1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetOpcodes.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/BlockFrequency.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <iterator> 41 #include <limits> 42 #include <tuple> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "regalloc" 47 48 static cl::opt<bool> 49 EnableLoopIVHeuristic("enable-split-loopiv-heuristic", 50 cl::desc("Enable loop iv regalloc heuristic"), 51 cl::init(true)); 52 53 STATISTIC(NumFinished, "Number of splits finished"); 54 STATISTIC(NumSimple, "Number of splits that were simple"); 55 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 56 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 57 58 //===----------------------------------------------------------------------===// 59 // Last Insert Point Analysis 60 //===----------------------------------------------------------------------===// 61 62 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 63 unsigned BBNum) 64 : LIS(lis), LastInsertPoint(BBNum) {} 65 66 SlotIndex 67 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 68 const MachineBasicBlock &MBB) { 69 unsigned Num = MBB.getNumber(); 70 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 71 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 72 73 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 74 bool EHPadSuccessor = false; 75 for (const MachineBasicBlock *SMBB : MBB.successors()) { 76 if (SMBB->isEHPad()) { 77 ExceptionalSuccessors.push_back(SMBB); 78 EHPadSuccessor = true; 79 } else if (SMBB->isInlineAsmBrIndirectTarget()) 80 ExceptionalSuccessors.push_back(SMBB); 81 } 82 83 // Compute insert points on the first call. The pair is independent of the 84 // current live interval. 85 if (!LIP.first.isValid()) { 86 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 87 if (FirstTerm == MBB.end()) 88 LIP.first = MBBEnd; 89 else 90 LIP.first = LIS.getInstructionIndex(*FirstTerm); 91 92 // If there is a landing pad or inlineasm_br successor, also find the 93 // instruction. If there is no such instruction, we don't need to do 94 // anything special. We assume there cannot be multiple instructions that 95 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 96 // assume that if there are any, they will be after any other call 97 // instructions in the block. 98 if (ExceptionalSuccessors.empty()) 99 return LIP.first; 100 for (const MachineInstr &MI : llvm::reverse(MBB)) { 101 if ((EHPadSuccessor && MI.isCall()) || 102 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 103 LIP.second = LIS.getInstructionIndex(MI); 104 break; 105 } 106 } 107 } 108 109 // If CurLI is live into a landing pad successor, move the last insert point 110 // back to the call that may throw. 111 if (!LIP.second) 112 return LIP.first; 113 114 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 115 return LIS.isLiveInToMBB(CurLI, EHPad); 116 })) 117 return LIP.first; 118 119 // Find the value leaving MBB. 120 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 121 if (!VNI) 122 return LIP.first; 123 124 // The def of statepoint instruction is a gc relocation and it should be alive 125 // in landing pad. So we cannot split interval after statepoint instruction. 126 if (SlotIndex::isSameInstr(VNI->def, LIP.second)) 127 if (auto *I = LIS.getInstructionFromIndex(LIP.second)) 128 if (I->getOpcode() == TargetOpcode::STATEPOINT) 129 return LIP.second; 130 131 // If the value leaving MBB was defined after the call in MBB, it can't 132 // really be live-in to the landing pad. This can happen if the landing pad 133 // has a PHI, and this register is undef on the exceptional edge. 134 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 135 return LIP.first; 136 137 // Value is properly live-in to the landing pad. 138 // Only allow inserts before the call. 139 return LIP.second; 140 } 141 142 MachineBasicBlock::iterator 143 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 144 MachineBasicBlock &MBB) { 145 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 146 if (LIP == LIS.getMBBEndIdx(&MBB)) 147 return MBB.end(); 148 return LIS.getInstructionFromIndex(LIP); 149 } 150 151 //===----------------------------------------------------------------------===// 152 // Split Analysis 153 //===----------------------------------------------------------------------===// 154 155 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 156 const MachineLoopInfo &mli) 157 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 158 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 159 160 void SplitAnalysis::clear() { 161 UseSlots.clear(); 162 UseBlocks.clear(); 163 ThroughBlocks.clear(); 164 CurLI = nullptr; 165 } 166 167 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 168 void SplitAnalysis::analyzeUses() { 169 assert(UseSlots.empty() && "Call clear first"); 170 171 // First get all the defs from the interval values. This provides the correct 172 // slots for early clobbers. 