1 //===- ELFObjHandler.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===-----------------------------------------------------------------------===/ 8 9 #include "llvm/InterfaceStub/ELFObjHandler.h" 10 #include "llvm/InterfaceStub/IFSStub.h" 11 #include "llvm/MC/StringTableBuilder.h" 12 #include "llvm/Object/Binary.h" 13 #include "llvm/Object/ELFObjectFile.h" 14 #include "llvm/Object/ELFTypes.h" 15 #include "llvm/Support/Errc.h" 16 #include "llvm/Support/Error.h" 17 #include "llvm/Support/FileOutputBuffer.h" 18 #include "llvm/Support/MathExtras.h" 19 #include "llvm/Support/MemoryBuffer.h" 20 #include "llvm/Support/Process.h" 21 22 using llvm::object::ELFObjectFile; 23 24 using namespace llvm; 25 using namespace llvm::object; 26 using namespace llvm::ELF; 27 28 namespace llvm { 29 namespace ifs { 30 31 // Simple struct to hold relevant .dynamic entries. 32 struct DynamicEntries { 33 uint64_t StrTabAddr = 0; 34 uint64_t StrSize = 0; 35 Optional<uint64_t> SONameOffset; 36 std::vector<uint64_t> NeededLibNames; 37 // Symbol table: 38 uint64_t DynSymAddr = 0; 39 // Hash tables: 40 Optional<uint64_t> ElfHash; 41 Optional<uint64_t> GnuHash; 42 }; 43 44 /// This initializes an ELF file header with information specific to a binary 45 /// dynamic shared object. 46 /// Offsets, indexes, links, etc. for section and program headers are just 47 /// zero-initialized as they will be updated elsewhere. 48 /// 49 /// @param ElfHeader Target ELFT::Ehdr to populate. 50 /// @param Machine Target architecture (e_machine from ELF specifications). 51 template <class ELFT> 52 static void initELFHeader(typename ELFT::Ehdr &ElfHeader, uint16_t Machine) { 53 memset(&ElfHeader, 0, sizeof(ElfHeader)); 54 // ELF identification. 55 ElfHeader.e_ident[EI_MAG0] = ElfMagic[EI_MAG0]; 56 ElfHeader.e_ident[EI_MAG1] = ElfMagic[EI_MAG1]; 57 ElfHeader.e_ident[EI_MAG2] = ElfMagic[EI_MAG2]; 58 ElfHeader.e_ident[EI_MAG3] = ElfMagic[EI_MAG3]; 59 ElfHeader.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 60 bool IsLittleEndian = ELFT::TargetEndianness == support::little; 61 ElfHeader.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB; 62 ElfHeader.e_ident[EI_VERSION] = EV_CURRENT; 63 ElfHeader.e_ident[EI_OSABI] = ELFOSABI_NONE; 64 65 // Remainder of ELF header. 66 ElfHeader.e_type = ET_DYN; 67 ElfHeader.e_machine = Machine; 68 ElfHeader.e_version = EV_CURRENT; 69 ElfHeader.e_ehsize = sizeof(typename ELFT::Ehdr); 70 ElfHeader.e_phentsize = sizeof(typename ELFT::Phdr); 71 ElfHeader.e_shentsize = sizeof(typename ELFT::Shdr); 72 } 73 74 namespace { 75 template <class ELFT> struct OutputSection { 76 using Elf_Shdr = typename ELFT::Shdr; 77 std::string Name; 78 Elf_Shdr Shdr; 79 uint64_t Addr; 80 uint64_t Offset; 81 uint64_t Size; 82 uint64_t Align; 83 uint32_t Index; 84 bool NoBits = true; 85 }; 86 87 template <class T, class ELFT> 88 struct ContentSection : public OutputSection<ELFT> { 89 T Content; 90 ContentSection() { this->NoBits = false; } 91 }; 92 93 // This class just wraps StringTableBuilder for the purpose of adding a 94 // default constructor. 