1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains switch inst lowering optimizations and utilities for 10 // codegen, so that it can be used for both SelectionDAG and GlobalISel. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SwitchLoweringUtils.h" 15 #include "llvm/CodeGen/FunctionLoweringInfo.h" 16 #include "llvm/CodeGen/MachineJumpTableInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/Target/TargetMachine.h" 19 20 using namespace llvm; 21 using namespace SwitchCG; 22 23 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, 24 unsigned First, unsigned Last) { 25 assert(Last >= First); 26 const APInt &LowCase = Clusters[First].Low->getValue(); 27 const APInt &HighCase = Clusters[Last].High->getValue(); 28 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 29 30 // FIXME: A range of consecutive cases has 100% density, but only requires one 31 // comparison to lower. We should discriminate against such consecutive ranges 32 // in jump tables. 33 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 34 } 35 36 uint64_t 37 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, 38 unsigned First, unsigned Last) { 39 assert(Last >= First); 40 assert(TotalCases[Last] >= TotalCases[First]); 41 uint64_t NumCases = 42 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 43 return NumCases; 44 } 45 46 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, 47 const SwitchInst *SI, 48 std::optional<SDLoc> SL, 49 MachineBasicBlock *DefaultMBB, 50 ProfileSummaryInfo *PSI, 51 BlockFrequencyInfo *BFI) { 52 #ifndef NDEBUG 53 // Clusters must be non-empty, sorted, and only contain Range clusters. 54 assert(!Clusters.empty()); 55 for (CaseCluster &C : Clusters) 56 assert(C.Kind == CC_Range); 57 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 58 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 59 #endif 60 61 assert(TLI && "TLI not set!"); 62 if (!TLI->areJTsAllowed(SI->getParent()->getParent())) 63 return; 64 65 const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); 66 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 67 68 // Bail if not enough cases. 69 const int64_t N = Clusters.size(); 70 if (N < 2 || N < MinJumpTableEntries) 71 return; 72 73 // Accumulated number of cases in each cluster and those prior to it. 74 SmallVector<unsigned, 8> TotalCases(N); 75 for (unsigned i = 0; i < N; ++i) { 76 const APInt &Hi = Clusters[i].High->getValue(); 77 const APInt &Lo = Clusters[i].Low->getValue(); 78 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 79 if (i != 0) 80 TotalCases[i] += TotalCases[i - 1]; 81 } 82 83 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 84 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 85 assert(NumCases < UINT64_MAX / 100); 86 assert(Range >= NumCases); 87 88 // Cheap case: the whole range may be suitable for jump table. 89 if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { 90 CaseCluster JTCluster; 91 if (buildJumpTable(Clusters, 0, N - 1, SI, SL, DefaultMBB, JTCluster)) { 92 Clusters[0] = JTCluster; 93 Clusters.resize(1); 94 return; 95 } 96 } 97 98 // The algorithm below is not suitable for -O0. 99 if (TM->getOptLevel() == CodeGenOptLevel::None) 100 return; 101 102 // Split Clusters into minimum number of dense partitions. The algorithm uses 103 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 104 // for the Case Statement'" (1994), but builds the MinPartitions array in 105 // reverse order to make it easier to reconstruct the partitions in ascending 106 // order. In the choice between two optimal partitionings, it picks the one 107 // which yields more jump tables. 108 109 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 110 SmallVector<unsigned, 8> MinPartitions(N); 111 // LastElement[i] is the last element of the partition starting at i. 112 SmallVector<unsigned, 8> LastElement(N); 113 // PartitionsScore[i] is used to break ties when choosing between two 114 // partitionings resulting in the same number of partitions. 