1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Constant.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 static cl::opt<unsigned> UseDerefAtPointSemantics( 39 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 40 cl::desc("Deref attributes and metadata infer facts at definition only")); 41 42 //===----------------------------------------------------------------------===// 43 // Value Class 44 //===----------------------------------------------------------------------===// 45 static inline Type *checkType(Type *Ty) { 46 assert(Ty && "Value defined with a null type: Error!"); 47 return Ty; 48 } 49 50 Value::Value(Type *ty, unsigned scid) 51 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 52 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 53 IsUsedByMD(false), HasName(false), HasMetadata(false) { 54 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 55 // FIXME: Why isn't this in the subclass gunk?? 56 // Note, we cannot call isa<CallInst> before the CallInst has been 57 // constructed. 58 unsigned OpCode = 0; 59 if (SubclassID >= InstructionVal) 60 OpCode = SubclassID - InstructionVal; 61 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 62 OpCode == Instruction::CallBr) 63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 64 "invalid CallBase type!"); 65 else if (SubclassID != BasicBlockVal && 66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 68 "Cannot create non-first-class values except for constants!"); 69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 70 "Value too big"); 71 } 72 73 Value::~Value() { 74 // Notify all ValueHandles (if present) that this value is going away. 75 if (HasValueHandle) 76 ValueHandleBase::ValueIsDeleted(this); 77 if (isUsedByMetadata()) 78 ValueAsMetadata::handleDeletion(this); 79 80 // Remove associated metadata from context. 81 if (HasMetadata) 82 clearMetadata(); 83 84 #ifndef NDEBUG // Only in -g mode... 85 // Check to make sure that there are no uses of this value that are still 86 // around when the value is destroyed. If there are, then we have a dangling 87 // reference and something is wrong. This code is here to print out where 88 // the value is still being referenced. 89 // 90 // Note that use_empty() cannot be called here, as it eventually downcasts 91 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 92 // been destructed, so accessing it is UB. 93 // 94 if (!materialized_use_empty()) { 95 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 96 for (auto *U : users()) 97 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 98 } 99 #endif 100 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 101 102 // If this value is named, destroy the name. This should not be in a symtab 103 // at this point. 104 destroyValueName(); 105 } 106 107 void Value::deleteValue() { 108 switch (getValueID()) { 109 #define HANDLE_VALUE(Name) \ 110 case Value::Name##Val: \ 111 delete static_cast<Name *>(this); \ 112 break; 113 #define HANDLE_MEMORY_VALUE(Name) \ 114 case Value::Name##Val: \ 115 static_cast<DerivedUser *>(this)->DeleteValue( \ 116 static_cast<DerivedUser *>(this)); \ 117 break; 118 #define HANDLE_CONSTANT(Name) \ 119 case Value::Name##Val: \ 120 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 121 break; 122 #define HANDLE_INSTRUCTION(Name) /* nothing */ 123 #include "llvm/IR/Value.def" 124 125 #define HANDLE_INST(N, OPC, CLASS) \ 126 case Value::InstructionVal + Instruction::OPC: \ 127 delete static_cast<CLASS *>(this); \ 128 break; 129 #define HANDLE_USER_INST(N, OPC, CLASS) 130 #include "llvm/IR/Instruction.def" 131 132 default: 133 llvm_unreachable("attempting to delete unknown value kind"); 134 } 135 } 136 137 void Value::destroyValueName() { 138 ValueName *Name = getValueName(); 139 if (Name) { 140 MallocAllocator Allocator; 141 Name->Destroy(Allocator); 142 } 143 setValueName(nullptr); 144 } 145 146 bool Value::hasNUses(unsigned N) const { 147 return hasNItems(use_begin(), use_end(), N); 148 } 149 150 bool Value::hasNUsesOrMore(unsigned N) const { 151 return hasNItemsOrMore(use_begin(), use_end(), N); 152 } 153 154 bool Value::hasOneUser() const { 155 if (use_empty()) 156 return false; 157 if (hasOneUse()) 158 return true; 159 return std::equal(++user_begin(), user_end(), user_begin()); 160 } 161 162 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 163 164 Use *Value::getSingleUndroppableUse() { 165 Use *Result = nullptr; 166 for (Use &U : uses()) { 167 if (!U.getUser()->isDroppable()) { 168 if (Result) 169 return nullptr; 170 Result = &U; 171 } 172 } 173 return Result; 174 } 175 176 User *Value::getUniqueUndroppableUser() { 177 User *Result = nullptr; 178 for (auto *U : users()) { 179 if (!U->isDroppable()) { 180 if (Result && Result != U) 181 return nullptr; 182 Result = U; 183 } 184 } 185 return Result; 186 } 187 188 bool Value::hasNUndroppableUses(unsigned int N) const { 189 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 190 } 191 192 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 193 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 