95 class ELFStringTableBuilder : public StringTableBuilder { 96 public: 97 ELFStringTableBuilder() : StringTableBuilder(StringTableBuilder::ELF) {} 98 }; 99 100 template <class ELFT> class ELFSymbolTableBuilder { 101 public: 102 using Elf_Sym = typename ELFT::Sym; 103 104 ELFSymbolTableBuilder() { Symbols.push_back({}); } 105 106 void add(size_t StNameOffset, uint64_t StSize, uint8_t StBind, uint8_t StType, 107 uint8_t StOther, uint16_t StShndx) { 108 Elf_Sym S{}; 109 S.st_name = StNameOffset; 110 S.st_size = StSize; 111 S.st_info = (StBind << 4) | (StType & 0xf); 112 S.st_other = StOther; 113 S.st_shndx = StShndx; 114 Symbols.push_back(S); 115 } 116 117 size_t getSize() const { return Symbols.size() * sizeof(Elf_Sym); } 118 119 void write(uint8_t *Buf) const { 120 memcpy(Buf, Symbols.data(), sizeof(Elf_Sym) * Symbols.size()); 121 } 122 123 private: 124 llvm::SmallVector<Elf_Sym, 8> Symbols; 125 }; 126 127 template <class ELFT> class ELFDynamicTableBuilder { 128 public: 129 using Elf_Dyn = typename ELFT::Dyn; 130 131 size_t addAddr(uint64_t Tag, uint64_t Addr) { 132 Elf_Dyn Entry; 133 Entry.d_tag = Tag; 134 Entry.d_un.d_ptr = Addr; 135 Entries.push_back(Entry); 136 return Entries.size() - 1; 137 } 138 139 void modifyAddr(size_t Index, uint64_t Addr) { 140 Entries[Index].d_un.d_ptr = Addr; 141 } 142 143 size_t addValue(uint64_t Tag, uint64_t Value) { 144 Elf_Dyn Entry; 145 Entry.d_tag = Tag; 146 Entry.d_un.d_val = Value; 147 Entries.push_back(Entry); 148 return Entries.size() - 1; 149 } 150 151 void modifyValue(size_t Index, uint64_t Value) { 152 Entries[Index].d_un.d_val = Value; 153 } 154 155 size_t getSize() const { 156 // Add DT_NULL entry at the end. 157 return (Entries.size() + 1) * sizeof(Elf_Dyn); 158 } 159 160 void write(uint8_t *Buf) const { 161 memcpy(Buf, Entries.data(), sizeof(Elf_Dyn) * Entries.size()); 162 // Add DT_NULL entry at the end. 163 memset(Buf + sizeof(Elf_Dyn) * Entries.size(), 0, sizeof(Elf_Dyn)); 164 } 165 166 private: 167 llvm::SmallVector<Elf_Dyn, 8> Entries; 168 }; 169 170 template <class ELFT> class ELFStubBuilder { 171 public: 172 using Elf_Ehdr = typename ELFT::Ehdr; 173 using Elf_Shdr = typename ELFT::Shdr; 174 using Elf_Phdr = typename ELFT::Phdr; 175 using Elf_Sym = typename ELFT::Sym; 176 using Elf_Addr = typename ELFT::Addr; 177 using Elf_Dyn = typename ELFT::Dyn; 178 179 ELFStubBuilder(const ELFStubBuilder &) = delete; 180 ELFStubBuilder(ELFStubBuilder &&) = default; 181 182 explicit ELFStubBuilder(const IFSStub &Stub) { 183 DynSym.Name = ".dynsym"; 184 DynSym.Align = sizeof(Elf_Addr); 185 DynStr.Name = ".dynstr"; 186 DynStr.Align = 1; 187 DynTab.Name = ".dynamic"; 188 DynTab.Align = sizeof(Elf_Addr); 189 ShStrTab.Name = ".shstrtab"; 190 ShStrTab.Align = 1; 191 192 // Populate string tables. 193 for (const IFSSymbol &Sym : Stub.Symbols) 194 DynStr.Content.add(Sym.Name); 195 for (const std::string &Lib : Stub.NeededLibs) 196 DynStr.Content.add(Lib); 197 if (Stub.SoName) 198 DynStr.Content.add(Stub.SoName.getValue()); 199 200 std::vector<OutputSection<ELFT> *> Sections = {&DynSym, &DynStr, &DynTab, 201 &ShStrTab}; 202 const OutputSection<ELFT> *LastSection = Sections.back(); 203 // Now set the Index and put sections names into ".shstrtab". 204 uint64_t Index = 1; 205 for (OutputSection<ELFT> *Sec : Sections) { 206 Sec->Index = Index++; 207 ShStrTab.Content.add(Sec->Name); 208 } 209 ShStrTab.Content.finalize(); 210 ShStrTab.Size = ShStrTab.Content.getSize(); 211 DynStr.Content.finalize(); 212 DynStr.Size = DynStr.Content.getSize(); 213 214 // Populate dynamic symbol table. 215 for (const IFSSymbol &Sym : Stub.Symbols) { 216 uint8_t Bind = Sym.Weak ? STB_WEAK : STB_GLOBAL; 217 // For non-undefined symbols, value of the shndx is not relevant at link 218 // time as long as it is not SHN_UNDEF. Set shndx to 1, which 219 // points to ".dynsym". 