1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCCodeEmitter.h" 20 #include "llvm/MC/MCCodeView.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCFixup.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCFragment.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCObjectWriter.h" 29 #include "llvm/MC/MCSection.h" 30 #include "llvm/MC/MCSectionELF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/Support/Alignment.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/EndianStream.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <cstdint> 43 #include <cstring> 44 #include <tuple> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "assembler" 50 51 namespace { 52 namespace stats { 53 54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 55 STATISTIC(EmittedRelaxableFragments, 56 "Number of emitted assembler fragments - relaxable"); 57 STATISTIC(EmittedDataFragments, 58 "Number of emitted assembler fragments - data"); 59 STATISTIC(EmittedCompactEncodedInstFragments, 60 "Number of emitted assembler fragments - compact encoded inst"); 61 STATISTIC(EmittedAlignFragments, 62 "Number of emitted assembler fragments - align"); 63 STATISTIC(EmittedFillFragments, 64 "Number of emitted assembler fragments - fill"); 65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); 66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); 67 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 68 STATISTIC(FragmentLayouts, "Number of fragment layouts"); 69 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 70 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 71 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 72 73 } // end namespace stats 74 } // end anonymous namespace 75 76 // FIXME FIXME FIXME: There are number of places in this file where we convert 77 // what is a 64-bit assembler value used for computation into a value in the 78 // object file, which may truncate it. We should detect that truncation where 79 // invalid and report errors back. 80 81 /* *** */ 82 83 MCAssembler::MCAssembler(MCContext &Context, 84 std::unique_ptr<MCAsmBackend> Backend, 85 std::unique_ptr<MCCodeEmitter> Emitter, 86 std::unique_ptr<MCObjectWriter> Writer) 87 : Context(Context), Backend(std::move(Backend)), 88 Emitter(std::move(Emitter)), Writer(std::move(Writer)), 89 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), 90 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { 91 VersionInfo.Major = 0; // Major version == 0 for "none specified" 92 DarwinTargetVariantVersionInfo.Major = 0; 93 } 94 95 MCAssembler::~MCAssembler() = default; 96 97 void MCAssembler::reset() { 98 Sections.clear(); 99 Symbols.clear(); 100 IndirectSymbols.clear(); 101 DataRegions.clear(); 102 LinkerOptions.clear(); 103 FileNames.clear(); 104 ThumbFuncs.clear(); 105 BundleAlignSize = 0; 106 RelaxAll = false; 107 SubsectionsViaSymbols = false; 108 IncrementalLinkerCompatible = false; 109 ELFHeaderEFlags = 0; 110 LOHContainer.reset(); 111 VersionInfo.Major = 0; 112 VersionInfo.SDKVersion = VersionTuple(); 113 DarwinTargetVariantVersionInfo.Major = 0; 114 DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple(); 115 116 // reset objects owned by us 117 if (getBackendPtr()) 118 getBackendPtr()->reset(); 119 if (getEmitterPtr()) 120 getEmitterPtr()->reset(); 121 if (getWriterPtr()) 122 getWriterPtr()->reset(); 123 getLOHContainer().reset(); 124 } 125 126 bool MCAssembler::registerSection(MCSection &Section) { 127 if (Section.isRegistered()) 128 return false; 129 Sections.push_back(&Section); 130 Section.setIsRegistered(true); 131 return true; 132 } 133 134 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 135 if (ThumbFuncs.count(Symbol)) 136 return true; 137 138 if (!Symbol->isVariable()) 139 return false; 140 141 const MCExpr *Expr = Symbol->getVariableValue(); 142 143 MCValue V; 144 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 145 return false; 146 147 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 148 return false; 149 150 const MCSymbolRefExpr *Ref = V.getSymA(); 151 if (!Ref) 152 return false; 153 154 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 155 return false; 156 157 const MCSymbol &Sym = Ref->getSymbol(); 158 if (!isThumbFunc(&Sym)) 159 return false; 160 161 ThumbFuncs.insert(Symbol); // Cache it. 162 return true; 163 } 164 165 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { 166 // Non-temporary labels should always be visible to the linker. 167 if (!Symbol.isTemporary()) 168 return true; 169 170 if (Symbol.isUsedInReloc()) 171 return true; 172 173 return false; 174 } 175 176 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { 177 // Linker visible symbols define atoms. 178 if (isSymbolLinkerVisible(S)) 179 return &S; 180 181 // Absolute and undefined symbols have no defining atom. 182 if (!S.isInSection()) 183 return nullptr; 184 185 // Non-linker visible symbols in sections which can't be atomized have no 186 // defining atom. 187 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( 188 *S.getFragment()->getParent())) 189 return nullptr; 190 191 // Otherwise, return the atom for the containing fragment. 