1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Alignment.h" 21 #include "llvm/Support/MSVCErrorWorkarounds.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include <mutex> 25 26 #include <future> 27 28 using namespace llvm; 29 using namespace llvm::object; 30 31 #define DEBUG_TYPE "dyld" 32 33 namespace { 34 35 enum RuntimeDyldErrorCode { 36 GenericRTDyldError = 1 37 }; 38 39 // FIXME: This class is only here to support the transition to llvm::Error. It 40 // will be removed once this transition is complete. Clients should prefer to 41 // deal with the Error value directly, rather than converting to error_code. 42 class RuntimeDyldErrorCategory : public std::error_category { 43 public: 44 const char *name() const noexcept override { return "runtimedyld"; } 45 46 std::string message(int Condition) const override { 47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 48 case GenericRTDyldError: return "Generic RuntimeDyld error"; 49 } 50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 51 } 52 }; 53 54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 55 56 } 57 58 char RuntimeDyldError::ID = 0; 59 60 void RuntimeDyldError::log(raw_ostream &OS) const { 61 OS << ErrMsg << "\n"; 62 } 63 64 std::error_code RuntimeDyldError::convertToErrorCode() const { 65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 66 } 67 68 // Empty out-of-line virtual destructor as the key function. 69 RuntimeDyldImpl::~RuntimeDyldImpl() {} 70 71 // Pin LoadedObjectInfo's vtables to this file. 72 void RuntimeDyld::LoadedObjectInfo::anchor() {} 73 74 namespace llvm { 75 76 void RuntimeDyldImpl::registerEHFrames() {} 77 78 void RuntimeDyldImpl::deregisterEHFrames() { 79 MemMgr.deregisterEHFrames(); 80 } 81 82 #ifndef NDEBUG 83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 84 dbgs() << "----- Contents of section " << S.getName() << " " << State 85 << " -----"; 86 87 if (S.getAddress() == nullptr) { 88 dbgs() << "\n <section not emitted>\n"; 89 return; 90 } 91 92 const unsigned ColsPerRow = 16; 93 94 uint8_t *DataAddr = S.getAddress(); 95 uint64_t LoadAddr = S.getLoadAddress(); 96 97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 98 unsigned BytesRemaining = S.getSize(); 99 100 if (StartPadding) { 101 dbgs() << "\n" << format("0x%016" PRIx64, 102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 103 while (StartPadding--) 104 dbgs() << " "; 105 } 106 107 while (BytesRemaining > 0) { 108 if ((LoadAddr & (ColsPerRow - 1)) == 0) 109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 110 111 dbgs() << " " << format("%02x", *DataAddr); 112 113 ++DataAddr; 114 ++LoadAddr; 115 --BytesRemaining; 116 } 117 118 dbgs() << "\n"; 119 } 120 #endif 121 122 // Resolve the relocations for all symbols we currently know about. 123 void RuntimeDyldImpl::resolveRelocations() { 124 std::lock_guard<sys::Mutex> locked(lock); 125 126 // Print out the sections prior to relocation. 127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 128 dumpSectionMemory(Sections[i], "before relocations");); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 resolveLocalRelocations(); 137 138 // Print out sections after relocation. 139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 140 dumpSectionMemory(Sections[i], "after relocations");); 141 } 142 143 void RuntimeDyldImpl::resolveLocalRelocations() { 144 // Iterate over all outstanding relocations 145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 146 // The Section here (Sections[i]) refers to the section in which the 147 // symbol for the relocation is located. The SectionID in the relocation 148 // entry provides the section to which the relocation will be applied. 149 int Idx = it->first; 150 uint64_t Addr = Sections[Idx].getLoadAddress(); 151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 152 << format("%p", (uintptr_t)Addr) << "\n"); 153 resolveRelocationList(it->second, Addr); 154 } 155 Relocations.clear(); 156 } 157 158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 159 uint64_t TargetAddress) { 160 std::lock_guard<sys::Mutex> locked(lock); 161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 162 if (Sections[i].getAddress() == LocalAddress) { 163 reassignSectionAddress(i, TargetAddress); 164 return; 165 } 166 } 167 llvm_unreachable("Attempting to remap address of unknown section!"); 168 } 169 170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 171 uint64_t &Result) { 172 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 173 if (!AddressOrErr) 174 return AddressOrErr.takeError(); 175 Result = *AddressOrErr - Sec.getAddress(); 176 return Error::success(); 177 } 178 179 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 181 std::lock_guard<sys::Mutex> locked(lock); 182 183 // Save information about our target 184 Arch = (Triple::ArchType)Obj.getArch(); 185 IsTargetLittleEndian = Obj.isLittleEndian(); 186 setMipsABI(Obj); 187 188 // Compute the memory size required to load all sections to be loaded 189 // and pass this information to the memory manager 190 if (MemMgr.needsToReserveAllocationSpace()) { 191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 193 if (auto Err = computeTotalAllocSize(Obj, 194 CodeSize, CodeAlign, 195 RODataSize, RODataAlign, 196 RWDataSize, RWDataAlign)) 197 return std::move(Err); 198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 199 RWDataSize, RWDataAlign); 200 } 201 202 // Used sections from the object file 203 ObjSectionToIDMap LocalSections; 204 205 // Common symbols requiring allocation, with their sizes and alignments 206 CommonSymbolList CommonSymbolsToAllocate; 207 208 uint64_t CommonSize = 0; 209 uint32_t CommonAlign = 0; 210 211 // First, collect all weak and common symbols. We need to know if stronger 212 // definitions occur elsewhere. 