1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Module class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Module.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/Comdat.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GVMaterializer.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/ModuleSummaryIndex.h" 37 #include "llvm/IR/SymbolTableListTraits.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/TypeFinder.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/Error.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/RandomNumberGenerator.h" 49 #include "llvm/Support/VersionTuple.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <memory> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 //===----------------------------------------------------------------------===// 60 // Methods to implement the globals and functions lists. 61 // 62 63 // Explicit instantiations of SymbolTableListTraits since some of the methods 64 // are not in the public header file. 65 template class llvm::SymbolTableListTraits<Function>; 66 template class llvm::SymbolTableListTraits<GlobalVariable>; 67 template class llvm::SymbolTableListTraits<GlobalAlias>; 68 template class llvm::SymbolTableListTraits<GlobalIFunc>; 69 70 //===----------------------------------------------------------------------===// 71 // Primitive Module methods. 72 // 73 74 Module::Module(StringRef MID, LLVMContext &C) 75 : Context(C), ValSymTab(std::make_unique<ValueSymbolTable>(-1)), 76 Materializer(), ModuleID(std::string(MID)), 77 SourceFileName(std::string(MID)), DL("") { 78 Context.addModule(this); 79 } 80 81 Module::~Module() { 82 Context.removeModule(this); 83 dropAllReferences(); 84 GlobalList.clear(); 85 FunctionList.clear(); 86 AliasList.clear(); 87 IFuncList.clear(); 88 } 89 90 std::unique_ptr<RandomNumberGenerator> 91 Module::createRNG(const StringRef Name) const { 92 SmallString<32> Salt(Name); 93 94 // This RNG is guaranteed to produce the same random stream only 95 // when the Module ID and thus the input filename is the same. This 96 // might be problematic if the input filename extension changes 97 // (e.g. from .c to .bc or .ll). 98 // 99 // We could store this salt in NamedMetadata, but this would make 100 // the parameter non-const. This would unfortunately make this 101 // interface unusable by any Machine passes, since they only have a 102 // const reference to their IR Module. Alternatively we can always 103 // store salt metadata from the Module constructor. 104 Salt += sys::path::filename(getModuleIdentifier()); 105 106 return std::unique_ptr<RandomNumberGenerator>( 107 new RandomNumberGenerator(Salt)); 108 } 109 110 /// getNamedValue - Return the first global value in the module with 111 /// the specified name, of arbitrary type. This method returns null 112 /// if a global with the specified name is not found. 113 GlobalValue *Module::getNamedValue(StringRef Name) const { 114 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 115 } 116 117 unsigned Module::getNumNamedValues() const { 118 return getValueSymbolTable().size(); 119 } 120 121 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 122 /// This ID is uniqued across modules in the current LLVMContext. 123 unsigned Module::getMDKindID(StringRef Name) const { 124 return Context.getMDKindID(Name); 125 } 126 127 /// getMDKindNames - Populate client supplied SmallVector with the name for 128 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 129 /// so it is filled in as an empty string. 130 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 131 return Context.getMDKindNames(Result); 132 } 133 134 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 135 return Context.getOperandBundleTags(Result); 136 } 137 138 //===----------------------------------------------------------------------===// 139 // Methods for easy access to the functions in the module. 140 // 141 142 // getOrInsertFunction - Look up the specified function in the module symbol 143 // table. If it does not exist, add a prototype for the function and return 144 // it. This is nice because it allows most passes to get away with not handling 145 // the symbol table directly for this common task. 146 // 147 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 148 AttributeList AttributeList) { 149 // See if we have a definition for the specified function already. 150 GlobalValue *F = getNamedValue(Name); 151 if (!F) { 152 // Nope, add it 153 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 154 DL.getProgramAddressSpace(), Name); 155 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 156 New->setAttributes(AttributeList); 157 FunctionList.push_back(New); 158 return {Ty, New}; // Return the new prototype. 