192 return S.getFragment()->getAtom(); 193 } 194 195 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, 196 const MCFixup &Fixup, const MCFragment *DF, 197 MCValue &Target, uint64_t &Value, 198 bool &WasForced) const { 199 ++stats::evaluateFixup; 200 201 // FIXME: This code has some duplication with recordRelocation. We should 202 // probably merge the two into a single callback that tries to evaluate a 203 // fixup and records a relocation if one is needed. 204 205 // On error claim to have completely evaluated the fixup, to prevent any 206 // further processing from being done. 207 const MCExpr *Expr = Fixup.getValue(); 208 MCContext &Ctx = getContext(); 209 Value = 0; 210 WasForced = false; 211 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { 212 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 213 return true; 214 } 215 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 216 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 217 Ctx.reportError(Fixup.getLoc(), 218 "unsupported subtraction of qualified symbol"); 219 return true; 220 } 221 } 222 223 assert(getBackendPtr() && "Expected assembler backend"); 224 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 225 MCFixupKindInfo::FKF_IsTarget; 226 227 if (IsTarget) 228 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target, 229 Value, WasForced); 230 231 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 232 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 233 MCFixupKindInfo::FKF_IsPCRel; 234 235 bool IsResolved = false; 236 if (IsPCRel) { 237 if (Target.getSymB()) { 238 IsResolved = false; 239 } else if (!Target.getSymA()) { 240 IsResolved = false; 241 } else { 242 const MCSymbolRefExpr *A = Target.getSymA(); 243 const MCSymbol &SA = A->getSymbol(); 244 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 245 IsResolved = false; 246 } else if (auto *Writer = getWriterPtr()) { 247 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 248 Writer->isSymbolRefDifferenceFullyResolvedImpl( 249 *this, SA, *DF, false, true); 250 } 251 } 252 } else { 253 IsResolved = Target.isAbsolute(); 254 } 255 256 Value = Target.getConstant(); 257 258 if (const MCSymbolRefExpr *A = Target.getSymA()) { 259 const MCSymbol &Sym = A->getSymbol(); 260 if (Sym.isDefined()) 261 Value += Layout.getSymbolOffset(Sym); 262 } 263 if (const MCSymbolRefExpr *B = Target.getSymB()) { 264 const MCSymbol &Sym = B->getSymbol(); 265 if (Sym.isDefined()) 266 Value -= Layout.getSymbolOffset(Sym); 267 } 268 269 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 270 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 271 assert((ShouldAlignPC ? IsPCRel : true) && 272 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 273 274 if (IsPCRel) { 275 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); 276 277 // A number of ARM fixups in Thumb mode require that the effective PC 278 // address be determined as the 32-bit aligned version of the actual offset. 279 if (ShouldAlignPC) Offset &= ~0x3; 280 Value -= Offset; 281 } 282 283 // Let the backend force a relocation if needed. 284 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) { 285 IsResolved = false; 286 WasForced = true; 287 } 288 289 return IsResolved; 290 } 291 292 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, 293 const MCFragment &F) const { 294 assert(getBackendPtr() && "Requires assembler backend"); 295 switch (F.getKind()) { 296 case MCFragment::FT_Data: 297 return cast<MCDataFragment>(F).getContents().size(); 298 case MCFragment::FT_Relaxable: 299 return cast<MCRelaxableFragment>(F).getContents().size(); 300 case MCFragment::FT_CompactEncodedInst: 301 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 302 case MCFragment::FT_Fill: { 303 auto &FF = cast<MCFillFragment>(F); 304 int64_t NumValues = 0; 305 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) { 306 getContext().reportError(FF.getLoc(), 307 "expected assembly-time absolute expression"); 308 return 0; 309 } 310 int64_t Size = NumValues * FF.getValueSize(); 311 if (Size < 0) { 312 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 313 return 0; 314 } 315 return Size; 316 } 317 318 case MCFragment::FT_Nops: 319 return cast<MCNopsFragment>(F).getNumBytes(); 320 321 case MCFragment::FT_LEB: 322 return cast<MCLEBFragment>(F).getContents().size(); 323 324 case MCFragment::FT_BoundaryAlign: 325 return cast<MCBoundaryAlignFragment>(F).getSize(); 326 327 case MCFragment::FT_SymbolId: 328 return 4; 329 330 case MCFragment::FT_Align: { 331 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 332 unsigned Offset = Layout.getFragmentOffset(&AF); 333 unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment())); 334 335 // Insert extra Nops for code alignment if the target define 336 // shouldInsertExtraNopBytesForCodeAlign target hook. 337 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() && 338 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 339 return Size; 340 341 // If we are padding with nops, force the padding to be larger than the 342 // minimum nop size. 343 if (Size > 0 && AF.hasEmitNops()) { 344 while (Size % getBackend().getMinimumNopSize()) 345 Size += AF.getAlignment(); 346 } 347 if (Size > AF.getMaxBytesToEmit()) 348 return 0; 349 return Size; 350 } 351 352 case MCFragment::FT_Org: { 353 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 354 MCValue Value; 