1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 void removeClobberedSrcRegMap(MachineInstr *MI); 122 123 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 124 125 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 126 127 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 128 MachineInstr *MI, unsigned Dist); 129 130 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 131 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 132 133 bool isProfitableToConv3Addr(Register RegA, Register RegB); 134 135 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 136 MachineBasicBlock::iterator &nmi, Register RegA, 137 Register RegB, unsigned &Dist); 138 139 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 140 141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 144 MachineBasicBlock::iterator &nmi, Register Reg); 145 146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 147 MachineBasicBlock::iterator &nmi, 148 unsigned SrcIdx, unsigned DstIdx, 149 unsigned &Dist, bool shouldOnlyCommute); 150 151 bool tryInstructionCommute(MachineInstr *MI, 152 unsigned DstOpIdx, 153 unsigned BaseOpIdx, 154 bool BaseOpKilled, 155 unsigned Dist); 156 void scanUses(Register DstReg); 157 158 void processCopy(MachineInstr *MI); 159 160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 162 163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 165 void eliminateRegSequence(MachineBasicBlock::iterator&); 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 177 AU.addUsedIfAvailable<LiveVariables>(); 178 AU.addPreserved<LiveVariables>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addPreserved<LiveIntervals>(); 181 AU.addPreservedID(MachineLoopInfoID); 182 AU.addPreservedID(MachineDominatorsID); 183 MachineFunctionPass::getAnalysisUsage(AU); 184 } 185 186 /// Pass entry point. 187 bool runOnMachineFunction(MachineFunction&) override; 188 }; 189 190 } // end anonymous namespace 191 192 char TwoAddressInstructionPass::ID = 0; 193 194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 195 196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 197 "Two-Address instruction pass", false, false) 198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 200 "Two-Address instruction pass", false, false) 201 202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 203 204 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 206 const MachineRegisterInfo *MRI) { 207 MachineInstr *Ret = nullptr; 208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 209 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 210 continue; 211 if (!Ret) 212 Ret = &DefMI; 213 else if (Ret != &DefMI) 214 return nullptr; 215 } 216 return Ret; 217 } 218 219 /// Check if there is a reversed copy chain from FromReg to ToReg: 220 /// %Tmp1 = copy %Tmp2; 221 /// %FromReg = copy %Tmp1; 222 /// %ToReg = add %FromReg ... 223 /// %Tmp2 = copy %ToReg; 224 /// MaxLen specifies the maximum length of the copy chain the func 225 /// can walk through. 226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 227 int Maxlen) { 228 Register TmpReg = FromReg; 229 for (int i = 0; i < Maxlen; i++) { 230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 231 if (!Def || !Def->isCopy()) 232 return false; 233 234 TmpReg = Def->getOperand(1).getReg(); 235 236 if (TmpReg == ToReg) 237 return true; 238 } 239 return false; 240 } 241 242 /// Return true if there are no intervening uses between the last instruction 243 /// in the MBB that defines the specified register and the two-address 244 /// instruction which is being processed. It also returns the last def location 245 /// by reference. 246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 247 unsigned &LastDef) { 248 LastDef = 0; 249 unsigned LastUse = Dist; 250 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 251 MachineInstr *MI = MO.getParent(); 252 if (MI->getParent() != MBB || MI->isDebugValue()) 253 continue; 254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 255 if (DI == DistanceMap.end()) 256 continue; 257 if (MO.isUse() && DI->second < LastUse) 258 LastUse = DI->second; 259 if (MO.isDef() && DI->second > LastDef) 260 LastDef = DI->second; 261 } 262 263 return !(LastUse > LastDef && LastUse < Dist); 264 } 265 266 /// Return true if the specified MI is a copy instruction or an extract_subreg 267 /// instruction. It also returns the source and destination registers and 268 /// whether they are physical registers by reference. 269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 270 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 271 bool &IsDstPhys) { 272 SrcReg = 0; 273 DstReg = 0; 274 if (MI.isCopy()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(1).getReg(); 277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 278 DstReg = MI.getOperand(0).getReg(); 279 SrcReg = MI.getOperand(2).getReg(); 280 } else { 281 return false; 282 } 283 284 IsSrcPhys = SrcReg.isPhysical(); 285 IsDstPhys = DstReg.isPhysical(); 286 return true; 287 } 288 289 /// Test if the given register value, which is used by the 290 /// given instruction, is killed by the given instruction. 291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 292 LiveIntervals *LIS) { 293 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 294 // FIXME: Sometimes tryInstructionTransform() will add instructions and 295 // test whether they can be folded before keeping them. In this case it 296 // sets a kill before recursively calling tryInstructionTransform() again. 297 // If there is no interval available, we assume that this instruction is 298 // one of those. A kill flag is manually inserted on the operand so the 299 // check below will handle it. 300 LiveInterval &LI = LIS->getInterval(Reg); 301 // This is to match the kill flag version where undefs don't have kill 302 // flags. 303 if (!LI.hasAtLeastOneValue()) 304 return false; 305 306 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 307 LiveInterval::const_iterator I = LI.find(useIdx); 308 assert(I != LI.end() && "Reg must be live-in to use."); 309 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 310 } 311 312 return MI->killsRegister(Reg); 313 } 314 315 /// Test if the given register value, which is used by the given 316 /// instruction, is killed by the given instruction. This looks through 317 /// coalescable copies to see if the original value is potentially not killed. 318 /// 319 /// For example, in this code: 320 /// 321 /// %reg1034 = copy %reg1024 322 /// %reg1035 = copy killed %reg1025 323 /// %reg1036 = add killed %reg1034, killed %reg1035 324 /// 325 /// %reg1034 is not considered to be killed, since it is copied from a 326 /// register which is not killed. Treating it as not killed lets the 327 /// normal heuristics commute the (two-address) add, which lets 328 /// coalescing eliminate the extra copy. 329 /// 330 /// If allowFalsePositives is true then likely kills are treated as kills even 331 /// if it can't be proven that they are kills. 332 static bool isKilled(MachineInstr &MI, Register Reg, 333 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 334 LiveIntervals *LIS, bool allowFalsePositives) { 335 MachineInstr *DefMI = &MI; 336 while (true) { 337 // All uses of physical registers are likely to be kills. 