1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/SmallSet.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 18 #include "llvm/Analysis/StackSafetyAnalysis.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Bitcode/BitcodeReader.h" 22 #include "llvm/Bitcode/BitcodeWriter.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/AutoUpgrade.h" 26 #include "llvm/IR/DiagnosticPrinter.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMRemarkStreamer.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Mangler.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/LTO/LTOBackend.h" 33 #include "llvm/LTO/SummaryBasedOptimizations.h" 34 #include "llvm/Linker/IRMover.h" 35 #include "llvm/Object/IRObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/FileSystem.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SHA1.h" 43 #include "llvm/Support/SourceMgr.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/ThreadPool.h" 46 #include "llvm/Support/Threading.h" 47 #include "llvm/Support/TimeProfiler.h" 48 #include "llvm/Support/VCSRevision.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 55 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 56 #include "llvm/Transforms/Utils/SplitModule.h" 57 58 #include <set> 59 60 using namespace llvm; 61 using namespace lto; 62 using namespace object; 63 64 #define DEBUG_TYPE "lto" 65 66 static cl::opt<bool> 67 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 68 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 69 70 /// Enable global value internalization in LTO. 71 cl::opt<bool> EnableLTOInternalization( 72 "enable-lto-internalization", cl::init(true), cl::Hidden, 73 cl::desc("Enable global value internalization in LTO")); 74 75 // Computes a unique hash for the Module considering the current list of 76 // export/import and other global analysis results. 77 // The hash is produced in \p Key. 78 void llvm::computeLTOCacheKey( 79 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 80 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 81 const FunctionImporter::ExportSetTy &ExportList, 82 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 83 const GVSummaryMapTy &DefinedGlobals, 84 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 85 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 86 // Compute the unique hash for this entry. 87 // This is based on the current compiler version, the module itself, the 88 // export list, the hash for every single module in the import list, the 89 // list of ResolvedODR for the module, and the list of preserved symbols. 90 SHA1 Hasher; 91 92 // Start with the compiler revision 93 Hasher.update(LLVM_VERSION_STRING); 94 #ifdef LLVM_REVISION 95 Hasher.update(LLVM_REVISION); 96 #endif 97 98 // Include the parts of the LTO configuration that affect code generation. 99 auto AddString = [&](StringRef Str) { 100 Hasher.update(Str); 101 Hasher.update(ArrayRef<uint8_t>{0}); 102 }; 103 auto AddUnsigned = [&](unsigned I) { 104 uint8_t Data[4]; 105 support::endian::write32le(Data, I); 106 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 107 }; 108 auto AddUint64 = [&](uint64_t I) { 109 uint8_t Data[8]; 110 support::endian::write64le(Data, I); 111 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 112 }; 113 AddString(Conf.CPU); 114 // FIXME: Hash more of Options. For now all clients initialize Options from 115 // command-line flags (which is unsupported in production), but may set 116 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 117 // DataSections and DebuggerTuning via command line flags. 118 AddUnsigned(Conf.Options.RelaxELFRelocations); 119 AddUnsigned(Conf.Options.FunctionSections); 120 AddUnsigned(Conf.Options.DataSections); 121 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 122 for (auto &A : Conf.MAttrs) 123 AddString(A); 124 if (Conf.RelocModel) 125 AddUnsigned(*Conf.RelocModel); 126 else 127 AddUnsigned(-1); 128 if (Conf.CodeModel) 129 AddUnsigned(*Conf.CodeModel); 130 else 131 AddUnsigned(-1); 132 AddUnsigned(Conf.CGOptLevel); 133 AddUnsigned(Conf.CGFileType); 134 AddUnsigned(Conf.OptLevel); 135 AddUnsigned(Conf.UseNewPM); 136 AddUnsigned(Conf.Freestanding); 137 AddString(Conf.OptPipeline); 138 AddString(Conf.AAPipeline); 139 AddString(Conf.OverrideTriple); 140 AddString(Conf.DefaultTriple); 141 AddString(Conf.DwoDir); 142 143 // Include the hash for the current module 144 auto ModHash = Index.getModuleHash(ModuleID); 145 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 146 147 std::vector<uint64_t> ExportsGUID; 148 ExportsGUID.reserve(ExportList.size()); 149 for (const auto &VI : ExportList) { 150 auto GUID = VI.getGUID(); 151 ExportsGUID.push_back(GUID); 152 } 153 154 // Sort the export list elements GUIDs. 155 llvm::sort(ExportsGUID); 156 for (uint64_t GUID : ExportsGUID) { 157 // The export list can impact the internalization, be conservative here 158 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 159 } 160 161 // Include the hash for every module we import functions from. The set of 162 // imported symbols for each module may affect code generation and is 163 // sensitive to link order, so include that as well. 164 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 165 std::vector<ImportMapIteratorTy> ImportModulesVector; 166 ImportModulesVector.reserve(ImportList.size()); 167 168 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 169 ++It) { 170 ImportModulesVector.push_back(It); 171 } 172 llvm::sort(ImportModulesVector, 173 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 174 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 175 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 176 auto ModHash = Index.getModuleHash(EntryIt->first()); 177 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 178 179 AddUint64(EntryIt->second.size()); 180 for (auto &Fn : EntryIt->second) 181 AddUint64(Fn); 182 } 183 184 // Include the hash for the resolved ODR. 185 for (auto &Entry : ResolvedODR) { 186 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 187 sizeof(GlobalValue::GUID))); 188 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 189 sizeof(GlobalValue::LinkageTypes))); 190 } 191 192 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 193 // defined in this module. 194 std::set<GlobalValue::GUID> UsedCfiDefs; 195 std::set<GlobalValue::GUID> UsedCfiDecls; 196 197 // Typeids used in this module. 198 std::set<GlobalValue::GUID> UsedTypeIds; 199 200 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 201 if (CfiFunctionDefs.count(ValueGUID)) 202 UsedCfiDefs.insert(ValueGUID); 203 if (CfiFunctionDecls.count(ValueGUID)) 204 UsedCfiDecls.insert(ValueGUID); 205 }; 206 207 auto AddUsedThings = [&](GlobalValueSummary *GS) { 208 if (!GS) return; 209 AddUnsigned(GS->getVisibility()); 210 AddUnsigned(GS->isLive()); 211 AddUnsigned(GS->canAutoHide()); 212 for (const ValueInfo &VI : GS->refs()) { 213 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 214 AddUsedCfiGlobal(VI.getGUID()); 215 } 216 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 217 AddUnsigned(GVS->maybeReadOnly()); 218 AddUnsigned(GVS->maybeWriteOnly()); 219 } 220 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 221 for (auto &TT : FS->type_tests()) 222 UsedTypeIds.insert(TT); 223 for (auto &TT : FS->type_test_assume_vcalls()) 224 UsedTypeIds.insert(TT.GUID); 225 for (auto &TT : FS->type_checked_load_vcalls()) 226 UsedTypeIds.insert(TT.GUID); 227 for (auto &TT : FS->type_test_assume_const_vcalls()) 228 UsedTypeIds.insert(TT.VFunc.GUID); 229 for (auto &TT : FS->type_checked_load_const_vcalls()) 230 UsedTypeIds.insert(TT.VFunc.GUID); 231 for (auto &ET : FS->calls()) { 232 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 233 AddUsedCfiGlobal(ET.first.getGUID()); 234 } 235 } 236 }; 237 238 // Include the hash for the linkage type to reflect internalization and weak 239 // resolution, and collect any used type identifier resolutions. 