355 if (!OF.getOffset().evaluateAsValue(Value, Layout)) { 356 getContext().reportError(OF.getLoc(), 357 "expected assembly-time absolute expression"); 358 return 0; 359 } 360 361 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); 362 int64_t TargetLocation = Value.getConstant(); 363 if (const MCSymbolRefExpr *A = Value.getSymA()) { 364 uint64_t Val; 365 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { 366 getContext().reportError(OF.getLoc(), "expected absolute expression"); 367 return 0; 368 } 369 TargetLocation += Val; 370 } 371 int64_t Size = TargetLocation - FragmentOffset; 372 if (Size < 0 || Size >= 0x40000000) { 373 getContext().reportError( 374 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 375 "' (at offset '" + Twine(FragmentOffset) + "')"); 376 return 0; 377 } 378 return Size; 379 } 380 381 case MCFragment::FT_Dwarf: 382 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 383 case MCFragment::FT_DwarfFrame: 384 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 385 case MCFragment::FT_CVInlineLines: 386 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 387 case MCFragment::FT_CVDefRange: 388 return cast<MCCVDefRangeFragment>(F).getContents().size(); 389 case MCFragment::FT_PseudoProbe: 390 return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); 391 case MCFragment::FT_Dummy: 392 llvm_unreachable("Should not have been added"); 393 } 394 395 llvm_unreachable("invalid fragment kind"); 396 } 397 398 void MCAsmLayout::layoutFragment(MCFragment *F) { 399 MCFragment *Prev = F->getPrevNode(); 400 401 // We should never try to recompute something which is valid. 402 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); 403 // We should never try to compute the fragment layout if its predecessor 404 // isn't valid. 405 assert((!Prev || isFragmentValid(Prev)) && 406 "Attempt to compute fragment before its predecessor!"); 407 408 assert(!F->IsBeingLaidOut && "Already being laid out!"); 409 F->IsBeingLaidOut = true; 410 411 ++stats::FragmentLayouts; 412 413 // Compute fragment offset and size. 414 if (Prev) 415 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); 416 else 417 F->Offset = 0; 418 F->IsBeingLaidOut = false; 419 LastValidFragment[F->getParent()] = F; 420 421 // If bundling is enabled and this fragment has instructions in it, it has to 422 // obey the bundling restrictions. With padding, we'll have: 423 // 424 // 425 // BundlePadding 426 // ||| 427 // ------------------------------------- 428 // Prev |##########| F | 429 // ------------------------------------- 430 // ^ 431 // | 432 // F->Offset 433 // 434 // The fragment's offset will point to after the padding, and its computed 435 // size won't include the padding. 436 // 437 // When the -mc-relax-all flag is used, we optimize bundling by writting the 438 // padding directly into fragments when the instructions are emitted inside 439 // the streamer. When the fragment is larger than the bundle size, we need to 440 // ensure that it's bundle aligned. This means that if we end up with 441 // multiple fragments, we must emit bundle padding between fragments. 442 // 443 // ".align N" is an example of a directive that introduces multiple 444 // fragments. We could add a special case to handle ".align N" by emitting 445 // within-fragment padding (which would produce less padding when N is less 446 // than the bundle size), but for now we don't. 447 // 448 if (Assembler.isBundlingEnabled() && F->hasInstructions()) { 449 assert(isa<MCEncodedFragment>(F) && 450 "Only MCEncodedFragment implementations have instructions"); 451 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 452 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF); 453 454 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) 455 report_fatal_error("Fragment can't be larger than a bundle size"); 456 457 uint64_t RequiredBundlePadding = 458 computeBundlePadding(Assembler, EF, EF->Offset, FSize); 459 if (RequiredBundlePadding > UINT8_MAX) 460 report_fatal_error("Padding cannot exceed 255 bytes"); 461 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 462 EF->Offset += RequiredBundlePadding; 463 } 464 } 465 466 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) { 467 bool New = !Symbol.isRegistered(); 468 if (Created) 469 *Created = New; 470 if (New) { 471 Symbol.setIsRegistered(true); 472 Symbols.push_back(&Symbol); 473 } 474 } 475 476 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 477 const MCEncodedFragment &EF, 478 uint64_t FSize) const { 479 assert(getBackendPtr() && "Expected assembler backend"); 480 // Should NOP padding be written out before this fragment? 481 unsigned BundlePadding = EF.getBundlePadding(); 482 if (BundlePadding > 0) { 483 assert(isBundlingEnabled() && 484 "Writing bundle padding with disabled bundling"); 485 assert(EF.hasInstructions() && 486 "Writing bundle padding for a fragment without instructions"); 487 488 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 489 const MCSubtargetInfo *STI = EF.getSubtargetInfo(); 490 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 491 // If the padding itself crosses a bundle boundary, it must be emitted 492 // in 2 pieces, since even nop instructions must not cross boundaries. 