173 for (const VNInfo *VNI : CurLI->valnos) 174 if (!VNI->isPHIDef() && !VNI->isUnused()) 175 UseSlots.push_back(VNI->def); 176 177 // Get use slots form the use-def chain. 178 const MachineRegisterInfo &MRI = MF.getRegInfo(); 179 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 180 if (!MO.isUndef()) 181 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 182 183 array_pod_sort(UseSlots.begin(), UseSlots.end()); 184 185 // Remove duplicates, keeping the smaller slot for each instruction. 186 // That is what we want for early clobbers. 187 UseSlots.erase(llvm::unique(UseSlots, SlotIndex::isSameInstr), 188 UseSlots.end()); 189 190 // Compute per-live block info. 191 calcLiveBlockInfo(); 192 193 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 194 << UseBlocks.size() << " blocks, through " 195 << NumThroughBlocks << " blocks.\n"); 196 } 197 198 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 199 /// where CurLI is live. 200 void SplitAnalysis::calcLiveBlockInfo() { 201 ThroughBlocks.resize(MF.getNumBlockIDs()); 202 NumThroughBlocks = NumGapBlocks = 0; 203 if (CurLI->empty()) 204 return; 205 206 LiveInterval::const_iterator LVI = CurLI->begin(); 207 LiveInterval::const_iterator LVE = CurLI->end(); 208 209 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 210 UseI = UseSlots.begin(); 211 UseE = UseSlots.end(); 212 213 // Loop over basic blocks where CurLI is live. 214 MachineFunction::iterator MFI = 215 LIS.getMBBFromIndex(LVI->start)->getIterator(); 216 while (true) { 217 BlockInfo BI; 218 BI.MBB = &*MFI; 219 SlotIndex Start, Stop; 220 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 221 222 // If the block contains no uses, the range must be live through. At one 223 // point, RegisterCoalescer could create dangling ranges that ended 224 // mid-block. 225 if (UseI == UseE || *UseI >= Stop) { 226 ++NumThroughBlocks; 227 ThroughBlocks.set(BI.MBB->getNumber()); 228 // The range shouldn't end mid-block if there are no uses. This shouldn't 229 // happen. 230 assert(LVI->end >= Stop && "range ends mid block with no uses"); 231 } else { 232 // This block has uses. Find the first and last uses in the block. 233 BI.FirstInstr = *UseI; 234 assert(BI.FirstInstr >= Start); 235 do ++UseI; 236 while (UseI != UseE && *UseI < Stop); 237 BI.LastInstr = UseI[-1]; 238 assert(BI.LastInstr < Stop); 239 240 // LVI is the first live segment overlapping MBB. 241 BI.LiveIn = LVI->start <= Start; 242 243 // When not live in, the first use should be a def. 244 if (!BI.LiveIn) { 245 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 246 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 247 BI.FirstDef = BI.FirstInstr; 248 } 249 250 // Look for gaps in the live range. 251 BI.LiveOut = true; 252 while (LVI->end < Stop) { 253 SlotIndex LastStop = LVI->end; 254 if (++LVI == LVE || LVI->start >= Stop) { 255 BI.LiveOut = false; 256 BI.LastInstr = LastStop; 257 break; 258 } 259 260 if (LastStop < LVI->start) { 261 // There is a gap in the live range. Create duplicate entries for the 262 // live-in snippet and the live-out snippet. 263 ++NumGapBlocks; 264 265 // Push the Live-in part. 266 BI.LiveOut = false; 267 UseBlocks.push_back(BI); 268 UseBlocks.back().LastInstr = LastStop; 269 270 // Set up BI for the live-out part. 271 BI.LiveIn = false; 272 BI.LiveOut = true; 273 BI.FirstInstr = BI.FirstDef = LVI->start; 274 } 275 276 // A Segment that starts in the middle of the block must be a def. 277 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 278 if (!BI.FirstDef) 279 BI.FirstDef = LVI->start; 280 } 281 282 UseBlocks.push_back(BI); 283 284 // LVI is now at LVE or LVI->end >= Stop. 285 if (LVI == LVE) 286 break; 287 } 288 289 // Live segment ends exactly at Stop. Move to the next segment. 290 if (LVI->end == Stop && ++LVI == LVE) 291 break; 292 293 // Pick the next basic block. 294 if (LVI->start < Stop) 295 ++MFI; 296 else 297 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 298 } 299 300 LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 && 301 any_of(UseBlocks, [this](BlockInfo &BI) { 302 MachineLoop *L = Loops.getLoopFor(BI.MBB); 303 return BI.LiveIn && BI.LiveOut && BI.FirstDef && L && 304 L->isLoopLatch(BI.MBB); 305 }); 306 307 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 308 } 309 310 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 311 if (cli->empty()) 312 return 0; 313 LiveInterval *li = const_cast<LiveInterval*>(cli); 314 LiveInterval::iterator LVI = li->begin(); 315 LiveInterval::iterator LVE = li->end(); 316 unsigned Count = 0; 317 318 // Loop over basic blocks where li is live. 319 MachineFunction::const_iterator MFI = 320 LIS.getMBBFromIndex(LVI->start)->getIterator(); 321 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 322 while (true) { 323 ++Count; 324 LVI = li->advanceTo(LVI, Stop); 325 if (LVI == LVE) 326 return Count; 327 do { 328 ++MFI; 329 Stop = LIS.getMBBEndIdx(&*MFI); 330 } while (Stop <= LVI->start); 331 } 332 } 333 334 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 335 Register OrigReg = VRM.getOriginal(CurLI->reg()); 336 const LiveInterval &Orig = LIS.getInterval(OrigReg); 337 assert(!Orig.empty() && "Splitting empty interval?"); 338 LiveInterval::const_iterator I = Orig.find(Idx); 339 340 // Range containing Idx should begin at Idx. 341 if (I != Orig.end() && I->start <= Idx) 342 return I->start == Idx; 343 344 // Range does not contain Idx, previous must end at Idx. 345 return I != Orig.begin() && (--I)->end == Idx; 346 } 347 348 void SplitAnalysis::analyze(const LiveInterval *li) { 349 clear(); 350 CurLI = li; 351 analyzeUses(); 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Split Editor 356 //===----------------------------------------------------------------------===// 357 358 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 359 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, 360 MachineDominatorTree &MDT, 361 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 362 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()), 363 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 364 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 365 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 366 367 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 368 Edit = &LRE; 369 SpillMode = SM; 370 OpenIdx = 0; 371 RegAssign.clear(); 372 Values.clear(); 373 374 // Reset the LiveIntervalCalc instances needed for this spill mode. 375 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 376 &LIS.getVNInfoAllocator()); 377 if (SpillMode) 378 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 379 &LIS.getVNInfoAllocator()); 380 381 Edit->anyRematerializable(); 382 } 383 384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 385 LLVM_DUMP_METHOD void SplitEditor::dump() const { 386 if (RegAssign.empty()) { 387 dbgs() << " empty\n"; 388 return; 389 } 390 391 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 392 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 393 dbgs() << '\n'; 394 } 395 #endif 396 397 /// Find a subrange corresponding to the exact lane mask @p LM in the live 398 /// interval @p LI. The interval @p LI is assumed to contain such a subrange. 399 /// This function is used to find corresponding subranges between the 400 /// original interval and the new intervals. 401 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) { 402 for (auto &S : LI.subranges()) 403 if (S.LaneMask == LM) 404 return S; 405 llvm_unreachable("SubRange for this mask not found"); 406 } 407 408 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 409 LiveInterval &LI) { 410 return getSubrangeImpl(LM, LI); 411 } 412 413 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 414 const LiveInterval &LI) { 415 return getSubrangeImpl(LM, LI); 416 } 417 418 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it, 419 /// in the live interval @p LI. The interval @p LI is assumed to contain such 420 /// a subrange. This function is used to find corresponding subranges between 421 /// the original interval and the new intervals. 422 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, 423 const LiveInterval &LI) { 424 for (const LiveInterval::SubRange &S : LI.subranges()) 425 if ((S.LaneMask & LM) == LM) 426 return S; 427 llvm_unreachable("SubRange for this mask not found"); 428 } 429 430 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 431 if (!LI.hasSubRanges()) { 432 LI.createDeadDef(VNI); 433 return; 434 } 435 436 SlotIndex Def = VNI->def; 437 if (Original) { 438 // If we are transferring a def from the original interval, make sure 439 // to only update the subranges for which the original subranges had 440 // a def at this location. 441 for (LiveInterval::SubRange &S : LI.subranges()) { 442 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 443 VNInfo *PV = PS.getVNInfoAt(Def); 444 if (PV != nullptr && PV->def == Def) 445 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 446 } 447 } else { 448 // This is a new def: either from rematerialization, or from an inserted 449 // copy. Since rematerialization can regenerate a definition of a sub- 450 // register, we need to check which subranges need to be updated. 451 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 452 assert(DefMI != nullptr); 453 LaneBitmask LM; 454 for (const MachineOperand &DefOp : DefMI->defs()) { 455 Register R = DefOp.getReg(); 456 if (R != LI.reg()) 457 continue; 458 if (unsigned SR = DefOp.getSubReg()) 459 LM |= TRI.getSubRegIndexLaneMask(SR); 460 else { 461 LM = MRI.getMaxLaneMaskForVReg(R); 462 break; 463 } 464 } 465 for (LiveInterval::SubRange &S : LI.subranges()) 466 if ((S.LaneMask & LM).any()) 467 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 468 } 469 } 470 471 VNInfo *SplitEditor::defValue(unsigned RegIdx, 472 const VNInfo *ParentVNI, 473 SlotIndex Idx, 474 bool Original) { 475 assert(ParentVNI && "Mapping NULL value"); 476 assert(Idx.isValid() && "Invalid SlotIndex"); 477 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 478 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 479 480 // Create a new value. 