213 JITSymbolResolver::LookupSet ResponsibilitySet; 214 { 215 JITSymbolResolver::LookupSet Symbols; 216 for (auto &Sym : Obj.symbols()) { 217 uint32_t Flags = Sym.getFlags(); 218 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { 219 // Get symbol name. 220 if (auto NameOrErr = Sym.getName()) 221 Symbols.insert(*NameOrErr); 222 else 223 return NameOrErr.takeError(); 224 } 225 } 226 227 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 228 ResponsibilitySet = std::move(*ResultOrErr); 229 else 230 return ResultOrErr.takeError(); 231 } 232 233 // Parse symbols 234 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 235 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 236 ++I) { 237 uint32_t Flags = I->getFlags(); 238 239 // Skip undefined symbols. 240 if (Flags & SymbolRef::SF_Undefined) 241 continue; 242 243 // Get the symbol type. 244 object::SymbolRef::Type SymType; 245 if (auto SymTypeOrErr = I->getType()) 246 SymType = *SymTypeOrErr; 247 else 248 return SymTypeOrErr.takeError(); 249 250 // Get symbol name. 251 StringRef Name; 252 if (auto NameOrErr = I->getName()) 253 Name = *NameOrErr; 254 else 255 return NameOrErr.takeError(); 256 257 // Compute JIT symbol flags. 258 auto JITSymFlags = getJITSymbolFlags(*I); 259 if (!JITSymFlags) 260 return JITSymFlags.takeError(); 261 262 // If this is a weak definition, check to see if there's a strong one. 263 // If there is, skip this symbol (we won't be providing it: the strong 264 // definition will). If there's no strong definition, make this definition 265 // strong. 266 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 267 // First check whether there's already a definition in this instance. 268 if (GlobalSymbolTable.count(Name)) 269 continue; 270 271 // If we're not responsible for this symbol, skip it. 272 if (!ResponsibilitySet.count(Name)) 273 continue; 274 275 // Otherwise update the flags on the symbol to make this definition 276 // strong. 277 if (JITSymFlags->isWeak()) 278 *JITSymFlags &= ~JITSymbolFlags::Weak; 279 if (JITSymFlags->isCommon()) { 280 *JITSymFlags &= ~JITSymbolFlags::Common; 281 uint32_t Align = I->getAlignment(); 282 uint64_t Size = I->getCommonSize(); 283 if (!CommonAlign) 284 CommonAlign = Align; 285 CommonSize = alignTo(CommonSize, Align) + Size; 286 CommonSymbolsToAllocate.push_back(*I); 287 } 288 } 289 290 if (Flags & SymbolRef::SF_Absolute && 291 SymType != object::SymbolRef::ST_File) { 292 uint64_t Addr = 0; 293 if (auto AddrOrErr = I->getAddress()) 294 Addr = *AddrOrErr; 295 else 296 return AddrOrErr.takeError(); 297 298 unsigned SectionID = AbsoluteSymbolSection; 299 300 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 301 << " SID: " << SectionID 302 << " Offset: " << format("%p", (uintptr_t)Addr) 303 << " flags: " << Flags << "\n"); 304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); 305 } else if (SymType == object::SymbolRef::ST_Function || 306 SymType == object::SymbolRef::ST_Data || 307 SymType == object::SymbolRef::ST_Unknown || 308 SymType == object::SymbolRef::ST_Other) { 309 310 section_iterator SI = Obj.section_end(); 311 if (auto SIOrErr = I->getSection()) 312 SI = *SIOrErr; 313 else 314 return SIOrErr.takeError(); 315 316 if (SI == Obj.section_end()) 317 continue; 318 319 // Get symbol offset. 320 uint64_t SectOffset; 321 if (auto Err = getOffset(*I, *SI, SectOffset)) 322 return std::move(Err); 323 324 bool IsCode = SI->isText(); 325 unsigned SectionID; 326 if (auto SectionIDOrErr = 327 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 328 SectionID = *SectionIDOrErr; 329 else 330 return SectionIDOrErr.takeError(); 331 332 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 333 << " SID: " << SectionID 334 << " Offset: " << format("%p", (uintptr_t)SectOffset) 335 << " flags: " << Flags << "\n"); 336 GlobalSymbolTable[Name] = 337 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 338 } 339 } 340 341 // Allocate common symbols 342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 343 CommonAlign)) 344 return std::move(Err); 345 346 // Parse and process relocations 347 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 349 SI != SE; ++SI) { 350 StubMap Stubs; 351 352 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 353 if (!RelSecOrErr) 354 return RelSecOrErr.takeError(); 355 356 section_iterator RelocatedSection = *RelSecOrErr; 357 if (RelocatedSection == SE) 358 continue; 359 360 relocation_iterator I = SI->relocation_begin(); 361 relocation_iterator E = SI->relocation_end(); 362 363 if (I == E && !ProcessAllSections) 364 continue; 365 366 bool IsCode = RelocatedSection->isText(); 367 unsigned SectionID = 0; 368 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 369 LocalSections)) 370 SectionID = *SectionIDOrErr; 371 else 372 return SectionIDOrErr.takeError(); 373 374 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 375 376 for (; I != E;) 377 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 378 I = *IOrErr; 379 else 380 return IOrErr.takeError(); 381 382 // If there is a NotifyStubEmitted callback set, call it to register any 383 // stubs created for this section. 384 if (NotifyStubEmitted) { 385 StringRef FileName = Obj.getFileName(); 386 StringRef SectionName = Sections[SectionID].getName(); 387 for (auto &KV : Stubs) { 388 389 auto &VR = KV.first; 390 uint64_t StubAddr = KV.second; 391 392 // If this is a named stub, just call NotifyStubEmitted. 393 if (VR.SymbolName) { 394 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 395 StubAddr); 396 continue; 397 } 398 399 // Otherwise we will have to try a reverse lookup on the globla symbol table. 