493 // v--------------v <- BundleAlignSize 494 // v---------v <- BundlePadding 495 // ---------------------------- 496 // | Prev |####|####| F | 497 // ---------------------------- 498 // ^-------------------^ <- TotalLength 499 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 500 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) 501 report_fatal_error("unable to write NOP sequence of " + 502 Twine(DistanceToBoundary) + " bytes"); 503 BundlePadding -= DistanceToBoundary; 504 } 505 if (!getBackend().writeNopData(OS, BundlePadding, STI)) 506 report_fatal_error("unable to write NOP sequence of " + 507 Twine(BundlePadding) + " bytes"); 508 } 509 } 510 511 /// Write the fragment \p F to the output file. 512 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 513 const MCAsmLayout &Layout, const MCFragment &F) { 514 // FIXME: Embed in fragments instead? 515 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); 516 517 support::endianness Endian = Asm.getBackend().Endian; 518 519 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 520 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 521 522 // This variable (and its dummy usage) is to participate in the assert at 523 // the end of the function. 524 uint64_t Start = OS.tell(); 525 (void) Start; 526 527 ++stats::EmittedFragments; 528 529 switch (F.getKind()) { 530 case MCFragment::FT_Align: { 531 ++stats::EmittedAlignFragments; 532 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 533 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 534 535 uint64_t Count = FragmentSize / AF.getValueSize(); 536 537 // FIXME: This error shouldn't actually occur (the front end should emit 538 // multiple .align directives to enforce the semantics it wants), but is 539 // severe enough that we want to report it. How to handle this? 540 if (Count * AF.getValueSize() != FragmentSize) 541 report_fatal_error("undefined .align directive, value size '" + 542 Twine(AF.getValueSize()) + 543 "' is not a divisor of padding size '" + 544 Twine(FragmentSize) + "'"); 545 546 // See if we are aligning with nops, and if so do that first to try to fill 547 // the Count bytes. Then if that did not fill any bytes or there are any 548 // bytes left to fill use the Value and ValueSize to fill the rest. 549 // If we are aligning with nops, ask that target to emit the right data. 550 if (AF.hasEmitNops()) { 551 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) 552 report_fatal_error("unable to write nop sequence of " + 553 Twine(Count) + " bytes"); 554 break; 555 } 556 557 // Otherwise, write out in multiples of the value size. 558 for (uint64_t i = 0; i != Count; ++i) { 559 switch (AF.getValueSize()) { 560 default: llvm_unreachable("Invalid size!"); 561 case 1: OS << char(AF.getValue()); break; 562 case 2: 563 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 564 break; 565 case 4: 566 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 567 break; 568 case 8: 569 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 570 break; 571 } 572 } 573 break; 574 } 575 576 case MCFragment::FT_Data: 577 ++stats::EmittedDataFragments; 578 OS << cast<MCDataFragment>(F).getContents(); 579 break; 580 581 case MCFragment::FT_Relaxable: 582 ++stats::EmittedRelaxableFragments; 583 OS << cast<MCRelaxableFragment>(F).getContents(); 584 break; 585 586 case MCFragment::FT_CompactEncodedInst: 587 ++stats::EmittedCompactEncodedInstFragments; 588 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 589 break; 590 591 case MCFragment::FT_Fill: { 592 ++stats::EmittedFillFragments; 593 const MCFillFragment &FF = cast<MCFillFragment>(F); 594 uint64_t V = FF.getValue(); 595 unsigned VSize = FF.getValueSize(); 596 const unsigned MaxChunkSize = 16; 597 char Data[MaxChunkSize]; 598 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 599 // Duplicate V into Data as byte vector to reduce number of 600 // writes done. As such, do endian conversion here. 601 for (unsigned I = 0; I != VSize; ++I) { 602 unsigned index = Endian == support::little ? I : (VSize - I - 1); 603 Data[I] = uint8_t(V >> (index * 8)); 604 } 605 for (unsigned I = VSize; I < MaxChunkSize; ++I) 606 Data[I] = Data[I - VSize]; 607 608 // Set to largest multiple of VSize in Data. 609 const unsigned NumPerChunk = MaxChunkSize / VSize; 610 // Set ChunkSize to largest multiple of VSize in Data 611 const unsigned ChunkSize = VSize * NumPerChunk; 612 613 // Do copies by chunk. 614 StringRef Ref(Data, ChunkSize); 615 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 616 OS << Ref; 617 618 // do remainder if needed. 619 unsigned TrailingCount = FragmentSize % ChunkSize; 620 if (TrailingCount) 621 OS.write(Data, TrailingCount); 622 break; 623 } 624 625 case MCFragment::FT_Nops: { 626 ++stats::EmittedNopsFragments; 627 const MCNopsFragment &NF = cast<MCNopsFragment>(F); 628 629 int64_t NumBytes = NF.getNumBytes(); 630 int64_t ControlledNopLength = NF.getControlledNopLength(); 631 int64_t MaximumNopLength = 632 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); 633 634 assert(NumBytes > 0 && "Expected positive NOPs fragment size"); 635 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); 636 637 if (ControlledNopLength > MaximumNopLength) { 638 Asm.getContext().reportError(NF.getLoc(), 639 "illegal NOP size " + 640 std::to_string(ControlledNopLength) + 641 ". (expected within [0, " + 642 std::to_string(MaximumNopLength) + "])"); 643 // Clamp the NOP length as reportError does not stop the execution 644 // immediately. 