115 SmallVector<unsigned, 8> PartitionsScore(N); 116 // For PartitionsScore, a small number of comparisons is considered as good as 117 // a jump table and a single comparison is considered better than a jump 118 // table. 119 enum PartitionScores : unsigned { 120 NoTable = 0, 121 Table = 1, 122 FewCases = 1, 123 SingleCase = 2 124 }; 125 126 // Base case: There is only one way to partition Clusters[N-1]. 127 MinPartitions[N - 1] = 1; 128 LastElement[N - 1] = N - 1; 129 PartitionsScore[N - 1] = PartitionScores::SingleCase; 130 131 // Note: loop indexes are signed to avoid underflow. 132 for (int64_t i = N - 2; i >= 0; i--) { 133 // Find optimal partitioning of Clusters[i..N-1]. 134 // Baseline: Put Clusters[i] into a partition on its own. 135 MinPartitions[i] = MinPartitions[i + 1] + 1; 136 LastElement[i] = i; 137 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 138 139 // Search for a solution that results in fewer partitions. 140 for (int64_t j = N - 1; j > i; j--) { 141 // Try building a partition from Clusters[i..j]. 142 Range = getJumpTableRange(Clusters, i, j); 143 NumCases = getJumpTableNumCases(TotalCases, i, j); 144 assert(NumCases < UINT64_MAX / 100); 145 assert(Range >= NumCases); 146 147 if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { 148 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 149 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 150 int64_t NumEntries = j - i + 1; 151 152 if (NumEntries == 1) 153 Score += PartitionScores::SingleCase; 154 else if (NumEntries <= SmallNumberOfEntries) 155 Score += PartitionScores::FewCases; 156 else if (NumEntries >= MinJumpTableEntries) 157 Score += PartitionScores::Table; 158 159 // If this leads to fewer partitions, or to the same number of 160 // partitions with better score, it is a better partitioning. 161 if (NumPartitions < MinPartitions[i] || 162 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 163 MinPartitions[i] = NumPartitions; 164 LastElement[i] = j; 165 PartitionsScore[i] = Score; 166 } 167 } 168 } 169 } 170 171 // Iterate over the partitions, replacing some with jump tables in-place. 172 unsigned DstIndex = 0; 173 for (unsigned First = 0, Last; First < N; First = Last + 1) { 174 Last = LastElement[First]; 175 assert(Last >= First); 176 assert(DstIndex <= First); 177 unsigned NumClusters = Last - First + 1; 178 179 CaseCluster JTCluster; 180 if (NumClusters >= MinJumpTableEntries && 181 buildJumpTable(Clusters, First, Last, SI, SL, DefaultMBB, JTCluster)) { 182 Clusters[DstIndex++] = JTCluster; 183 } else { 184 for (unsigned I = First; I <= Last; ++I) 185 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 186 } 187 } 188 Clusters.resize(DstIndex); 189 } 190 191 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, 192 unsigned First, unsigned Last, 193 const SwitchInst *SI, 194 const std::optional<SDLoc> &SL, 195 MachineBasicBlock *DefaultMBB, 196 CaseCluster &JTCluster) { 197 assert(First <= Last); 198 199 auto Prob = BranchProbability::getZero(); 200 unsigned NumCmps = 0; 201 std::vector<MachineBasicBlock*> Table; 202 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 203 204 // Initialize probabilities in JTProbs. 205 for (unsigned I = First; I <= Last; ++I) 206 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 207 208 for (unsigned I = First; I <= Last; ++I) { 209 assert(Clusters[I].Kind == CC_Range); 210 Prob += Clusters[I].Prob; 211 const APInt &Low = Clusters[I].Low->getValue(); 212 const APInt &High = Clusters[I].High->getValue(); 213 NumCmps += (Low == High) ? 1 : 2; 214 if (I != First) { 215 // Fill the gap between this and the previous cluster. 216 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 217 assert(PreviousHigh.slt(Low)); 218 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 219 for (uint64_t J = 0; J < Gap; J++) 220 Table.push_back(DefaultMBB); 221 } 222 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 223 for (uint64_t J = 0; J < ClusterSize; ++J) 224 Table.push_back(Clusters[I].MBB); 225 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 226 } 227 228 unsigned NumDests = JTProbs.size(); 229 if (TLI->isSuitableForBitTests(NumDests, NumCmps, 230 Clusters[First].Low->getValue(), 231 Clusters[Last].High->getValue(), *DL)) { 232 // Clusters[First..Last] should be lowered as bit tests instead. 