240 for (auto &GS : DefinedGlobals) { 241 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 242 Hasher.update( 243 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 244 AddUsedCfiGlobal(GS.first); 245 AddUsedThings(GS.second); 246 } 247 248 // Imported functions may introduce new uses of type identifier resolutions, 249 // so we need to collect their used resolutions as well. 250 for (auto &ImpM : ImportList) 251 for (auto &ImpF : ImpM.second) { 252 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 253 AddUsedThings(S); 254 // If this is an alias, we also care about any types/etc. that the aliasee 255 // may reference. 256 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 257 AddUsedThings(AS->getBaseObject()); 258 } 259 260 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 261 AddString(TId); 262 263 AddUnsigned(S.TTRes.TheKind); 264 AddUnsigned(S.TTRes.SizeM1BitWidth); 265 266 AddUint64(S.TTRes.AlignLog2); 267 AddUint64(S.TTRes.SizeM1); 268 AddUint64(S.TTRes.BitMask); 269 AddUint64(S.TTRes.InlineBits); 270 271 AddUint64(S.WPDRes.size()); 272 for (auto &WPD : S.WPDRes) { 273 AddUnsigned(WPD.first); 274 AddUnsigned(WPD.second.TheKind); 275 AddString(WPD.second.SingleImplName); 276 277 AddUint64(WPD.second.ResByArg.size()); 278 for (auto &ByArg : WPD.second.ResByArg) { 279 AddUint64(ByArg.first.size()); 280 for (uint64_t Arg : ByArg.first) 281 AddUint64(Arg); 282 AddUnsigned(ByArg.second.TheKind); 283 AddUint64(ByArg.second.Info); 284 AddUnsigned(ByArg.second.Byte); 285 AddUnsigned(ByArg.second.Bit); 286 } 287 } 288 }; 289 290 // Include the hash for all type identifiers used by this module. 291 for (GlobalValue::GUID TId : UsedTypeIds) { 292 auto TidIter = Index.typeIds().equal_range(TId); 293 for (auto It = TidIter.first; It != TidIter.second; ++It) 294 AddTypeIdSummary(It->second.first, It->second.second); 295 } 296 297 AddUnsigned(UsedCfiDefs.size()); 298 for (auto &V : UsedCfiDefs) 299 AddUint64(V); 300 301 AddUnsigned(UsedCfiDecls.size()); 302 for (auto &V : UsedCfiDecls) 303 AddUint64(V); 304 305 if (!Conf.SampleProfile.empty()) { 306 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 307 if (FileOrErr) { 308 Hasher.update(FileOrErr.get()->getBuffer()); 309 310 if (!Conf.ProfileRemapping.empty()) { 311 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 312 if (FileOrErr) 313 Hasher.update(FileOrErr.get()->getBuffer()); 314 } 315 } 316 } 317 318 Key = toHex(Hasher.result()); 319 } 320 321 static void thinLTOResolvePrevailingGUID( 322 const Config &C, ValueInfo VI, 323 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 324 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 325 isPrevailing, 326 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 327 recordNewLinkage, 328 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 329 GlobalValue::VisibilityTypes Visibility = 330 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 331 : GlobalValue::DefaultVisibility; 332 for (auto &S : VI.getSummaryList()) { 333 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 334 // Ignore local and appending linkage values since the linker 335 // doesn't resolve them. 336 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 337 GlobalValue::isAppendingLinkage(S->linkage())) 338 continue; 339 // We need to emit only one of these. The prevailing module will keep it, 340 // but turned into a weak, while the others will drop it when possible. 341 // This is both a compile-time optimization and a correctness 342 // transformation. This is necessary for correctness when we have exported 343 // a reference - we need to convert the linkonce to weak to 344 // ensure a copy is kept to satisfy the exported reference. 345 // FIXME: We may want to split the compile time and correctness 346 // aspects into separate routines. 347 if (isPrevailing(VI.getGUID(), S.get())) { 348 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 349 S->setLinkage(GlobalValue::getWeakLinkage( 350 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 351 // The kept copy is eligible for auto-hiding (hidden visibility) if all 352 // copies were (i.e. they were all linkonce_odr global unnamed addr). 353 // If any copy is not (e.g. it was originally weak_odr), then the symbol 354 // must remain externally available (e.g. a weak_odr from an explicitly 355 // instantiated template). Additionally, if it is in the 356 // GUIDPreservedSymbols set, that means that it is visibile outside 357 // the summary (e.g. in a native object or a bitcode file without 358 // summary), and in that case we cannot hide it as it isn't possible to 359 // check all copies. 360 S->setCanAutoHide(VI.canAutoHide() && 361 !GUIDPreservedSymbols.count(VI.getGUID())); 362 } 363 if (C.VisibilityScheme == Config::FromPrevailing) 364 Visibility = S->getVisibility(); 365 } 366 // Alias and aliasee can't be turned into available_externally. 367 else if (!isa<AliasSummary>(S.get()) && 368 !GlobalInvolvedWithAlias.count(S.get())) 369 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 370 371 // For ELF, set visibility to the computed visibility from summaries. We 372 // don't track visibility from declarations so this may be more relaxed than 373 // the most constraining one. 374 if (C.VisibilityScheme == Config::ELF) 375 S->setVisibility(Visibility); 376 377 if (S->linkage() != OriginalLinkage) 378 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 379 } 380 381 if (C.VisibilityScheme == Config::FromPrevailing) { 382 for (auto &S : VI.getSummaryList()) { 383 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 384 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 385 GlobalValue::isAppendingLinkage(S->linkage())) 386 continue; 387 S->setVisibility(Visibility); 388 } 389 } 390 } 391 392 /// Resolve linkage for prevailing symbols in the \p Index. 393 // 394 // We'd like to drop these functions if they are no longer referenced in the 395 // current module. However there is a chance that another module is still 396 // referencing them because of the import. We make sure we always emit at least 397 // one copy. 398 void llvm::thinLTOResolvePrevailingInIndex( 399 const Config &C, ModuleSummaryIndex &Index, 400 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 401 isPrevailing, 402 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 403 recordNewLinkage, 404 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 405 // We won't optimize the globals that are referenced by an alias for now 406 // Ideally we should turn the alias into a global and duplicate the definition 407 // when needed. 