645 ControlledNopLength = MaximumNopLength; 646 } 647 648 // Use maximum value if the size of each NOP is not specified 649 if (!ControlledNopLength) 650 ControlledNopLength = MaximumNopLength; 651 652 while (NumBytes) { 653 uint64_t NumBytesToEmit = 654 (uint64_t)std::min(NumBytes, ControlledNopLength); 655 assert(NumBytesToEmit && "try to emit empty NOP instruction"); 656 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, 657 NF.getSubtargetInfo())) { 658 report_fatal_error("unable to write nop sequence of the remaining " + 659 Twine(NumBytesToEmit) + " bytes"); 660 break; 661 } 662 NumBytes -= NumBytesToEmit; 663 } 664 break; 665 } 666 667 case MCFragment::FT_LEB: { 668 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 669 OS << LF.getContents(); 670 break; 671 } 672 673 case MCFragment::FT_BoundaryAlign: { 674 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); 675 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) 676 report_fatal_error("unable to write nop sequence of " + 677 Twine(FragmentSize) + " bytes"); 678 break; 679 } 680 681 case MCFragment::FT_SymbolId: { 682 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 683 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 684 break; 685 } 686 687 case MCFragment::FT_Org: { 688 ++stats::EmittedOrgFragments; 689 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 690 691 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 692 OS << char(OF.getValue()); 693 694 break; 695 } 696 697 case MCFragment::FT_Dwarf: { 698 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 699 OS << OF.getContents(); 700 break; 701 } 702 case MCFragment::FT_DwarfFrame: { 703 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 704 OS << CF.getContents(); 705 break; 706 } 707 case MCFragment::FT_CVInlineLines: { 708 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 709 OS << OF.getContents(); 710 break; 711 } 712 case MCFragment::FT_CVDefRange: { 713 const auto &DRF = cast<MCCVDefRangeFragment>(F); 714 OS << DRF.getContents(); 715 break; 716 } 717 case MCFragment::FT_PseudoProbe: { 718 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); 719 OS << PF.getContents(); 720 break; 721 } 722 case MCFragment::FT_Dummy: 723 llvm_unreachable("Should not have been added"); 724 } 725 726 assert(OS.tell() - Start == FragmentSize && 727 "The stream should advance by fragment size"); 728 } 729 730 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec, 731 const MCAsmLayout &Layout) const { 732 assert(getBackendPtr() && "Expected assembler backend"); 733 734 // Ignore virtual sections. 735 if (Sec->isVirtualSection()) { 736 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); 737 738 // Check that contents are only things legal inside a virtual section. 739 for (const MCFragment &F : *Sec) { 740 switch (F.getKind()) { 741 default: llvm_unreachable("Invalid fragment in virtual section!"); 742 case MCFragment::FT_Data: { 743 // Check that we aren't trying to write a non-zero contents (or fixups) 744 // into a virtual section. This is to support clients which use standard 745 // directives to fill the contents of virtual sections. 746 const MCDataFragment &DF = cast<MCDataFragment>(F); 747 if (DF.fixup_begin() != DF.fixup_end()) 748 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 749 " section '" + Sec->getName() + 750 "' cannot have fixups"); 751 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 752 if (DF.getContents()[i]) { 753 getContext().reportError(SMLoc(), 754 Sec->getVirtualSectionKind() + 755 " section '" + Sec->getName() + 756 "' cannot have non-zero initializers"); 757 break; 758 } 759 break; 760 } 761 case MCFragment::FT_Align: 762 // Check that we aren't trying to write a non-zero value into a virtual 763 // section. 764 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 765 cast<MCAlignFragment>(F).getValue() == 0) && 766 "Invalid align in virtual section!"); 767 break; 768 case MCFragment::FT_Fill: 769 assert((cast<MCFillFragment>(F).getValue() == 0) && 770 "Invalid fill in virtual section!"); 771 break; 772 case MCFragment::FT_Org: 773 break; 774 } 775 } 776 777 return; 778 } 779 780 uint64_t Start = OS.tell(); 781 (void)Start; 782 783 for (const MCFragment &F : *Sec) 784 writeFragment(OS, *this, Layout, F); 785 786 assert(getContext().hadError() || 787 OS.tell() - Start == Layout.getSectionAddressSize(Sec)); 788 } 789 790 std::tuple<MCValue, uint64_t, bool> 791 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, 792 const MCFixup &Fixup) { 793 // Evaluate the fixup. 794 MCValue Target; 795 uint64_t FixedValue; 796 bool WasForced; 797 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue, 798 WasForced); 799 if (!IsResolved) { 800 // The fixup was unresolved, we need a relocation. Inform the object 801 // writer of the relocation, and give it an opportunity to adjust the 802 // fixup value if need be. 803 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); 804 } 805 return std::make_tuple(Target, FixedValue, IsResolved); 806 } 807 808 void MCAssembler::layout(MCAsmLayout &Layout) { 809 assert(getBackendPtr() && "Expected assembler backend"); 810 DEBUG_WITH_TYPE("mc-dump", { 811 errs() << "assembler backend - pre-layout\n--\n"; 812 dump(); }); 813 814 // Create dummy fragments and assign section ordinals. 