400 for (auto &GSTMapEntry : GlobalSymbolTable) { 401 StringRef SymbolName = GSTMapEntry.first(); 402 auto &GSTEntry = GSTMapEntry.second; 403 if (GSTEntry.getSectionID() == VR.SectionID && 404 GSTEntry.getOffset() == VR.Offset) { 405 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 406 StubAddr); 407 break; 408 } 409 } 410 } 411 } 412 } 413 414 // Process remaining sections 415 if (ProcessAllSections) { 416 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 417 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 418 SI != SE; ++SI) { 419 420 /* Ignore already loaded sections */ 421 if (LocalSections.find(*SI) != LocalSections.end()) 422 continue; 423 424 bool IsCode = SI->isText(); 425 if (auto SectionIDOrErr = 426 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 427 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 428 else 429 return SectionIDOrErr.takeError(); 430 } 431 } 432 433 // Give the subclasses a chance to tie-up any loose ends. 434 if (auto Err = finalizeLoad(Obj, LocalSections)) 435 return std::move(Err); 436 437 // for (auto E : LocalSections) 438 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 439 440 return LocalSections; 441 } 442 443 // A helper method for computeTotalAllocSize. 444 // Computes the memory size required to allocate sections with the given sizes, 445 // assuming that all sections are allocated with the given alignment 446 static uint64_t 447 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 448 uint64_t Alignment) { 449 uint64_t TotalSize = 0; 450 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 451 uint64_t AlignedSize = 452 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 453 TotalSize += AlignedSize; 454 } 455 return TotalSize; 456 } 457 458 static bool isRequiredForExecution(const SectionRef Section) { 459 const ObjectFile *Obj = Section.getObject(); 460 if (isa<object::ELFObjectFileBase>(Obj)) 461 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 462 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 463 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 464 // Avoid loading zero-sized COFF sections. 465 // In PE files, VirtualSize gives the section size, and SizeOfRawData 466 // may be zero for sections with content. In Obj files, SizeOfRawData 467 // gives the section size, and VirtualSize is always zero. Hence 468 // the need to check for both cases below. 469 bool HasContent = 470 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 471 bool IsDiscardable = 472 CoffSection->Characteristics & 473 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 474 return HasContent && !IsDiscardable; 475 } 476 477 assert(isa<MachOObjectFile>(Obj)); 478 return true; 479 } 480 481 static bool isReadOnlyData(const SectionRef Section) { 482 const ObjectFile *Obj = Section.getObject(); 483 if (isa<object::ELFObjectFileBase>(Obj)) 484 return !(ELFSectionRef(Section).getFlags() & 485 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 486 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 487 return ((COFFObj->getCOFFSection(Section)->Characteristics & 488 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 489 | COFF::IMAGE_SCN_MEM_READ 490 | COFF::IMAGE_SCN_MEM_WRITE)) 491 == 492 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 493 | COFF::IMAGE_SCN_MEM_READ)); 494 495 assert(isa<MachOObjectFile>(Obj)); 496 return false; 497 } 498 499 static bool isZeroInit(const SectionRef Section) { 500 const ObjectFile *Obj = Section.getObject(); 501 if (isa<object::ELFObjectFileBase>(Obj)) 502 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 503 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 504 return COFFObj->getCOFFSection(Section)->Characteristics & 505 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 506 507 auto *MachO = cast<MachOObjectFile>(Obj); 508 unsigned SectionType = MachO->getSectionType(Section); 509 return SectionType == MachO::S_ZEROFILL || 510 SectionType == MachO::S_GB_ZEROFILL; 511 } 512 513 // Compute an upper bound of the memory size that is required to load all 514 // sections 515 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 516 uint64_t &CodeSize, 517 uint32_t &CodeAlign, 518 uint64_t &RODataSize, 519 uint32_t &RODataAlign, 520 uint64_t &RWDataSize, 521 uint32_t &RWDataAlign) { 522 // Compute the size of all sections required for execution 523 std::vector<uint64_t> CodeSectionSizes; 524 std::vector<uint64_t> ROSectionSizes; 525 std::vector<uint64_t> RWSectionSizes; 526 527 // Collect sizes of all sections to be loaded; 528 // also determine the max alignment of all sections 529 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 530 SI != SE; ++SI) { 531 const SectionRef &Section = *SI; 532 533 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 534 535 // Consider only the sections that are required to be loaded for execution 536 if (IsRequired) { 537 uint64_t DataSize = Section.getSize(); 538 uint64_t Alignment64 = Section.getAlignment(); 539 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 540 bool IsCode = Section.isText(); 541 bool IsReadOnly = isReadOnlyData(Section); 542 543 Expected<StringRef> NameOrErr = Section.getName(); 544 if (!NameOrErr) 545 return NameOrErr.takeError(); 546 StringRef Name = *NameOrErr; 547 548 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 549 550 uint64_t PaddingSize = 0; 551 if (Name == ".eh_frame") 552 PaddingSize += 4; 553 if (StubBufSize != 0) 554 PaddingSize += getStubAlignment() - 1; 555 556 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 557 558 // The .eh_frame section (at least on Linux) needs an extra four bytes 559 // padded 560 // with zeroes added at the end. For MachO objects, this section has a 561 // slightly different name, so this won't have any effect for MachO 562 // objects. 563 if (Name == ".eh_frame") 564 SectionSize += 4; 565 566 if (!SectionSize) 567 SectionSize = 1; 568 569 if (IsCode) { 570 CodeAlign = std::max(CodeAlign, Alignment); 571 CodeSectionSizes.push_back(SectionSize); 572 } else if (IsReadOnly) { 573 RODataAlign = std::max(RODataAlign, Alignment); 574 ROSectionSizes.push_back(SectionSize); 575 } else { 576 RWDataAlign = std::max(RWDataAlign, Alignment); 577 RWSectionSizes.push_back(SectionSize); 578 } 579 } 580 } 581 582 // Compute Global Offset Table size. If it is not zero we 583 // also update alignment, which is equal to a size of a 584 // single GOT entry. 