 491 return false; 492 Offset += ValA; 493 } 494 495 const MCSymbolRefExpr *B = Target.getSymB(); 496 if (B) { 497 uint64_t ValB; 498 if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB)) 499 return false; 500 Offset -= ValB; 501 } 502 503 Val = Offset; 504 return true; 505 } 506 507 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const { 508 return getSymbolOffsetImpl(*this, S, false, Val); 509 } 510 511 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const { 512 uint64_t Val; 513 getSymbolOffsetImpl(*this, S, true, Val); 514 return Val; 515 } 516 517 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const { 518 assert(HasLayout); 519 if (!Symbol.isVariable()) 520 return &Symbol; 521 522 const MCExpr *Expr = Symbol.getVariableValue(); 523 MCValue Value; 524 if (!Expr->evaluateAsValue(Value, *this)) { 525 getContext().reportError(Expr->getLoc(), 526 "expression could not be evaluated"); 527 return nullptr; 528 } 529 530 const MCSymbolRefExpr *RefB = Value.getSymB(); 531 if (RefB) { 532 getContext().reportError( 533 Expr->getLoc(), 534 Twine("symbol '") + RefB->getSymbol().getName() + 535 "' could not be evaluated in a subtraction expression"); 536 return nullptr; 537 } 538 539 const MCSymbolRefExpr *A = Value.getSymA(); 540 if (!A) 541 return nullptr; 542 543 const MCSymbol &ASym = A->getSymbol(); 544 if (ASym.isCommon()) { 545 getContext().reportError(Expr->getLoc(), 546 "Common symbol '" + ASym.getName() + 547 "' cannot be used in assignment expr"); 548 return nullptr; 549 } 550 551 return &ASym; 552 } 553 554 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const { 555 assert(HasLayout); 556 // The size is the last fragment's end offset. 557 const MCFragment &F = *Sec.curFragList()->Tail; 558 return getFragmentOffset(F) + computeFragmentSize(F); 559 } 560 561 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const { 562 // Virtual sections have no file size. 563 if (Sec.isVirtualSection()) 564 return 0; 565 return getSectionAddressSize(Sec); 566 } 567 568 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) { 569 bool Changed = !Symbol.isRegistered(); 570 if (Changed) { 571 Symbol.setIsRegistered(true); 572 Symbols.push_back(&Symbol); 573 } 574 return Changed; 575 } 576 577 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 578 const MCEncodedFragment &EF, 579 uint64_t FSize) const { 580 assert(getBackendPtr() && "Expected assembler backend"); 581 // Should NOP padding be written out before this fragment? 582 unsigned BundlePadding = EF.getBundlePadding(); 583 if (BundlePadding > 0) { 584 assert(isBundlingEnabled() && 585 "Writing bundle padding with disabled bundling"); 586 assert(EF.hasInstructions() && 587 "Writing bundle padding for a fragment without instructions"); 588 589 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 590 const MCSubtargetInfo *STI = EF.getSubtargetInfo(); 591 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 592 // If the padding itself crosses a bundle boundary, it must be emitted 593 // in 2 pieces, since even nop instructions must not cross boundaries. 594 // v--------------v <- BundleAlignSize 595 // v---------v <- BundlePadding 596 // ---------------------------- 597 // | Prev |####|####| F | 598 // ---------------------------- 599 // ^-------------------^ <- TotalLength 600 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 601 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) 602 report_fatal_error("unable to write NOP sequence of " + 603 Twine(DistanceToBoundary) + " bytes"); 604 BundlePadding -= DistanceToBoundary; 605 } 606 if (!getBackend().writeNopData(OS, BundlePadding, STI)) 607 report_fatal_error("unable to write NOP sequence of " + 608 Twine(BundlePadding) + " bytes"); 609 } 610 } 611 612 /// Write the fragment \p F to the output file. 613 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 614 const MCFragment &F) { 615 // FIXME: Embed in fragments instead? 