408 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 409 for (auto &I : Index) 410 for (auto &S : I.second.SummaryList) 411 if (auto AS = dyn_cast<AliasSummary>(S.get())) 412 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 413 414 for (auto &I : Index) 415 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 416 GlobalInvolvedWithAlias, isPrevailing, 417 recordNewLinkage, GUIDPreservedSymbols); 418 } 419 420 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 421 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 422 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 423 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 424 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 425 return false; 426 } 427 428 static void thinLTOInternalizeAndPromoteGUID( 429 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 430 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 431 isPrevailing) { 432 for (auto &S : VI.getSummaryList()) { 433 if (isExported(S->modulePath(), VI)) { 434 if (GlobalValue::isLocalLinkage(S->linkage())) 435 S->setLinkage(GlobalValue::ExternalLinkage); 436 } else if (EnableLTOInternalization && 437 // Ignore local and appending linkage values since the linker 438 // doesn't resolve them. 439 !GlobalValue::isLocalLinkage(S->linkage()) && 440 (!GlobalValue::isInterposableLinkage(S->linkage()) || 441 isPrevailing(VI.getGUID(), S.get())) && 442 S->linkage() != GlobalValue::AppendingLinkage && 443 // We can't internalize available_externally globals because this 444 // can break function pointer equality. 445 S->linkage() != GlobalValue::AvailableExternallyLinkage && 446 // Functions and read-only variables with linkonce_odr and 447 // weak_odr linkage can be internalized. We can't internalize 448 // linkonce_odr and weak_odr variables which are both modified 449 // and read somewhere in the program because reads and writes 450 // will become inconsistent. 451 !isWeakObjectWithRWAccess(S.get())) 452 S->setLinkage(GlobalValue::InternalLinkage); 453 } 454 } 455 456 // Update the linkages in the given \p Index to mark exported values 457 // as external and non-exported values as internal. 458 void llvm::thinLTOInternalizeAndPromoteInIndex( 459 ModuleSummaryIndex &Index, 460 function_ref<bool(StringRef, ValueInfo)> isExported, 461 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 462 isPrevailing) { 463 for (auto &I : Index) 464 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 465 isPrevailing); 466 } 467 468 // Requires a destructor for std::vector<InputModule>. 469 InputFile::~InputFile() = default; 470 471 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 472 std::unique_ptr<InputFile> File(new InputFile); 473 474 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 475 if (!FOrErr) 476 return FOrErr.takeError(); 477 478 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 479 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 480 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 481 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 482 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 483 484 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 485 size_t Begin = File->Symbols.size(); 486 for (const irsymtab::Reader::SymbolRef &Sym : 487 FOrErr->TheReader.module_symbols(I)) 488 // Skip symbols that are irrelevant to LTO. Note that this condition needs 489 // to match the one in Skip() in LTO::addRegularLTO(). 490 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 491 File->Symbols.push_back(Sym); 492 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 493 } 494 495 File->Mods = FOrErr->Mods; 496 File->Strtab = std::move(FOrErr->Strtab); 497 return std::move(File); 498 } 499 500 StringRef InputFile::getName() const { 501 return Mods[0].getModuleIdentifier(); 502 } 503 504 BitcodeModule &InputFile::getSingleBitcodeModule() { 505 assert(Mods.size() == 1 && "Expect only one bitcode module"); 506 return Mods[0]; 507 } 508 509 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 510 const Config &Conf) 511 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 512 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 513 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 514 515 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 516 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 517 if (!Backend) 518 this->Backend = 519 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 520 } 521 522 LTO::LTO(Config Conf, ThinBackend Backend, 523 unsigned ParallelCodeGenParallelismLevel) 524 : Conf(std::move(Conf)), 525 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 526 ThinLTO(std::move(Backend)) {} 527 528 // Requires a destructor for MapVector<BitcodeModule>. 529 LTO::~LTO() = default; 530 531 // Add the symbols in the given module to the GlobalResolutions map, and resolve 532 // their partitions. 533 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 534 ArrayRef<SymbolResolution> Res, 535 unsigned Partition, bool InSummary) { 536 auto *ResI = Res.begin(); 537 auto *ResE = Res.end(); 538 (void)ResE; 539 for (const InputFile::Symbol &Sym : Syms) { 540 assert(ResI != ResE); 541 SymbolResolution Res = *ResI++; 542 543 StringRef Name = Sym.getName(); 544 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 545 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 546 // way they are handled by lld), otherwise we can end up with two 547 // global resolutions (one with and one for a copy of the symbol without). 548 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 549 Name = Name.substr(strlen("__imp_")); 550 auto &GlobalRes = GlobalResolutions[Name]; 551 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 552 if (Res.Prevailing) { 553 assert(!GlobalRes.Prevailing && 554 "Multiple prevailing defs are not allowed"); 555 GlobalRes.Prevailing = true; 556 GlobalRes.IRName = std::string(Sym.getIRName()); 557 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 558 // Sometimes it can be two copies of symbol in a module and prevailing 559 // symbol can have no IR name. That might happen if symbol is defined in 560 // module level inline asm block. In case we have multiple modules with 561 // the same symbol we want to use IR name of the prevailing symbol. 562 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 563 // we can later use it to check if there is any prevailing copy in IR. 564 GlobalRes.IRName = std::string(Sym.getIRName()); 565 } 566 567 // Set the partition to external if we know it is re-defined by the linker 568 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 569 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 570 // already recorded as being referenced from a different partition. 571 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 572 (GlobalRes.Partition != GlobalResolution::Unknown && 573 GlobalRes.Partition != Partition)) { 574 GlobalRes.Partition = GlobalResolution::External; 575 } else 576 // First recorded reference, save the current partition. 577 GlobalRes.Partition = Partition; 578 579 // Flag as visible outside of summary if visible from a regular object or 580 // from a module that does not have a summary. 