233 return false; 234 } 235 236 // Create the MBB that will load from and jump through the table. 237 // Note: We create it here, but it's not inserted into the function yet. 238 MachineFunction *CurMF = FuncInfo.MF; 239 MachineBasicBlock *JumpTableMBB = 240 CurMF->CreateMachineBasicBlock(SI->getParent()); 241 242 // Add successors. Note: use table order for determinism. 243 SmallPtrSet<MachineBasicBlock *, 8> Done; 244 for (MachineBasicBlock *Succ : Table) { 245 if (Done.count(Succ)) 246 continue; 247 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 248 Done.insert(Succ); 249 } 250 JumpTableMBB->normalizeSuccProbs(); 251 252 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) 253 ->createJumpTableIndex(Table); 254 255 // Set up the jump table info. 256 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr, SL); 257 JumpTableHeader JTH(Clusters[First].Low->getValue(), 258 Clusters[Last].High->getValue(), SI->getCondition(), 259 nullptr, false); 260 JTCases.emplace_back(std::move(JTH), std::move(JT)); 261 262 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 263 JTCases.size() - 1, Prob); 264 return true; 265 } 266 267 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, 268 const SwitchInst *SI) { 269 // Partition Clusters into as few subsets as possible, where each subset has a 270 // range that fits in a machine word and has <= 3 unique destinations. 271 272 #ifndef NDEBUG 273 // Clusters must be sorted and contain Range or JumpTable clusters. 274 assert(!Clusters.empty()); 275 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 276 for (const CaseCluster &C : Clusters) 277 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 278 for (unsigned i = 1; i < Clusters.size(); ++i) 279 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 280 #endif 281 282 // The algorithm below is not suitable for -O0. 283 if (TM->getOptLevel() == CodeGenOptLevel::None) 284 return; 285 286 // If target does not have legal shift left, do not emit bit tests at all. 287 EVT PTy = TLI->getPointerTy(*DL); 288 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 289 return; 290 291 int BitWidth = PTy.getSizeInBits(); 292 const int64_t N = Clusters.size(); 293 294 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 295 SmallVector<unsigned, 8> MinPartitions(N); 296 // LastElement[i] is the last element of the partition starting at i. 297 SmallVector<unsigned, 8> LastElement(N); 298 299 // FIXME: This might not be the best algorithm for finding bit test clusters. 300 301 // Base case: There is only one way to partition Clusters[N-1]. 302 MinPartitions[N - 1] = 1; 303 LastElement[N - 1] = N - 1; 304 305 // Note: loop indexes are signed to avoid underflow. 306 for (int64_t i = N - 2; i >= 0; --i) { 307 // Find optimal partitioning of Clusters[i..N-1]. 308 // Baseline: Put Clusters[i] into a partition on its own. 309 MinPartitions[i] = MinPartitions[i + 1] + 1; 310 LastElement[i] = i; 311 312 // Search for a solution that results in fewer partitions. 313 // Note: the search is limited by BitWidth, reducing time complexity. 314 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 315 // Try building a partition from Clusters[i..j]. 316 317 // Check the range. 318 if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), 319 Clusters[j].High->getValue(), *DL)) 320 continue; 321 322 // Check nbr of destinations and cluster types. 323 // FIXME: This works, but doesn't seem very efficient. 324 bool RangesOnly = true; 325 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 326 for (int64_t k = i; k <= j; k++) { 327 if (Clusters[k].Kind != CC_Range) { 328 RangesOnly = false; 329 break; 330 } 331 Dests.set(Clusters[k].MBB->getNumber()); 332 } 333 if (!RangesOnly || Dests.count() > 3) 334 break; 335 336 // Check if it's a better partition. 337 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 338 if (NumPartitions < MinPartitions[i]) { 339 // Found a better partition. 