338 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 339 return true; 340 if (!isPlainlyKilled(DefMI, Reg, LIS)) 341 return false; 342 if (Reg.isPhysical()) 343 return true; 344 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 345 // If there are multiple defs, we can't do a simple analysis, so just 346 // go with what the kill flag says. 347 if (std::next(Begin) != MRI->def_end()) 348 return true; 349 DefMI = Begin->getParent(); 350 bool IsSrcPhys, IsDstPhys; 351 Register SrcReg, DstReg; 352 // If the def is something other than a copy, then it isn't going to 353 // be coalesced, so follow the kill flag. 354 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 355 return true; 356 Reg = SrcReg; 357 } 358 } 359 360 /// Return true if the specified MI uses the specified register as a two-address 361 /// use. If so, return the destination register by reference. 362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 363 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 364 const MachineOperand &MO = MI.getOperand(i); 365 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 366 continue; 367 unsigned ti; 368 if (MI.isRegTiedToDefOperand(i, &ti)) { 369 DstReg = MI.getOperand(ti).getReg(); 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /// Given a register, if all its uses are in the same basic block, return the 377 /// last use instruction if it's a copy or a two-address use. 378 static MachineInstr * 379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 380 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 381 bool &IsCopy, Register &DstReg, bool &IsDstPhys, 382 LiveIntervals *LIS) { 383 MachineOperand *UseOp = nullptr; 384 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 385 MachineInstr *MI = MO.getParent(); 386 if (MI->getParent() != MBB) 387 return nullptr; 388 if (isPlainlyKilled(MI, Reg, LIS)) 389 UseOp = &MO; 390 } 391 if (!UseOp) 392 return nullptr; 393 MachineInstr &UseMI = *UseOp->getParent(); 394 395 Register SrcReg; 396 bool IsSrcPhys; 397 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 398 IsCopy = true; 399 return &UseMI; 400 } 401 IsDstPhys = false; 402 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 403 IsDstPhys = DstReg.isPhysical(); 404 return &UseMI; 405 } 406 if (UseMI.isCommutable()) { 407 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 408 unsigned Src2 = UseMI.getOperandNo(UseOp); 409 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 410 MachineOperand &MO = UseMI.getOperand(Src1); 411 if (MO.isReg() && MO.isUse() && 412 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 413 IsDstPhys = DstReg.isPhysical(); 414 return &UseMI; 415 } 416 } 417 } 418 return nullptr; 419 } 420 421 /// Return the physical register the specified virtual register might be mapped 422 /// to. 423 static MCRegister getMappedReg(Register Reg, 424 DenseMap<Register, Register> &RegMap) { 425 while (Reg.isVirtual()) { 426 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 427 if (SI == RegMap.end()) 428 return 0; 429 Reg = SI->second; 430 } 431 if (Reg.isPhysical()) 432 return Reg; 433 return 0; 434 } 435 436 /// Return true if the two registers are equal or aliased. 437 static bool regsAreCompatible(Register RegA, Register RegB, 438 const TargetRegisterInfo *TRI) { 439 if (RegA == RegB) 440 return true; 441 if (!RegA || !RegB) 442 return false; 443 return TRI->regsOverlap(RegA, RegB); 444 } 445 446 /// From RegMap remove entries mapped to a physical register which overlaps MO. 447 static void removeMapRegEntry(const MachineOperand &MO, 448 DenseMap<Register, Register> &RegMap, 449 const TargetRegisterInfo *TRI) { 450 assert( 451 (MO.isReg() || MO.isRegMask()) && 452 "removeMapRegEntry must be called with a register or regmask operand."); 453 454 SmallVector<Register, 2> Srcs; 455 for (auto SI : RegMap) { 456 Register ToReg = SI.second; 457 if (ToReg.isVirtual()) 458 continue; 459 460 if (MO.isReg()) { 461 Register Reg = MO.getReg(); 462 if (TRI->regsOverlap(ToReg, Reg)) 463 Srcs.push_back(SI.first); 464 } else if (MO.clobbersPhysReg(ToReg)) 465 Srcs.push_back(SI.first); 466 } 467 468 for (auto SrcReg : Srcs) 469 RegMap.erase(SrcReg); 470 } 471 472 /// If a physical register is clobbered, old entries mapped to it should be 473 /// deleted. For example 474 /// 475 /// %2:gr64 = COPY killed $rdx 476 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 477 /// 478 /// After the MUL instruction, $rdx contains different value than in the COPY 479 /// instruction. So %2 should not map to $rdx after MUL. 480 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 481 if (MI->isCopy()) { 482 // If a virtual register is copied to its mapped physical register, it 483 // doesn't change the potential coalescing between them, so we don't remove 484 // entries mapped to the physical register. For example 485 // 486 // %100 = COPY $r8 487 // ... 488 // $r8 = COPY %100 489 // 490 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 491 // destroy the content of $r8, and should not impact SrcRegMap. 492 Register Dst = MI->getOperand(0).getReg(); 493 if (!Dst || Dst.isVirtual()) 494 return; 495 496 Register Src = MI->getOperand(1).getReg(); 497 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 498 return; 499 } 500 501 for (const MachineOperand &MO : MI->operands()) { 502 if (MO.isRegMask()) { 503 removeMapRegEntry(MO, SrcRegMap, TRI); 504 continue; 505 } 506 if (!MO.isReg() || !MO.isDef()) 507 continue; 508 Register Reg = MO.getReg(); 509 if (!Reg || Reg.isVirtual()) 510 continue; 511 removeMapRegEntry(MO, SrcRegMap, TRI); 512 } 513 } 514 515 // Returns true if Reg is equal or aliased to at least one register in Set. 516 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 517 const TargetRegisterInfo *TRI) { 518 for (unsigned R : Set) 519 if (TRI->regsOverlap(R, Reg)) 520 return true; 521 522 return false; 523 } 524 525 /// Return true if it's potentially profitable to commute the two-address 526 /// instruction that's being processed. 527 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 528 Register RegB, 529 Register RegC, 530 MachineInstr *MI, 531 unsigned Dist) { 532 if (OptLevel == CodeGenOpt::None) 533 return false; 534 535 // Determine if it's profitable to commute this two address instruction. In 536 // general, we want no uses between this instruction and the definition of 537 // the two-address register. 538 // e.g. 539 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 540 // %reg1029 = COPY %reg1028 541 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 542 // insert => %reg1030 = COPY %reg1028 543 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 544 // In this case, it might not be possible to coalesce the second COPY 545 // instruction if the first one is coalesced. So it would be profitable to 546 // commute it: 547 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 548 // %reg1029 = COPY %reg1028 549 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 550 // insert => %reg1030 = COPY %reg1029 551 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 552 553 if (!isPlainlyKilled(MI, RegC, LIS)) 554 return false; 555 556 // Ok, we have something like: 557 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 558 // let's see if it's worth commuting it. 559 560 // Look for situations like this: 561 // %reg1024 = MOV r1 562 // %reg1025 = MOV r0 563 // %reg1026 = ADD %reg1024, %reg1025 564 // r0 = MOV %reg1026 565 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 566 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 567 if (ToRegA) { 568 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 569 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 570 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 571 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 572 573 // Compute if any of the following are true: 574 // -RegB is not tied to a register and RegC is compatible with RegA. 575 // -RegB is tied to the wrong physical register, but RegC is. 576 // -RegB is tied to the wrong physical register, and RegC isn't tied. 577 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 578 return true; 579 // Don't compute if any of the following are true: 580 // -RegC is not tied to a register and RegB is compatible with RegA. 581 // -RegC is tied to the wrong physical register, but RegB is. 582 // -RegC is tied to the wrong physical register, and RegB isn't tied. 583 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 584 return false; 585 } 586 587 // If there is a use of RegC between its last def (could be livein) and this 588 // instruction, then bail. 589 unsigned LastDefC = 0; 590 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 591 return false; 592 593 // If there is a use of RegB between its last def (could be livein) and this 594 // instruction, then go ahead and make this transformation. 