194 } 195 196 void Value::dropDroppableUses( 197 llvm::function_ref<bool(const Use *)> ShouldDrop) { 198 SmallVector<Use *, 8> ToBeEdited; 199 for (Use &U : uses()) 200 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 201 ToBeEdited.push_back(&U); 202 for (Use *U : ToBeEdited) 203 dropDroppableUse(*U); 204 } 205 206 void Value::dropDroppableUsesIn(User &Usr) { 207 assert(Usr.isDroppable() && "Expected a droppable user!"); 208 for (Use &UsrOp : Usr.operands()) { 209 if (UsrOp.get() == this) 210 dropDroppableUse(UsrOp); 211 } 212 } 213 214 void Value::dropDroppableUse(Use &U) { 215 U.removeFromList(); 216 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 217 unsigned OpNo = U.getOperandNo(); 218 if (OpNo == 0) 219 U.set(ConstantInt::getTrue(Assume->getContext())); 220 else { 221 U.set(UndefValue::get(U.get()->getType())); 222 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 223 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 224 } 225 return; 226 } 227 228 llvm_unreachable("unkown droppable use"); 229 } 230 231 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 232 // This can be computed either by scanning the instructions in BB, or by 233 // scanning the use list of this Value. Both lists can be very long, but 234 // usually one is quite short. 235 // 236 // Scan both lists simultaneously until one is exhausted. This limits the 237 // search to the shorter list. 238 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 239 const_user_iterator UI = user_begin(), UE = user_end(); 240 for (; BI != BE && UI != UE; ++BI, ++UI) { 241 // Scan basic block: Check if this Value is used by the instruction at BI. 242 if (is_contained(BI->operands(), this)) 243 return true; 244 // Scan use list: Check if the use at UI is in BB. 245 const auto *User = dyn_cast<Instruction>(*UI); 246 if (User && User->getParent() == BB) 247 return true; 248 } 249 return false; 250 } 251 252 unsigned Value::getNumUses() const { 253 return (unsigned)std::distance(use_begin(), use_end()); 254 } 255 256 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 257 ST = nullptr; 258 if (Instruction *I = dyn_cast<Instruction>(V)) { 259 if (BasicBlock *P = I->getParent()) 260 if (Function *PP = P->getParent()) 261 ST = PP->getValueSymbolTable(); 262 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 263 if (Function *P = BB->getParent()) 264 ST = P->getValueSymbolTable(); 265 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 266 if (Module *P = GV->getParent()) 267 ST = &P->getValueSymbolTable(); 268 } else if (Argument *A = dyn_cast<Argument>(V)) { 269 if (Function *P = A->getParent()) 270 ST = P->getValueSymbolTable(); 271 } else { 272 assert(isa<Constant>(V) && "Unknown value type!"); 273 return true; // no name is setable for this. 274 } 275 return false; 276 } 277 278 ValueName *Value::getValueName() const { 279 if (!HasName) return nullptr; 280 281 LLVMContext &Ctx = getContext(); 282 auto I = Ctx.pImpl->ValueNames.find(this); 283 assert(I != Ctx.pImpl->ValueNames.end() && 284 "No name entry found!"); 285 286 return I->second; 287 } 288 289 void Value::setValueName(ValueName *VN) { 290 LLVMContext &Ctx = getContext(); 291 292 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 293 "HasName bit out of sync!"); 294 295 if (!VN) { 296 if (HasName) 297 Ctx.pImpl->ValueNames.erase(this); 298 HasName = false; 299 return; 300 } 301 302 HasName = true; 303 Ctx.pImpl->ValueNames[this] = VN; 304 } 305 306 StringRef Value::getName() const { 307 // Make sure the empty string is still a C string. For historical reasons, 308 // some clients want to call .data() on the result and expect it to be null 309 // terminated. 310 if (!hasName()) 311 return StringRef("", 0); 312 return getValueName()->getKey(); 313 } 314 315 void Value::setNameImpl(const Twine &NewName) { 316 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 317 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 318 return; 319 320 // Fast path for common IRBuilder case of setName("") when there is no name. 321 if (NewName.isTriviallyEmpty() && !hasName()) 322 return; 323 324 SmallString<256> NameData; 325 StringRef NameRef = NewName.toStringRef(NameData); 326 assert(NameRef.find_first_of(0) == StringRef::npos && 327 "Null bytes are not allowed in names"); 328 329 // Name isn't changing? 330 if (getName() == NameRef) 331 return; 332 333 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 334 335 // Get the symbol table to update for this object. 336 ValueSymbolTable *ST; 337 if (getSymTab(this, ST)) 338 return; // Cannot set a name on this value (e.g. constant). 339 340 if (!ST) { // No symbol table to update? Just do the change. 341 if (NameRef.empty()) { 342 // Free the name for this value. 343 destroyValueName(); 344 return; 345 } 346 347 // NOTE: Could optimize for the case the name is shrinking to not deallocate 348 // then reallocated. 