220 uint16_t Shndx = Sym.Undefined ? SHN_UNDEF : 1; 221 DynSym.Content.add(DynStr.Content.getOffset(Sym.Name), Sym.Size, Bind, 222 convertIFSSymbolTypeToELF(Sym.Type), 0, Shndx); 223 } 224 DynSym.Size = DynSym.Content.getSize(); 225 226 // Poplulate dynamic table. 227 size_t DynSymIndex = DynTab.Content.addAddr(DT_SYMTAB, 0); 228 size_t DynStrIndex = DynTab.Content.addAddr(DT_STRTAB, 0); 229 for (const std::string &Lib : Stub.NeededLibs) 230 DynTab.Content.addValue(DT_NEEDED, DynStr.Content.getOffset(Lib)); 231 if (Stub.SoName) 232 DynTab.Content.addValue(DT_SONAME, 233 DynStr.Content.getOffset(Stub.SoName.getValue())); 234 DynTab.Size = DynTab.Content.getSize(); 235 // Calculate sections' addresses and offsets. 236 uint64_t CurrentOffset = sizeof(Elf_Ehdr); 237 for (OutputSection<ELFT> *Sec : Sections) { 238 Sec->Offset = alignTo(CurrentOffset, Sec->Align); 239 Sec->Addr = Sec->Offset; 240 CurrentOffset = Sec->Offset + Sec->Size; 241 } 242 // Fill Addr back to dynamic table. 243 DynTab.Content.modifyAddr(DynSymIndex, DynSym.Addr); 244 DynTab.Content.modifyAddr(DynStrIndex, DynStr.Addr); 245 // Write section headers of string tables. 246 fillSymTabShdr(DynSym, SHT_DYNSYM); 247 fillStrTabShdr(DynStr, SHF_ALLOC); 248 fillDynTabShdr(DynTab); 249 fillStrTabShdr(ShStrTab); 250 251 // Finish initializing the ELF header. 252 initELFHeader<ELFT>(ElfHeader, 253 static_cast<uint16_t>(Stub.Target.Arch.getValue())); 254 ElfHeader.e_shstrndx = ShStrTab.Index; 255 ElfHeader.e_shnum = LastSection->Index + 1; 256 ElfHeader.e_shoff = 257 alignTo(LastSection->Offset + LastSection->Size, sizeof(Elf_Addr)); 258 } 259 260 size_t getSize() const { 261 return ElfHeader.e_shoff + ElfHeader.e_shnum * sizeof(Elf_Shdr); 262 } 263 264 void write(uint8_t *Data) const { 265 write(Data, ElfHeader); 266 DynSym.Content.write(Data + DynSym.Shdr.sh_offset); 267 DynStr.Content.write(Data + DynStr.Shdr.sh_offset); 268 DynTab.Content.write(Data + DynTab.Shdr.sh_offset); 269 ShStrTab.Content.write(Data + ShStrTab.Shdr.sh_offset); 270 writeShdr(Data, DynSym); 271 writeShdr(Data, DynStr); 272 writeShdr(Data, DynTab); 273 writeShdr(Data, ShStrTab); 274 } 275 276 private: 277 Elf_Ehdr ElfHeader; 278 ContentSection<ELFStringTableBuilder, ELFT> DynStr; 279 ContentSection<ELFStringTableBuilder, ELFT> ShStrTab; 280 ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> DynSym; 281 ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> DynTab; 282 283 template <class T> static void write(uint8_t *Data, const T &Value) { 284 *reinterpret_cast<T *>(Data) = Value; 285 } 286 287 void fillStrTabShdr(ContentSection<ELFStringTableBuilder, ELFT> &StrTab, 288 uint32_t ShFlags = 0) const { 289 StrTab.Shdr.sh_type = SHT_STRTAB; 290 StrTab.Shdr.sh_flags = ShFlags; 291 StrTab.Shdr.sh_addr = StrTab.Addr; 292 StrTab.Shdr.sh_offset = StrTab.Offset; 293 StrTab.Shdr.sh_info = 0; 294 StrTab.Shdr.sh_size = StrTab.Size; 295 StrTab.Shdr.sh_name = ShStrTab.Content.getOffset(StrTab.Name); 296 StrTab.Shdr.sh_addralign = StrTab.Align; 297 StrTab.Shdr.sh_entsize = 0; 298 StrTab.Shdr.sh_link = 0; 299 } 300 void fillSymTabShdr(ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> &SymTab, 301 uint32_t ShType) const { 302 SymTab.Shdr.sh_type = ShType; 303 SymTab.Shdr.sh_flags = SHF_ALLOC; 304 SymTab.Shdr.sh_addr = SymTab.Addr; 305 SymTab.Shdr.sh_offset = SymTab.Offset; 306 // Only non-local symbols are included in the tbe file, so .dynsym only 307 // contains 1 local symbol (the undefined symbol at index 0). The sh_info 308 // should always be 1. 