595 unsigned LastDefB = 0; 596 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 597 return true; 598 599 // Look for situation like this: 600 // %reg101 = MOV %reg100 601 // %reg102 = ... 602 // %reg103 = ADD %reg102, %reg101 603 // ... = %reg103 ... 604 // %reg100 = MOV %reg103 605 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 606 // to eliminate an otherwise unavoidable copy. 607 // FIXME: 608 // We can extend the logic further: If an pair of operands in an insn has 609 // been merged, the insn could be regarded as a virtual copy, and the virtual 610 // copy could also be used to construct a copy chain. 611 // To more generally minimize register copies, ideally the logic of two addr 612 // instruction pass should be integrated with register allocation pass where 613 // interference graph is available. 614 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 615 return true; 616 617 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 618 return false; 619 620 // Look for other target specific commute preference. 621 bool Commute; 622 if (TII->hasCommutePreference(*MI, Commute)) 623 return Commute; 624 625 // Since there are no intervening uses for both registers, then commute 626 // if the def of RegC is closer. Its live interval is shorter. 627 return LastDefB && LastDefC && LastDefC > LastDefB; 628 } 629 630 /// Commute a two-address instruction and update the basic block, distance map, 631 /// and live variables if needed. Return true if it is successful. 632 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 633 unsigned DstIdx, 634 unsigned RegBIdx, 635 unsigned RegCIdx, 636 unsigned Dist) { 637 Register RegC = MI->getOperand(RegCIdx).getReg(); 638 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 639 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 640 641 if (NewMI == nullptr) { 642 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 643 return false; 644 } 645 646 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 647 assert(NewMI == MI && 648 "TargetInstrInfo::commuteInstruction() should not return a new " 649 "instruction unless it was requested."); 650 651 // Update source register map. 652 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 653 if (FromRegC) { 654 Register RegA = MI->getOperand(DstIdx).getReg(); 655 SrcRegMap[RegA] = FromRegC; 656 } 657 658 return true; 659 } 660 661 /// Return true if it is profitable to convert the given 2-address instruction 662 /// to a 3-address one. 663 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 664 Register RegB) { 665 // Look for situations like this: 666 // %reg1024 = MOV r1 667 // %reg1025 = MOV r0 668 // %reg1026 = ADD %reg1024, %reg1025 669 // r2 = MOV %reg1026 670 // Turn ADD into a 3-address instruction to avoid a copy. 671 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 672 if (!FromRegB) 673 return false; 674 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 675 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 676 } 677 678 /// Convert the specified two-address instruction into a three address one. 679 /// Return true if this transformation was successful. 680 bool TwoAddressInstructionPass::convertInstTo3Addr( 681 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 682 Register RegA, Register RegB, unsigned &Dist) { 683 MachineInstrSpan MIS(mi, MBB); 684 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 685 if (!NewMI) 686 return false; 687 688 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 689 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 690 691 // If the old instruction is debug value tracked, an update is required. 692 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 693 assert(mi->getNumExplicitDefs() == 1); 694 assert(NewMI->getNumExplicitDefs() == 1); 695 696 // Find the old and new def location. 697 auto OldIt = mi->defs().begin(); 698 auto NewIt = NewMI->defs().begin(); 699 unsigned OldIdx = mi->getOperandNo(OldIt); 700 unsigned NewIdx = NewMI->getOperandNo(NewIt); 701 702 // Record that one def has been replaced by the other. 703 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 704 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 705 std::make_pair(NewInstrNum, NewIdx)); 706 } 707 708 MBB->erase(mi); // Nuke the old inst. 709 710 for (MachineInstr &MI : MIS) 711 DistanceMap.insert(std::make_pair(&MI, Dist++)); 712 Dist--; 713 mi = NewMI; 714 nmi = std::next(mi); 715 716 // Update source and destination register maps. 717 SrcRegMap.erase(RegA); 718 DstRegMap.erase(RegB); 719 return true; 720 } 721 722 /// Scan forward recursively for only uses, update maps if the use is a copy or 723 /// a two-address instruction. 724 void TwoAddressInstructionPass::scanUses(Register DstReg) { 725 SmallVector<Register, 4> VirtRegPairs; 726 bool IsDstPhys; 727 bool IsCopy = false; 728 Register NewReg; 729 Register Reg = DstReg; 730 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 731 NewReg, IsDstPhys, LIS)) { 732 if (IsCopy && !Processed.insert(UseMI).second) 733 break; 734 735 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 736 if (DI != DistanceMap.end()) 737 // Earlier in the same MBB.Reached via a back edge. 738 break; 739 740 if (IsDstPhys) { 741 VirtRegPairs.push_back(NewReg); 742 break; 743 } 744 SrcRegMap[NewReg] = Reg; 745 VirtRegPairs.push_back(NewReg); 746 Reg = NewReg; 747 } 748 749 if (!VirtRegPairs.empty()) { 750 unsigned ToReg = VirtRegPairs.back(); 751 VirtRegPairs.pop_back(); 752 while (!VirtRegPairs.empty()) { 753 unsigned FromReg = VirtRegPairs.pop_back_val(); 754 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 755 if (!isNew) 756 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 757 ToReg = FromReg; 758 } 759 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 760 if (!isNew) 761 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 762 } 763 } 764 765 /// If the specified instruction is not yet processed, process it if it's a 766 /// copy. For a copy instruction, we find the physical registers the 767 /// source and destination registers might be mapped to. These are kept in 768 /// point-to maps used to determine future optimizations. e.g. 769 /// v1024 = mov r0 770 /// v1025 = mov r1 771 /// v1026 = add v1024, v1025 772 /// r1 = mov r1026 773 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 774 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 775 /// potentially joined with r1 on the output side. It's worthwhile to commute 776 /// 'add' to eliminate a copy. 777 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 778 if (Processed.count(MI)) 779 return; 780 781 bool IsSrcPhys, IsDstPhys; 782 Register SrcReg, DstReg; 783 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 784 return; 785 786 if (IsDstPhys && !IsSrcPhys) { 787 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 788 } else if (!IsDstPhys && IsSrcPhys) { 789 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 790 if (!isNew) 791 assert(SrcRegMap[DstReg] == SrcReg && 792 "Can't map to two src physical registers!"); 793 794 scanUses(DstReg); 795 } 796 797 Processed.insert(MI); 798 } 799 800 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 801 /// consider moving the instruction below the kill instruction in order to 802 /// eliminate the need for the copy. 803 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 804 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 805 Register Reg) { 806 // Bail immediately if we don't have LV or LIS available. We use them to find 807 // kills efficiently. 