585 if (unsigned GotSize = computeGOTSize(Obj)) { 586 RWSectionSizes.push_back(GotSize); 587 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 588 } 589 590 // Compute the size of all common symbols 591 uint64_t CommonSize = 0; 592 uint32_t CommonAlign = 1; 593 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 594 ++I) { 595 uint32_t Flags = I->getFlags(); 596 if (Flags & SymbolRef::SF_Common) { 597 // Add the common symbols to a list. We'll allocate them all below. 598 uint64_t Size = I->getCommonSize(); 599 uint32_t Align = I->getAlignment(); 600 // If this is the first common symbol, use its alignment as the alignment 601 // for the common symbols section. 602 if (CommonSize == 0) 603 CommonAlign = Align; 604 CommonSize = alignTo(CommonSize, Align) + Size; 605 } 606 } 607 if (CommonSize != 0) { 608 RWSectionSizes.push_back(CommonSize); 609 RWDataAlign = std::max(RWDataAlign, CommonAlign); 610 } 611 612 // Compute the required allocation space for each different type of sections 613 // (code, read-only data, read-write data) assuming that all sections are 614 // allocated with the max alignment. Note that we cannot compute with the 615 // individual alignments of the sections, because then the required size 616 // depends on the order, in which the sections are allocated. 617 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 618 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 619 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 620 621 return Error::success(); 622 } 623 624 // compute GOT size 625 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 626 size_t GotEntrySize = getGOTEntrySize(); 627 if (!GotEntrySize) 628 return 0; 629 630 size_t GotSize = 0; 631 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 632 SI != SE; ++SI) { 633 634 for (const RelocationRef &Reloc : SI->relocations()) 635 if (relocationNeedsGot(Reloc)) 636 GotSize += GotEntrySize; 637 } 638 639 return GotSize; 640 } 641 642 // compute stub buffer size for the given section 643 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 644 const SectionRef &Section) { 645 unsigned StubSize = getMaxStubSize(); 646 if (StubSize == 0) { 647 return 0; 648 } 649 // FIXME: this is an inefficient way to handle this. We should computed the 650 // necessary section allocation size in loadObject by walking all the sections 651 // once. 652 unsigned StubBufSize = 0; 653 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 654 SI != SE; ++SI) { 655 656 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 657 if (!RelSecOrErr) 658 report_fatal_error(toString(RelSecOrErr.takeError())); 659 660 section_iterator RelSecI = *RelSecOrErr; 661 if (!(RelSecI == Section)) 662 continue; 663 664 for (const RelocationRef &Reloc : SI->relocations()) 665 if (relocationNeedsStub(Reloc)) 666 StubBufSize += StubSize; 667 } 668 669 // Get section data size and alignment 670 uint64_t DataSize = Section.getSize(); 671 uint64_t Alignment64 = Section.getAlignment(); 672 673 // Add stubbuf size alignment 674 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 675 unsigned StubAlignment = getStubAlignment(); 676 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 677 if (StubAlignment > EndAlignment) 678 StubBufSize += StubAlignment - EndAlignment; 679 return StubBufSize; 680 } 681 682 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 683 unsigned Size) const { 684 uint64_t Result = 0; 685 if (IsTargetLittleEndian) { 686 Src += Size - 1; 687 while (Size--) 688 Result = (Result << 8) | *Src--; 689 } else 690 while (Size--) 691 Result = (Result << 8) | *Src++; 692 693 return Result; 694 } 695 696 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 697 unsigned Size) const { 698 if (IsTargetLittleEndian) { 699 while (Size--) { 700 *Dst++ = Value & 0xFF; 701 Value >>= 8; 702 } 703 } else { 704 Dst += Size - 1; 705 while (Size--) { 706 *Dst-- = Value & 0xFF; 707 Value >>= 8; 708 } 709 } 710 } 711 712 Expected<JITSymbolFlags> 713 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 714 return JITSymbolFlags::fromObjectSymbol(SR); 715 } 716 717 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 718 CommonSymbolList &SymbolsToAllocate, 719 uint64_t CommonSize, 720 uint32_t CommonAlign) { 721 if (SymbolsToAllocate.empty()) 722 return Error::success(); 723 724 // Allocate memory for the section 725 unsigned SectionID = Sections.size(); 726 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 727 "<common symbols>", false); 728 if (!Addr) 729 report_fatal_error("Unable to allocate memory for common symbols!"); 730 uint64_t Offset = 0; 731 Sections.push_back( 732 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 733 memset(Addr, 0, CommonSize); 734 735 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 736 << " new addr: " << format("%p", Addr) 737 << " DataSize: " << CommonSize << "\n"); 738 739 // Assign the address of each symbol 740 for (auto &Sym : SymbolsToAllocate) { 741 uint32_t Alignment = Sym.getAlignment(); 742 uint64_t Size = Sym.getCommonSize(); 743 StringRef Name; 744 if (auto NameOrErr = Sym.getName()) 745 Name = *NameOrErr; 746 else 747 return NameOrErr.takeError(); 748 if (Alignment) { 749 // This symbol has an alignment requirement. 750 uint64_t AlignOffset = 751 offsetToAlignment((uint64_t)Addr, Align(Alignment)); 752 Addr += AlignOffset; 753 Offset += AlignOffset; 754 } 755 auto JITSymFlags = getJITSymbolFlags(Sym); 756 757 if (!JITSymFlags) 758 return JITSymFlags.takeError(); 759 760 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 761 << format("%p", Addr) << "\n"); 762 GlobalSymbolTable[Name] = 763 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 764 Offset += Size; 765 Addr += Size; 766 } 767 768 return Error::success(); 769 } 770 771 Expected<unsigned> 772 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 773 const SectionRef &Section, 774 bool IsCode) { 775 StringRef data; 776 uint64_t Alignment64 = Section.getAlignment(); 777 778 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 779 unsigned PaddingSize = 0; 780 unsigned StubBufSize = 0; 781 bool IsRequired = isRequiredForExecution(Section); 782 bool IsVirtual = Section.isVirtual(); 783 bool IsZeroInit = isZeroInit(Section); 784 bool IsReadOnly = isReadOnlyData(Section); 785 uint64_t DataSize = Section.getSize(); 786 787 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 788 // while being more "polite". Other formats do not support 0-aligned sections 789 // anyway, so we should guarantee that the alignment is always at least 1. 