159 } 160 161 // If the function exists but has the wrong type, return a bitcast to the 162 // right type. 163 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 164 if (F->getType() != PTy) 165 return {Ty, ConstantExpr::getBitCast(F, PTy)}; 166 167 // Otherwise, we just found the existing function or a prototype. 168 return {Ty, F}; 169 } 170 171 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { 172 return getOrInsertFunction(Name, Ty, AttributeList()); 173 } 174 175 // getFunction - Look up the specified function in the module symbol table. 176 // If it does not exist, return null. 177 // 178 Function *Module::getFunction(StringRef Name) const { 179 return dyn_cast_or_null<Function>(getNamedValue(Name)); 180 } 181 182 //===----------------------------------------------------------------------===// 183 // Methods for easy access to the global variables in the module. 184 // 185 186 /// getGlobalVariable - Look up the specified global variable in the module 187 /// symbol table. If it does not exist, return null. The type argument 188 /// should be the underlying type of the global, i.e., it should not have 189 /// the top-level PointerType, which represents the address of the global. 190 /// If AllowLocal is set to true, this function will return types that 191 /// have an local. By default, these types are not returned. 192 /// 193 GlobalVariable *Module::getGlobalVariable(StringRef Name, 194 bool AllowLocal) const { 195 if (GlobalVariable *Result = 196 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 197 if (AllowLocal || !Result->hasLocalLinkage()) 198 return Result; 199 return nullptr; 200 } 201 202 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 203 /// 1. If it does not exist, add a declaration of the global and return it. 204 /// 2. Else, the global exists but has the wrong type: return the function 205 /// with a constantexpr cast to the right type. 206 /// 3. Finally, if the existing global is the correct declaration, return the 207 /// existing global. 208 Constant *Module::getOrInsertGlobal( 209 StringRef Name, Type *Ty, 210 function_ref<GlobalVariable *()> CreateGlobalCallback) { 211 // See if we have a definition for the specified global already. 212 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 213 if (!GV) 214 GV = CreateGlobalCallback(); 215 assert(GV && "The CreateGlobalCallback is expected to create a global"); 216 217 // If the variable exists but has the wrong type, return a bitcast to the 218 // right type. 219 Type *GVTy = GV->getType(); 220 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 221 if (GVTy != PTy) 222 return ConstantExpr::getBitCast(GV, PTy); 223 224 // Otherwise, we just found the existing function or a prototype. 225 return GV; 226 } 227 228 // Overload to construct a global variable using its constructor's defaults. 229 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 230 return getOrInsertGlobal(Name, Ty, [&] { 231 return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 232 nullptr, Name); 233 }); 234 } 235 236 //===----------------------------------------------------------------------===// 237 // Methods for easy access to the global variables in the module. 238 // 239 240 // getNamedAlias - Look up the specified global in the module symbol table. 241 // If it does not exist, return null. 242 // 243 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 244 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 245 } 246 247 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 248 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 249 } 250 251 /// getNamedMetadata - Return the first NamedMDNode in the module with the 252 /// specified name. This method returns null if a NamedMDNode with the 253 /// specified name is not found. 254 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 255 SmallString<256> NameData; 256 StringRef NameRef = Name.toStringRef(NameData); 257 return NamedMDSymTab.lookup(NameRef); 258 } 259 260 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 261 /// with the specified name. This method returns a new NamedMDNode if a 262 /// NamedMDNode with the specified name is not found. 