808 if (!LV && !LIS) 809 return false; 810 811 MachineInstr *MI = &*mi; 812 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 813 if (DI == DistanceMap.end()) 814 // Must be created from unfolded load. Don't waste time trying this. 815 return false; 816 817 MachineInstr *KillMI = nullptr; 818 if (LIS) { 819 LiveInterval &LI = LIS->getInterval(Reg); 820 assert(LI.end() != LI.begin() && 821 "Reg should not have empty live interval."); 822 823 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 824 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 825 if (I != LI.end() && I->start < MBBEndIdx) 826 return false; 827 828 --I; 829 KillMI = LIS->getInstructionFromIndex(I->end); 830 } else { 831 KillMI = LV->getVarInfo(Reg).findKill(MBB); 832 } 833 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 834 // Don't mess with copies, they may be coalesced later. 835 return false; 836 837 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 838 KillMI->isBranch() || KillMI->isTerminator()) 839 // Don't move pass calls, etc. 840 return false; 841 842 Register DstReg; 843 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 844 return false; 845 846 bool SeenStore = true; 847 if (!MI->isSafeToMove(AA, SeenStore)) 848 return false; 849 850 if (TII->getInstrLatency(InstrItins, *MI) > 1) 851 // FIXME: Needs more sophisticated heuristics. 852 return false; 853 854 SmallVector<Register, 2> Uses; 855 SmallVector<Register, 2> Kills; 856 SmallVector<Register, 2> Defs; 857 for (const MachineOperand &MO : MI->operands()) { 858 if (!MO.isReg()) 859 continue; 860 Register MOReg = MO.getReg(); 861 if (!MOReg) 862 continue; 863 if (MO.isDef()) 864 Defs.push_back(MOReg); 865 else { 866 Uses.push_back(MOReg); 867 if (MOReg != Reg && (MO.isKill() || 868 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 869 Kills.push_back(MOReg); 870 } 871 } 872 873 // Move the copies connected to MI down as well. 874 MachineBasicBlock::iterator Begin = MI; 875 MachineBasicBlock::iterator AfterMI = std::next(Begin); 876 MachineBasicBlock::iterator End = AfterMI; 877 while (End != MBB->end()) { 878 End = skipDebugInstructionsForward(End, MBB->end()); 879 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 880 Defs.push_back(End->getOperand(0).getReg()); 881 else 882 break; 883 ++End; 884 } 885 886 // Check if the reschedule will not break dependencies. 887 unsigned NumVisited = 0; 888 MachineBasicBlock::iterator KillPos = KillMI; 889 ++KillPos; 890 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 891 // Debug or pseudo instructions cannot be counted against the limit. 892 if (OtherMI.isDebugOrPseudoInstr()) 893 continue; 894 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 895 return false; 896 ++NumVisited; 897 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 898 OtherMI.isBranch() || OtherMI.isTerminator()) 899 // Don't move pass calls, etc. 900 return false; 901 for (const MachineOperand &MO : OtherMI.operands()) { 902 if (!MO.isReg()) 903 continue; 904 Register MOReg = MO.getReg(); 905 if (!MOReg) 906 continue; 907 if (MO.isDef()) { 908 if (regOverlapsSet(Uses, MOReg, TRI)) 909 // Physical register use would be clobbered. 910 return false; 911 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 912 // May clobber a physical register def. 913 // FIXME: This may be too conservative. It's ok if the instruction 914 // is sunken completely below the use. 915 return false; 916 } else { 917 if (regOverlapsSet(Defs, MOReg, TRI)) 918 return false; 919 bool isKill = 920 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 921 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 922 regOverlapsSet(Kills, MOReg, TRI))) 923 // Don't want to extend other live ranges and update kills. 924 return false; 925 if (MOReg == Reg && !isKill) 926 // We can't schedule across a use of the register in question. 927 return false; 928 // Ensure that if this is register in question, its the kill we expect. 929 assert((MOReg != Reg || &OtherMI == KillMI) && 930 "Found multiple kills of a register in a basic block"); 931 } 932 } 933 } 934 935 // Move debug info as well. 936 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 937 --Begin; 938 939 nmi = End; 940 MachineBasicBlock::iterator InsertPos = KillPos; 941 if (LIS) { 942 // We have to move the copies (and any interleaved debug instructions) 943 // first so that the MBB is still well-formed when calling handleMove(). 944 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 945 auto CopyMI = MBBI++; 946 MBB->splice(InsertPos, MBB, CopyMI); 947 if (!CopyMI->isDebugOrPseudoInstr()) 948 LIS->handleMove(*CopyMI); 949 InsertPos = CopyMI; 950 } 951 End = std::next(MachineBasicBlock::iterator(MI)); 952 } 953 954 // Copies following MI may have been moved as well. 955 MBB->splice(InsertPos, MBB, Begin, End); 956 DistanceMap.erase(DI); 957 958 // Update live variables 959 if (LIS) { 960 LIS->handleMove(*MI); 961 } else { 962 LV->removeVirtualRegisterKilled(Reg, *KillMI); 963 LV->addVirtualRegisterKilled(Reg, *MI); 964 } 965 966 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 967 return true; 968 } 969 970 /// Return true if the re-scheduling will put the given instruction too close 971 /// to the defs of its register dependencies. 972 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 973 MachineInstr *MI) { 974 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 975 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 976 continue; 977 if (&DefMI == MI) 978 return true; // MI is defining something KillMI uses 979 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 980 if (DDI == DistanceMap.end()) 981 return true; // Below MI 982 unsigned DefDist = DDI->second; 983 assert(Dist > DefDist && "Visited def already?"); 984 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 985 return true; 986 } 987 return false; 988 } 989 990 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 991 /// consider moving the kill instruction above the current two-address 992 /// instruction in order to eliminate the need for the copy. 993 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 994 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 995 Register Reg) { 996 // Bail immediately if we don't have LV or LIS available. We use them to find 997 // kills efficiently. 