790 Alignment = std::max(1u, Alignment); 791 792 Expected<StringRef> NameOrErr = Section.getName(); 793 if (!NameOrErr) 794 return NameOrErr.takeError(); 795 StringRef Name = *NameOrErr; 796 797 StubBufSize = computeSectionStubBufSize(Obj, Section); 798 799 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 800 // with zeroes added at the end. For MachO objects, this section has a 801 // slightly different name, so this won't have any effect for MachO objects. 802 if (Name == ".eh_frame") 803 PaddingSize = 4; 804 805 uintptr_t Allocate; 806 unsigned SectionID = Sections.size(); 807 uint8_t *Addr; 808 const char *pData = nullptr; 809 810 // If this section contains any bits (i.e. isn't a virtual or bss section), 811 // grab a reference to them. 812 if (!IsVirtual && !IsZeroInit) { 813 // In either case, set the location of the unrelocated section in memory, 814 // since we still process relocations for it even if we're not applying them. 815 if (Expected<StringRef> E = Section.getContents()) 816 data = *E; 817 else 818 return E.takeError(); 819 pData = data.data(); 820 } 821 822 // If there are any stubs then the section alignment needs to be at least as 823 // high as stub alignment or padding calculations may by incorrect when the 824 // section is remapped. 825 if (StubBufSize != 0) { 826 Alignment = std::max(Alignment, getStubAlignment()); 827 PaddingSize += getStubAlignment() - 1; 828 } 829 830 // Some sections, such as debug info, don't need to be loaded for execution. 831 // Process those only if explicitly requested. 832 if (IsRequired || ProcessAllSections) { 833 Allocate = DataSize + PaddingSize + StubBufSize; 834 if (!Allocate) 835 Allocate = 1; 836 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 837 Name) 838 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 839 Name, IsReadOnly); 840 if (!Addr) 841 report_fatal_error("Unable to allocate section memory!"); 842 843 // Zero-initialize or copy the data from the image 844 if (IsZeroInit || IsVirtual) 845 memset(Addr, 0, DataSize); 846 else 847 memcpy(Addr, pData, DataSize); 848 849 // Fill in any extra bytes we allocated for padding 850 if (PaddingSize != 0) { 851 memset(Addr + DataSize, 0, PaddingSize); 852 // Update the DataSize variable to include padding. 853 DataSize += PaddingSize; 854 855 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 856 // have been increased above to account for this). 857 if (StubBufSize > 0) 858 DataSize &= -(uint64_t)getStubAlignment(); 859 } 860 861 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 862 << Name << " obj addr: " << format("%p", pData) 863 << " new addr: " << format("%p", Addr) << " DataSize: " 864 << DataSize << " StubBufSize: " << StubBufSize 865 << " Allocate: " << Allocate << "\n"); 866 } else { 867 // Even if we didn't load the section, we need to record an entry for it 868 // to handle later processing (and by 'handle' I mean don't do anything 869 // with these sections). 870 Allocate = 0; 871 Addr = nullptr; 872 LLVM_DEBUG( 873 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 874 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 875 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 876 << " Allocate: " << Allocate << "\n"); 877 } 878 879 Sections.push_back( 880 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 881 882 // Debug info sections are linked as if their load address was zero 883 if (!IsRequired) 884 Sections.back().setLoadAddress(0); 885 886 return SectionID; 887 } 888 889 Expected<unsigned> 890 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 891 const SectionRef &Section, 892 bool IsCode, 893 ObjSectionToIDMap &LocalSections) { 894 895 unsigned SectionID = 0; 896 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 897 if (i != LocalSections.end()) 898 SectionID = i->second; 899 else { 900 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 901 SectionID = *SectionIDOrErr; 902 else 903 return SectionIDOrErr.takeError(); 904 LocalSections[Section] = SectionID; 905 } 906 return SectionID; 907 } 908 909 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 910 unsigned SectionID) { 911 Relocations[SectionID].push_back(RE); 912 } 913 914 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 915 StringRef SymbolName) { 916 // Relocation by symbol. If the symbol is found in the global symbol table, 917 // create an appropriate section relocation. Otherwise, add it to 918 // ExternalSymbolRelocations. 919 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 920 if (Loc == GlobalSymbolTable.end()) { 921 ExternalSymbolRelocations[SymbolName].push_back(RE); 922 } else { 923 // Copy the RE since we want to modify its addend. 924 RelocationEntry RECopy = RE; 925 const auto &SymInfo = Loc->second; 926 RECopy.Addend += SymInfo.getOffset(); 927 Relocations[SymInfo.getSectionID()].push_back(RECopy); 928 } 929 } 930 931 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 932 unsigned AbiVariant) { 933 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 934 Arch == Triple::aarch64_32) { 935 // This stub has to be able to access the full address space, 936 // since symbol lookup won't necessarily find a handy, in-range, 937 // PLT stub for functions which could be anywhere. 938 // Stub can use ip0 (== x16) to calculate address 939 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 940 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 941 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 942 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 943 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 944 945 return Addr; 946 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 947 // TODO: There is only ARM far stub now. We should add the Thumb stub, 948 // and stubs for branches Thumb - ARM and ARM - Thumb. 