481 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 482 483 bool Force = LI->hasSubRanges(); 484 ValueForcePair FP(Force ? nullptr : VNI, Force); 485 // Use insert for lookup, so we can add missing values with a second lookup. 486 std::pair<ValueMap::iterator, bool> InsP = 487 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 488 489 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 490 // forced. Keep it as a simple def without any liveness. 491 if (!Force && InsP.second) 492 return VNI; 493 494 // If the previous value was a simple mapping, add liveness for it now. 495 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 496 addDeadDef(*LI, OldVNI, Original); 497 498 // No longer a simple mapping. Switch to a complex mapping. If the 499 // interval has subranges, make it a forced mapping. 500 InsP.first->second = ValueForcePair(nullptr, Force); 501 } 502 503 // This is a complex mapping, add liveness for VNI 504 addDeadDef(*LI, VNI, Original); 505 return VNI; 506 } 507 508 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 509 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 510 VNInfo *VNI = VFP.getPointer(); 511 512 // ParentVNI was either unmapped or already complex mapped. Either way, just 513 // set the force bit. 514 if (!VNI) { 515 VFP.setInt(true); 516 return; 517 } 518 519 // This was previously a single mapping. Make sure the old def is represented 520 // by a trivial live range. 521 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 522 523 // Mark as complex mapped, forced. 524 VFP = ValueForcePair(nullptr, true); 525 } 526 527 SlotIndex SplitEditor::buildSingleSubRegCopy( 528 Register FromReg, Register ToReg, MachineBasicBlock &MBB, 529 MachineBasicBlock::iterator InsertBefore, unsigned SubIdx, 530 LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) { 531 bool FirstCopy = !Def.isValid(); 532 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 533 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 534 | getInternalReadRegState(!FirstCopy), SubIdx) 535 .addReg(FromReg, 0, SubIdx); 536 537 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 538 if (FirstCopy) { 539 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 540 } else { 541 CopyMI->bundleWithPred(); 542 } 543 return Def; 544 } 545 546 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 547 LaneBitmask LaneMask, MachineBasicBlock &MBB, 548 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 549 const MCInstrDesc &Desc = 550 TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent())); 551 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 552 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 553 // The full vreg is copied. 554 MachineInstr *CopyMI = 555 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 556 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 557 } 558 559 // Only a subset of lanes needs to be copied. The following is a simple 560 // heuristic to construct a sequence of COPYs. We could add a target 561 // specific callback if this turns out to be suboptimal. 562 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 563 564 // First pass: Try to find a perfectly matching subregister index. If none 565 // exists find the one covering the most lanemask bits. 566 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 567 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 568 569 SmallVector<unsigned, 8> SubIndexes; 570 571 // Abort if we cannot possibly implement the COPY with the given indexes. 572 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes)) 573 report_fatal_error("Impossible to implement partial COPY"); 574 575 SlotIndex Def; 576 for (unsigned BestIdx : SubIndexes) { 577 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 578 DestLI, Late, Def, Desc); 579 } 580 581 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 582 DestLI.refineSubRanges( 583 Allocator, LaneMask, 584 [Def, &Allocator](LiveInterval::SubRange &SR) { 585 SR.createDeadDef(Def, Allocator); 586 }, 587 Indexes, TRI); 588 589 return Def; 590 } 591 592 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI, 593 SlotIndex UseIdx, MachineBasicBlock &MBB, 594 MachineBasicBlock::iterator I) { 595 SlotIndex Def; 596 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 597 598 // We may be trying to avoid interference that ends at a deleted instruction, 599 // so always begin RegIdx 0 early and all others late. 600 bool Late = RegIdx != 0; 601 602 // Attempt cheap-as-a-copy rematerialization. 