263 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 264 NamedMDNode *&NMD = NamedMDSymTab[Name]; 265 if (!NMD) { 266 NMD = new NamedMDNode(Name); 267 NMD->setParent(this); 268 NamedMDList.push_back(NMD); 269 } 270 return NMD; 271 } 272 273 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 274 /// delete it. 275 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 276 NamedMDSymTab.erase(NMD->getName()); 277 NamedMDList.erase(NMD->getIterator()); 278 } 279 280 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 281 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 282 uint64_t Val = Behavior->getLimitedValue(); 283 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 284 MFB = static_cast<ModFlagBehavior>(Val); 285 return true; 286 } 287 } 288 return false; 289 } 290 291 bool Module::isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB, 292 MDString *&Key, Metadata *&Val) { 293 if (ModFlag.getNumOperands() < 3) 294 return false; 295 if (!isValidModFlagBehavior(ModFlag.getOperand(0), MFB)) 296 return false; 297 MDString *K = dyn_cast_or_null<MDString>(ModFlag.getOperand(1)); 298 if (!K) 299 return false; 300 Key = K; 301 Val = ModFlag.getOperand(2); 302 return true; 303 } 304 305 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 306 void Module:: 307 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 308 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 309 if (!ModFlags) return; 310 311 for (const MDNode *Flag : ModFlags->operands()) { 312 ModFlagBehavior MFB; 313 MDString *Key = nullptr; 314 Metadata *Val = nullptr; 315 if (isValidModuleFlag(*Flag, MFB, Key, Val)) { 316 // Check the operands of the MDNode before accessing the operands. 317 // The verifier will actually catch these failures. 318 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 319 } 320 } 321 } 322 323 /// Return the corresponding value if Key appears in module flags, otherwise 324 /// return null. 325 Metadata *Module::getModuleFlag(StringRef Key) const { 326 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 327 getModuleFlagsMetadata(ModuleFlags); 328 for (const ModuleFlagEntry &MFE : ModuleFlags) { 329 if (Key == MFE.Key->getString()) 330 return MFE.Val; 331 } 332 return nullptr; 333 } 334 335 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 336 /// represents module-level flags. This method returns null if there are no 337 /// module-level flags. 338 NamedMDNode *Module::getModuleFlagsMetadata() const { 339 return getNamedMetadata("llvm.module.flags"); 340 } 341 342 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 343 /// represents module-level flags. If module-level flags aren't found, it 344 /// creates the named metadata that contains them. 345 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 346 return getOrInsertNamedMetadata("llvm.module.flags"); 347 } 348 349 /// addModuleFlag - Add a module-level flag to the module-level flags 350 /// metadata. It will create the module-level flags named metadata if it doesn't 351 /// already exist. 352 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 353 Metadata *Val) { 354 Type *Int32Ty = Type::getInt32Ty(Context); 355 Metadata *Ops[3] = { 356 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 357 MDString::get(Context, Key), Val}; 358 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 359 } 360 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 361 Constant *Val) { 362 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 363 } 364 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 365 uint32_t Val) { 366 Type *Int32Ty = Type::getInt32Ty(Context); 367 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 368 } 369 void Module::addModuleFlag(MDNode *Node) { 370 assert(Node->getNumOperands() == 3 && 371 "Invalid number of operands for module flag!"); 372 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 373 isa<MDString>(Node->getOperand(1)) && 374 "Invalid operand types for module flag!"); 375 getOrInsertModuleFlagsMetadata()->addOperand(Node); 376 } 377 378 void Module::setModuleFlag(ModFlagBehavior Behavior, StringRef Key, 379 Metadata *Val) { 380 NamedMDNode *ModFlags = getOrInsertModuleFlagsMetadata(); 381 // Replace the flag if it already exists. 