581 GlobalRes.VisibleOutsideSummary |= 582 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 583 584 GlobalRes.ExportDynamic |= Res.ExportDynamic; 585 } 586 } 587 588 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 589 ArrayRef<SymbolResolution> Res) { 590 StringRef Path = Input->getName(); 591 OS << Path << '\n'; 592 auto ResI = Res.begin(); 593 for (const InputFile::Symbol &Sym : Input->symbols()) { 594 assert(ResI != Res.end()); 595 SymbolResolution Res = *ResI++; 596 597 OS << "-r=" << Path << ',' << Sym.getName() << ','; 598 if (Res.Prevailing) 599 OS << 'p'; 600 if (Res.FinalDefinitionInLinkageUnit) 601 OS << 'l'; 602 if (Res.VisibleToRegularObj) 603 OS << 'x'; 604 if (Res.LinkerRedefined) 605 OS << 'r'; 606 OS << '\n'; 607 } 608 OS.flush(); 609 assert(ResI == Res.end()); 610 } 611 612 Error LTO::add(std::unique_ptr<InputFile> Input, 613 ArrayRef<SymbolResolution> Res) { 614 assert(!CalledGetMaxTasks); 615 616 if (Conf.ResolutionFile) 617 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 618 619 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 620 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 621 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 622 Conf.VisibilityScheme = Config::ELF; 623 } 624 625 const SymbolResolution *ResI = Res.begin(); 626 for (unsigned I = 0; I != Input->Mods.size(); ++I) 627 if (Error Err = addModule(*Input, I, ResI, Res.end())) 628 return Err; 629 630 assert(ResI == Res.end()); 631 return Error::success(); 632 } 633 634 Error LTO::addModule(InputFile &Input, unsigned ModI, 635 const SymbolResolution *&ResI, 636 const SymbolResolution *ResE) { 637 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 638 if (!LTOInfo) 639 return LTOInfo.takeError(); 640 641 if (EnableSplitLTOUnit.hasValue()) { 642 // If only some modules were split, flag this in the index so that 643 // we can skip or error on optimizations that need consistently split 644 // modules (whole program devirt and lower type tests). 645 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 646 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 647 } else 648 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 649 650 BitcodeModule BM = Input.Mods[ModI]; 651 auto ModSyms = Input.module_symbols(ModI); 652 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 653 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 654 LTOInfo->HasSummary); 655 656 if (LTOInfo->IsThinLTO) 657 return addThinLTO(BM, ModSyms, ResI, ResE); 658 659 RegularLTO.EmptyCombinedModule = false; 660 Expected<RegularLTOState::AddedModule> ModOrErr = 661 addRegularLTO(BM, ModSyms, ResI, ResE); 662 if (!ModOrErr) 663 return ModOrErr.takeError(); 664 665 if (!LTOInfo->HasSummary) 666 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 667 668 // Regular LTO module summaries are added to a dummy module that represents 669 // the combined regular LTO module. 670 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 671 return Err; 672 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 673 return Error::success(); 674 } 675 676 // Checks whether the given global value is in a non-prevailing comdat 677 // (comdat containing values the linker indicated were not prevailing, 678 // which we then dropped to available_externally), and if so, removes 679 // it from the comdat. This is called for all global values to ensure the 680 // comdat is empty rather than leaving an incomplete comdat. It is needed for 681 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 682 // and thin LTO modules) compilation. Since the regular LTO module will be 683 // linked first in the final native link, we want to make sure the linker 684 // doesn't select any of these incomplete comdats that would be left 685 // in the regular LTO module without this cleanup. 686 static void 687 handleNonPrevailingComdat(GlobalValue &GV, 688 std::set<const Comdat *> &NonPrevailingComdats) { 689 Comdat *C = GV.getComdat(); 690 if (!C) 691 return; 692 693 if (!NonPrevailingComdats.count(C)) 694 return; 695 696 // Additionally need to drop externally visible global values from the comdat 697 // to available_externally, so that there aren't multiply defined linker 698 // errors. 699 if (!GV.hasLocalLinkage()) 700 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 701 702 if (auto GO = dyn_cast<GlobalObject>(&GV)) 703 GO->setComdat(nullptr); 704 } 705 706 // Add a regular LTO object to the link. 707 // The resulting module needs to be linked into the combined LTO module with 708 // linkRegularLTO. 709 Expected<LTO::RegularLTOState::AddedModule> 710 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 711 const SymbolResolution *&ResI, 712 const SymbolResolution *ResE) { 713 RegularLTOState::AddedModule Mod; 714 Expected<std::unique_ptr<Module>> MOrErr = 715 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 716 /*IsImporting*/ false); 717 if (!MOrErr) 718 return MOrErr.takeError(); 719 Module &M = **MOrErr; 720 Mod.M = std::move(*MOrErr); 721 722 if (Error Err = M.materializeMetadata()) 723 return std::move(Err); 724 UpgradeDebugInfo(M); 725 726 ModuleSymbolTable SymTab; 727 SymTab.addModule(&M); 728 729 for (GlobalVariable &GV : M.globals()) 730 if (GV.hasAppendingLinkage()) 731 Mod.Keep.push_back(&GV); 732 733 DenseSet<GlobalObject *> AliasedGlobals; 734 for (auto &GA : M.aliases()) 735 if (GlobalObject *GO = GA.getBaseObject()) 736 AliasedGlobals.insert(GO); 737 738 // In this function we need IR GlobalValues matching the symbols in Syms 739 // (which is not backed by a module), so we need to enumerate them in the same 740 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 741 // matches the order of an irsymtab, but when we read the irsymtab in 742 // InputFile::create we omit some symbols that are irrelevant to LTO. The 743 // Skip() function skips the same symbols from the module as InputFile does 744 // from the symbol table. 745 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 746 auto Skip = [&]() { 747 while (MsymI != MsymE) { 748 auto Flags = SymTab.getSymbolFlags(*MsymI); 749 if ((Flags & object::BasicSymbolRef::SF_Global) && 750 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 751 return; 752 ++MsymI; 753 } 754 }; 755 Skip(); 756 757 std::set<const Comdat *> NonPrevailingComdats; 758 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 759 for (const InputFile::Symbol &Sym : Syms) { 760 assert(ResI != ResE); 761 SymbolResolution Res = *ResI++; 762 763 assert(MsymI != MsymE); 764 ModuleSymbolTable::Symbol Msym = *MsymI++; 765 Skip(); 766 767 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 768 if (Res.Prevailing) { 769 if (Sym.isUndefined()) 770 continue; 771 Mod.Keep.push_back(GV); 772 // For symbols re-defined with linker -wrap and -defsym options, 773 // set the linkage to weak to inhibit IPO. The linkage will be 774 // restored by the linker. 775 if (Res.LinkerRedefined) 776 GV->setLinkage(GlobalValue::WeakAnyLinkage); 777 778 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 779 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 780 GV->setLinkage(GlobalValue::getWeakLinkage( 781 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 782 } else if (isa<GlobalObject>(GV) && 783 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 784 GV->hasAvailableExternallyLinkage()) && 785 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 786 // Any of the above three types of linkage indicates that the 787 // chosen prevailing symbol will have the same semantics as this copy of 788 // the symbol, so we may be able to link it with available_externally 789 // linkage. We will decide later whether to do that when we link this 790 // module (in linkRegularLTO), based on whether it is undefined. 791 Mod.Keep.push_back(GV); 792 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 793 if (GV->hasComdat()) 794 NonPrevailingComdats.insert(GV->getComdat()); 795 cast<GlobalObject>(GV)->setComdat(nullptr); 796 } 797 798 // Set the 'local' flag based on the linker resolution for this symbol. 799 if (Res.FinalDefinitionInLinkageUnit) { 800 GV->setDSOLocal(true); 801 if (GV->hasDLLImportStorageClass()) 802 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 803 DefaultStorageClass); 804 } 805 } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) { 806 // Collect non-prevailing symbols. 807 if (!Res.Prevailing) 808 NonPrevailingAsmSymbols.insert(AS->first); 809 } else { 810 llvm_unreachable("unknown symbol type"); 811 } 812 813 // Common resolution: collect the maximum size/alignment over all commons. 