603 Register Original = VRM.getOriginal(Edit->get(RegIdx)); 604 LiveInterval &OrigLI = LIS.getInterval(Original); 605 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 606 607 Register Reg = LI->reg(); 608 bool DidRemat = false; 609 if (OrigVNI) { 610 LiveRangeEdit::Remat RM(ParentVNI); 611 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 612 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 613 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 614 ++NumRemats; 615 DidRemat = true; 616 } 617 } 618 if (!DidRemat) { 619 LaneBitmask LaneMask; 620 if (OrigLI.hasSubRanges()) { 621 LaneMask = LaneBitmask::getNone(); 622 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 623 if (S.liveAt(UseIdx)) 624 LaneMask |= S.LaneMask; 625 } 626 } else { 627 LaneMask = LaneBitmask::getAll(); 628 } 629 630 if (LaneMask.none()) { 631 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 632 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 633 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 634 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 635 } else { 636 ++NumCopies; 637 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 638 } 639 } 640 641 // Define the value in Reg. 642 return defValue(RegIdx, ParentVNI, Def, false); 643 } 644 645 /// Create a new virtual register and live interval. 646 unsigned SplitEditor::openIntv() { 647 // Create the complement as index 0. 648 if (Edit->empty()) 649 Edit->createEmptyInterval(); 650 651 // Create the open interval. 652 OpenIdx = Edit->size(); 653 Edit->createEmptyInterval(); 654 return OpenIdx; 655 } 656 657 void SplitEditor::selectIntv(unsigned Idx) { 658 assert(Idx != 0 && "Cannot select the complement interval"); 659 assert(Idx < Edit->size() && "Can only select previously opened interval"); 660 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 661 OpenIdx = Idx; 662 } 663 664 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 665 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 666 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 667 Idx = Idx.getBaseIndex(); 668 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 669 if (!ParentVNI) { 670 LLVM_DEBUG(dbgs() << ": not live\n"); 671 return Idx; 672 } 673 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 674 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 675 assert(MI && "enterIntvBefore called with invalid index"); 676 677 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 678 return VNI->def; 679 } 680 681 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 682 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 683 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 684 Idx = Idx.getBoundaryIndex(); 685 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 686 if (!ParentVNI) { 687 LLVM_DEBUG(dbgs() << ": not live\n"); 688 return Idx; 689 } 690 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 691 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 692 assert(MI && "enterIntvAfter called with invalid index"); 693 694 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 695 std::next(MachineBasicBlock::iterator(MI))); 696 return VNI->def; 697 } 698 699 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 700 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 701 SlotIndex End = LIS.getMBBEndIdx(&MBB); 702 SlotIndex Last = End.getPrevSlot(); 703 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 704 << Last); 705 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 706 if (!ParentVNI) { 707 LLVM_DEBUG(dbgs() << ": not live\n"); 708 return End; 709 } 710 SlotIndex LSP = SA.getLastSplitPoint(&MBB); 711 if (LSP < Last) { 712 // It could be that the use after LSP is a def, and thus the ParentVNI 713 // just selected starts at that def. For this case to exist, the def 714 // must be part of a tied def/use pair (as otherwise we'd have split 715 // distinct live ranges into individual live intervals), and thus we 716 // can insert the def into the VNI of the use and the tied def/use 717 // pair can live in the resulting interval. 718 Last = LSP; 719 ParentVNI = Edit->getParent().getVNInfoAt(Last); 720 if (!ParentVNI) { 721 // undef use --> undef tied def 722 LLVM_DEBUG(dbgs() << ": tied use not live\n"); 723 return End; 724 } 725 } 726 727 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 728 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 729 SA.getLastSplitPointIter(&MBB)); 730 RegAssign.insert(VNI->def, End, OpenIdx); 731 LLVM_DEBUG(dump()); 732 return VNI->def; 733 } 734 735 /// useIntv - indicate that all instructions in MBB should use OpenLI. 