349 destroyValueName(); 350 351 // Create the new name. 352 MallocAllocator Allocator; 353 setValueName(ValueName::Create(NameRef, Allocator)); 354 getValueName()->setValue(this); 355 return; 356 } 357 358 // NOTE: Could optimize for the case the name is shrinking to not deallocate 359 // then reallocated. 360 if (hasName()) { 361 // Remove old name. 362 ST->removeValueName(getValueName()); 363 destroyValueName(); 364 365 if (NameRef.empty()) 366 return; 367 } 368 369 // Name is changing to something new. 370 setValueName(ST->createValueName(NameRef, this)); 371 } 372 373 void Value::setName(const Twine &NewName) { 374 setNameImpl(NewName); 375 if (Function *F = dyn_cast<Function>(this)) 376 F->recalculateIntrinsicID(); 377 } 378 379 void Value::takeName(Value *V) { 380 ValueSymbolTable *ST = nullptr; 381 // If this value has a name, drop it. 382 if (hasName()) { 383 // Get the symtab this is in. 384 if (getSymTab(this, ST)) { 385 // We can't set a name on this value, but we need to clear V's name if 386 // it has one. 387 if (V->hasName()) V->setName(""); 388 return; // Cannot set a name on this value (e.g. constant). 389 } 390 391 // Remove old name. 392 if (ST) 393 ST->removeValueName(getValueName()); 394 destroyValueName(); 395 } 396 397 // Now we know that this has no name. 398 399 // If V has no name either, we're done. 400 if (!V->hasName()) return; 401 402 // Get this's symtab if we didn't before. 403 if (!ST) { 404 if (getSymTab(this, ST)) { 405 // Clear V's name. 406 V->setName(""); 407 return; // Cannot set a name on this value (e.g. constant). 408 } 409 } 410 411 // Get V's ST, this should always succed, because V has a name. 412 ValueSymbolTable *VST; 413 bool Failure = getSymTab(V, VST); 414 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 415 416 // If these values are both in the same symtab, we can do this very fast. 417 // This works even if both values have no symtab yet. 418 if (ST == VST) { 419 // Take the name! 420 setValueName(V->getValueName()); 421 V->setValueName(nullptr); 422 getValueName()->setValue(this); 423 return; 424 } 425 426 // Otherwise, things are slightly more complex. Remove V's name from VST and 427 // then reinsert it into ST. 428 429 if (VST) 430 VST->removeValueName(V->getValueName()); 431 setValueName(V->getValueName()); 432 V->setValueName(nullptr); 433 getValueName()->setValue(this); 434 435 if (ST) 436 ST->reinsertValue(this); 437 } 438 439 #ifndef NDEBUG 440 std::string Value::getNameOrAsOperand() const { 441 if (!getName().empty()) 442 return std::string(getName()); 443 444 std::string BBName; 445 raw_string_ostream OS(BBName); 446 printAsOperand(OS, false); 447 return OS.str(); 448 } 449 #endif 450 451 void Value::assertModuleIsMaterializedImpl() const { 452 #ifndef NDEBUG 453 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 454 if (!GV) 455 return; 456 const Module *M = GV->getParent(); 457 if (!M) 458 return; 459 assert(M->isMaterialized()); 460 #endif 461 } 462 463 #ifndef NDEBUG 464 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 465 Constant *C) { 466 if (!Cache.insert(Expr).second) 467 return false; 468 469 for (auto &O : Expr->operands()) { 470 if (O == C) 471 return true; 472 auto *CE = dyn_cast<ConstantExpr>(O); 473 if (!CE) 474 continue; 475 if (contains(Cache, CE, C)) 476 return true; 477 } 478 return false; 479 } 480 481 static bool contains(Value *Expr, Value *V) { 482 if (Expr == V) 483 return true; 484 485 auto *C = dyn_cast<Constant>(V); 486 if (!C) 487 return false; 488 489 auto *CE = dyn_cast<ConstantExpr>(Expr); 490 if (!CE) 491 return false; 492 493 SmallPtrSet<ConstantExpr *, 4> Cache; 494 return contains(Cache, CE, C); 495 } 496 #endif // NDEBUG 497 498 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 499 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 500 assert(!contains(New, this) && 501 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 502 assert(New->getType() == getType() && 503 "replaceAllUses of value with new value of different type!"); 504 505 // Notify all ValueHandles (if present) that this value is going away. 506 if (HasValueHandle) 507 ValueHandleBase::ValueIsRAUWd(this, New); 508 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 509 ValueAsMetadata::handleRAUW(this, New); 510 511 while (!materialized_use_empty()) { 512 Use &U = *UseList; 513 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 514 // constant because they are uniqued. 515 if (auto *C = dyn_cast<Constant>(U.getUser())) { 516 if (!isa<GlobalValue>(C)) { 517 C->handleOperandChange(this, New); 518 continue; 519 } 520 } 521 522 U.set(New); 523 } 524 525 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 526 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 527 } 528 529 void Value::replaceAllUsesWith(Value *New) { 530 doRAUW(New, ReplaceMetadataUses::Yes); 531 } 532 533 void Value::replaceNonMetadataUsesWith(Value *New) { 534 doRAUW(New, ReplaceMetadataUses::No); 535 } 536 537 void Value::replaceUsesWithIf(Value *New, 538 llvm::function_ref<bool(Use &U)> ShouldReplace) { 539 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 540 assert(New->getType() == getType() && 541 "replaceUses of value with new value of different type!"); 542 543 SmallVector<TrackingVH<Constant>, 8> Consts; 544 SmallPtrSet<Constant *, 8> Visited; 545 546 for (Use &U : llvm::make_early_inc_range(uses())) { 547 if (!ShouldReplace(U)) 548 continue; 549 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 550 // constant because they are uniqued. 