949 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 950 return Addr + 4; 951 } else if (IsMipsO32ABI || IsMipsN32ABI) { 952 // 0: 3c190000 lui t9,%hi(addr). 953 // 4: 27390000 addiu t9,t9,%lo(addr). 954 // 8: 03200008 jr t9. 955 // c: 00000000 nop. 956 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 957 const unsigned NopInstr = 0x0; 958 unsigned JrT9Instr = 0x03200008; 959 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 960 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 961 JrT9Instr = 0x03200009; 962 963 writeBytesUnaligned(LuiT9Instr, Addr, 4); 964 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 965 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 966 writeBytesUnaligned(NopInstr, Addr + 12, 4); 967 return Addr; 968 } else if (IsMipsN64ABI) { 969 // 0: 3c190000 lui t9,%highest(addr). 970 // 4: 67390000 daddiu t9,t9,%higher(addr). 971 // 8: 0019CC38 dsll t9,t9,16. 972 // c: 67390000 daddiu t9,t9,%hi(addr). 973 // 10: 0019CC38 dsll t9,t9,16. 974 // 14: 67390000 daddiu t9,t9,%lo(addr). 975 // 18: 03200008 jr t9. 976 // 1c: 00000000 nop. 977 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 978 DsllT9Instr = 0x19CC38; 979 const unsigned NopInstr = 0x0; 980 unsigned JrT9Instr = 0x03200008; 981 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 982 JrT9Instr = 0x03200009; 983 984 writeBytesUnaligned(LuiT9Instr, Addr, 4); 985 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 986 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 987 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 988 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 989 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 990 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 991 writeBytesUnaligned(NopInstr, Addr + 28, 4); 992 return Addr; 993 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 994 // Depending on which version of the ELF ABI is in use, we need to 995 // generate one of two variants of the stub. They both start with 996 // the same sequence to load the target address into r12. 997 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 998 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 999 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 1000 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 1001 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 1002 if (AbiVariant == 2) { 1003 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 1004 // The address is already in r12 as required by the ABI. Branch to it. 1005 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 1006 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 1007 writeInt32BE(Addr+28, 0x4E800420); // bctr 1008 } else { 1009 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 1010 // Load the function address on r11 and sets it to control register. Also 1011 // loads the function TOC in r2 and environment pointer to r11. 1012 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 1013 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1014 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1015 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1016 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1017 writeInt32BE(Addr+40, 0x4E800420); // bctr 1018 } 1019 return Addr; 1020 } else if (Arch == Triple::systemz) { 1021 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1022 writeInt16BE(Addr+2, 0x0000); 1023 writeInt16BE(Addr+4, 0x0004); 1024 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1025 // 8-byte address stored at Addr + 8 1026 return Addr; 1027 } else if (Arch == Triple::x86_64) { 1028 *Addr = 0xFF; // jmp 1029 *(Addr+1) = 0x25; // rip 1030 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1031 } else if (Arch == Triple::x86) { 1032 *Addr = 0xE9; // 32-bit pc-relative jump. 1033 } 1034 return Addr; 1035 } 1036 1037 // Assign an address to a symbol name and resolve all the relocations 1038 // associated with it. 1039 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1040 uint64_t Addr) { 1041 // The address to use for relocation resolution is not 1042 // the address of the local section buffer. We must be doing 1043 // a remote execution environment of some sort. Relocations can't 1044 // be applied until all the sections have been moved. The client must 1045 // trigger this with a call to MCJIT::finalize() or 1046 // RuntimeDyld::resolveRelocations(). 1047 // 1048 // Addr is a uint64_t because we can't assume the pointer width 1049 // of the target is the same as that of the host. Just use a generic 1050 // "big enough" type. 1051 LLVM_DEBUG( 1052 dbgs() << "Reassigning address for section " << SectionID << " (" 1053 << Sections[SectionID].getName() << "): " 1054 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1055 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1056 Sections[SectionID].setLoadAddress(Addr); 1057 } 1058 1059 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1060 uint64_t Value) { 1061 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1062 const RelocationEntry &RE = Relocs[i]; 1063 // Ignore relocations for sections that were not loaded 1064 if (Sections[RE.SectionID].getAddress() == nullptr) 1065 continue; 1066 resolveRelocation(RE, Value); 1067 } 1068 } 1069 1070 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1071 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1072 while (!ExternalSymbolRelocations.empty()) { 1073 1074 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 1075 1076 StringRef Name = i->first(); 1077 if (Name.size() == 0) { 1078 // This is an absolute symbol, use an address of zero. 1079 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1080 << "\n"); 1081 RelocationList &Relocs = i->second; 1082 resolveRelocationList(Relocs, 0); 1083 } else { 1084 uint64_t Addr = 0; 1085 JITSymbolFlags Flags; 1086 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1087 if (Loc == GlobalSymbolTable.end()) { 1088 auto RRI = ExternalSymbolMap.find(Name); 1089 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1090 Addr = RRI->second.getAddress(); 1091 Flags = RRI->second.getFlags(); 1092 // The call to getSymbolAddress may have caused additional modules to 1093 // be loaded, which may have added new entries to the 1094 // ExternalSymbolRelocations map. Consquently, we need to update our 1095 // iterator. This is also why retrieval of the relocation list 1096 // associated with this symbol is deferred until below this point. 