616 uint64_t FragmentSize = Asm.computeFragmentSize(F); 617 618 llvm::endianness Endian = Asm.getBackend().Endian; 619 620 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 621 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 622 623 // This variable (and its dummy usage) is to participate in the assert at 624 // the end of the function. 625 uint64_t Start = OS.tell(); 626 (void) Start; 627 628 ++stats::EmittedFragments; 629 630 switch (F.getKind()) { 631 case MCFragment::FT_Align: { 632 ++stats::EmittedAlignFragments; 633 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 634 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 635 636 uint64_t Count = FragmentSize / AF.getValueSize(); 637 638 // FIXME: This error shouldn't actually occur (the front end should emit 639 // multiple .align directives to enforce the semantics it wants), but is 640 // severe enough that we want to report it. How to handle this? 641 if (Count * AF.getValueSize() != FragmentSize) 642 report_fatal_error("undefined .align directive, value size '" + 643 Twine(AF.getValueSize()) + 644 "' is not a divisor of padding size '" + 645 Twine(FragmentSize) + "'"); 646 647 // See if we are aligning with nops, and if so do that first to try to fill 648 // the Count bytes. Then if that did not fill any bytes or there are any 649 // bytes left to fill use the Value and ValueSize to fill the rest. 650 // If we are aligning with nops, ask that target to emit the right data. 651 if (AF.hasEmitNops()) { 652 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) 653 report_fatal_error("unable to write nop sequence of " + 654 Twine(Count) + " bytes"); 655 break; 656 } 657 658 // Otherwise, write out in multiples of the value size. 659 for (uint64_t i = 0; i != Count; ++i) { 660 switch (AF.getValueSize()) { 661 default: llvm_unreachable("Invalid size!"); 662 case 1: OS << char(AF.getValue()); break; 663 case 2: 664 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 665 break; 666 case 4: 667 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 668 break; 669 case 8: 670 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 671 break; 672 } 673 } 674 break; 675 } 676 677 case MCFragment::FT_Data: 678 ++stats::EmittedDataFragments; 679 OS << cast<MCDataFragment>(F).getContents(); 680 break; 681 682 case MCFragment::FT_Relaxable: 683 ++stats::EmittedRelaxableFragments; 684 OS << cast<MCRelaxableFragment>(F).getContents(); 685 break; 686 687 case MCFragment::FT_CompactEncodedInst: 688 ++stats::EmittedCompactEncodedInstFragments; 689 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 690 break; 691 692 case MCFragment::FT_Fill: { 693 ++stats::EmittedFillFragments; 694 const MCFillFragment &FF = cast<MCFillFragment>(F); 695 uint64_t V = FF.getValue(); 696 unsigned VSize = FF.getValueSize(); 697 const unsigned MaxChunkSize = 16; 698 char Data[MaxChunkSize]; 699 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 700 // Duplicate V into Data as byte vector to reduce number of 701 // writes done. As such, do endian conversion here. 702 for (unsigned I = 0; I != VSize; ++I) { 703 unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1); 704 Data[I] = uint8_t(V >> (index * 8)); 705 } 706 for (unsigned I = VSize; I < MaxChunkSize; ++I) 707 Data[I] = Data[I - VSize]; 708 709 // Set to largest multiple of VSize in Data. 710 const unsigned NumPerChunk = MaxChunkSize / VSize; 711 // Set ChunkSize to largest multiple of VSize in Data 712 const unsigned ChunkSize = VSize * NumPerChunk; 713 714 // Do copies by chunk. 715 StringRef Ref(Data, ChunkSize); 716 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 717 OS << Ref; 718 719 // do remainder if needed. 720 unsigned TrailingCount = FragmentSize % ChunkSize; 721 if (TrailingCount) 722 OS.write(Data, TrailingCount); 723 break; 724 } 725 726 case MCFragment::FT_Nops: { 727 ++stats::EmittedNopsFragments; 728 const MCNopsFragment &NF = cast<MCNopsFragment>(F); 729 730 int64_t NumBytes = NF.getNumBytes(); 731 int64_t ControlledNopLength = NF.getControlledNopLength(); 732 int64_t MaximumNopLength = 733 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); 734 735 assert(NumBytes > 0 && "Expected positive NOPs fragment size"); 736 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); 737 738 if (ControlledNopLength > MaximumNopLength) { 739 Asm.getContext().reportError(NF.getLoc(), 740 "illegal NOP size " + 741 std::to_string(ControlledNopLength) + 742 ". (expected within [0, " + 743 std::to_string(MaximumNopLength) + "])"); 744 // Clamp the NOP length as reportError does not stop the execution 745 // immediately. 