309 SymTab.Shdr.sh_info = 1; 310 SymTab.Shdr.sh_size = SymTab.Size; 311 SymTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(SymTab.Name); 312 SymTab.Shdr.sh_addralign = SymTab.Align; 313 SymTab.Shdr.sh_entsize = sizeof(Elf_Sym); 314 SymTab.Shdr.sh_link = this->DynStr.Index; 315 } 316 void fillDynTabShdr( 317 ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> &DynTab) const { 318 DynTab.Shdr.sh_type = SHT_DYNAMIC; 319 DynTab.Shdr.sh_flags = SHF_ALLOC; 320 DynTab.Shdr.sh_addr = DynTab.Addr; 321 DynTab.Shdr.sh_offset = DynTab.Offset; 322 DynTab.Shdr.sh_info = 0; 323 DynTab.Shdr.sh_size = DynTab.Size; 324 DynTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(DynTab.Name); 325 DynTab.Shdr.sh_addralign = DynTab.Align; 326 DynTab.Shdr.sh_entsize = sizeof(Elf_Dyn); 327 DynTab.Shdr.sh_link = this->DynStr.Index; 328 } 329 uint64_t shdrOffset(const OutputSection<ELFT> &Sec) const { 330 return ElfHeader.e_shoff + Sec.Index * sizeof(Elf_Shdr); 331 } 332 333 void writeShdr(uint8_t *Data, const OutputSection<ELFT> &Sec) const { 334 write(Data + shdrOffset(Sec), Sec.Shdr); 335 } 336 }; 337 } // end anonymous namespace 338 339 /// This function behaves similarly to StringRef::substr(), but attempts to 340 /// terminate the returned StringRef at the first null terminator. If no null 341 /// terminator is found, an error is returned. 342 /// 343 /// @param Str Source string to create a substring from. 344 /// @param Offset The start index of the desired substring. 345 static Expected<StringRef> terminatedSubstr(StringRef Str, size_t Offset) { 346 size_t StrEnd = Str.find('\0', Offset); 347 if (StrEnd == StringLiteral::npos) { 348 return createError( 349 "String overran bounds of string table (no null terminator)"); 350 } 351 352 size_t StrLen = StrEnd - Offset; 353 return Str.substr(Offset, StrLen); 354 } 355 356 /// This function takes an error, and appends a string of text to the end of 357 /// that error. Since "appending" to an Error isn't supported behavior of an 358 /// Error, this function technically creates a new error with the combined 359 /// message and consumes the old error. 360 /// 361 /// @param Err Source error. 362 /// @param After Text to append at the end of Err's error message. 363 Error appendToError(Error Err, StringRef After) { 364 std::string Message; 365 raw_string_ostream Stream(Message); 366 Stream << Err; 367 Stream << " " << After; 368 consumeError(std::move(Err)); 369 return createError(Stream.str()); 370 } 371 372 /// This function populates a DynamicEntries struct using an ELFT::DynRange. 373 /// After populating the struct, the members are validated with 374 /// some basic correctness checks. 375 /// 376 /// @param Dyn Target DynamicEntries struct to populate. 377 /// @param DynTable Source dynamic table. 378 template <class ELFT> 379 static Error populateDynamic(DynamicEntries &Dyn, 380 typename ELFT::DynRange DynTable) { 381 if (DynTable.empty()) 382 return createError("No .dynamic section found"); 383 384 // Search .dynamic for relevant entries. 