551 if (auto *C = dyn_cast<Constant>(U.getUser())) { 552 if (!isa<GlobalValue>(C)) { 553 if (Visited.insert(C).second) 554 Consts.push_back(TrackingVH<Constant>(C)); 555 continue; 556 } 557 } 558 U.set(New); 559 } 560 561 while (!Consts.empty()) { 562 // FIXME: handleOperandChange() updates all the uses in a given Constant, 563 // not just the one passed to ShouldReplace 564 Consts.pop_back_val()->handleOperandChange(this, New); 565 } 566 } 567 568 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 569 /// with New. 570 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 571 SmallVector<DbgVariableIntrinsic *> DbgUsers; 572 findDbgUsers(DbgUsers, V); 573 for (auto *DVI : DbgUsers) { 574 if (DVI->getParent() != BB) 575 DVI->replaceVariableLocationOp(V, New); 576 } 577 } 578 579 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 580 // This routine leaves uses within BB. 581 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 582 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 583 assert(!contains(New, this) && 584 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 585 assert(New->getType() == getType() && 586 "replaceUses of value with new value of different type!"); 587 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 588 589 replaceDbgUsesOutsideBlock(this, New, BB); 590 replaceUsesWithIf(New, [BB](Use &U) { 591 auto *I = dyn_cast<Instruction>(U.getUser()); 592 // Don't replace if it's an instruction in the BB basic block. 593 return !I || I->getParent() != BB; 594 }); 595 } 596 597 namespace { 598 // Various metrics for how much to strip off of pointers. 599 enum PointerStripKind { 600 PSK_ZeroIndices, 601 PSK_ZeroIndicesAndAliases, 602 PSK_ZeroIndicesSameRepresentation, 603 PSK_ForAliasAnalysis, 604 PSK_InBoundsConstantIndices, 605 PSK_InBounds 606 }; 607 608 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 609 610 template <PointerStripKind StripKind> 611 static const Value *stripPointerCastsAndOffsets( 612 const Value *V, 613 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 614 if (!V->getType()->isPointerTy()) 615 return V; 616 617 // Even though we don't look through PHI nodes, we could be called on an 618 // instruction in an unreachable block, which may be on a cycle. 619 SmallPtrSet<const Value *, 4> Visited; 620 621 Visited.insert(V); 622 do { 623 Func(V); 624 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 625 switch (StripKind) { 626 case PSK_ZeroIndices: 627 case PSK_ZeroIndicesAndAliases: 628 case PSK_ZeroIndicesSameRepresentation: 629 case PSK_ForAliasAnalysis: 630 if (!GEP->hasAllZeroIndices()) 631 return V; 632 break; 633 case PSK_InBoundsConstantIndices: 634 if (!GEP->hasAllConstantIndices()) 635 return V; 636 LLVM_FALLTHROUGH; 637 case PSK_InBounds: 638 if (!GEP->isInBounds()) 639 return V; 640 break; 641 } 642 V = GEP->getPointerOperand(); 643 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 644 V = cast<Operator>(V)->getOperand(0); 645 if (!V->getType()->isPointerTy()) 646 return V; 647 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 648 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 649 // TODO: If we know an address space cast will not change the 650 // representation we could look through it here as well. 651 V = cast<Operator>(V)->getOperand(0); 652 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 653 V = cast<GlobalAlias>(V)->getAliasee(); 654 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 655 cast<PHINode>(V)->getNumIncomingValues() == 1) { 656 V = cast<PHINode>(V)->getIncomingValue(0); 657 } else { 658 if (const auto *Call = dyn_cast<CallBase>(V)) { 659 if (const Value *RV = Call->getReturnedArgOperand()) { 660 V = RV; 661 continue; 662 } 663 // The result of launder.invariant.group must alias it's argument, 664 // but it can't be marked with returned attribute, that's why it needs 665 // special case. 666 if (StripKind == PSK_ForAliasAnalysis && 667 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 668 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 669 V = Call->getArgOperand(0); 670 continue; 671 } 672 } 673 return V; 674 } 675 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 676 } while (Visited.insert(V).second); 677 678 return V; 679 } 680 } // end anonymous namespace 681 682 const Value *Value::stripPointerCasts() const { 683 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 684 } 685 686 const Value *Value::stripPointerCastsAndAliases() const { 687 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 688 } 689 690 const Value *Value::stripPointerCastsSameRepresentation() const { 691 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 692 } 693 694 const Value *Value::stripInBoundsConstantOffsets() const { 695 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 696 } 697 698 const Value *Value::stripPointerCastsForAliasAnalysis() const { 699 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 700 } 701 702 const Value *Value::stripAndAccumulateConstantOffsets( 703 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 704 bool AllowInvariantGroup, 705 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 706 if (!getType()->isPtrOrPtrVectorTy()) 707 return this; 708 709 unsigned BitWidth = Offset.getBitWidth(); 710 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 711 "The offset bit width does not match the DL specification."); 712 713 // Even though we don't look through PHI nodes, we could be called on an 714 // instruction in an unreachable block, which may be on a cycle. 715 SmallPtrSet<const Value *, 4> Visited; 716 Visited.insert(this); 717 const Value *V = this; 718 do { 719 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 720 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 721 if (!AllowNonInbounds && !GEP->isInBounds()) 722 return V; 723 724 // If one of the values we have visited is an addrspacecast, then 725 // the pointer type of this GEP may be different from the type 726 // of the Ptr parameter which was passed to this function. This 727 // means when we construct GEPOffset, we need to use the size 728 // of GEP's pointer type rather than the size of the original 729 // pointer type. 730 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 731 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 732 return V; 733 734 // Stop traversal if the pointer offset wouldn't fit in the bit-width 735 // provided by the Offset argument. This can happen due to AddrSpaceCast 736 // stripping. 737 if (GEPOffset.getMinSignedBits() > BitWidth) 738 return V; 739 740 // External Analysis can return a result higher/lower than the value 741 // represents. We need to detect overflow/underflow. 742 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 743 if (!ExternalAnalysis) { 744 Offset += GEPOffsetST; 745 } else { 746 bool Overflow = false; 747 APInt OldOffset = Offset; 748 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 749 if (Overflow) { 750 Offset = OldOffset; 751 return V; 752 } 753 } 754 V = GEP->getPointerOperand(); 755 } else if (Operator::getOpcode(V) == Instruction::BitCast || 756 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 757 V = cast<Operator>(V)->getOperand(0); 758 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 759 if (!GA->isInterposable()) 760 V = GA->getAliasee(); 761 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 762 if (const Value *RV = Call->getReturnedArgOperand()) 763 V = RV; 764 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 765 V = Call->getArgOperand(0); 766 } 767 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 768 } while (Visited.insert(V).second); 769 770 return V; 771 } 772 773 const Value * 774 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 775 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 776 } 777 778 bool Value::canBeFreed() const { 779 assert(getType()->isPointerTy()); 780 781 // Cases that can simply never be deallocated 782 // *) Constants aren't allocated per se, thus not deallocated either. 783 if (isa<Constant>(this)) 784 return false; 785 786 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 787 // lifetime is guaranteed to be longer than the callee's lifetime. 788 if (auto *A = dyn_cast<Argument>(this)) { 789 if (A->hasPointeeInMemoryValueAttr()) 790 return false; 791 // A pointer to an object in a function which neither frees, nor can arrange 792 // for another thread to free on its behalf, can not be freed in the scope 793 // of the function. Note that this logic is restricted to memory 794 // allocations in existance before the call; a nofree function *is* allowed 795 // to free memory it allocated. 796 const Function *F = A->getParent(); 797 if (F->doesNotFreeMemory() && F->hasNoSync()) 798 return false; 799 } 800 801 const Function *F = nullptr; 802 if (auto *I = dyn_cast<Instruction>(this)) 803 F = I->getFunction(); 804 if (auto *A = dyn_cast<Argument>(this)) 805 F = A->getParent(); 806 807 if (!F) 808 return true; 809 810 // With garbage collection, deallocation typically occurs solely at or after 811 // safepoints. If we're compiling for a collector which uses the 812 // gc.statepoint infrastructure, safepoints aren't explicitly present 813 // in the IR until after lowering from abstract to physical machine model. 814 // The collector could chose to mix explicit deallocation and gc'd objects 815 // which is why we need the explicit opt in on a per collector basis. 816 if (!F->hasGC()) 817 return true; 818 819 const auto &GCName = F->getGC(); 820 if (GCName == "statepoint-example") { 821 auto *PT = cast<PointerType>(this->getType()); 822 if (PT->getAddressSpace() != 1) 823 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 824 // our GC managed heap. This must match the same check in 825 // RewriteStatepointsForGC (and probably needs better factored.) 