382 for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) { 383 MDNode *Flag = ModFlags->getOperand(I); 384 ModFlagBehavior MFB; 385 MDString *K = nullptr; 386 Metadata *V = nullptr; 387 if (isValidModuleFlag(*Flag, MFB, K, V) && K->getString() == Key) { 388 Flag->replaceOperandWith(2, Val); 389 return; 390 } 391 } 392 addModuleFlag(Behavior, Key, Val); 393 } 394 395 void Module::setDataLayout(StringRef Desc) { 396 DL.reset(Desc); 397 } 398 399 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 400 401 const DataLayout &Module::getDataLayout() const { return DL; } 402 403 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 404 return cast<DICompileUnit>(CUs->getOperand(Idx)); 405 } 406 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 407 return cast<DICompileUnit>(CUs->getOperand(Idx)); 408 } 409 410 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 411 while (CUs && (Idx < CUs->getNumOperands()) && 412 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 413 ++Idx; 414 } 415 416 iterator_range<Module::global_object_iterator> Module::global_objects() { 417 return concat<GlobalObject>(functions(), globals()); 418 } 419 iterator_range<Module::const_global_object_iterator> 420 Module::global_objects() const { 421 return concat<const GlobalObject>(functions(), globals()); 422 } 423 424 iterator_range<Module::global_value_iterator> Module::global_values() { 425 return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs()); 426 } 427 iterator_range<Module::const_global_value_iterator> 428 Module::global_values() const { 429 return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs()); 430 } 431 432 //===----------------------------------------------------------------------===// 433 // Methods to control the materialization of GlobalValues in the Module. 434 // 435 void Module::setMaterializer(GVMaterializer *GVM) { 436 assert(!Materializer && 437 "Module already has a GVMaterializer. Call materializeAll" 438 " to clear it out before setting another one."); 439 Materializer.reset(GVM); 440 } 441 442 Error Module::materialize(GlobalValue *GV) { 443 if (!Materializer) 444 return Error::success(); 445 446 return Materializer->materialize(GV); 447 } 448 449 Error Module::materializeAll() { 450 if (!Materializer) 451 return Error::success(); 452 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 453 return M->materializeModule(); 454 } 455 456 Error Module::materializeMetadata() { 457 if (!Materializer) 458 return Error::success(); 459 return Materializer->materializeMetadata(); 460 } 461 462 //===----------------------------------------------------------------------===// 463 // Other module related stuff. 464 // 465 466 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 467 // If we have a materializer, it is possible that some unread function 468 // uses a type that is currently not visible to a TypeFinder, so ask 469 // the materializer which types it created. 470 if (Materializer) 471 return Materializer->getIdentifiedStructTypes(); 472 473 std::vector<StructType *> Ret; 474 TypeFinder SrcStructTypes; 475 SrcStructTypes.run(*this, true); 476 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 477 return Ret; 478 } 479 480 std::string Module::getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id, 481 const FunctionType *Proto) { 482 auto Encode = [&BaseName](unsigned Suffix) { 483 return (Twine(BaseName) + "." + Twine(Suffix)).str(); 484 }; 485 486 { 487 // fast path - the prototype is already known 488 auto UinItInserted = UniquedIntrinsicNames.insert({{Id, Proto}, 0}); 489 if (!UinItInserted.second) 490 return Encode(UinItInserted.first->second); 491 } 492 493 // Not known yet. A new entry was created with index 0. Check if there already 494 // exists a matching declaration, or select a new entry. 495 496 // Start looking for names with the current known maximum count (or 0). 497 auto NiidItInserted = CurrentIntrinsicIds.insert({BaseName, 0}); 498 unsigned Count = NiidItInserted.first->second; 499 500 // This might be slow if a whole population of intrinsics already existed, but 501 // we cache the values for later usage. 502 std::string NewName; 503 while (true) { 504 NewName = Encode(Count); 505 GlobalValue *F = getNamedValue(NewName); 506 if (!F) { 507 // Reserve this entry for the new proto 508 UniquedIntrinsicNames[{Id, Proto}] = Count; 509 break; 510 } 511 512 // A declaration with this name already exists. Remember it. 513 FunctionType *FT = dyn_cast<FunctionType>(F->getValueType()); 514 auto UinItInserted = UniquedIntrinsicNames.insert({{Id, FT}, Count}); 515 if (FT == Proto) { 516 // It was a declaration for our prototype. This entry was allocated in the 517 // beginning. Update the count to match the existing declaration. 518 UinItInserted.first->second = Count; 519 break; 520 } 521 522 ++Count; 523 } 524 525 NiidItInserted.first->second = Count + 1; 526 527 return NewName; 528 } 529 530 // dropAllReferences() - This function causes all the subelements to "let go" 531 // of all references that they are maintaining. This allows one to 'delete' a 532 // whole module at a time, even though there may be circular references... first 533 // all references are dropped, and all use counts go to zero. Then everything 534 // is deleted for real. Note that no operations are valid on an object that 535 // has "dropped all references", except operator delete. 