385 bool FoundDynStr = false; 386 bool FoundDynStrSz = false; 387 bool FoundDynSym = false; 388 for (auto &Entry : DynTable) { 389 switch (Entry.d_tag) { 390 case DT_SONAME: 391 Dyn.SONameOffset = Entry.d_un.d_val; 392 break; 393 case DT_STRTAB: 394 Dyn.StrTabAddr = Entry.d_un.d_ptr; 395 FoundDynStr = true; 396 break; 397 case DT_STRSZ: 398 Dyn.StrSize = Entry.d_un.d_val; 399 FoundDynStrSz = true; 400 break; 401 case DT_NEEDED: 402 Dyn.NeededLibNames.push_back(Entry.d_un.d_val); 403 break; 404 case DT_SYMTAB: 405 Dyn.DynSymAddr = Entry.d_un.d_ptr; 406 FoundDynSym = true; 407 break; 408 case DT_HASH: 409 Dyn.ElfHash = Entry.d_un.d_ptr; 410 break; 411 case DT_GNU_HASH: 412 Dyn.GnuHash = Entry.d_un.d_ptr; 413 } 414 } 415 416 if (!FoundDynStr) { 417 return createError( 418 "Couldn't locate dynamic string table (no DT_STRTAB entry)"); 419 } 420 if (!FoundDynStrSz) { 421 return createError( 422 "Couldn't determine dynamic string table size (no DT_STRSZ entry)"); 423 } 424 if (!FoundDynSym) { 425 return createError( 426 "Couldn't locate dynamic symbol table (no DT_SYMTAB entry)"); 427 } 428 if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) { 429 return createStringError(object_error::parse_failed, 430 "DT_SONAME string offset (0x%016" PRIx64 431 ") outside of dynamic string table", 432 *Dyn.SONameOffset); 433 } 434 for (uint64_t Offset : Dyn.NeededLibNames) { 435 if (Offset >= Dyn.StrSize) { 436 return createStringError(object_error::parse_failed, 437 "DT_NEEDED string offset (0x%016" PRIx64 438 ") outside of dynamic string table", 439 Offset); 440 } 441 } 442 443 return Error::success(); 444 } 445 446 /// This function creates an IFSSymbol and populates all members using 447 /// information from a binary ELFT::Sym. 448 /// 449 /// @param SymName The desired name of the IFSSymbol. 450 /// @param RawSym ELFT::Sym to extract symbol information from. 451 template <class ELFT> 452 static IFSSymbol createELFSym(StringRef SymName, 453 const typename ELFT::Sym &RawSym) { 454 IFSSymbol TargetSym{std::string(SymName)}; 455 uint8_t Binding = RawSym.getBinding(); 456 if (Binding == STB_WEAK) 457 TargetSym.Weak = true; 458 else 459 TargetSym.Weak = false; 460 461 TargetSym.Undefined = RawSym.isUndefined(); 462 TargetSym.Type = convertELFSymbolTypeToIFS(RawSym.st_info); 463 464 if (TargetSym.Type == IFSSymbolType::Func) { 465 TargetSym.Size = 0; 466 } else { 467 TargetSym.Size = RawSym.st_size; 468 } 469 return TargetSym; 470 } 471 472 /// This function populates an IFSStub with symbols using information read 473 /// from an ELF binary. 474 /// 475 /// @param TargetStub IFSStub to add symbols to. 476 /// @param DynSym Range of dynamic symbols to add to TargetStub. 477 /// @param DynStr StringRef to the dynamic string table. 478 template <class ELFT> 479 static Error populateSymbols(IFSStub &TargetStub, 480 const typename ELFT::SymRange DynSym, 481 StringRef DynStr) { 482 // Skips the first symbol since it's the NULL symbol. 483 for (auto RawSym : DynSym.drop_front(1)) { 484 // If a symbol does not have global or weak binding, ignore it. 485 uint8_t Binding = RawSym.getBinding(); 486 if (!(Binding == STB_GLOBAL || Binding == STB_WEAK)) 487 continue; 488 // If a symbol doesn't have default or protected visibility, ignore it. 489 uint8_t Visibility = RawSym.getVisibility(); 490 if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED)) 491 continue; 492 // Create an IFSSymbol and populate it with information from the symbol 493 // table entry. 