814 // We also record if we see an instance of a common as prevailing, so that 815 // if none is prevailing we can ignore it later. 816 if (Sym.isCommon()) { 817 // FIXME: We should figure out what to do about commons defined by asm. 818 // For now they aren't reported correctly by ModuleSymbolTable. 819 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 820 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 821 MaybeAlign SymAlign(Sym.getCommonAlignment()); 822 if (SymAlign) 823 CommonRes.Align = max(*SymAlign, CommonRes.Align); 824 CommonRes.Prevailing |= Res.Prevailing; 825 } 826 } 827 828 if (!M.getComdatSymbolTable().empty()) 829 for (GlobalValue &GV : M.global_values()) 830 handleNonPrevailingComdat(GV, NonPrevailingComdats); 831 832 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 833 // block. 834 if (!M.getModuleInlineAsm().empty()) { 835 std::string NewIA = ".lto_discard"; 836 if (!NonPrevailingAsmSymbols.empty()) { 837 // Don't dicard a symbol if there is a live .symver for it. 838 ModuleSymbolTable::CollectAsmSymvers( 839 M, [&](StringRef Name, StringRef Alias) { 840 if (!NonPrevailingAsmSymbols.count(Alias)) 841 NonPrevailingAsmSymbols.erase(Name); 842 }); 843 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 844 } 845 NewIA += "\n"; 846 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 847 } 848 849 assert(MsymI == MsymE); 850 return std::move(Mod); 851 } 852 853 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 854 bool LivenessFromIndex) { 855 std::vector<GlobalValue *> Keep; 856 for (GlobalValue *GV : Mod.Keep) { 857 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 858 if (Function *F = dyn_cast<Function>(GV)) { 859 OptimizationRemarkEmitter ORE(F, nullptr); 860 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 861 << ore::NV("Function", F) 862 << " not added to the combined module "); 863 } 864 continue; 865 } 866 867 if (!GV->hasAvailableExternallyLinkage()) { 868 Keep.push_back(GV); 869 continue; 870 } 871 872 // Only link available_externally definitions if we don't already have a 873 // definition. 874 GlobalValue *CombinedGV = 875 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 876 if (CombinedGV && !CombinedGV->isDeclaration()) 877 continue; 878 879 Keep.push_back(GV); 880 } 881 882 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 883 [](GlobalValue &, IRMover::ValueAdder) {}, 884 /* IsPerformingImport */ false); 885 } 886 887 // Add a ThinLTO module to the link. 888 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 889 const SymbolResolution *&ResI, 890 const SymbolResolution *ResE) { 891 if (Error Err = 892 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 893 ThinLTO.ModuleMap.size())) 894 return Err; 895 896 for (const InputFile::Symbol &Sym : Syms) { 897 assert(ResI != ResE); 898 SymbolResolution Res = *ResI++; 899 900 if (!Sym.getIRName().empty()) { 901 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 902 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 903 if (Res.Prevailing) { 904 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 905 906 // For linker redefined symbols (via --wrap or --defsym) we want to 907 // switch the linkage to `weak` to prevent IPOs from happening. 908 // Find the summary in the module for this very GV and record the new 909 // linkage so that we can switch it when we import the GV. 910 if (Res.LinkerRedefined) 911 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 912 GUID, BM.getModuleIdentifier())) 913 S->setLinkage(GlobalValue::WeakAnyLinkage); 914 } 915 916 // If the linker resolved the symbol to a local definition then mark it 917 // as local in the summary for the module we are adding. 918 if (Res.FinalDefinitionInLinkageUnit) { 919 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 920 GUID, BM.getModuleIdentifier())) { 921 S->setDSOLocal(true); 922 } 923 } 924 } 925 } 926 927 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 928 return make_error<StringError>( 929 "Expected at most one ThinLTO module per bitcode file", 930 inconvertibleErrorCode()); 931 932 if (!Conf.ThinLTOModulesToCompile.empty()) { 933 if (!ThinLTO.ModulesToCompile) 934 ThinLTO.ModulesToCompile = ModuleMapType(); 935 // This is a fuzzy name matching where only modules with name containing the 936 // specified switch values are going to be compiled. 937 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 938 if (BM.getModuleIdentifier().contains(Name)) { 939 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 940 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 941 << " to compile\n"; 942 } 943 } 944 } 945 946 return Error::success(); 947 } 948 949 unsigned LTO::getMaxTasks() const { 950 CalledGetMaxTasks = true; 951 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 952 : ThinLTO.ModuleMap.size(); 953 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 954 } 955 956 // If only some of the modules were split, we cannot correctly handle 957 // code that contains type tests or type checked loads. 958 Error LTO::checkPartiallySplit() { 959 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 960 return Error::success(); 961 962 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 963 Intrinsic::getName(Intrinsic::type_test)); 964 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 965 Intrinsic::getName(Intrinsic::type_checked_load)); 966 967 // First check if there are type tests / type checked loads in the 968 // merged regular LTO module IR. 969 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 970 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 971 return make_error<StringError>( 972 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 973 inconvertibleErrorCode()); 974 975 // Otherwise check if there are any recorded in the combined summary from the 976 // ThinLTO modules. 977 for (auto &P : ThinLTO.CombinedIndex) { 978 for (auto &S : P.second.SummaryList) { 979 auto *FS = dyn_cast<FunctionSummary>(S.get()); 980 if (!FS) 981 continue; 982 if (!FS->type_test_assume_vcalls().empty() || 983 !FS->type_checked_load_vcalls().empty() || 984 !FS->type_test_assume_const_vcalls().empty() || 985 !FS->type_checked_load_const_vcalls().empty() || 986 !FS->type_tests().empty()) 987 return make_error<StringError>( 988 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 989 inconvertibleErrorCode()); 990 } 991 } 992 return Error::success(); 993 } 994 995 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 996 // Compute "dead" symbols, we don't want to import/export these! 997 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 998 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 999 for (auto &Res : GlobalResolutions) { 1000 // Normally resolution have IR name of symbol. We can do nothing here 1001 // otherwise. See comments in GlobalResolution struct for more details. 1002 if (Res.second.IRName.empty()) 1003 continue; 1004 1005 GlobalValue::GUID GUID = GlobalValue::getGUID( 1006 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1007 1008 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1009 GUIDPreservedSymbols.insert(GUID); 1010 1011 if (Res.second.ExportDynamic) 1012 DynamicExportSymbols.insert(GUID); 1013 1014 GUIDPrevailingResolutions[GUID] = 1015 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1016 } 1017 1018 auto isPrevailing = [&](GlobalValue::GUID G) { 1019 auto It = GUIDPrevailingResolutions.find(G); 1020 if (It == GUIDPrevailingResolutions.end()) 1021 return PrevailingType::Unknown; 1022 return It->second; 1023 }; 1024 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1025 isPrevailing, Conf.OptLevel > 0); 1026 1027 // Setup output file to emit statistics. 