998 if (!LV && !LIS) 999 return false; 1000 1001 MachineInstr *MI = &*mi; 1002 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1003 if (DI == DistanceMap.end()) 1004 // Must be created from unfolded load. Don't waste time trying this. 1005 return false; 1006 1007 MachineInstr *KillMI = nullptr; 1008 if (LIS) { 1009 LiveInterval &LI = LIS->getInterval(Reg); 1010 assert(LI.end() != LI.begin() && 1011 "Reg should not have empty live interval."); 1012 1013 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1014 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1015 if (I != LI.end() && I->start < MBBEndIdx) 1016 return false; 1017 1018 --I; 1019 KillMI = LIS->getInstructionFromIndex(I->end); 1020 } else { 1021 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1022 } 1023 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1024 // Don't mess with copies, they may be coalesced later. 1025 return false; 1026 1027 Register DstReg; 1028 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1029 return false; 1030 1031 bool SeenStore = true; 1032 if (!KillMI->isSafeToMove(AA, SeenStore)) 1033 return false; 1034 1035 SmallVector<Register, 2> Uses; 1036 SmallVector<Register, 2> Kills; 1037 SmallVector<Register, 2> Defs; 1038 SmallVector<Register, 2> LiveDefs; 1039 for (const MachineOperand &MO : KillMI->operands()) { 1040 if (!MO.isReg()) 1041 continue; 1042 Register MOReg = MO.getReg(); 1043 if (MO.isUse()) { 1044 if (!MOReg) 1045 continue; 1046 if (isDefTooClose(MOReg, DI->second, MI)) 1047 return false; 1048 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1049 if (MOReg == Reg && !isKill) 1050 return false; 1051 Uses.push_back(MOReg); 1052 if (isKill && MOReg != Reg) 1053 Kills.push_back(MOReg); 1054 } else if (MOReg.isPhysical()) { 1055 Defs.push_back(MOReg); 1056 if (!MO.isDead()) 1057 LiveDefs.push_back(MOReg); 1058 } 1059 } 1060 1061 // Check if the reschedule will not break depedencies. 1062 unsigned NumVisited = 0; 1063 for (MachineInstr &OtherMI : 1064 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1065 // Debug or pseudo instructions cannot be counted against the limit. 1066 if (OtherMI.isDebugOrPseudoInstr()) 1067 continue; 1068 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1069 return false; 1070 ++NumVisited; 1071 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1072 OtherMI.isBranch() || OtherMI.isTerminator()) 1073 // Don't move pass calls, etc. 1074 return false; 1075 SmallVector<Register, 2> OtherDefs; 1076 for (const MachineOperand &MO : OtherMI.operands()) { 1077 if (!MO.isReg()) 1078 continue; 1079 Register MOReg = MO.getReg(); 1080 if (!MOReg) 1081 continue; 1082 if (MO.isUse()) { 1083 if (regOverlapsSet(Defs, MOReg, TRI)) 1084 // Moving KillMI can clobber the physical register if the def has 1085 // not been seen. 1086 return false; 1087 if (regOverlapsSet(Kills, MOReg, TRI)) 1088 // Don't want to extend other live ranges and update kills. 1089 return false; 1090 if (&OtherMI != MI && MOReg == Reg && 1091 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1092 // We can't schedule across a use of the register in question. 1093 return false; 1094 } else { 1095 OtherDefs.push_back(MOReg); 1096 } 1097 } 1098 1099 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1100 Register MOReg = OtherDefs[i]; 1101 if (regOverlapsSet(Uses, MOReg, TRI)) 1102 return false; 1103 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1104 return false; 1105 // Physical register def is seen. 1106 llvm::erase_value(Defs, MOReg); 1107 } 1108 } 1109 1110 // Move the old kill above MI, don't forget to move debug info as well. 1111 MachineBasicBlock::iterator InsertPos = mi; 1112 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1113 --InsertPos; 1114 MachineBasicBlock::iterator From = KillMI; 1115 MachineBasicBlock::iterator To = std::next(From); 1116 while (std::prev(From)->isDebugInstr()) 1117 --From; 1118 MBB->splice(InsertPos, MBB, From, To); 1119 1120 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1121 DistanceMap.erase(DI); 1122 1123 // Update live variables 1124 if (LIS) { 1125 LIS->handleMove(*KillMI); 1126 } else { 1127 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1128 LV->addVirtualRegisterKilled(Reg, *MI); 1129 } 1130 1131 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1132 return true; 1133 } 1134 1135 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1136 /// given machine instruction to improve opportunities for coalescing and 1137 /// elimination of a register to register copy. 1138 /// 1139 /// 'DstOpIdx' specifies the index of MI def operand. 1140 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1141 /// operand is killed by the given instruction. 1142 /// The 'Dist' arguments provides the distance of MI from the start of the 1143 /// current basic block and it is used to determine if it is profitable 1144 /// to commute operands in the instruction. 1145 /// 1146 /// Returns true if the transformation happened. Otherwise, returns false. 1147 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1148 unsigned DstOpIdx, 1149 unsigned BaseOpIdx, 1150 bool BaseOpKilled, 1151 unsigned Dist) { 1152 if (!MI->isCommutable()) 1153 return false; 1154 1155 bool MadeChange = false; 1156 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1157 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1158 unsigned OpsNum = MI->getDesc().getNumOperands(); 1159 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1160 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1161 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1162 // and OtherOpIdx are commutable, it does not really search for 1163 // other commutable operands and does not change the values of passed 1164 // variables. 1165 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1166 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1167 continue; 1168 1169 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1170 bool AggressiveCommute = false; 1171 1172 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1173 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1174 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1175 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1176 1177 if (!DoCommute && 1178 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1179 DoCommute = true; 1180 AggressiveCommute = true; 1181 } 1182 1183 // If it's profitable to commute, try to do so. 1184 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1185 Dist)) { 1186 MadeChange = true; 1187 ++NumCommuted; 1188 if (AggressiveCommute) 1189 ++NumAggrCommuted; 1190 1191 // There might be more than two commutable operands, update BaseOp and 1192 // continue scanning. 1193 // FIXME: This assumes that the new instruction's operands are in the 1194 // same positions and were simply swapped. 1195 BaseOpReg = OtherOpReg; 1196 BaseOpKilled = OtherOpKilled; 1197 // Resamples OpsNum in case the number of operands was reduced. This 1198 // happens with X86. 1199 OpsNum = MI->getDesc().getNumOperands(); 1200 } 1201 } 1202 return MadeChange; 1203 } 1204 1205 /// For the case where an instruction has a single pair of tied register 1206 /// operands, attempt some transformations that may either eliminate the tied 1207 /// operands or improve the opportunities for coalescing away the register copy. 1208 /// Returns true if no copy needs to be inserted to untie mi's operands 1209 /// (either because they were untied, or because mi was rescheduled, and will 1210 /// be visited again later). If the shouldOnlyCommute flag is true, only 1211 /// instruction commutation is attempted. 