494 Expected<StringRef> SymName = terminatedSubstr(DynStr, RawSym.st_name); 495 if (!SymName) 496 return SymName.takeError(); 497 IFSSymbol Sym = createELFSym<ELFT>(*SymName, RawSym); 498 TargetStub.Symbols.push_back(std::move(Sym)); 499 // TODO: Populate symbol warning. 500 } 501 return Error::success(); 502 } 503 504 /// Returns a new IFSStub with all members populated from an ELFObjectFile. 505 /// @param ElfObj Source ELFObjectFile. 506 template <class ELFT> 507 static Expected<std::unique_ptr<IFSStub>> 508 buildStub(const ELFObjectFile<ELFT> &ElfObj) { 509 using Elf_Dyn_Range = typename ELFT::DynRange; 510 using Elf_Phdr_Range = typename ELFT::PhdrRange; 511 using Elf_Sym_Range = typename ELFT::SymRange; 512 using Elf_Sym = typename ELFT::Sym; 513 std::unique_ptr<IFSStub> DestStub = std::make_unique<IFSStub>(); 514 const ELFFile<ELFT> &ElfFile = ElfObj.getELFFile(); 515 // Fetch .dynamic table. 516 Expected<Elf_Dyn_Range> DynTable = ElfFile.dynamicEntries(); 517 if (!DynTable) { 518 return DynTable.takeError(); 519 } 520 521 // Fetch program headers. 522 Expected<Elf_Phdr_Range> PHdrs = ElfFile.program_headers(); 523 if (!PHdrs) { 524 return PHdrs.takeError(); 525 } 526 527 // Collect relevant .dynamic entries. 528 DynamicEntries DynEnt; 529 if (Error Err = populateDynamic<ELFT>(DynEnt, *DynTable)) 530 return std::move(Err); 531 532 // Get pointer to in-memory location of .dynstr section. 533 Expected<const uint8_t *> DynStrPtr = ElfFile.toMappedAddr(DynEnt.StrTabAddr); 534 if (!DynStrPtr) 535 return appendToError(DynStrPtr.takeError(), 536 "when locating .dynstr section contents"); 537 538 StringRef DynStr(reinterpret_cast<const char *>(DynStrPtr.get()), 539 DynEnt.StrSize); 540 541 // Populate Arch from ELF header. 542 DestStub->Target.Arch = static_cast<IFSArch>(ElfFile.getHeader().e_machine); 543 DestStub->Target.BitWidth = 544 convertELFBitWidthToIFS(ElfFile.getHeader().e_ident[EI_CLASS]); 545 DestStub->Target.Endianness = 546 convertELFEndiannessToIFS(ElfFile.getHeader().e_ident[EI_DATA]); 547 DestStub->Target.ObjectFormat = "ELF"; 548 549 // Populate SoName from .dynamic entries and dynamic string table. 550 if (DynEnt.SONameOffset.hasValue()) { 551 Expected<StringRef> NameOrErr = 552 terminatedSubstr(DynStr, *DynEnt.SONameOffset); 553 if (!NameOrErr) { 554 return appendToError(NameOrErr.takeError(), "when reading DT_SONAME"); 555 } 556 DestStub->SoName = std::string(*NameOrErr); 557 } 558 559 // Populate NeededLibs from .dynamic entries and dynamic string table. 560 for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) { 561 Expected<StringRef> LibNameOrErr = 562 terminatedSubstr(DynStr, NeededStrOffset); 563 if (!LibNameOrErr) { 564 return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED"); 565 } 566 DestStub->NeededLibs.push_back(std::string(*LibNameOrErr)); 567 } 568 569 // Populate Symbols from .dynsym table and dynamic string table. 570 Expected<uint64_t> SymCount = ElfFile.getDynSymtabSize(); 571 if (!SymCount) 572 return SymCount.takeError(); 573 if (*SymCount > 0) { 574 // Get pointer to in-memory location of .dynsym section. 