746 ControlledNopLength = MaximumNopLength; 747 } 748 749 // Use maximum value if the size of each NOP is not specified 750 if (!ControlledNopLength) 751 ControlledNopLength = MaximumNopLength; 752 753 while (NumBytes) { 754 uint64_t NumBytesToEmit = 755 (uint64_t)std::min(NumBytes, ControlledNopLength); 756 assert(NumBytesToEmit && "try to emit empty NOP instruction"); 757 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, 758 NF.getSubtargetInfo())) { 759 report_fatal_error("unable to write nop sequence of the remaining " + 760 Twine(NumBytesToEmit) + " bytes"); 761 break; 762 } 763 NumBytes -= NumBytesToEmit; 764 } 765 break; 766 } 767 768 case MCFragment::FT_LEB: { 769 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 770 OS << LF.getContents(); 771 break; 772 } 773 774 case MCFragment::FT_BoundaryAlign: { 775 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); 776 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) 777 report_fatal_error("unable to write nop sequence of " + 778 Twine(FragmentSize) + " bytes"); 779 break; 780 } 781 782 case MCFragment::FT_SymbolId: { 783 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 784 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 785 break; 786 } 787 788 case MCFragment::FT_Org: { 789 ++stats::EmittedOrgFragments; 790 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 791 792 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 793 OS << char(OF.getValue()); 794 795 break; 796 } 797 798 case MCFragment::FT_Dwarf: { 799 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 800 OS << OF.getContents(); 801 break; 802 } 803 case MCFragment::FT_DwarfFrame: { 804 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 805 OS << CF.getContents(); 806 break; 807 } 808 case MCFragment::FT_CVInlineLines: { 809 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 810 OS << OF.getContents(); 811 break; 812 } 813 case MCFragment::FT_CVDefRange: { 814 const auto &DRF = cast<MCCVDefRangeFragment>(F); 815 OS << DRF.getContents(); 816 break; 817 } 818 case MCFragment::FT_PseudoProbe: { 819 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); 820 OS << PF.getContents(); 821 break; 822 } 823 case MCFragment::FT_Dummy: 824 llvm_unreachable("Should not have been added"); 825 } 826 827 assert(OS.tell() - Start == FragmentSize && 828 "The stream should advance by fragment size"); 829 } 830 831 void MCAssembler::writeSectionData(raw_ostream &OS, 832 const MCSection *Sec) const { 833 assert(getBackendPtr() && "Expected assembler backend"); 834 835 // Ignore virtual sections. 836 if (Sec->isVirtualSection()) { 837 assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!"); 838 839 // Check that contents are only things legal inside a virtual section. 840 for (const MCFragment &F : *Sec) { 841 switch (F.getKind()) { 842 default: llvm_unreachable("Invalid fragment in virtual section!"); 843 case MCFragment::FT_Data: { 844 // Check that we aren't trying to write a non-zero contents (or fixups) 845 // into a virtual section. This is to support clients which use standard 846 // directives to fill the contents of virtual sections. 847 const MCDataFragment &DF = cast<MCDataFragment>(F); 848 if (DF.fixup_begin() != DF.fixup_end()) 849 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 850 " section '" + Sec->getName() + 851 "' cannot have fixups"); 852 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 853 if (DF.getContents()[i]) { 854 getContext().reportError(SMLoc(), 855 Sec->getVirtualSectionKind() + 856 " section '" + Sec->getName() + 857 "' cannot have non-zero initializers"); 858 break; 859 } 860 break; 861 } 862 case MCFragment::FT_Align: 863 // Check that we aren't trying to write a non-zero value into a virtual 864 // section. 