1212 bool TwoAddressInstructionPass:: 1213 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1214 MachineBasicBlock::iterator &nmi, 1215 unsigned SrcIdx, unsigned DstIdx, 1216 unsigned &Dist, bool shouldOnlyCommute) { 1217 if (OptLevel == CodeGenOpt::None) 1218 return false; 1219 1220 MachineInstr &MI = *mi; 1221 Register regA = MI.getOperand(DstIdx).getReg(); 1222 Register regB = MI.getOperand(SrcIdx).getReg(); 1223 1224 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1225 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1226 1227 if (regA.isVirtual()) 1228 scanUses(regA); 1229 1230 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1231 1232 // If the instruction is convertible to 3 Addr, instead 1233 // of returning try 3 Addr transformation aggressively and 1234 // use this variable to check later. Because it might be better. 1235 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1236 // instead of the following code. 1237 // addl %esi, %edi 1238 // movl %edi, %eax 1239 // ret 1240 if (Commuted && !MI.isConvertibleTo3Addr()) 1241 return false; 1242 1243 if (shouldOnlyCommute) 1244 return false; 1245 1246 // If there is one more use of regB later in the same MBB, consider 1247 // re-schedule this MI below it. 1248 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1249 ++NumReSchedDowns; 1250 return true; 1251 } 1252 1253 // If we commuted, regB may have changed so we should re-sample it to avoid 1254 // confusing the three address conversion below. 1255 if (Commuted) { 1256 regB = MI.getOperand(SrcIdx).getReg(); 1257 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1258 } 1259 1260 if (MI.isConvertibleTo3Addr()) { 1261 // This instruction is potentially convertible to a true 1262 // three-address instruction. Check if it is profitable. 1263 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1264 // Try to convert it. 1265 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1266 ++NumConvertedTo3Addr; 1267 return true; // Done with this instruction. 1268 } 1269 } 1270 } 1271 1272 // Return if it is commuted but 3 addr conversion is failed. 1273 if (Commuted) 1274 return false; 1275 1276 // If there is one more use of regB later in the same MBB, consider 1277 // re-schedule it before this MI if it's legal. 1278 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1279 ++NumReSchedUps; 1280 return true; 1281 } 1282 1283 // If this is an instruction with a load folded into it, try unfolding 1284 // the load, e.g. avoid this: 1285 // movq %rdx, %rcx 1286 // addq (%rax), %rcx 1287 // in favor of this: 1288 // movq (%rax), %rcx 1289 // addq %rdx, %rcx 1290 // because it's preferable to schedule a load than a register copy. 1291 if (MI.mayLoad() && !regBKilled) { 1292 // Determine if a load can be unfolded. 1293 unsigned LoadRegIndex; 1294 unsigned NewOpc = 1295 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1296 /*UnfoldLoad=*/true, 1297 /*UnfoldStore=*/false, 1298 &LoadRegIndex); 1299 if (NewOpc != 0) { 1300 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1301 if (UnfoldMCID.getNumDefs() == 1) { 1302 // Unfold the load. 1303 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1304 const TargetRegisterClass *RC = 1305 TRI->getAllocatableClass( 1306 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1307 Register Reg = MRI->createVirtualRegister(RC); 1308 SmallVector<MachineInstr *, 2> NewMIs; 1309 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1310 /*UnfoldLoad=*/true, 1311 /*UnfoldStore=*/false, NewMIs)) { 1312 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1313 return false; 1314 } 1315 assert(NewMIs.size() == 2 && 1316 "Unfolded a load into multiple instructions!"); 1317 // The load was previously folded, so this is the only use. 1318 NewMIs[1]->addRegisterKilled(Reg, TRI); 1319 1320 // Tentatively insert the instructions into the block so that they 1321 // look "normal" to the transformation logic. 1322 MBB->insert(mi, NewMIs[0]); 1323 MBB->insert(mi, NewMIs[1]); 1324 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1325 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1326 1327 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1328 << "2addr: NEW INST: " << *NewMIs[1]); 1329 1330 // Transform the instruction, now that it no longer has a load. 1331 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1332 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1333 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1334 bool TransformResult = 1335 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1336 (void)TransformResult; 1337 assert(!TransformResult && 1338 "tryInstructionTransform() should return false."); 1339 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1340 // Success, or at least we made an improvement. Keep the unfolded 1341 // instructions and discard the original. 1342 if (LV) { 1343 for (const MachineOperand &MO : MI.operands()) { 1344 if (MO.isReg() && MO.getReg().isVirtual()) { 1345 if (MO.isUse()) { 1346 if (MO.isKill()) { 1347 if (NewMIs[0]->killsRegister(MO.getReg())) 1348 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1349 else { 1350 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1351 "Kill missing after load unfold!"); 1352 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1353 } 1354 } 1355 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1356 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1357 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1358 else { 1359 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1360 "Dead flag missing after load unfold!"); 1361 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1362 } 1363 } 1364 } 1365 } 1366 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1367 } 1368 1369 SmallVector<Register, 4> OrigRegs; 1370 if (LIS) { 1371 for (const MachineOperand &MO : MI.operands()) { 1372 if (MO.isReg()) 1373 OrigRegs.push_back(MO.getReg()); 1374 } 1375 1376 LIS->RemoveMachineInstrFromMaps(MI); 1377 } 1378 1379 MI.eraseFromParent(); 1380 DistanceMap.erase(&MI); 1381 1382 // Update LiveIntervals. 1383 if (LIS) { 1384 MachineBasicBlock::iterator Begin(NewMIs[0]); 1385 MachineBasicBlock::iterator End(NewMIs[1]); 1386 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1387 } 1388 1389 mi = NewMIs[1]; 1390 } else { 1391 // Transforming didn't eliminate the tie and didn't lead to an 1392 // improvement. Clean up the unfolded instructions and keep the 1393 // original. 1394 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1395 NewMIs[0]->eraseFromParent(); 1396 NewMIs[1]->eraseFromParent(); 1397 DistanceMap.erase(NewMIs[0]); 1398 DistanceMap.erase(NewMIs[1]); 1399 Dist--; 1400 } 1401 } 1402 } 1403 } 1404 1405 return false; 1406 } 1407 1408 // Collect tied operands of MI that need to be handled. 1409 // Rewrite trivial cases immediately. 1410 // Return true if any tied operands where found, including the trivial ones. 1411 bool TwoAddressInstructionPass:: 1412 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1413 bool AnyOps = false; 1414 unsigned NumOps = MI->getNumOperands(); 1415 1416 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1417 unsigned DstIdx = 0; 1418 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1419 continue; 1420 AnyOps = true; 1421 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1422 MachineOperand &DstMO = MI->getOperand(DstIdx); 1423 Register SrcReg = SrcMO.getReg(); 1424 Register DstReg = DstMO.getReg(); 1425 // Tied constraint already satisfied? 1426 if (SrcReg == DstReg) 1427 continue; 1428 1429 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1430 1431 // Deal with undef uses immediately - simply rewrite the src operand. 