536 // 537 void Module::dropAllReferences() { 538 for (Function &F : *this) 539 F.dropAllReferences(); 540 541 for (GlobalVariable &GV : globals()) 542 GV.dropAllReferences(); 543 544 for (GlobalAlias &GA : aliases()) 545 GA.dropAllReferences(); 546 547 for (GlobalIFunc &GIF : ifuncs()) 548 GIF.dropAllReferences(); 549 } 550 551 unsigned Module::getNumberRegisterParameters() const { 552 auto *Val = 553 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 554 if (!Val) 555 return 0; 556 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 557 } 558 559 unsigned Module::getDwarfVersion() const { 560 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 561 if (!Val) 562 return 0; 563 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 564 } 565 566 bool Module::isDwarf64() const { 567 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("DWARF64")); 568 return Val && cast<ConstantInt>(Val->getValue())->isOne(); 569 } 570 571 unsigned Module::getCodeViewFlag() const { 572 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 573 if (!Val) 574 return 0; 575 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 576 } 577 578 unsigned Module::getInstructionCount() const { 579 unsigned NumInstrs = 0; 580 for (const Function &F : FunctionList) 581 NumInstrs += F.getInstructionCount(); 582 return NumInstrs; 583 } 584 585 Comdat *Module::getOrInsertComdat(StringRef Name) { 586 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 587 Entry.second.Name = &Entry; 588 return &Entry.second; 589 } 590 591 PICLevel::Level Module::getPICLevel() const { 592 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 593 594 if (!Val) 595 return PICLevel::NotPIC; 596 597 return static_cast<PICLevel::Level>( 598 cast<ConstantInt>(Val->getValue())->getZExtValue()); 599 } 600 601 void Module::setPICLevel(PICLevel::Level PL) { 602 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 603 } 604 605 PIELevel::Level Module::getPIELevel() const { 606 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 607 608 if (!Val) 609 return PIELevel::Default; 610 611 return static_cast<PIELevel::Level>( 612 cast<ConstantInt>(Val->getValue())->getZExtValue()); 613 } 614 615 void Module::setPIELevel(PIELevel::Level PL) { 616 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 617 } 618 619 Optional<CodeModel::Model> Module::getCodeModel() const { 620 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 621 622 if (!Val) 623 return None; 624 625 return static_cast<CodeModel::Model>( 626 cast<ConstantInt>(Val->getValue())->getZExtValue()); 627 } 628 629 void Module::setCodeModel(CodeModel::Model CL) { 630 // Linking object files with different code models is undefined behavior 631 // because the compiler would have to generate additional code (to span 632 // longer jumps) if a larger code model is used with a smaller one. 633 // Therefore we will treat attempts to mix code models as an error. 634 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 635 } 636 637 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) { 638 if (Kind == ProfileSummary::PSK_CSInstr) 639 setModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M); 640 else 641 setModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 642 } 643 644 Metadata *Module::getProfileSummary(bool IsCS) const { 645 return (IsCS ? getModuleFlag("CSProfileSummary") 646 : getModuleFlag("ProfileSummary")); 647 } 648 649 bool Module::getSemanticInterposition() const { 650 Metadata *MF = getModuleFlag("SemanticInterposition"); 651 652 auto *Val = cast_or_null<ConstantAsMetadata>(MF); 653 if (!Val) 654 return false; 655 656 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 657 } 658 659 void Module::setSemanticInterposition(bool SI) { 660 addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI); 661 } 662 663 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 664 OwnedMemoryBuffer = std::move(MB); 665 } 666 667 bool Module::getRtLibUseGOT() const { 668 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 669 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 670 } 671 672 void Module::setRtLibUseGOT() { 673 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 674 } 675 676 bool Module::getUwtable() const { 677 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("uwtable")); 678 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 679 } 680 681 void