815 unsigned SectionIndex = 0; 816 for (MCSection &Sec : *this) { 817 // Create dummy fragments to eliminate any empty sections, this simplifies 818 // layout. 819 if (Sec.getFragmentList().empty()) 820 new MCDataFragment(&Sec); 821 822 Sec.setOrdinal(SectionIndex++); 823 } 824 825 // Assign layout order indices to sections and fragments. 826 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { 827 MCSection *Sec = Layout.getSectionOrder()[i]; 828 Sec->setLayoutOrder(i); 829 830 unsigned FragmentIndex = 0; 831 for (MCFragment &Frag : *Sec) 832 Frag.setLayoutOrder(FragmentIndex++); 833 } 834 835 // Layout until everything fits. 836 while (layoutOnce(Layout)) { 837 if (getContext().hadError()) 838 return; 839 // Size of fragments in one section can depend on the size of fragments in 840 // another. If any fragment has changed size, we have to re-layout (and 841 // as a result possibly further relax) all. 842 for (MCSection &Sec : *this) 843 Layout.invalidateFragmentsFrom(&*Sec.begin()); 844 } 845 846 DEBUG_WITH_TYPE("mc-dump", { 847 errs() << "assembler backend - post-relaxation\n--\n"; 848 dump(); }); 849 850 // Finalize the layout, including fragment lowering. 851 finishLayout(Layout); 852 853 DEBUG_WITH_TYPE("mc-dump", { 854 errs() << "assembler backend - final-layout\n--\n"; 855 dump(); }); 856 857 // Allow the object writer a chance to perform post-layout binding (for 858 // example, to set the index fields in the symbol data). 859 getWriter().executePostLayoutBinding(*this, Layout); 860 861 // Evaluate and apply the fixups, generating relocation entries as necessary. 862 for (MCSection &Sec : *this) { 863 for (MCFragment &Frag : Sec) { 864 ArrayRef<MCFixup> Fixups; 865 MutableArrayRef<char> Contents; 866 const MCSubtargetInfo *STI = nullptr; 867 868 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 869 switch (Frag.getKind()) { 870 default: 871 continue; 872 case MCFragment::FT_Align: { 873 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 874 // Insert fixup type for code alignment if the target define 875 // shouldInsertFixupForCodeAlign target hook. 876 if (Sec.UseCodeAlign() && AF.hasEmitNops()) 877 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF); 878 continue; 879 } 880 case MCFragment::FT_Data: { 881 MCDataFragment &DF = cast<MCDataFragment>(Frag); 882 Fixups = DF.getFixups(); 883 Contents = DF.getContents(); 884 STI = DF.getSubtargetInfo(); 885 assert(!DF.hasInstructions() || STI != nullptr); 886 break; 887 } 888 case MCFragment::FT_Relaxable: { 889 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 890 Fixups = RF.getFixups(); 891 Contents = RF.getContents(); 892 STI = RF.getSubtargetInfo(); 893 assert(!RF.hasInstructions() || STI != nullptr); 894 break; 895 } 896 case MCFragment::FT_CVDefRange: { 897 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 898 Fixups = CF.getFixups(); 899 Contents = CF.getContents(); 900 break; 901 } 902 case MCFragment::FT_Dwarf: { 903 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 904 Fixups = DF.getFixups(); 905 Contents = DF.getContents(); 906 break; 907 } 908 case MCFragment::FT_DwarfFrame: { 909 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 910 Fixups = DF.getFixups(); 911 Contents = DF.getContents(); 912 break; 913 } 914 case MCFragment::FT_PseudoProbe: { 915 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); 916 Fixups = PF.getFixups(); 917 Contents = PF.getContents(); 918 break; 919 } 920 } 921 for (const MCFixup &Fixup : Fixups) { 922 uint64_t FixedValue; 923 bool IsResolved; 924 MCValue Target; 925 std::tie(Target, FixedValue, IsResolved) = 926 handleFixup(Layout, Frag, Fixup); 927 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 928 IsResolved, STI); 929 } 930 } 931 } 932 } 933 934 void MCAssembler::Finish() { 935 // Create the layout object. 936 MCAsmLayout Layout(*this); 937 layout(Layout); 938 939 // Write the object file. 940 stats::ObjectBytes += getWriter().writeObject(*this, Layout); 941 } 942 943 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 944 const MCRelaxableFragment *DF, 945 const MCAsmLayout &Layout) const { 946 assert(getBackendPtr() && "Expected assembler backend"); 947 MCValue Target; 948 uint64_t Value; 949 bool WasForced; 950 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced); 951 if (Target.getSymA() && 952 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 953 Fixup.getKind() == FK_Data_1) 954 return false; 955 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, 956 Layout, WasForced); 957 } 958 959 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, 960 const MCAsmLayout &Layout) const { 961 assert(getBackendPtr() && "Expected assembler backend"); 962 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 963 // are intentionally pushing out inst fragments, or because we relaxed a 964 // previous instruction to one that doesn't need relaxation. 