1432 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1433 // Constrain the DstReg register class if required. 1434 if (DstReg.isVirtual()) { 1435 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1436 MRI->constrainRegClass(DstReg, RC); 1437 } 1438 SrcMO.setReg(DstReg); 1439 SrcMO.setSubReg(0); 1440 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1441 continue; 1442 } 1443 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1444 } 1445 return AnyOps; 1446 } 1447 1448 // Process a list of tied MI operands that all use the same source register. 1449 // The tied pairs are of the form (SrcIdx, DstIdx). 1450 void 1451 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1452 TiedPairList &TiedPairs, 1453 unsigned &Dist) { 1454 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1455 return MI->getOperand(TP.second).isEarlyClobber(); 1456 }) != TiedPairs.end(); 1457 1458 bool RemovedKillFlag = false; 1459 bool AllUsesCopied = true; 1460 unsigned LastCopiedReg = 0; 1461 SlotIndex LastCopyIdx; 1462 Register RegB = 0; 1463 unsigned SubRegB = 0; 1464 for (auto &TP : TiedPairs) { 1465 unsigned SrcIdx = TP.first; 1466 unsigned DstIdx = TP.second; 1467 1468 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1469 Register RegA = DstMO.getReg(); 1470 1471 // Grab RegB from the instruction because it may have changed if the 1472 // instruction was commuted. 1473 RegB = MI->getOperand(SrcIdx).getReg(); 1474 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1475 1476 if (RegA == RegB) { 1477 // The register is tied to multiple destinations (or else we would 1478 // not have continued this far), but this use of the register 1479 // already matches the tied destination. Leave it. 1480 AllUsesCopied = false; 1481 continue; 1482 } 1483 LastCopiedReg = RegA; 1484 1485 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1486 1487 #ifndef NDEBUG 1488 // First, verify that we don't have a use of "a" in the instruction 1489 // (a = b + a for example) because our transformation will not 1490 // work. This should never occur because we are in SSA form. 1491 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1492 assert(i == DstIdx || 1493 !MI->getOperand(i).isReg() || 1494 MI->getOperand(i).getReg() != RegA); 1495 #endif 1496 1497 // Emit a copy. 1498 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1499 TII->get(TargetOpcode::COPY), RegA); 1500 // If this operand is folding a truncation, the truncation now moves to the 1501 // copy so that the register classes remain valid for the operands. 1502 MIB.addReg(RegB, 0, SubRegB); 1503 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1504 if (SubRegB) { 1505 if (RegA.isVirtual()) { 1506 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1507 SubRegB) && 1508 "tied subregister must be a truncation"); 1509 // The superreg class will not be used to constrain the subreg class. 1510 RC = nullptr; 1511 } else { 1512 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1513 && "tied subregister must be a truncation"); 1514 } 1515 } 1516 1517 // Update DistanceMap. 1518 MachineBasicBlock::iterator PrevMI = MI; 1519 --PrevMI; 1520 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1521 DistanceMap[MI] = ++Dist; 1522 1523 if (LIS) { 1524 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1525 1526 SlotIndex endIdx = 1527 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1528 if (RegA.isVirtual()) { 1529 LiveInterval &LI = LIS->getInterval(RegA); 1530 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1531 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1532 for (auto &S : LI.subranges()) { 1533 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1534 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1535 } 1536 } else { 1537 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1538 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1539 VNInfo *VNI = 1540 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1541 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1542 } 1543 } 1544 } 1545 } 1546 1547 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1548 1549 MachineOperand &MO = MI->getOperand(SrcIdx); 1550 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1551 "inconsistent operand info for 2-reg pass"); 1552 if (MO.isKill()) { 1553 MO.setIsKill(false); 1554 RemovedKillFlag = true; 1555 } 1556 1557 // Make sure regA is a legal regclass for the SrcIdx operand. 1558 if (RegA.isVirtual() && RegB.isVirtual()) 1559 MRI->constrainRegClass(RegA, RC); 1560 MO.setReg(RegA); 1561 // The getMatchingSuper asserts guarantee that the register class projected 1562 // by SubRegB is compatible with RegA with no subregister. So regardless of 1563 // whether the dest oper writes a subreg, the source oper should not. 1564 MO.setSubReg(0); 1565 } 1566 1567 if (AllUsesCopied) { 1568 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1569 // Replace other (un-tied) uses of regB with LastCopiedReg. 1570 for (MachineOperand &MO : MI->operands()) { 1571 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1572 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1573 if (MO.isKill()) { 1574 MO.setIsKill(false); 1575 RemovedKillFlag = true; 1576 } 1577 MO.setReg(LastCopiedReg); 1578 MO.setSubReg(0); 1579 } else { 1580 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1581 } 1582 } 1583 } 1584 1585 // Update live variables for regB. 1586 if (RemovedKillFlag && RemainingUses.none() && LV && 1587 LV->getVarInfo(RegB).removeKill(*MI)) { 1588 MachineBasicBlock::iterator PrevMI = MI; 1589 --PrevMI; 1590 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1591 } 1592 1593 if (RemovedKillFlag && RemainingUses.none()) 1594 SrcRegMap[LastCopiedReg] = RegB; 1595 1596 // Update LiveIntervals. 1597 if (LIS) { 1598 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1599 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1600 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1601 if (!S) 1602 return true; 1603 if ((LaneMask & RemainingUses).any()) 1604 return false; 1605 if (S->end.getBaseIndex() != UseIdx) 1606 return false; 1607 S->end = LastCopyIdx; 1608 return true; 1609 }; 1610 1611 LiveInterval &LI = LIS->getInterval(RegB); 1612 bool ShrinkLI = true; 1613 for (auto &S : LI.subranges()) 1614 ShrinkLI &= Shrink(S, S.LaneMask); 1615 if (ShrinkLI) 1616 Shrink(LI, LaneBitmask::getAll()); 1617 } 1618 } else if (RemovedKillFlag) { 1619 // Some tied uses of regB matched their destination registers, so 1620 // regB is still used in this instruction, but a kill flag was 1621 // removed from a different tied use of regB, so now we need to add 1622 // a kill flag to one of the remaining uses of regB. 1623 for (MachineOperand &MO : MI->operands()) { 1624 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1625 MO.setIsKill(true); 1626 break; 1627 } 1628 } 1629 } 1630 } 1631 1632 /// Reduce two-address instructions to two operands. 1633 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1634 MF = &Func; 1635 const TargetMachine &TM = MF->getTarget(); 1636 MRI = &MF->getRegInfo(); 1637 TII = MF->getSubtarget().getInstrInfo(); 1638 TRI = MF->getSubtarget().getRegisterInfo(); 1639 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1640 LV = getAnalysisIfAvailable<LiveVariables>(); 1641 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1642 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1643 AA = &AAPass->getAAResults(); 1644 else 1645 AA = nullptr; 1646 OptLevel = TM.getOptLevel(); 1647 // Disable optimizations if requested. We cannot skip the whole pass as some 1648 // fixups are necessary for correctness. 