340 MinPartitions[i] = NumPartitions; 341 LastElement[i] = j; 342 } 343 } 344 } 345 346 // Iterate over the partitions, replacing with bit-test clusters in-place. 347 unsigned DstIndex = 0; 348 for (unsigned First = 0, Last; First < N; First = Last + 1) { 349 Last = LastElement[First]; 350 assert(First <= Last); 351 assert(DstIndex <= First); 352 353 CaseCluster BitTestCluster; 354 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 355 Clusters[DstIndex++] = BitTestCluster; 356 } else { 357 size_t NumClusters = Last - First + 1; 358 std::memmove(&Clusters[DstIndex], &Clusters[First], 359 sizeof(Clusters[0]) * NumClusters); 360 DstIndex += NumClusters; 361 } 362 } 363 Clusters.resize(DstIndex); 364 } 365 366 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, 367 unsigned First, unsigned Last, 368 const SwitchInst *SI, 369 CaseCluster &BTCluster) { 370 assert(First <= Last); 371 if (First == Last) 372 return false; 373 374 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 375 unsigned NumCmps = 0; 376 for (int64_t I = First; I <= Last; ++I) { 377 assert(Clusters[I].Kind == CC_Range); 378 Dests.set(Clusters[I].MBB->getNumber()); 379 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 380 } 381 unsigned NumDests = Dests.count(); 382 383 APInt Low = Clusters[First].Low->getValue(); 384 APInt High = Clusters[Last].High->getValue(); 385 assert(Low.slt(High)); 386 387 if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) 388 return false; 389 390 APInt LowBound; 391 APInt CmpRange; 392 393 const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); 394 assert(TLI->rangeFitsInWord(Low, High, *DL) && 395 "Case range must fit in bit mask!"); 396 397 // Check if the clusters cover a contiguous range such that no value in the 398 // range will jump to the default statement. 399 bool ContiguousRange = true; 400 for (int64_t I = First + 1; I <= Last; ++I) { 401 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 402 ContiguousRange = false; 403 break; 404 } 405 } 406 407 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 408 // Optimize the case where all the case values fit in a word without having 409 // to subtract minValue. In this case, we can optimize away the subtraction. 410 LowBound = APInt::getZero(Low.getBitWidth()); 411 CmpRange = High; 412 ContiguousRange = false; 413 } else { 414 LowBound = Low; 415 CmpRange = High - Low; 416 } 417 418 CaseBitsVector CBV; 419 auto TotalProb = BranchProbability::getZero(); 420 for (unsigned i = First; i <= Last; ++i) { 421 // Find the CaseBits for this destination. 422 unsigned j; 423 for (j = 0; j < CBV.size(); ++j) 424 if (CBV[j].BB == Clusters[i].MBB) 425 break; 426 if (j == CBV.size()) 427 CBV.push_back( 428 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 429 CaseBits *CB = &CBV[j]; 430 431 // Update Mask, Bits and ExtraProb. 432 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 433 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 434 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 435 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 436 CB->Bits += Hi - Lo + 1; 437 CB->ExtraProb += Clusters[i].Prob; 438 TotalProb += Clusters[i].Prob; 439 } 440 441 BitTestInfo BTI; 442 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 443 // Sort by probability first, number of bits second, bit mask third. 444 if (a.ExtraProb != b.ExtraProb) 445 return a.ExtraProb > b.ExtraProb; 446 if (a.Bits != b.Bits) 447 return a.Bits > b.Bits; 448 return a.Mask < b.Mask; 449 }); 450 451 for (auto &CB : CBV) { 452 MachineBasicBlock *BitTestBB = 453 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 454 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 455 } 456 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 457 SI->getCondition(), -1U, MVT::Other, false, 458 ContiguousRange, nullptr, nullptr, std::move(BTI), 459 TotalProb); 460 461 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 462 BitTestCases.size() - 1, TotalProb); 463 return true; 464 } 465 466 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { 467 #ifndef NDEBUG 468 for (const CaseCluster &CC : Clusters) 469 assert(CC.Low == CC.High && "Input clusters must be single-case"); 470 #endif 471 472 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 473 return a.Low->getValue().slt(b.Low->getValue()); 474 }); 475 476 // Merge adjacent clusters with the same destination. 