965 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 966 return false; 967 968 for (const MCFixup &Fixup : F->getFixups()) 969 if (fixupNeedsRelaxation(Fixup, F, Layout)) 970 return true; 971 972 return false; 973 } 974 975 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, 976 MCRelaxableFragment &F) { 977 assert(getEmitterPtr() && 978 "Expected CodeEmitter defined for relaxInstruction"); 979 if (!fragmentNeedsRelaxation(&F, Layout)) 980 return false; 981 982 ++stats::RelaxedInstructions; 983 984 // FIXME-PERF: We could immediately lower out instructions if we can tell 985 // they are fully resolved, to avoid retesting on later passes. 986 987 // Relax the fragment. 988 989 MCInst Relaxed = F.getInst(); 990 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 991 992 // Encode the new instruction. 993 // 994 // FIXME-PERF: If it matters, we could let the target do this. It can 995 // probably do so more efficiently in many cases. 996 SmallVector<MCFixup, 4> Fixups; 997 SmallString<256> Code; 998 raw_svector_ostream VecOS(Code); 999 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo()); 1000 1001 // Update the fragment. 1002 F.setInst(Relaxed); 1003 F.getContents() = Code; 1004 F.getFixups() = Fixups; 1005 1006 return true; 1007 } 1008 1009 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { 1010 uint64_t OldSize = LF.getContents().size(); 1011 int64_t Value; 1012 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); 1013 if (!Abs) 1014 report_fatal_error("sleb128 and uleb128 expressions must be absolute"); 1015 SmallString<8> &Data = LF.getContents(); 1016 Data.clear(); 1017 raw_svector_ostream OSE(Data); 1018 // The compiler can generate EH table assembly that is impossible to assemble 1019 // without either adding padding to an LEB fragment or adding extra padding 1020 // to a later alignment fragment. To accommodate such tables, relaxation can 1021 // only increase an LEB fragment size here, not decrease it. See PR35809. 1022 if (LF.isSigned()) 1023 encodeSLEB128(Value, OSE, OldSize); 1024 else 1025 encodeULEB128(Value, OSE, OldSize); 1026 return OldSize != LF.getContents().size(); 1027 } 1028 1029 /// Check if the branch crosses the boundary. 1030 /// 1031 /// \param StartAddr start address of the fused/unfused branch. 1032 /// \param Size size of the fused/unfused branch. 1033 /// \param BoundaryAlignment alignment requirement of the branch. 1034 /// \returns true if the branch cross the boundary. 1035 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 1036 Align BoundaryAlignment) { 1037 uint64_t EndAddr = StartAddr + Size; 1038 return (StartAddr >> Log2(BoundaryAlignment)) != 1039 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 1040 } 1041 1042 /// Check if the branch is against the boundary. 1043 /// 1044 /// \param StartAddr start address of the fused/unfused branch. 1045 /// \param Size size of the fused/unfused branch. 1046 /// \param BoundaryAlignment alignment requirement of the branch. 1047 /// \returns true if the branch is against the boundary. 1048 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1049 Align BoundaryAlignment) { 1050 uint64_t EndAddr = StartAddr + Size; 1051 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1052 } 1053 1054 /// Check if the branch needs padding. 1055 /// 1056 /// \param StartAddr start address of the fused/unfused branch. 1057 /// \param Size size of the fused/unfused branch. 1058 /// \param BoundaryAlignment alignment requirement of the branch. 1059 /// \returns true if the branch needs padding. 1060 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1061 Align BoundaryAlignment) { 1062 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1063 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1064 } 1065 1066 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout, 1067 MCBoundaryAlignFragment &BF) { 1068 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1069 // relaxed. 1070 if (!BF.getLastFragment()) 1071 return false; 1072 1073 uint64_t AlignedOffset = Layout.getFragmentOffset(&BF); 1074 uint64_t AlignedSize = 0; 1075 for (const MCFragment *F = BF.getLastFragment(); F != &BF; 1076 F = F->getPrevNode()) 1077 AlignedSize += computeFragmentSize(Layout, *F); 1078 1079 Align BoundaryAlignment = BF.getAlignment(); 1080 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1081 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1082 : 0U; 1083 if (NewSize == BF.getSize()) 1084 return false; 1085 BF.setSize(NewSize); 1086 Layout.invalidateFragmentsFrom(&BF); 1087 return true; 1088 } 1089 1090 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, 1091 MCDwarfLineAddrFragment &DF) { 1092 1093 bool WasRelaxed; 1094 if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed)) 1095 return WasRelaxed; 1096 1097 MCContext &Context = Layout.getAssembler().getContext(); 1098 uint64_t OldSize = DF.getContents().size(); 1099 int64_t AddrDelta; 1100 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1101 assert(Abs && "We created a line delta with an invalid expression"); 1102 (void)Abs; 1103 int64_t LineDelta; 1104 LineDelta = DF.getLineDelta(); 1105 SmallVectorImpl<char> &Data = DF.getContents(); 1106 Data.clear(); 1107 raw_svector_ostream OSE(Data); 1108 DF.getFixups().clear(); 1109 1110 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta, 1111 