1097 // New entries may have been added to the relocation list. 1098 i = ExternalSymbolRelocations.find(Name); 1099 } else { 1100 // We found the symbol in our global table. It was probably in a 1101 // Module that we loaded previously. 1102 const auto &SymInfo = Loc->second; 1103 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1104 SymInfo.getOffset(); 1105 Flags = SymInfo.getFlags(); 1106 } 1107 1108 // FIXME: Implement error handling that doesn't kill the host program! 1109 if (!Addr) 1110 report_fatal_error("Program used external function '" + Name + 1111 "' which could not be resolved!"); 1112 1113 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1114 // manually and we shouldn't resolve its relocations. 1115 if (Addr != UINT64_MAX) { 1116 1117 // Tweak the address based on the symbol flags if necessary. 1118 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1119 // if the target symbol is Thumb. 1120 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1121 1122 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1123 << format("0x%lx", Addr) << "\n"); 1124 // This list may have been updated when we called getSymbolAddress, so 1125 // don't change this code to get the list earlier. 1126 RelocationList &Relocs = i->second; 1127 resolveRelocationList(Relocs, Addr); 1128 } 1129 } 1130 1131 ExternalSymbolRelocations.erase(i); 1132 } 1133 } 1134 1135 Error RuntimeDyldImpl::resolveExternalSymbols() { 1136 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1137 1138 // Resolution can trigger emission of more symbols, so iterate until 1139 // we've resolved *everything*. 1140 { 1141 JITSymbolResolver::LookupSet ResolvedSymbols; 1142 1143 while (true) { 1144 JITSymbolResolver::LookupSet NewSymbols; 1145 1146 for (auto &RelocKV : ExternalSymbolRelocations) { 1147 StringRef Name = RelocKV.first(); 1148 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1149 !ResolvedSymbols.count(Name)) 1150 NewSymbols.insert(Name); 1151 } 1152 1153 if (NewSymbols.empty()) 1154 break; 1155 1156 #ifdef _MSC_VER 1157 using ExpectedLookupResult = 1158 MSVCPExpected<JITSymbolResolver::LookupResult>; 1159 #else 1160 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1161 #endif 1162 1163 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1164 auto NewSymbolsF = NewSymbolsP->get_future(); 1165 Resolver.lookup(NewSymbols, 1166 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1167 NewSymbolsP->set_value(std::move(Result)); 1168 }); 1169 1170 auto NewResolverResults = NewSymbolsF.get(); 1171 1172 if (!NewResolverResults) 1173 return NewResolverResults.takeError(); 1174 1175 assert(NewResolverResults->size() == NewSymbols.size() && 1176 "Should have errored on unresolved symbols"); 1177 1178 for (auto &RRKV : *NewResolverResults) { 1179 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1180 ExternalSymbolMap.insert(RRKV); 1181 ResolvedSymbols.insert(RRKV.first); 1182 } 1183 } 1184 } 1185 1186 applyExternalSymbolRelocations(ExternalSymbolMap); 1187 1188 return Error::success(); 1189 } 1190 1191 void RuntimeDyldImpl::finalizeAsync( 1192 std::unique_ptr<RuntimeDyldImpl> This, 1193 unique_function<void(Error)> OnEmitted, 1194 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) { 1195 1196 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1197 auto PostResolveContinuation = 1198 [SharedThis, OnEmitted = std::move(OnEmitted), 1199 UnderlyingBuffer = std::move(UnderlyingBuffer)]( 1200 Expected<JITSymbolResolver::LookupResult> Result) mutable { 1201 if (!Result) { 1202 OnEmitted(Result.takeError()); 1203 return; 1204 } 1205 1206 /// Copy the result into a StringMap, where the keys are held by value. 1207 StringMap<JITEvaluatedSymbol> Resolved; 1208 for (auto &KV : *Result) 1209 Resolved[KV.first] = KV.second; 1210 1211 SharedThis->applyExternalSymbolRelocations(Resolved); 1212 SharedThis->resolveLocalRelocations(); 1213 SharedThis->registerEHFrames(); 1214 std::string ErrMsg; 1215 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1216 OnEmitted(make_error<StringError>(std::move(ErrMsg), 1217 inconvertibleErrorCode())); 1218 else 1219 OnEmitted(Error::success()); 1220 }; 1221 1222 JITSymbolResolver::LookupSet Symbols; 1223 1224 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1225 StringRef Name = RelocKV.first(); 1226 assert(!Name.empty() && "Symbol has no name?"); 1227 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1228 "Name already processed. RuntimeDyld instances can not be re-used " 1229 "when finalizing with finalizeAsync."); 1230 Symbols.insert(Name); 1231 } 1232 1233 if (!Symbols.empty()) { 1234 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); 1235 } else 1236 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // RuntimeDyld class implementation 1241 1242 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1243 const object::SectionRef &Sec) const { 1244 1245 auto I = ObjSecToIDMap.find(Sec); 1246 if (I != ObjSecToIDMap.end()) 1247 return RTDyld.Sections[I->second].getLoadAddress(); 1248 1249 return 0; 1250 } 1251 1252 void RuntimeDyld::MemoryManager::anchor() {} 1253 void JITSymbolResolver::anchor() {} 1254 void LegacyJITSymbolResolver::anchor() {} 1255 1256 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1257 JITSymbolResolver &Resolver) 1258 : MemMgr(MemMgr), Resolver(Resolver) { 1259 // FIXME: There's a potential issue lurking here if a single instance of 1260 // RuntimeDyld is used to load multiple objects. The current implementation 1261 // associates a single memory manager with a RuntimeDyld instance. Even 1262 // though the public class spawns a new 'impl' instance for each load, 1263 // they share a single memory manager. This can become a problem when page 1264 // permissions are applied. 