826 return true; 827 828 // It is cheaper to scan for a declaration than to scan for a use in this 829 // function. Note that gc.statepoint is a type overloaded function so the 830 // usual trick of requesting declaration of the intrinsic from the module 831 // doesn't work. 832 for (auto &Fn : *F->getParent()) 833 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 834 return true; 835 return false; 836 } 837 return true; 838 } 839 840 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 841 bool &CanBeNull, 842 bool &CanBeFreed) const { 843 assert(getType()->isPointerTy() && "must be pointer"); 844 845 uint64_t DerefBytes = 0; 846 CanBeNull = false; 847 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 848 if (const Argument *A = dyn_cast<Argument>(this)) { 849 DerefBytes = A->getDereferenceableBytes(); 850 if (DerefBytes == 0) { 851 // Handle byval/byref/inalloca/preallocated arguments 852 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 853 if (ArgMemTy->isSized()) { 854 // FIXME: Why isn't this the type alloc size? 855 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 856 } 857 } 858 } 859 860 if (DerefBytes == 0) { 861 DerefBytes = A->getDereferenceableOrNullBytes(); 862 CanBeNull = true; 863 } 864 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 865 DerefBytes = Call->getRetDereferenceableBytes(); 866 if (DerefBytes == 0) { 867 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 868 CanBeNull = true; 869 } 870 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 871 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 872 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 873 DerefBytes = CI->getLimitedValue(); 874 } 875 if (DerefBytes == 0) { 876 if (MDNode *MD = 877 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 878 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 879 DerefBytes = CI->getLimitedValue(); 880 } 881 CanBeNull = true; 882 } 883 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 884 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 885 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 886 DerefBytes = CI->getLimitedValue(); 887 } 888 if (DerefBytes == 0) { 889 if (MDNode *MD = 890 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 891 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 892 DerefBytes = CI->getLimitedValue(); 893 } 894 CanBeNull = true; 895 } 896 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 897 if (!AI->isArrayAllocation()) { 898 DerefBytes = 899 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 900 CanBeNull = false; 901 CanBeFreed = false; 902 } 903 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 904 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 905 // TODO: Don't outright reject hasExternalWeakLinkage but set the 906 // CanBeNull flag. 907 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 908 CanBeNull = false; 909 CanBeFreed = false; 910 } 911 } 912 return DerefBytes; 913 } 914 915 Align Value::getPointerAlignment(const DataLayout &DL) const { 916 assert(getType()->isPointerTy() && "must be pointer"); 917 if (auto *GO = dyn_cast<GlobalObject>(this)) { 918 if (isa<Function>(GO)) { 919 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 920 switch (DL.getFunctionPtrAlignType()) { 921 case DataLayout::FunctionPtrAlignType::Independent: 922 return FunctionPtrAlign; 923 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 924 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 925 } 926 llvm_unreachable("Unhandled FunctionPtrAlignType"); 927 } 928 const MaybeAlign Alignment(GO->getAlign()); 929 if (!Alignment) { 930 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 931 Type *ObjectType = GVar->getValueType(); 932 if (ObjectType->isSized()) { 933 // If the object is defined in the current Module, we'll be giving 934 // it the preferred alignment. Otherwise, we have to assume that it 935 // may only have the minimum ABI alignment. 936 if (GVar->isStrongDefinitionForLinker()) 937 return DL.getPreferredAlign(GVar); 938 else 939 return DL.getABITypeAlign(ObjectType); 940 } 941 } 942 } 943 return Alignment.valueOrOne(); 944 } else if (const Argument *A = dyn_cast<Argument>(this)) { 945 const MaybeAlign Alignment = A->getParamAlign(); 946 if (!Alignment && A->hasStructRetAttr()) { 947 // An sret parameter has at least the ABI alignment of the return type. 948 Type *EltTy = A->getParamStructRetType(); 949 if (EltTy->isSized()) 950 return DL.getABITypeAlign(EltTy); 951 } 952 return Alignment.valueOrOne(); 953 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 954 return AI->getAlign(); 955 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 956 MaybeAlign Alignment = Call->getRetAlign(); 957 if (!Alignment && Call->getCalledFunction()) 958 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 959 return Alignment.valueOrOne(); 960 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 961 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 962 