736 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 737 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 738 } 739 740 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 741 assert(OpenIdx && "openIntv not called before useIntv"); 742 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 743 RegAssign.insert(Start, End, OpenIdx); 744 LLVM_DEBUG(dump()); 745 } 746 747 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 748 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 749 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 750 751 // The interval must be live beyond the instruction at Idx. 752 SlotIndex Boundary = Idx.getBoundaryIndex(); 753 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 754 if (!ParentVNI) { 755 LLVM_DEBUG(dbgs() << ": not live\n"); 756 return Boundary.getNextSlot(); 757 } 758 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 759 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 760 assert(MI && "No instruction at index"); 761 762 // In spill mode, make live ranges as short as possible by inserting the copy 763 // before MI. This is only possible if that instruction doesn't redefine the 764 // value. The inserted COPY is not a kill, and we don't need to recompute 765 // the source live range. The spiller also won't try to hoist this copy. 766 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 767 MI->readsVirtualRegister(Edit->getReg())) { 768 forceRecompute(0, *ParentVNI); 769 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 770 return Idx; 771 } 772 773 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 774 std::next(MachineBasicBlock::iterator(MI))); 775 return VNI->def; 776 } 777 778 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 779 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 780 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 781 782 // The interval must be live into the instruction at Idx. 783 Idx = Idx.getBaseIndex(); 784 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 785 if (!ParentVNI) { 786 LLVM_DEBUG(dbgs() << ": not live\n"); 787 return Idx.getNextSlot(); 788 } 789 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 790 791 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 792 assert(MI && "No instruction at index"); 793 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 794 return VNI->def; 795 } 796 797 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 798 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 799 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 800 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 801 << Start); 802 803 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 804 if (!ParentVNI) { 805 LLVM_DEBUG(dbgs() << ": not live\n"); 806 return Start; 807 } 808 809 unsigned RegIdx = 0; 810 Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg(); 811 VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB, 812 MBB.SkipPHIsLabelsAndDebug(MBB.begin(), Reg)); 813 RegAssign.insert(Start, VNI->def, OpenIdx); 814 LLVM_DEBUG(dump()); 815 return VNI->def; 816 } 817 818 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { 819 return any_of(MI.defs(), [Reg](const MachineOperand &MO) { 820 return MO.isReg() && MO.isTied() && MO.getReg() == Reg; 821 }); 822 } 823 824 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 825 assert(OpenIdx && "openIntv not called before overlapIntv"); 826 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 827 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 828 "Parent changes value in extended range"); 829 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 830 "Range cannot span basic blocks"); 831 832 // The complement interval will be extended as needed by LICalc.extend(). 833 if (ParentVNI) 834 forceRecompute(0, *ParentVNI); 835 836 // If the last use is tied to a def, we can't mark it as live for the 837 // interval which includes only the use. That would cause the tied pair 838 // to end up in two different intervals. 839 if (auto *MI = LIS.getInstructionFromIndex(End)) 840 if (hasTiedUseOf(*MI, Edit->getReg())) { 841 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); 842 return; 843 } 844 845 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 846 RegAssign.insert(Start, End, OpenIdx); 847 LLVM_DEBUG(dump()); 848 } 849 850 //===----------------------------------------------------------------------===// 851 // Spill modes 852 //===----------------------------------------------------------------------===// 853 854 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 855 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 856 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 857 RegAssignMap::iterator AssignI; 858 AssignI.setMap(RegAssign); 859 860 for (const VNInfo *C : Copies) { 861 SlotIndex Def = C->def; 862 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 863 assert(MI && "No instruction for back-copy"); 864 865 MachineBasicBlock *MBB = MI->getParent(); 866 MachineBasicBlock::iterator MBBI(MI); 867 bool AtBegin; 868 do AtBegin = MBBI == MBB->begin(); 869 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 870 871 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 872 LIS.removeVRegDefAt(*LI, Def); 873 LIS.RemoveMachineInstrFromMaps(*MI); 874 MI->eraseFromParent(); 875 876 // Adjust RegAssign if a register assignment is killed at Def. We want to 877 // avoid calculating the live range of the source register if possible. 