865 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 866 cast<MCAlignFragment>(F).getValue() == 0) && 867 "Invalid align in virtual section!"); 868 break; 869 case MCFragment::FT_Fill: 870 assert((cast<MCFillFragment>(F).getValue() == 0) && 871 "Invalid fill in virtual section!"); 872 break; 873 case MCFragment::FT_Org: 874 break; 875 } 876 } 877 878 return; 879 } 880 881 uint64_t Start = OS.tell(); 882 (void)Start; 883 884 for (const MCFragment &F : *Sec) 885 writeFragment(OS, *this, F); 886 887 assert(getContext().hadError() || 888 OS.tell() - Start == getSectionAddressSize(*Sec)); 889 } 890 891 std::tuple<MCValue, uint64_t, bool> 892 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup, 893 const MCSubtargetInfo *STI) { 894 // Evaluate the fixup. 895 MCValue Target; 896 uint64_t FixedValue; 897 bool WasForced; 898 bool IsResolved = 899 evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced); 900 if (!IsResolved) { 901 // The fixup was unresolved, we need a relocation. Inform the object 902 // writer of the relocation, and give it an opportunity to adjust the 903 // fixup value if need be. 904 getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue); 905 } 906 return std::make_tuple(Target, FixedValue, IsResolved); 907 } 908 909 void MCAssembler::layout() { 910 assert(getBackendPtr() && "Expected assembler backend"); 911 DEBUG_WITH_TYPE("mc-dump", { 912 errs() << "assembler backend - pre-layout\n--\n"; 913 dump(); }); 914 915 // Assign section ordinals. 916 unsigned SectionIndex = 0; 917 for (MCSection &Sec : *this) { 918 Sec.setOrdinal(SectionIndex++); 919 920 // Chain together fragments from all subsections. 921 if (Sec.Subsections.size() > 1) { 922 MCDummyFragment Dummy; 923 MCFragment *Tail = &Dummy; 924 for (auto &[_, List] : Sec.Subsections) { 925 assert(List.Head); 926 Tail->Next = List.Head; 927 Tail = List.Tail; 928 } 929 Sec.Subsections.clear(); 930 Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}}); 931 Sec.CurFragList = &Sec.Subsections[0].second; 932 933 unsigned FragmentIndex = 0; 934 for (MCFragment &Frag : Sec) 935 Frag.setLayoutOrder(FragmentIndex++); 936 } 937 } 938 939 // Layout until everything fits. 940 this->HasLayout = true; 941 while (layoutOnce()) { 942 if (getContext().hadError()) 943 return; 944 // Size of fragments in one section can depend on the size of fragments in 945 // another. If any fragment has changed size, we have to re-layout (and 946 // as a result possibly further relax) all. 947 for (MCSection &Sec : *this) 948 Sec.setHasLayout(false); 949 } 950 951 DEBUG_WITH_TYPE("mc-dump", { 952 errs() << "assembler backend - post-relaxation\n--\n"; 953 dump(); }); 954 955 // Finalize the layout, including fragment lowering. 956 getBackend().finishLayout(*this); 957 958 DEBUG_WITH_TYPE("mc-dump", { 959 errs() << "assembler backend - final-layout\n--\n"; 960 dump(); }); 961 962 // Allow the object writer a chance to perform post-layout binding (for 963 // example, to set the index fields in the symbol data). 964 getWriter().executePostLayoutBinding(*this); 965 966 // Evaluate and apply the fixups, generating relocation entries as necessary. 967 for (MCSection &Sec : *this) { 968 for (MCFragment &Frag : Sec) { 969 ArrayRef<MCFixup> Fixups; 970 MutableArrayRef<char> Contents; 971 const MCSubtargetInfo *STI = nullptr; 972 973 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 974 switch (Frag.getKind()) { 975 default: 976 continue; 977 case MCFragment::FT_Align: { 978 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 979 // Insert fixup type for code alignment if the target define 980 // shouldInsertFixupForCodeAlign target hook. 981 if (Sec.useCodeAlign() && AF.hasEmitNops()) 982 getBackend().shouldInsertFixupForCodeAlign(*this, AF); 983 continue; 984 } 985 case MCFragment::FT_Data: { 986 MCDataFragment &DF = cast<MCDataFragment>(Frag); 987 Fixups = DF.getFixups(); 988 Contents = DF.getContents(); 989 STI = DF.getSubtargetInfo(); 990 assert(!DF.hasInstructions() || STI != nullptr); 991 break; 992 } 993 case MCFragment::FT_Relaxable: { 994 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 995 Fixups = RF.getFixups(); 996 Contents = RF.getContents(); 997 STI = RF.getSubtargetInfo(); 998 assert(!RF.hasInstructions() || STI != nullptr); 999 break; 1000 } 1001 case MCFragment::FT_CVDefRange: { 1002 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 1003 Fixups = CF.getFixups(); 1004 Contents = CF.getContents(); 1005 break; 1006 } 1007 case MCFragment::FT_Dwarf: { 1008 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 1009 Fixups = DF.getFixups(); 1010 Contents = DF.getContents(); 1011 break; 1012 } 1013 case MCFragment::FT_DwarfFrame: { 1014 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 1015 Fixups = DF.getFixups(); 1016 Contents = DF.getContents(); 1017 break; 1018 } 1019 case MCFragment::FT_LEB: { 1020 auto &LF = cast<MCLEBFragment>(Frag); 1021 Fixups = LF.getFixups(); 1022 Contents = LF.getContents(); 1023 break; 1024 } 1025 case MCFragment::FT_PseudoProbe: { 1026 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); 1027 Fixups = PF.getFixups(); 1028 Contents = PF.getContents(); 1029 break; 1030 } 1031 } 1032 for (const MCFixup &Fixup : Fixups) { 1033 uint64_t FixedValue; 1034 bool IsResolved; 1035 MCValue Target; 1036 std::tie(Target, FixedValue, IsResolved) = 1037 handleFixup(Frag, Fixup, STI); 1038 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 1039 IsResolved, STI); 1040 } 1041 } 1042 } 1043 } 1044 1045 void MCAssembler::Finish() { 1046 layout(); 1047 1048 // Write the object file. 1049 stats::ObjectBytes += getWriter().writeObject(*this); 1050 1051 HasLayout = false; 1052 } 1053 1054 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 1055 const MCRelaxableFragment *DF) const { 1056 assert(getBackendPtr() && "Expected assembler backend"); 1057 MCValue Target; 1058 uint64_t Value; 1059 bool WasForced; 1060 bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(), 1061 Value, WasForced); 1062 if (Target.getSymA() && 1063 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 1064 Fixup.getKind() == FK_Data_1) 1065 return false; 1066 return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved, 1067 Value, DF, WasForced); 1068 } 1069 1070 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const { 1071 assert(getBackendPtr() && "Expected assembler backend"); 1072 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 1073 // are intentionally pushing out inst fragments, or because we relaxed a 1074 // previous instruction to one that doesn't need relaxation. 1075 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 1076 return false; 1077 1078 for (const MCFixup &Fixup : F->getFixups()) 1079 if (fixupNeedsRelaxation(Fixup, F)) 1080 return true; 1081 1082 return false; 1083 } 1084 1085 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) { 1086 assert(getEmitterPtr() && 1087 "Expected CodeEmitter defined for relaxInstruction"); 1088 if (!fragmentNeedsRelaxation(&F)) 1089 return false; 1090 1091 ++stats::RelaxedInstructions; 1092 1093 // FIXME-PERF: We could immediately lower out instructions if we can tell 1094 // they are fully resolved, to avoid retesting on later passes. 1095 1096 // Relax the fragment. 1097 1098 MCInst Relaxed = F.getInst(); 1099 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 1100 1101 // Encode the new instruction. 1102 F.setInst(Relaxed); 1103 F.getFixups().clear(); 1104 F.getContents().clear(); 1105 getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(), 1106 *F.getSubtargetInfo()); 1107 return true; 1108 } 1109 1110 bool MCAssembler::relaxLEB(MCLEBFragment &LF) { 1111 const unsigned OldSize = static_cast<unsigned>(LF.getContents().size()); 1112 unsigned PadTo = OldSize; 1113 int64_t Value; 1114 SmallVectorImpl<char> &Data = LF.getContents(); 1115 LF.getFixups().clear(); 1116 // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols 1117 // requires that .uleb128 A-B is foldable where A and B reside in different 1118 // fragments. This is used by __gcc_except_table. 