1265 Dyld = nullptr; 1266 ProcessAllSections = false; 1267 } 1268 1269 RuntimeDyld::~RuntimeDyld() {} 1270 1271 static std::unique_ptr<RuntimeDyldCOFF> 1272 createRuntimeDyldCOFF( 1273 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1274 JITSymbolResolver &Resolver, bool ProcessAllSections, 1275 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1276 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1277 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1278 Dyld->setProcessAllSections(ProcessAllSections); 1279 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1280 return Dyld; 1281 } 1282 1283 static std::unique_ptr<RuntimeDyldELF> 1284 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1285 JITSymbolResolver &Resolver, bool ProcessAllSections, 1286 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1287 std::unique_ptr<RuntimeDyldELF> Dyld = 1288 RuntimeDyldELF::create(Arch, MM, Resolver); 1289 Dyld->setProcessAllSections(ProcessAllSections); 1290 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1291 return Dyld; 1292 } 1293 1294 static std::unique_ptr<RuntimeDyldMachO> 1295 createRuntimeDyldMachO( 1296 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1297 JITSymbolResolver &Resolver, 1298 bool ProcessAllSections, 1299 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1300 std::unique_ptr<RuntimeDyldMachO> Dyld = 1301 RuntimeDyldMachO::create(Arch, MM, Resolver); 1302 Dyld->setProcessAllSections(ProcessAllSections); 1303 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1304 return Dyld; 1305 } 1306 1307 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1308 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1309 if (!Dyld) { 1310 if (Obj.isELF()) 1311 Dyld = 1312 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1313 MemMgr, Resolver, ProcessAllSections, 1314 std::move(NotifyStubEmitted)); 1315 else if (Obj.isMachO()) 1316 Dyld = createRuntimeDyldMachO( 1317 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1318 ProcessAllSections, std::move(NotifyStubEmitted)); 1319 else if (Obj.isCOFF()) 1320 Dyld = createRuntimeDyldCOFF( 1321 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1322 ProcessAllSections, std::move(NotifyStubEmitted)); 1323 else 1324 report_fatal_error("Incompatible object format!"); 1325 } 1326 1327 if (!Dyld->isCompatibleFile(Obj)) 1328 report_fatal_error("Incompatible object format!"); 1329 1330 auto LoadedObjInfo = Dyld->loadObject(Obj); 1331 MemMgr.notifyObjectLoaded(*this, Obj); 1332 return LoadedObjInfo; 1333 } 1334 1335 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1336 if (!Dyld) 1337 return nullptr; 1338 return Dyld->getSymbolLocalAddress(Name); 1339 } 1340 1341 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1342 assert(Dyld && "No RuntimeDyld instance attached"); 1343 return Dyld->getSymbolSectionID(Name); 1344 } 1345 1346 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1347 if (!Dyld) 1348 return nullptr; 1349 return Dyld->getSymbol(Name); 1350 } 1351 1352 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1353 if (!Dyld) 1354 return std::map<StringRef, JITEvaluatedSymbol>(); 1355 return Dyld->getSymbolTable(); 1356 } 1357 1358 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1359 1360 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1361 Dyld->reassignSectionAddress(SectionID, Addr); 1362 } 1363 1364 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1365 uint64_t TargetAddress) { 1366 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1367 } 1368 1369 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1370 1371 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1372 1373 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1374 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1375 MemMgr.FinalizationLocked = true; 1376 resolveRelocations(); 1377 registerEHFrames(); 1378 if (!MemoryFinalizationLocked) { 1379 MemMgr.finalizeMemory(); 1380 MemMgr.FinalizationLocked = false; 1381 } 1382 } 1383 1384 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1385 assert(Dyld && "No Dyld instance attached"); 1386 return Dyld->getSectionContent(SectionID); 1387 } 1388 1389 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1390 assert(Dyld && "No Dyld instance attached"); 1391 return Dyld->getSectionLoadAddress(SectionID); 1392 } 1393 1394 void RuntimeDyld::registerEHFrames() { 1395 if (Dyld) 1396 Dyld->registerEHFrames(); 1397 } 1398 1399 void RuntimeDyld::deregisterEHFrames() { 1400 if (Dyld) 1401 Dyld->deregisterEHFrames(); 1402 } 1403 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1404 // so that we can re-use RuntimeDyld's implementation without twisting the 1405 // interface any further for ORC's purposes. 1406 void jitLinkForORC(object::ObjectFile &Obj, 1407 std::unique_ptr<MemoryBuffer> UnderlyingBuffer, 1408 RuntimeDyld::MemoryManager &MemMgr, 1409 JITSymbolResolver &Resolver, bool ProcessAllSections, 1410 unique_function<Error( 1411 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, 1412 std::map<StringRef, JITEvaluatedSymbol>)> 1413 OnLoaded, 1414 unique_function<void(Error)> OnEmitted) { 1415 1416 RuntimeDyld RTDyld(MemMgr, Resolver); 1417 RTDyld.setProcessAllSections(ProcessAllSections); 1418 1419 auto Info = RTDyld.loadObject(Obj); 1420 1421 if (RTDyld.hasError()) { 1422 OnEmitted(make_error<StringError>(RTDyld.getErrorString(), 1423 inconvertibleErrorCode())); 1424 return; 1425 } 1426 1427 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable())) 1428 OnEmitted(std::move(Err)); 1429 1430 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1431 std::move(UnderlyingBuffer)); 1432 } 1433 1434 } // end namespace llvm 1435