1028 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1029 if (!StatsFileOrErr) 1030 return StatsFileOrErr.takeError(); 1031 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1032 1033 Error Result = runRegularLTO(AddStream); 1034 if (!Result) 1035 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1036 1037 if (StatsFile) 1038 PrintStatisticsJSON(StatsFile->os()); 1039 1040 return Result; 1041 } 1042 1043 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1044 // Setup optimization remarks. 1045 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1046 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1047 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1048 Conf.RemarksHotnessThreshold); 1049 if (!DiagFileOrErr) 1050 return DiagFileOrErr.takeError(); 1051 1052 // Finalize linking of regular LTO modules containing summaries now that 1053 // we have computed liveness information. 1054 for (auto &M : RegularLTO.ModsWithSummaries) 1055 if (Error Err = linkRegularLTO(std::move(M), 1056 /*LivenessFromIndex=*/true)) 1057 return Err; 1058 1059 // Ensure we don't have inconsistently split LTO units with type tests. 1060 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1061 // this path both cases but eventually this should be split into two and 1062 // do the ThinLTO checks in `runThinLTO`. 1063 if (Error Err = checkPartiallySplit()) 1064 return Err; 1065 1066 // Make sure commons have the right size/alignment: we kept the largest from 1067 // all the prevailing when adding the inputs, and we apply it here. 1068 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1069 for (auto &I : RegularLTO.Commons) { 1070 if (!I.second.Prevailing) 1071 // Don't do anything if no instance of this common was prevailing. 1072 continue; 1073 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1074 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1075 // Don't create a new global if the type is already correct, just make 1076 // sure the alignment is correct. 1077 OldGV->setAlignment(I.second.Align); 1078 continue; 1079 } 1080 ArrayType *Ty = 1081 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1082 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1083 GlobalValue::CommonLinkage, 1084 ConstantAggregateZero::get(Ty), ""); 1085 GV->setAlignment(I.second.Align); 1086 if (OldGV) { 1087 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1088 GV->takeName(OldGV); 1089 OldGV->eraseFromParent(); 1090 } else { 1091 GV->setName(I.first); 1092 } 1093 } 1094 1095 // If allowed, upgrade public vcall visibility metadata to linkage unit 1096 // visibility before whole program devirtualization in the optimizer. 1097 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1098 Conf.HasWholeProgramVisibility, 1099 DynamicExportSymbols); 1100 1101 if (Conf.PreOptModuleHook && 1102 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1103 return Error::success(); 1104 1105 if (!Conf.CodeGenOnly) { 1106 for (const auto &R : GlobalResolutions) { 1107 if (!R.second.isPrevailingIRSymbol()) 1108 continue; 1109 if (R.second.Partition != 0 && 1110 R.second.Partition != GlobalResolution::External) 1111 continue; 1112 1113 GlobalValue *GV = 1114 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1115 // Ignore symbols defined in other partitions. 1116 // Also skip declarations, which are not allowed to have internal linkage. 1117 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1118 continue; 1119 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1120 : GlobalValue::UnnamedAddr::None); 1121 if (EnableLTOInternalization && R.second.Partition == 0) 1122 GV->setLinkage(GlobalValue::InternalLinkage); 1123 } 1124 1125 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1126 1127 if (Conf.PostInternalizeModuleHook && 1128 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1129 return Error::success(); 1130 } 1131 1132 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1133 if (Error Err = 1134 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1135 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1136 return Err; 1137 } 1138 1139 return finalizeOptimizationRemarks(std::move(*DiagFileOrErr)); 1140 } 1141 1142 static const char *libcallRoutineNames[] = { 1143 #define HANDLE_LIBCALL(code, name) name, 1144 #include "llvm/IR/RuntimeLibcalls.def" 1145 #undef HANDLE_LIBCALL 1146 }; 1147 1148 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1149 return makeArrayRef(libcallRoutineNames); 1150 } 1151 1152 /// This class defines the interface to the ThinLTO backend. 1153 class lto::ThinBackendProc { 1154 protected: 1155 const Config &Conf; 1156 ModuleSummaryIndex &CombinedIndex; 1157 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1158 1159 public: 1160 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1161 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1162 : Conf(Conf), CombinedIndex(CombinedIndex), 1163 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1164 1165 virtual ~ThinBackendProc() {} 1166 virtual Error start( 1167 unsigned Task, BitcodeModule BM, 1168 const FunctionImporter::ImportMapTy &ImportList, 1169 const FunctionImporter::ExportSetTy &ExportList, 1170 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1171 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1172 virtual Error wait() = 0; 1173 virtual unsigned getThreadCount() = 0; 1174 }; 1175 1176 namespace { 1177 class InProcessThinBackend : public ThinBackendProc { 1178 ThreadPool BackendThreadPool; 1179 AddStreamFn AddStream; 1180 NativeObjectCache Cache; 1181 std::set<GlobalValue::GUID> CfiFunctionDefs; 1182 std::set<GlobalValue::GUID> CfiFunctionDecls; 1183 1184 Optional<Error> Err; 1185 std::mutex ErrMu; 1186 1187 public: 1188 InProcessThinBackend( 1189 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1190 ThreadPoolStrategy ThinLTOParallelism, 1191 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1192 AddStreamFn AddStream, NativeObjectCache Cache) 1193 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1194 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1195 Cache(std::move(Cache)) { 1196 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1197 CfiFunctionDefs.insert( 1198 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1199 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1200 CfiFunctionDecls.insert( 1201 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1202 } 1203 1204 Error runThinLTOBackendThread( 1205 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1206 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1207 const FunctionImporter::ImportMapTy &ImportList, 1208 const FunctionImporter::ExportSetTy &ExportList, 1209 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1210 const GVSummaryMapTy &DefinedGlobals, 1211 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1212 auto RunThinBackend = [&](AddStreamFn AddStream) { 1213 LTOLLVMContext BackendContext(Conf); 1214 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1215 if (!MOrErr) 1216 return MOrErr.takeError(); 1217 1218 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1219 ImportList, DefinedGlobals, &ModuleMap); 1220 }; 1221 1222 auto ModuleID = BM.getModuleIdentifier(); 1223 1224 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1225 all_of(CombinedIndex.getModuleHash(ModuleID), 