1119 bool Abs = getWriter().getSubsectionsViaSymbols() 1120 ? LF.getValue().evaluateKnownAbsolute(Value, *this) 1121 : LF.getValue().evaluateAsAbsolute(Value, *this); 1122 if (!Abs) { 1123 bool Relaxed, UseZeroPad; 1124 std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value); 1125 if (!Relaxed) { 1126 getContext().reportError(LF.getValue().getLoc(), 1127 Twine(LF.isSigned() ? ".s" : ".u") + 1128 "leb128 expression is not absolute"); 1129 LF.setValue(MCConstantExpr::create(0, Context)); 1130 } 1131 uint8_t Tmp[10]; // maximum size: ceil(64/7) 1132 PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp)); 1133 if (UseZeroPad) 1134 Value = 0; 1135 } 1136 Data.clear(); 1137 raw_svector_ostream OSE(Data); 1138 // The compiler can generate EH table assembly that is impossible to assemble 1139 // without either adding padding to an LEB fragment or adding extra padding 1140 // to a later alignment fragment. To accommodate such tables, relaxation can 1141 // only increase an LEB fragment size here, not decrease it. See PR35809. 1142 if (LF.isSigned()) 1143 encodeSLEB128(Value, OSE, PadTo); 1144 else 1145 encodeULEB128(Value, OSE, PadTo); 1146 return OldSize != LF.getContents().size(); 1147 } 1148 1149 /// Check if the branch crosses the boundary. 1150 /// 1151 /// \param StartAddr start address of the fused/unfused branch. 1152 /// \param Size size of the fused/unfused branch. 1153 /// \param BoundaryAlignment alignment requirement of the branch. 1154 /// \returns true if the branch cross the boundary. 1155 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 1156 Align BoundaryAlignment) { 1157 uint64_t EndAddr = StartAddr + Size; 1158 return (StartAddr >> Log2(BoundaryAlignment)) != 1159 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 1160 } 1161 1162 /// Check if the branch is against the boundary. 1163 /// 1164 /// \param StartAddr start address of the fused/unfused branch. 1165 /// \param Size size of the fused/unfused branch. 1166 /// \param BoundaryAlignment alignment requirement of the branch. 1167 /// \returns true if the branch is against the boundary. 1168 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1169 Align BoundaryAlignment) { 1170 uint64_t EndAddr = StartAddr + Size; 1171 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1172 } 1173 1174 /// Check if the branch needs padding. 1175 /// 1176 /// \param StartAddr start address of the fused/unfused branch. 1177 /// \param Size size of the fused/unfused branch. 1178 /// \param BoundaryAlignment alignment requirement of the branch. 1179 /// \returns true if the branch needs padding. 1180 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1181 Align BoundaryAlignment) { 1182 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1183 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1184 } 1185 1186 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) { 1187 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1188 // relaxed. 1189 if (!BF.getLastFragment()) 1190 return false; 1191 1192 uint64_t AlignedOffset = getFragmentOffset(BF); 1193 uint64_t AlignedSize = 0; 1194 for (const MCFragment *F = BF.getNext();; F = F->getNext()) { 1195 AlignedSize += computeFragmentSize(*F); 1196 if (F == BF.getLastFragment()) 1197 break; 1198 } 1199 1200 Align BoundaryAlignment = BF.getAlignment(); 1201 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1202 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1203 : 0U; 1204 if (NewSize == BF.getSize()) 1205 return false; 1206 BF.setSize(NewSize); 1207 return true; 1208 } 1209 1210 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) { 1211 bool WasRelaxed; 1212 if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed)) 1213 return WasRelaxed; 1214 1215 MCContext &Context = getContext(); 1216 uint64_t OldSize = DF.getContents().size(); 1217 int64_t AddrDelta; 1218 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this); 1219 assert(Abs && "We created a line delta with an invalid expression"); 1220 (void)Abs; 1221 