575 Expected<const uint8_t *> DynSymPtr = 576 ElfFile.toMappedAddr(DynEnt.DynSymAddr); 577 if (!DynSymPtr) 578 return appendToError(DynSymPtr.takeError(), 579 "when locating .dynsym section contents"); 580 Elf_Sym_Range DynSyms = ArrayRef<Elf_Sym>( 581 reinterpret_cast<const Elf_Sym *>(*DynSymPtr), *SymCount); 582 Error SymReadError = populateSymbols<ELFT>(*DestStub, DynSyms, DynStr); 583 if (SymReadError) 584 return appendToError(std::move(SymReadError), 585 "when reading dynamic symbols"); 586 } 587 588 return std::move(DestStub); 589 } 590 591 /// This function opens a file for writing and then writes a binary ELF stub to 592 /// the file. 593 /// 594 /// @param FilePath File path for writing the ELF binary. 595 /// @param Stub Source InterFace Stub to generate a binary ELF stub from. 596 template <class ELFT> 597 static Error writeELFBinaryToFile(StringRef FilePath, const IFSStub &Stub, 598 bool WriteIfChanged) { 599 ELFStubBuilder<ELFT> Builder{Stub}; 600 // Write Stub to memory first. 601 std::vector<uint8_t> Buf(Builder.getSize()); 602 Builder.write(Buf.data()); 603 604 if (WriteIfChanged) { 605 if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrError = 606 MemoryBuffer::getFile(FilePath)) { 607 // Compare Stub output with existing Stub file. 608 // If Stub file unchanged, abort updating. 609 if ((*BufOrError)->getBufferSize() == Builder.getSize() && 610 !memcmp((*BufOrError)->getBufferStart(), Buf.data(), 611 Builder.getSize())) 612 return Error::success(); 613 } 614 } 615 616 Expected<std::unique_ptr<FileOutputBuffer>> BufOrError = 617 FileOutputBuffer::create(FilePath, Builder.getSize()); 618 if (!BufOrError) 619 return createStringError(errc::invalid_argument, 620 toString(BufOrError.takeError()) + 621 " when trying to open `" + FilePath + 622 "` for writing"); 623 624 // Write binary to file. 625 std::unique_ptr<FileOutputBuffer> FileBuf = std::move(*BufOrError); 626 memcpy(FileBuf->getBufferStart(), Buf.data(), Buf.size()); 627 628 return FileBuf->commit(); 629 } 630 631 Expected<std::unique_ptr<IFSStub>> readELFFile(MemoryBufferRef Buf) { 632 Expected<std::unique_ptr<Binary>> BinOrErr = createBinary(Buf); 633 if (!BinOrErr) { 634 return BinOrErr.takeError(); 635 } 636 637 Binary *Bin = BinOrErr->get(); 638 if (auto Obj = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { 639 return buildStub(*Obj); 640 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { 641 return buildStub(*Obj); 642 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { 643 return buildStub(*Obj); 644 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { 645 return buildStub(*Obj); 646 } 647 return createStringError(errc::not_supported, "unsupported binary format"); 648 } 649 650 // This function wraps the ELFT writeELFBinaryToFile() so writeBinaryStub() 651 // can be called without having to use ELFType templates directly. 652 Error writeBinaryStub(StringRef FilePath, const IFSStub &Stub, 653 bool WriteIfChanged) { 654 assert(Stub.Target.Arch); 655 assert(Stub.Target.BitWidth); 656 assert(Stub.Target.Endianness); 657 if (Stub.Target.BitWidth == IFSBitWidthType::IFS32) { 658 if (Stub.Target.Endianness == IFSEndiannessType::Little) { 659 return writeELFBinaryToFile<ELF32LE>(FilePath, Stub, WriteIfChanged); 660 } else { 661 return writeELFBinaryToFile<ELF32BE>(FilePath, Stub, WriteIfChanged); 662 } 663 } else { 664 if (Stub.Target.Endianness == IFSEndiannessType::Little) { 665 return writeELFBinaryToFile<ELF64LE>(FilePath, Stub, WriteIfChanged); 666 } else { 667 return writeELFBinaryToFile<ELF64BE>(FilePath, Stub, WriteIfChanged); 668 } 669 } 670 llvm_unreachable("invalid binary output target"); 671 } 672 673 } // end namespace ifs 674 } // end namespace llvm 675