1649 if (skipFunction(Func.getFunction())) 1650 OptLevel = CodeGenOpt::None; 1651 1652 bool MadeChange = false; 1653 1654 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1655 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1656 1657 // This pass takes the function out of SSA form. 1658 MRI->leaveSSA(); 1659 1660 // This pass will rewrite the tied-def to meet the RegConstraint. 1661 MF->getProperties() 1662 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1663 1664 TiedOperandMap TiedOperands; 1665 for (MachineBasicBlock &MBBI : *MF) { 1666 MBB = &MBBI; 1667 unsigned Dist = 0; 1668 DistanceMap.clear(); 1669 SrcRegMap.clear(); 1670 DstRegMap.clear(); 1671 Processed.clear(); 1672 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1673 mi != me; ) { 1674 MachineBasicBlock::iterator nmi = std::next(mi); 1675 // Skip debug instructions. 1676 if (mi->isDebugInstr()) { 1677 mi = nmi; 1678 continue; 1679 } 1680 1681 // Expand REG_SEQUENCE instructions. This will position mi at the first 1682 // expanded instruction. 1683 if (mi->isRegSequence()) 1684 eliminateRegSequence(mi); 1685 1686 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1687 1688 processCopy(&*mi); 1689 1690 // First scan through all the tied register uses in this instruction 1691 // and record a list of pairs of tied operands for each register. 1692 if (!collectTiedOperands(&*mi, TiedOperands)) { 1693 removeClobberedSrcRegMap(&*mi); 1694 mi = nmi; 1695 continue; 1696 } 1697 1698 ++NumTwoAddressInstrs; 1699 MadeChange = true; 1700 LLVM_DEBUG(dbgs() << '\t' << *mi); 1701 1702 // If the instruction has a single pair of tied operands, try some 1703 // transformations that may either eliminate the tied operands or 1704 // improve the opportunities for coalescing away the register copy. 1705 if (TiedOperands.size() == 1) { 1706 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1707 = TiedOperands.begin()->second; 1708 if (TiedPairs.size() == 1) { 1709 unsigned SrcIdx = TiedPairs[0].first; 1710 unsigned DstIdx = TiedPairs[0].second; 1711 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1712 Register DstReg = mi->getOperand(DstIdx).getReg(); 1713 if (SrcReg != DstReg && 1714 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1715 // The tied operands have been eliminated or shifted further down 1716 // the block to ease elimination. Continue processing with 'nmi'. 1717 TiedOperands.clear(); 1718 removeClobberedSrcRegMap(&*mi); 1719 mi = nmi; 1720 continue; 1721 } 1722 } 1723 } 1724 1725 // Now iterate over the information collected above. 1726 for (auto &TO : TiedOperands) { 1727 processTiedPairs(&*mi, TO.second, Dist); 1728 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1729 } 1730 1731 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1732 if (mi->isInsertSubreg()) { 1733 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1734 // To %reg:subidx = COPY %subreg 1735 unsigned SubIdx = mi->getOperand(3).getImm(); 1736 mi->RemoveOperand(3); 1737 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1738 mi->getOperand(0).setSubReg(SubIdx); 1739 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1740 mi->RemoveOperand(1); 1741 mi->setDesc(TII->get(TargetOpcode::COPY)); 1742 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1743 1744 // Update LiveIntervals. 1745 if (LIS) { 1746 Register Reg = mi->getOperand(0).getReg(); 1747 LiveInterval &LI = LIS->getInterval(Reg); 1748 if (LI.hasSubRanges()) { 1749 // The COPY no longer defines subregs of %reg except for 1750 // %reg.subidx. 1751 LaneBitmask LaneMask = 1752 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1753 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1754 for (auto &S : LI.subranges()) { 1755 if ((S.LaneMask & LaneMask).none()) { 1756 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1757 LiveRange::iterator DefSeg = std::next(UseSeg); 1758 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1759 } 1760 } 1761 1762 // The COPY no longer has a use of %reg. 1763 LIS->shrinkToUses(&LI); 1764 } else { 1765 // The live interval for Reg did not have subranges but now it needs 1766 // them because we have introduced a subreg def. Recompute it. 1767 LIS->removeInterval(Reg); 1768 LIS->createAndComputeVirtRegInterval(Reg); 1769 } 1770 } 1771 } 1772 1773 // Clear TiedOperands here instead of at the top of the loop 1774 // since most instructions do not have tied operands. 1775 TiedOperands.clear(); 1776 removeClobberedSrcRegMap(&*mi); 1777 mi = nmi; 1778 } 1779 } 1780 1781 return MadeChange; 1782 } 1783 1784 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1785 /// 1786 /// The instruction is turned into a sequence of sub-register copies: 1787 /// 1788 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1789 /// 1790 /// Becomes: 1791 /// 1792 /// undef %dst:ssub0 = COPY %v1 1793 /// %dst:ssub1 = COPY %v2 1794 void TwoAddressInstructionPass:: 1795 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1796 MachineInstr &MI = *MBBI; 1797 Register DstReg = MI.getOperand(0).getReg(); 1798 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1799 !(MI.getNumOperands() & 1)) { 1800 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1801 llvm_unreachable(nullptr); 1802 } 1803 1804 SmallVector<Register, 4> OrigRegs; 1805 if (LIS) { 1806 OrigRegs.push_back(MI.getOperand(0).getReg()); 1807 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1808 OrigRegs.push_back(MI.getOperand(i).getReg()); 1809 } 1810 1811 bool DefEmitted = false; 1812 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1813 MachineOperand &UseMO = MI.getOperand(i); 1814 Register SrcReg = UseMO.getReg(); 1815 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1816 // Nothing needs to be inserted for undef operands. 1817 if (UseMO.isUndef()) 1818 continue; 1819 1820 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1821 // might insert a COPY that uses SrcReg after is was killed. 1822 bool isKill = UseMO.isKill(); 1823 if (isKill) 1824 for (unsigned j = i + 2; j < e; j += 2) 1825 if (MI.getOperand(j).getReg() == SrcReg) { 1826 MI.getOperand(j).setIsKill(); 1827 UseMO.setIsKill(false); 1828 isKill = false; 1829 break; 1830 } 1831 1832 // Insert the sub-register copy. 1833 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1834 TII->get(TargetOpcode::COPY)) 1835 .addReg(DstReg, RegState::Define, SubIdx) 1836 .add(UseMO); 1837 1838 // The first def needs an undef flag because there is no live register 1839 // before it. 1840 if (!DefEmitted) { 1841 CopyMI->getOperand(0).setIsUndef(true); 1842 // Return an iterator pointing to the first inserted instr. 1843 MBBI = CopyMI; 1844 } 1845 DefEmitted = true; 1846 1847 // Update LiveVariables' kill info. 1848 if (LV && isKill && !SrcReg.isPhysical()) 1849 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1850 1851 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1852 } 1853 1854 MachineBasicBlock::iterator EndMBBI = 1855 std::next(MachineBasicBlock::iterator(MI)); 1856 1857 if (!DefEmitted) { 1858 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1859 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1860 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1861 MI.RemoveOperand(j); 1862 } else { 1863 if (LIS) 1864 LIS->RemoveMachineInstrFromMaps(MI); 1865 1866 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1867 MI.eraseFromParent(); 1868 } 1869 1870 // Udpate LiveIntervals. 1871 if (LIS) 1872 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1873 } 1874