int64_t LineDelta; 1222 LineDelta = DF.getLineDelta(); 1223 SmallVectorImpl<char> &Data = DF.getContents(); 1224 Data.clear(); 1225 DF.getFixups().clear(); 1226 1227 MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta, 1228 AddrDelta, Data); 1229 return OldSize != Data.size(); 1230 } 1231 1232 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) { 1233 bool WasRelaxed; 1234 if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed)) 1235 return WasRelaxed; 1236 1237 MCContext &Context = getContext(); 1238 int64_t Value; 1239 bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this); 1240 if (!Abs) { 1241 getContext().reportError(DF.getAddrDelta().getLoc(), 1242 "invalid CFI advance_loc expression"); 1243 DF.setAddrDelta(MCConstantExpr::create(0, Context)); 1244 return false; 1245 } 1246 1247 SmallVectorImpl<char> &Data = DF.getContents(); 1248 uint64_t OldSize = Data.size(); 1249 Data.clear(); 1250 DF.getFixups().clear(); 1251 1252 MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data); 1253 return OldSize != Data.size(); 1254 } 1255 1256 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) { 1257 unsigned OldSize = F.getContents().size(); 1258 getContext().getCVContext().encodeInlineLineTable(*this, F); 1259 return OldSize != F.getContents().size(); 1260 } 1261 1262 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) { 1263 unsigned OldSize = F.getContents().size(); 1264 getContext().getCVContext().encodeDefRange(*this, F); 1265 return OldSize != F.getContents().size(); 1266 } 1267 1268 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) { 1269 uint64_t OldSize = PF.getContents().size(); 1270 int64_t AddrDelta; 1271 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this); 1272 assert(Abs && "We created a pseudo probe with an invalid expression"); 1273 (void)Abs; 1274 SmallVectorImpl<char> &Data = PF.getContents(); 1275 Data.clear(); 1276 raw_svector_ostream OSE(Data); 1277 PF.getFixups().clear(); 1278 1279 // AddrDelta is a signed integer 1280 encodeSLEB128(AddrDelta, OSE, OldSize); 1281 return OldSize != Data.size(); 1282 } 1283 1284 bool MCAssembler::relaxFragment(MCFragment &F) { 1285 switch(F.getKind()) { 1286 default: 1287 return false; 1288 case MCFragment::FT_Relaxable: 1289 assert(!getRelaxAll() && 1290 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1291 return relaxInstruction(cast<MCRelaxableFragment>(F)); 1292 case MCFragment::FT_Dwarf: 1293 return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F)); 1294 case MCFragment::FT_DwarfFrame: 1295 return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F)); 1296 case MCFragment::FT_LEB: 1297 return relaxLEB(cast<MCLEBFragment>(F)); 1298 case MCFragment::FT_BoundaryAlign: 1299 return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F)); 1300 case MCFragment::FT_CVInlineLines: 1301 return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F)); 1302 case MCFragment::FT_CVDefRange: 1303 return relaxCVDefRange(cast<MCCVDefRangeFragment>(F)); 1304 case MCFragment::FT_PseudoProbe: 1305 return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F)); 1306 } 1307 } 1308 1309 bool MCAssembler::layoutOnce() { 1310 ++stats::RelaxationSteps; 1311 1312 bool Changed = false; 1313 for (MCSection &Sec : *this) 1314 for (MCFragment &Frag : Sec) 1315 if (relaxFragment(Frag)) 1316 Changed = true; 1317 return Changed; 1318 } 1319 1320 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1321 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1322 raw_ostream &OS = errs(); 1323 1324 OS << "<MCAssembler\n"; 1325 OS << " Sections:[\n "; 1326 bool First = true; 1327 for (const MCSection &Sec : *this) { 1328 if (First) 1329 First = false; 1330 else 1331 OS << ",\n "; 1332 Sec.dump(); 1333 } 1334 OS << "],\n"; 1335 OS << " Symbols:["; 1336 1337 First = true; 1338 for (const MCSymbol &Sym : symbols()) { 1339 if (First) 1340 First = false; 1341 else 1342 OS << ",\n "; 1343 OS << "("; 1344 Sym.dump(); 1345 OS << ", Index:" << Sym.getIndex() << ", "; 1346 OS << ")"; 1347 } 1348 OS << "]>\n"; 1349 } 1350 #endif 1351