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 963 return Align(CI->getLimitedValue()); 964 } 965 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 966 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 967 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 968 /*OnlyIfReduced=*/true))) { 969 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 970 // While the actual alignment may be large, elsewhere we have 971 // an arbitrary upper alignmet limit, so let's clamp to it. 972 return Align(TrailingZeros < Value::MaxAlignmentExponent 973 ? uint64_t(1) << TrailingZeros 974 : Value::MaximumAlignment); 975 } 976 } 977 return Align(1); 978 } 979 980 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 981 const BasicBlock *PredBB) const { 982 auto *PN = dyn_cast<PHINode>(this); 983 if (PN && PN->getParent() == CurBB) 984 return PN->getIncomingValueForBlock(PredBB); 985 return this; 986 } 987 988 LLVMContext &Value::getContext() const { return VTy->getContext(); } 989 990 void Value::reverseUseList() { 991 if (!UseList || !UseList->Next) 992 // No need to reverse 0 or 1 uses. 993 return; 994 995 Use *Head = UseList; 996 Use *Current = UseList->Next; 997 Head->Next = nullptr; 998 while (Current) { 999 Use *Next = Current->Next; 1000 Current->Next = Head; 1001 Head->Prev = &Current->Next; 1002 Head = Current; 1003 Current = Next; 1004 } 1005 UseList = Head; 1006 Head->Prev = &UseList; 1007 } 1008 1009 bool Value::isSwiftError() const { 1010 auto *Arg = dyn_cast<Argument>(this); 1011 if (Arg) 1012 return Arg->hasSwiftErrorAttr(); 1013 auto *Alloca = dyn_cast<AllocaInst>(this); 1014 if (!Alloca) 1015 return false; 1016 return Alloca->isSwiftError(); 1017 } 1018 1019 bool Value::isTransitiveUsedByMetadataOnly() const { 1020 if (use_empty()) 1021 return false; 1022 llvm::SmallVector<const User *, 32> WorkList; 1023 llvm::SmallPtrSet<const User *, 32> Visited; 1024 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1025 while (!WorkList.empty()) { 1026 const User *U = WorkList.pop_back_val(); 1027 Visited.insert(U); 1028 // If it is transitively used by a global value or a non-constant value, 1029 // it's obviously not only used by metadata. 1030 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1031 return false; 1032 for (const User *UU : U->users()) 1033 if (!Visited.count(UU)) 1034 WorkList.push_back(UU); 1035 } 1036 return true; 1037 } 1038 1039 //===----------------------------------------------------------------------===// 1040 // ValueHandleBase Class 1041 //===----------------------------------------------------------------------===// 1042 1043 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1044 assert(List && "Handle list is null?"); 1045 1046 // Splice ourselves into the list. 1047 Next = *List; 1048 *List = this; 1049 setPrevPtr(List); 1050 if (Next) { 1051 Next->setPrevPtr(&Next); 1052 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1053 } 1054 } 1055 1056 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1057 assert(List && "Must insert after existing node"); 1058 1059 Next = List->Next; 1060 setPrevPtr(&List->Next); 1061 List->Next = this; 1062 if (Next) 1063 Next->setPrevPtr(&Next); 1064 } 1065 1066 void ValueHandleBase::AddToUseList() { 1067 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1068 1069 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1070 1071 if (getValPtr()->HasValueHandle) { 1072 // If this value already has a ValueHandle, then it must be in the 1073 // ValueHandles map already. 1074 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1075 assert(Entry && "Value doesn't have any handles?"); 1076 AddToExistingUseList(&Entry); 1077 return; 1078 } 1079 1080 // Ok, it doesn't have any handles yet, so we must insert it into the 1081 // DenseMap. However, doing this insertion could cause the DenseMap to 1082 // reallocate itself, which would invalidate all of the PrevP pointers that 1083 // point into the old table. Handle this by checking for reallocation and 1084 // updating the stale pointers only if needed. 1085 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1086 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1087 1088 ValueHandleBase *&Entry = Handles[getValPtr()]; 1089 assert(!Entry && "Value really did already have handles?"); 1090 AddToExistingUseList(&Entry); 1091 getValPtr()->HasValueHandle = true; 1092 1093 // If reallocation didn't happen or if this was the first insertion, don't 1094 // walk the table. 1095 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1096 Handles.size() == 1) { 1097 return; 1098 } 1099 1100 // Okay, reallocation did happen. Fix the Prev Pointers. 