878 AssignI.find(Def.getPrevSlot()); 879 if (!AssignI.valid() || AssignI.start() >= Def) 880 continue; 881 // If MI doesn't kill the assigned register, just leave it. 882 if (AssignI.stop() != Def) 883 continue; 884 unsigned RegIdx = AssignI.value(); 885 // We could hoist back-copy right after another back-copy. As a result 886 // MMBI points to copy instruction which is actually dead now. 887 // We cannot set its stop to MBBI which will be the same as start and 888 // interval does not support that. 889 SlotIndex Kill = 890 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); 891 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || 892 Kill <= AssignI.start()) { 893 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 894 << '\n'); 895 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 896 } else { 897 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 898 AssignI.setStop(Kill); 899 } 900 } 901 } 902 903 MachineBasicBlock* 904 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 905 MachineBasicBlock *DefMBB) { 906 if (MBB == DefMBB) 907 return MBB; 908 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 909 910 const MachineLoopInfo &Loops = SA.Loops; 911 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 912 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 913 914 // Best candidate so far. 915 MachineBasicBlock *BestMBB = MBB; 916 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 917 918 while (true) { 919 const MachineLoop *Loop = Loops.getLoopFor(MBB); 920 921 // MBB isn't in a loop, it doesn't get any better. All dominators have a 922 // higher frequency by definition. 923 if (!Loop) { 924 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 925 << " dominates " << printMBBReference(*MBB) 926 << " at depth 0\n"); 927 return MBB; 928 } 929 930 // We'll never be able to exit the DefLoop. 931 if (Loop == DefLoop) { 932 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 933 << " dominates " << printMBBReference(*MBB) 934 << " in the same loop\n"); 935 return MBB; 936 } 937 938 // Least busy dominator seen so far. 939 unsigned Depth = Loop->getLoopDepth(); 940 if (Depth < BestDepth) { 941 BestMBB = MBB; 942 BestDepth = Depth; 943 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 944 << " dominates " << printMBBReference(*MBB) 945 << " at depth " << Depth << '\n'); 946 } 947 948 // Leave loop by going to the immediate dominator of the loop header. 949 // This is a bigger stride than simply walking up the dominator tree. 950 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 951 952 // Too far up the dominator tree? 953 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 954 return BestMBB; 955 956 MBB = IDom->getBlock(); 957 } 958 } 959 960 void SplitEditor::computeRedundantBackCopies( 961 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 962 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 963 const LiveInterval *Parent = &Edit->getParent(); 964 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 965 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 966 967 // Aggregate VNIs having the same value as ParentVNI. 968 for (VNInfo *VNI : LI->valnos) { 969 if (VNI->isUnused()) 970 continue; 971 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 972 EqualVNs[ParentVNI->id].insert(VNI); 973 } 974 975 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 976 // redundant VNIs to BackCopies. 977 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 978 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 979 if (!NotToHoistSet.count(ParentVNI->id)) 980 continue; 981 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 982 SmallPtrSetIterator<VNInfo *> It2 = It1; 983 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 984 It2 = It1; 985 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 986 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 987 continue; 988 989 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 990 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 991 if (MBB1 == MBB2) { 992 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 993 } else if (MDT.dominates(MBB1, MBB2)) { 994 DominatedVNIs.insert(*It2); 995 } else if (MDT.dominates(MBB2, MBB1)) { 996 DominatedVNIs.insert(*It1); 997 } 998 } 999 } 1000 if (!DominatedVNIs.empty()) { 1001 forceRecompute(0, *ParentVNI); 1002 append_range(BackCopies, DominatedVNIs); 1003 DominatedVNIs.clear(); 1004 } 1005 } 1006 } 1007 1008 /// For SM_Size mode, find a common dominator for all the back-copies for 1009 /// the same ParentVNI and hoist the backcopies to the dominator BB. 1010 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 1011 /// to do the hoisting, simply remove the dominated backcopies for the same 1012 /// ParentVNI. 1013 void SplitEditor::hoistCopies() { 1014 // Get the complement interval, always RegIdx 0. 