Module::setUwtable() { addModuleFlag(ModFlagBehavior::Max, "uwtable", 1); } 682 683 FramePointerKind Module::getFramePointer() const { 684 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("frame-pointer")); 685 return static_cast<FramePointerKind>( 686 Val ? cast<ConstantInt>(Val->getValue())->getZExtValue() : 0); 687 } 688 689 void Module::setFramePointer(FramePointerKind Kind) { 690 addModuleFlag(ModFlagBehavior::Max, "frame-pointer", static_cast<int>(Kind)); 691 } 692 693 StringRef Module::getStackProtectorGuard() const { 694 Metadata *MD = getModuleFlag("stack-protector-guard"); 695 if (auto *MDS = dyn_cast_or_null<MDString>(MD)) 696 return MDS->getString(); 697 return {}; 698 } 699 700 void Module::setStackProtectorGuard(StringRef Kind) { 701 MDString *ID = MDString::get(getContext(), Kind); 702 addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard", ID); 703 } 704 705 StringRef Module::getStackProtectorGuardReg() const { 706 Metadata *MD = getModuleFlag("stack-protector-guard-reg"); 707 if (auto *MDS = dyn_cast_or_null<MDString>(MD)) 708 return MDS->getString(); 709 return {}; 710 } 711 712 void Module::setStackProtectorGuardReg(StringRef Reg) { 713 MDString *ID = MDString::get(getContext(), Reg); 714 addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-reg", ID); 715 } 716 717 int Module::getStackProtectorGuardOffset() const { 718 Metadata *MD = getModuleFlag("stack-protector-guard-offset"); 719 if (auto *CI = mdconst::dyn_extract_or_null<ConstantInt>(MD)) 720 return CI->getSExtValue(); 721 return INT_MAX; 722 } 723 724 void Module::setStackProtectorGuardOffset(int Offset) { 725 addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-offset", Offset); 726 } 727 728 unsigned Module::getOverrideStackAlignment() const { 729 Metadata *MD = getModuleFlag("override-stack-alignment"); 730 if (auto *CI = mdconst::dyn_extract_or_null<ConstantInt>(MD)) 731 return CI->getZExtValue(); 732 return 0; 733 } 734 735 void Module::setOverrideStackAlignment(unsigned Align) { 736 addModuleFlag(ModFlagBehavior::Error, "override-stack-alignment", Align); 737 } 738 739 void Module::setSDKVersion(const VersionTuple &V) { 740 SmallVector<unsigned, 3> Entries; 741 Entries.push_back(V.getMajor()); 742 if (auto Minor = V.getMinor()) { 743 Entries.push_back(*Minor); 744 if (auto Subminor = V.getSubminor()) 745 Entries.push_back(*Subminor); 746 // Ignore the 'build' component as it can't be represented in the object 747 // file. 748 } 749 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 750 ConstantDataArray::get(Context, Entries)); 751 } 752 753 VersionTuple Module::getSDKVersion() const { 754 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 755 if (!CM) 756 return {}; 757 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 758 if (!Arr) 759 return {}; 760 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 761 if (Index >= Arr->getNumElements()) 762 return None; 763 return (unsigned)Arr->getElementAsInteger(Index); 764 }; 765 auto Major = getVersionComponent(0); 766 if (!Major) 767 return {}; 768 VersionTuple Result = VersionTuple(*Major); 769 if (auto Minor = getVersionComponent(1)) { 770 Result = VersionTuple(*Major, *Minor); 771 if (auto Subminor = getVersionComponent(2)) { 772 Result = VersionTuple(*Major, *Minor, *Subminor); 773 } 774 } 775 return Result; 776 } 777 778 GlobalVariable *llvm::collectUsedGlobalVariables( 779 const Module &M, SmallVectorImpl<GlobalValue *> &Vec, bool CompilerUsed) { 780 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 781 GlobalVariable *GV = M.getGlobalVariable(Name); 782 if (!GV || !GV->hasInitializer()) 783 return GV; 784 785 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 786 for (Value *Op : Init->operands()) { 787 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts()); 788 Vec.push_back(G); 789 } 790 return GV; 791 } 792 793 void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex &Index) { 794 if (auto *SummaryMD = getProfileSummary(/*IsCS*/ false)) { 795 std::unique_ptr<ProfileSummary> ProfileSummary( 796 ProfileSummary::getFromMD(SummaryMD)); 797 if (ProfileSummary) { 798 if (ProfileSummary->getKind() != ProfileSummary::PSK_Sample || 799 !ProfileSummary->isPartialProfile()) 800 return; 801 uint64_t BlockCount = Index.getBlockCount(); 802 uint32_t NumCounts = ProfileSummary->getNumCounts(); 803 if (!NumCounts) 804 return; 805 double Ratio = (double)BlockCount / NumCounts; 806 ProfileSummary->setPartialProfileRatio(Ratio); 807 setProfileSummary(ProfileSummary->getMD(getContext()), 808 ProfileSummary::PSK_Sample); 809 } 810 } 811 } 812