AddrDelta, OSE); 1112 return OldSize != Data.size(); 1113 } 1114 1115 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, 1116 MCDwarfCallFrameFragment &DF) { 1117 bool WasRelaxed; 1118 if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed)) 1119 return WasRelaxed; 1120 1121 MCContext &Context = Layout.getAssembler().getContext(); 1122 uint64_t OldSize = DF.getContents().size(); 1123 int64_t AddrDelta; 1124 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1125 assert(Abs && "We created call frame with an invalid expression"); 1126 (void) Abs; 1127 SmallVectorImpl<char> &Data = DF.getContents(); 1128 Data.clear(); 1129 raw_svector_ostream OSE(Data); 1130 DF.getFixups().clear(); 1131 1132 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); 1133 return OldSize != Data.size(); 1134 } 1135 1136 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, 1137 MCCVInlineLineTableFragment &F) { 1138 unsigned OldSize = F.getContents().size(); 1139 getContext().getCVContext().encodeInlineLineTable(Layout, F); 1140 return OldSize != F.getContents().size(); 1141 } 1142 1143 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, 1144 MCCVDefRangeFragment &F) { 1145 unsigned OldSize = F.getContents().size(); 1146 getContext().getCVContext().encodeDefRange(Layout, F); 1147 return OldSize != F.getContents().size(); 1148 } 1149 1150 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout, 1151 MCPseudoProbeAddrFragment &PF) { 1152 uint64_t OldSize = PF.getContents().size(); 1153 int64_t AddrDelta; 1154 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1155 assert(Abs && "We created a pseudo probe with an invalid expression"); 1156 (void)Abs; 1157 SmallVectorImpl<char> &Data = PF.getContents(); 1158 Data.clear(); 1159 raw_svector_ostream OSE(Data); 1160 PF.getFixups().clear(); 1161 1162 // AddrDelta is a signed integer 1163 encodeSLEB128(AddrDelta, OSE, OldSize); 1164 return OldSize != Data.size(); 1165 } 1166 1167 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) { 1168 switch(F.getKind()) { 1169 default: 1170 return false; 1171 case MCFragment::FT_Relaxable: 1172 assert(!getRelaxAll() && 1173 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1174 return relaxInstruction(Layout, cast<MCRelaxableFragment>(F)); 1175 case MCFragment::FT_Dwarf: 1176 return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F)); 1177 case MCFragment::FT_DwarfFrame: 1178 return relaxDwarfCallFrameFragment(Layout, 1179 cast<MCDwarfCallFrameFragment>(F)); 1180 case MCFragment::FT_LEB: 1181 return relaxLEB(Layout, cast<MCLEBFragment>(F)); 1182 case MCFragment::FT_BoundaryAlign: 1183 return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F)); 1184 case MCFragment::FT_CVInlineLines: 1185 return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F)); 1186 case MCFragment::FT_CVDefRange: 1187 return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F)); 1188 case MCFragment::FT_PseudoProbe: 1189 return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F)); 1190 } 1191 } 1192 1193 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { 1194 // Holds the first fragment which needed relaxing during this layout. It will 1195 // remain NULL if none were relaxed. 1196 // When a fragment is relaxed, all the fragments following it should get 1197 // invalidated because their offset is going to change. 1198 MCFragment *FirstRelaxedFragment = nullptr; 1199 1200 // Attempt to relax all the fragments in the section. 1201 for (MCFragment &Frag : Sec) { 1202 // Check if this is a fragment that needs relaxation. 1203 bool RelaxedFrag = relaxFragment(Layout, Frag); 1204 if (RelaxedFrag && !FirstRelaxedFragment) 1205 FirstRelaxedFragment = &Frag; 1206 } 1207 if (FirstRelaxedFragment) { 1208 Layout.invalidateFragmentsFrom(FirstRelaxedFragment); 1209 return true; 1210 } 1211 return false; 1212 } 1213 1214 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { 1215 ++stats::RelaxationSteps; 1216 1217 bool WasRelaxed = false; 1218 for (MCSection &Sec : *this) { 1219 while (layoutSectionOnce(Layout, Sec)) 1220 WasRelaxed = true; 1221 } 1222 1223 return WasRelaxed; 1224 } 1225 1226 void MCAssembler::finishLayout(MCAsmLayout &Layout) { 1227 assert(getBackendPtr() && "Expected assembler backend"); 1228 // The layout is done. Mark every fragment as valid. 1229 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { 1230 MCSection &Section = *Layout.getSectionOrder()[i]; 1231 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin()); 1232 computeFragmentSize(Layout, *Section.getFragmentList().rbegin()); 1233 } 1234 getBackend().finishLayout(*this, Layout); 1235 } 1236 1237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1238 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1239 raw_ostream &OS = errs(); 1240 1241 OS << "<MCAssembler\n"; 1242 OS << " Sections:[\n "; 1243 for (const_iterator it = begin(), ie = end(); it != ie; ++it) { 1244 if (it != begin()) OS << ",\n "; 1245 it->dump(); 1246 } 1247 OS << "],\n"; 1248 OS << " Symbols:["; 1249 1250 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { 1251 if (it != symbol_begin()) OS << ",\n "; 1252 OS << "("; 1253 it->dump(); 1254 OS << ", Index:" << it->getIndex() << ", "; 1255 OS << ")"; 1256 } 1257 OS << "]>\n"; 1258 } 1259 #endif 1260