1226 [](uint32_t V) { return V == 0; })) 1227 // Cache disabled or no entry for this module in the combined index or 1228 // no module hash. 1229 return RunThinBackend(AddStream); 1230 1231 SmallString<40> Key; 1232 // The module may be cached, this helps handling it. 1233 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1234 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1235 CfiFunctionDecls); 1236 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1237 return RunThinBackend(CacheAddStream); 1238 1239 return Error::success(); 1240 } 1241 1242 Error start( 1243 unsigned Task, BitcodeModule BM, 1244 const FunctionImporter::ImportMapTy &ImportList, 1245 const FunctionImporter::ExportSetTy &ExportList, 1246 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1247 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1248 StringRef ModulePath = BM.getModuleIdentifier(); 1249 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1250 const GVSummaryMapTy &DefinedGlobals = 1251 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1252 BackendThreadPool.async( 1253 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1254 const FunctionImporter::ImportMapTy &ImportList, 1255 const FunctionImporter::ExportSetTy &ExportList, 1256 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1257 &ResolvedODR, 1258 const GVSummaryMapTy &DefinedGlobals, 1259 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1260 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1261 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1262 "thin backend"); 1263 Error E = runThinLTOBackendThread( 1264 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1265 ResolvedODR, DefinedGlobals, ModuleMap); 1266 if (E) { 1267 std::unique_lock<std::mutex> L(ErrMu); 1268 if (Err) 1269 Err = joinErrors(std::move(*Err), std::move(E)); 1270 else 1271 Err = std::move(E); 1272 } 1273 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1274 timeTraceProfilerFinishThread(); 1275 }, 1276 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1277 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1278 return Error::success(); 1279 } 1280 1281 Error wait() override { 1282 BackendThreadPool.wait(); 1283 if (Err) 1284 return std::move(*Err); 1285 else 1286 return Error::success(); 1287 } 1288 1289 unsigned getThreadCount() override { 1290 return BackendThreadPool.getThreadCount(); 1291 } 1292 }; 1293 } // end anonymous namespace 1294 1295 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1296 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1297 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1298 AddStreamFn AddStream, NativeObjectCache Cache) { 1299 return std::make_unique<InProcessThinBackend>( 1300 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1301 Cache); 1302 }; 1303 } 1304 1305 // Given the original \p Path to an output file, replace any path 1306 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1307 // resulting directory if it does not yet exist. 1308 std::string lto::getThinLTOOutputFile(const std::string &Path, 1309 const std::string &OldPrefix, 1310 const std::string &NewPrefix) { 1311 if (OldPrefix.empty() && NewPrefix.empty()) 1312 return Path; 1313 SmallString<128> NewPath(Path); 1314 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1315 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1316 if (!ParentPath.empty()) { 1317 // Make sure the new directory exists, creating it if necessary. 1318 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1319 llvm::errs() << "warning: could not create directory '" << ParentPath 1320 << "': " << EC.message() << '\n'; 1321 } 1322 return std::string(NewPath.str()); 1323 } 1324 1325 namespace { 1326 class WriteIndexesThinBackend : public ThinBackendProc { 1327 std::string OldPrefix, NewPrefix; 1328 bool ShouldEmitImportsFiles; 1329 raw_fd_ostream *LinkedObjectsFile; 1330 lto::IndexWriteCallback OnWrite; 1331 1332 public: 1333 WriteIndexesThinBackend( 1334 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1335 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1336 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1337 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1338 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1339 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1340 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1341 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1342 1343 Error start( 1344 unsigned Task, BitcodeModule BM, 1345 const FunctionImporter::ImportMapTy &ImportList, 1346 const FunctionImporter::ExportSetTy &ExportList, 1347 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1348 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1349 StringRef ModulePath = BM.getModuleIdentifier(); 1350 std::string NewModulePath = 1351 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1352 1353 if (LinkedObjectsFile) 1354 *LinkedObjectsFile << NewModulePath << '\n'; 1355 1356 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1357 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1358 ImportList, ModuleToSummariesForIndex); 1359 1360 std::error_code EC; 1361 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1362 sys::fs::OpenFlags::OF_None); 1363 if (EC) 1364 return errorCodeToError(EC); 1365 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1366 1367 if (ShouldEmitImportsFiles) { 1368 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1369 ModuleToSummariesForIndex); 1370 if (EC) 1371 return errorCodeToError(EC); 1372 } 1373 1374 if (OnWrite) 1375 OnWrite(std::string(ModulePath)); 1376 return Error::success(); 1377 } 1378 1379 Error wait() override { return Error::success(); } 1380 1381 // WriteIndexesThinBackend should always return 1 to prevent module 1382 // re-ordering and avoid non-determinism in the final link. 1383 unsigned getThreadCount() override { return 1; } 1384 }; 1385 } // end anonymous namespace 1386 1387 ThinBackend lto::createWriteIndexesThinBackend( 1388 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1389 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1390 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1391 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1392 AddStreamFn AddStream, NativeObjectCache Cache) { 1393 return std::make_unique<WriteIndexesThinBackend>( 1394 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1395 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1396 }; 1397 } 1398 1399 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1400 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1401 if (ThinLTO.ModuleMap.empty()) 1402 return Error::success(); 1403 1404 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1405 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1406 return Error::success(); 1407 } 1408 1409 if (Conf.CombinedIndexHook && 1410 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1411 return Error::success(); 1412 1413 // Collect for each module the list of function it defines (GUID -> 1414 // Summary). 1415 StringMap<GVSummaryMapTy> 1416 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1417 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1418 ModuleToDefinedGVSummaries); 1419 // Create entries for any modules that didn't have any GV summaries 1420 // (either they didn't have any GVs to start with, or we suppressed 1421 // generation of the summaries because they e.g. had inline assembly 1422 // uses that couldn't be promoted/renamed on export). This is so 1423 // InProcessThinBackend::start can still launch a backend thread, which 1424 // is passed the map of summaries for the module, without any special 1425 // handling for this case. 1426 for (auto &Mod : ThinLTO.ModuleMap) 1427 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1428 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1429 1430 // Synthesize entry counts for functions in the CombinedIndex. 