477 const unsigned N = Clusters.size(); 478 unsigned DstIndex = 0; 479 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 480 CaseCluster &CC = Clusters[SrcIndex]; 481 const ConstantInt *CaseVal = CC.Low; 482 MachineBasicBlock *Succ = CC.MBB; 483 484 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 485 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 486 // If this case has the same successor and is a neighbour, merge it into 487 // the previous cluster. 488 Clusters[DstIndex - 1].High = CaseVal; 489 Clusters[DstIndex - 1].Prob += CC.Prob; 490 } else { 491 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 492 sizeof(Clusters[SrcIndex])); 493 } 494 } 495 Clusters.resize(DstIndex); 496 } 497 498 unsigned SwitchCG::SwitchLowering::caseClusterRank(const CaseCluster &CC, 499 CaseClusterIt First, 500 CaseClusterIt Last) { 501 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 502 if (X.Prob != CC.Prob) 503 return X.Prob > CC.Prob; 504 505 // Ties are broken by comparing the case value. 506 return X.Low->getValue().slt(CC.Low->getValue()); 507 }); 508 } 509 510 llvm::SwitchCG::SwitchLowering::SplitWorkItemInfo 511 SwitchCG::SwitchLowering::computeSplitWorkItemInfo( 512 const SwitchWorkListItem &W) { 513 CaseClusterIt LastLeft = W.FirstCluster; 514 CaseClusterIt FirstRight = W.LastCluster; 515 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 516 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 517 518 // Move LastLeft and FirstRight towards each other from opposite directions to 519 // find a partitioning of the clusters which balances the probability on both 520 // sides. If LeftProb and RightProb are equal, alternate which side is 521 // taken to ensure 0-probability nodes are distributed evenly. 522 unsigned I = 0; 523 while (LastLeft + 1 < FirstRight) { 524 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 525 LeftProb += (++LastLeft)->Prob; 526 else 527 RightProb += (--FirstRight)->Prob; 528 I++; 529 } 530 531 while (true) { 532 // Our binary search tree differs from a typical BST in that ours can have 533 // up to three values in each leaf. The pivot selection above doesn't take 534 // that into account, which means the tree might require more nodes and be 535 // less efficient. We compensate for this here. 536 537 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 538 unsigned NumRight = W.LastCluster - FirstRight + 1; 539 540 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 541 // If one side has less than 3 clusters, and the other has more than 3, 542 // consider taking a cluster from the other side. 543 544 if (NumLeft < NumRight) { 545 // Consider moving the first cluster on the right to the left side. 546 CaseCluster &CC = *FirstRight; 547 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 548 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 549 if (LeftSideRank <= RightSideRank) { 550 // Moving the cluster to the left does not demote it. 551 ++LastLeft; 552 ++FirstRight; 553 continue; 554 } 555 } else { 556 assert(NumRight < NumLeft); 557 // Consider moving the last element on the left to the right side. 558 CaseCluster &CC = *LastLeft; 559 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 560 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 561 if (RightSideRank <= LeftSideRank) { 562 // Moving the cluster to the right does not demot it. 563 --LastLeft; 564 --FirstRight; 565 continue; 566 } 567 } 568 } 569 break; 570 } 571 572 assert(LastLeft + 1 == FirstRight); 573 assert(LastLeft >= W.FirstCluster); 574 assert(FirstRight <= W.LastCluster); 575 576 return SplitWorkItemInfo{LastLeft, FirstRight, LeftProb, RightProb}; 577 }