1101 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1102 E = Handles.end(); I != E; ++I) { 1103 assert(I->second && I->first == I->second->getValPtr() && 1104 "List invariant broken!"); 1105 I->second->setPrevPtr(&I->second); 1106 } 1107 } 1108 1109 void ValueHandleBase::RemoveFromUseList() { 1110 assert(getValPtr() && getValPtr()->HasValueHandle && 1111 "Pointer doesn't have a use list!"); 1112 1113 // Unlink this from its use list. 1114 ValueHandleBase **PrevPtr = getPrevPtr(); 1115 assert(*PrevPtr == this && "List invariant broken"); 1116 1117 *PrevPtr = Next; 1118 if (Next) { 1119 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1120 Next->setPrevPtr(PrevPtr); 1121 return; 1122 } 1123 1124 // If the Next pointer was null, then it is possible that this was the last 1125 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1126 // map. 1127 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1128 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1129 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1130 Handles.erase(getValPtr()); 1131 getValPtr()->HasValueHandle = false; 1132 } 1133 } 1134 1135 void ValueHandleBase::ValueIsDeleted(Value *V) { 1136 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1137 1138 // Get the linked list base, which is guaranteed to exist since the 1139 // HasValueHandle flag is set. 1140 LLVMContextImpl *pImpl = V->getContext().pImpl; 1141 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1142 assert(Entry && "Value bit set but no entries exist"); 1143 1144 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1145 // and remove themselves from the list without breaking our iteration. This 1146 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1147 // Note that we deliberately do not the support the case when dropping a value 1148 // handle results in a new value handle being permanently added to the list 1149 // (as might occur in theory for CallbackVH's): the new value handle will not 1150 // be processed and the checking code will mete out righteous punishment if 1151 // the handle is still present once we have finished processing all the other 1152 // value handles (it is fine to momentarily add then remove a value handle). 1153 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1154 Iterator.RemoveFromUseList(); 1155 Iterator.AddToExistingUseListAfter(Entry); 1156 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1157 1158 switch (Entry->getKind()) { 1159 case Assert: 1160 break; 1161 case Weak: 1162 case WeakTracking: 1163 // WeakTracking and Weak just go to null, which unlinks them 1164 // from the list. 1165 Entry->operator=(nullptr); 1166 break; 1167 case Callback: 1168 // Forward to the subclass's implementation. 1169 static_cast<CallbackVH*>(Entry)->deleted(); 1170 break; 1171 } 1172 } 1173 1174 // All callbacks, weak references, and assertingVHs should be dropped by now. 1175 if (V->HasValueHandle) { 1176 #ifndef NDEBUG // Only in +Asserts mode... 1177 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1178 << "\n"; 1179 if (pImpl->ValueHandles[V]->getKind() == Assert) 1180 llvm_unreachable("An asserting value handle still pointed to this" 1181 " value!"); 1182 1183 #endif 1184 llvm_unreachable("All references to V were not removed?"); 1185 } 1186 } 1187 1188 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1189 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1190 assert(Old != New && "Changing value into itself!"); 1191 assert(Old->getType() == New->getType() && 1192 "replaceAllUses of value with new value of different type!"); 1193 1194 // Get the linked list base, which is guaranteed to exist since the 1195 // HasValueHandle flag is set. 1196 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1197 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1198 1199 assert(Entry && "Value bit set but no entries exist"); 1200 1201 // We use a local ValueHandleBase as an iterator so that 1202 // ValueHandles can add and remove themselves from the list without 1203 // breaking our iteration. This is not really an AssertingVH; we 1204 // just have to give ValueHandleBase some kind. 1205 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1206 Iterator.RemoveFromUseList(); 1207 Iterator.AddToExistingUseListAfter(Entry); 1208 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1209 1210 switch (Entry->getKind()) { 1211 case Assert: 1212 case Weak: 1213 // Asserting and Weak handles do not follow RAUW implicitly. 1214 break; 1215 case WeakTracking: 1216 // Weak goes to the new value, which will unlink it from Old's list. 1217 Entry->operator=(New); 1218 break; 1219 case Callback: 1220 // Forward to the subclass's implementation. 1221 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1222 break; 1223 } 1224 } 1225 1226 #ifndef NDEBUG 1227 // If any new weak value handles were added while processing the 1228 // list, then complain about it now. 1229 if (Old->HasValueHandle) 1230 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1231 switch (Entry->getKind()) { 1232 case WeakTracking: 1233 dbgs() << "After RAUW from " << *Old->getType() << " %" 1234 << Old->getName() << " to " << *New->getType() << " %" 1235 << New->getName() << "\n"; 1236 llvm_unreachable( 1237 "A weak tracking value handle still pointed to the old value!\n"); 1238 default: 1239 break; 1240 } 1241 #endif 1242 } 1243 1244 // Pin the vtable to this file. 1245 void CallbackVH::anchor() {} 1246