1431 computeSyntheticCounts(ThinLTO.CombinedIndex); 1432 1433 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1434 ThinLTO.ModuleMap.size()); 1435 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1436 ThinLTO.ModuleMap.size()); 1437 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1438 1439 if (DumpThinCGSCCs) 1440 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1441 1442 std::set<GlobalValue::GUID> ExportedGUIDs; 1443 1444 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1445 // the summaries before whole program devirtualization below. 1446 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1447 Conf.HasWholeProgramVisibility, 1448 DynamicExportSymbols); 1449 1450 // Perform index-based WPD. This will return immediately if there are 1451 // no index entries in the typeIdMetadata map (e.g. if we are instead 1452 // performing IR-based WPD in hybrid regular/thin LTO mode). 1453 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1454 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1455 LocalWPDTargetsMap); 1456 1457 if (Conf.OptLevel > 0) 1458 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1459 ImportLists, ExportLists); 1460 1461 // Figure out which symbols need to be internalized. This also needs to happen 1462 // at -O0 because summary-based DCE is implemented using internalization, and 1463 // we must apply DCE consistently with the full LTO module in order to avoid 1464 // undefined references during the final link. 1465 for (auto &Res : GlobalResolutions) { 1466 // If the symbol does not have external references or it is not prevailing, 1467 // then not need to mark it as exported from a ThinLTO partition. 1468 if (Res.second.Partition != GlobalResolution::External || 1469 !Res.second.isPrevailingIRSymbol()) 1470 continue; 1471 auto GUID = GlobalValue::getGUID( 1472 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1473 // Mark exported unless index-based analysis determined it to be dead. 1474 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1475 ExportedGUIDs.insert(GUID); 1476 } 1477 1478 // Any functions referenced by the jump table in the regular LTO object must 1479 // be exported. 1480 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1481 ExportedGUIDs.insert( 1482 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1483 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1484 ExportedGUIDs.insert( 1485 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1486 1487 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1488 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1489 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1490 ExportedGUIDs.count(VI.getGUID()); 1491 }; 1492 1493 // Update local devirtualized targets that were exported by cross-module 1494 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1495 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1496 LocalWPDTargetsMap); 1497 1498 auto isPrevailing = [&](GlobalValue::GUID GUID, 1499 const GlobalValueSummary *S) { 1500 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1501 }; 1502 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1503 isPrevailing); 1504 1505 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1506 GlobalValue::GUID GUID, 1507 GlobalValue::LinkageTypes NewLinkage) { 1508 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1509 }; 1510 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1511 recordNewLinkage, GUIDPreservedSymbols); 1512 1513 generateParamAccessSummary(ThinLTO.CombinedIndex); 1514 1515 std::unique_ptr<ThinBackendProc> BackendProc = 1516 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1517 AddStream, Cache); 1518 1519 auto &ModuleMap = 1520 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1521 1522 auto ProcessOneModule = [&](int I) -> Error { 1523 auto &Mod = *(ModuleMap.begin() + I); 1524 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1525 // combined module and parallel code generation partitions. 1526 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1527 Mod.second, ImportLists[Mod.first], 1528 ExportLists[Mod.first], ResolvedODR[Mod.first], 1529 ThinLTO.ModuleMap); 1530 }; 1531 1532 if (BackendProc->getThreadCount() == 1) { 1533 // Process the modules in the order they were provided on the command-line. 1534 // It is important for this codepath to be used for WriteIndexesThinBackend, 1535 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1536 // order as the inputs, which otherwise would affect the final link order. 1537 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1538 if (Error E = ProcessOneModule(I)) 1539 return E; 1540 } else { 1541 // When executing in parallel, process largest bitsize modules first to 1542 // improve parallelism, and avoid starving the thread pool near the end. 1543 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1544 // of 100 sec). 1545 std::vector<BitcodeModule *> ModulesVec; 1546 ModulesVec.reserve(ModuleMap.size()); 1547 for (auto &Mod : ModuleMap) 1548 ModulesVec.push_back(&Mod.second); 1549 for (int I : generateModulesOrdering(ModulesVec)) 1550 if (Error E = ProcessOneModule(I)) 1551 return E; 1552 } 1553 return BackendProc->wait(); 1554 } 1555 1556 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1557 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1558 StringRef RemarksFormat, bool RemarksWithHotness, 1559 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1560 std::string Filename = std::string(RemarksFilename); 1561 // For ThinLTO, file.opt.<format> becomes 1562 // file.opt.<format>.thin.<num>.<format>. 1563 if (!Filename.empty() && Count != -1) 1564 Filename = 1565 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1566 .str(); 1567 1568 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1569 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1570 RemarksHotnessThreshold); 1571 if (Error E = ResultOrErr.takeError()) 1572 return std::move(E); 1573 1574 if (*ResultOrErr) 1575 (*ResultOrErr)->keep(); 1576 1577 return ResultOrErr; 1578 } 1579 1580 Expected<std::unique_ptr<ToolOutputFile>> 1581 lto::setupStatsFile(StringRef StatsFilename) { 1582 // Setup output file to emit statistics. 1583 if (StatsFilename.empty()) 1584 return nullptr; 1585 1586 llvm::EnableStatistics(false); 1587 std::error_code EC; 1588 auto StatsFile = 1589 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1590 if (EC) 1591 return errorCodeToError(EC); 1592 1593 StatsFile->keep(); 1594 return std::move(StatsFile); 1595 } 1596 1597 // Compute the ordering we will process the inputs: the rough heuristic here 1598 // is to sort them per size so that the largest module get schedule as soon as 1599 // possible. This is purely a compile-time optimization. 1600 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1601 std::vector<int> ModulesOrdering; 1602 ModulesOrdering.resize(R.size()); 1603 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 1604 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1605 auto LSize = R[LeftIndex]->getBuffer().size(); 1606 auto RSize = R[RightIndex]->getBuffer().size(); 1607 return LSize > RSize; 1608 }); 1609 return ModulesOrdering; 1610 } 1611