1015 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1016 const LiveInterval *Parent = &Edit->getParent(); 1017 1018 // Track the nearest common dominator for all back-copies for each ParentVNI, 1019 // indexed by ParentVNI->id. 1020 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1021 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1022 // The total cost of all the back-copies for each ParentVNI. 1023 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1024 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1025 // for Speed. 1026 DenseSet<unsigned> NotToHoistSet; 1027 1028 // Find the nearest common dominator for parent values with multiple 1029 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1030 for (VNInfo *VNI : LI->valnos) { 1031 if (VNI->isUnused()) 1032 continue; 1033 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1034 assert(ParentVNI && "Parent not live at complement def"); 1035 1036 // Don't hoist remats. The complement is probably going to disappear 1037 // completely anyway. 1038 if (Edit->didRematerialize(ParentVNI)) 1039 continue; 1040 1041 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1042 1043 DomPair &Dom = NearestDom[ParentVNI->id]; 1044 1045 // Keep directly defined parent values. This is either a PHI or an 1046 // instruction in the complement range. All other copies of ParentVNI 1047 // should be eliminated. 1048 if (VNI->def == ParentVNI->def) { 1049 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1050 Dom = DomPair(ValMBB, VNI->def); 1051 continue; 1052 } 1053 // Skip the singly mapped values. There is nothing to gain from hoisting a 1054 // single back-copy. 1055 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1056 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1057 continue; 1058 } 1059 1060 if (!Dom.first) { 1061 // First time we see ParentVNI. VNI dominates itself. 1062 Dom = DomPair(ValMBB, VNI->def); 1063 } else if (Dom.first == ValMBB) { 1064 // Two defs in the same block. Pick the earlier def. 1065 if (!Dom.second.isValid() || VNI->def < Dom.second) 1066 Dom.second = VNI->def; 1067 } else { 1068 // Different basic blocks. Check if one dominates. 1069 MachineBasicBlock *Near = 1070 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1071 if (Near == ValMBB) 1072 // Def ValMBB dominates. 1073 Dom = DomPair(ValMBB, VNI->def); 1074 else if (Near != Dom.first) 1075 // None dominate. Hoist to common dominator, need new def. 1076 Dom = DomPair(Near, SlotIndex()); 1077 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1078 } 1079 1080 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1081 << VNI->def << " for parent " << ParentVNI->id << '@' 1082 << ParentVNI->def << " hoist to " 1083 << printMBBReference(*Dom.first) << ' ' << Dom.second 1084 << '\n'); 1085 } 1086 1087 // Insert the hoisted copies. 1088 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1089 DomPair &Dom = NearestDom[i]; 1090 if (!Dom.first || Dom.second.isValid()) 1091 continue; 1092 // This value needs a hoisted copy inserted at the end of Dom.first. 1093 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 1094 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1095 // Get a less loopy dominator than Dom.first. 1096 Dom.first = findShallowDominator(Dom.first, DefMBB); 1097 if (SpillMode == SM_Speed && 1098 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1099 NotToHoistSet.insert(ParentVNI->id); 1100 continue; 1101 } 1102 SlotIndex LSP = SA.getLastSplitPoint(Dom.first); 1103 if (LSP <= ParentVNI->def) { 1104 NotToHoistSet.insert(ParentVNI->id); 1105 continue; 1106 } 1107 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, 1108 SA.getLastSplitPointIter(Dom.first))->def; 1109 } 1110 1111 // Remove redundant back-copies that are now known to be dominated by another 1112 // def with the same value. 1113 SmallVector<VNInfo*, 8> BackCopies; 1114 for (VNInfo *VNI : LI->valnos) { 1115 if (VNI->isUnused()) 1116 continue; 1117 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1118 const DomPair &Dom = NearestDom[ParentVNI->id]; 1119 if (!Dom.first || Dom.second == VNI->def || 1120 NotToHoistSet.count(ParentVNI->id)) 1121 continue; 1122 BackCopies.push_back(VNI); 1123 forceRecompute(0, *ParentVNI); 1124 } 1125 1126 // If it is not beneficial to hoist all the BackCopies, simply remove 1127 // redundant BackCopies in speed mode. 1128 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1129 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1130 1131 removeBackCopies(BackCopies); 1132 } 1133 1134 /// transferValues - Transfer all possible values to the new live ranges. 1135 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1136 bool SplitEditor::transferValues() { 1137 bool Skipped = false; 1138 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1139 for (const LiveRange::Segment &S : Edit->getParent()) { 1140 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1141 VNInfo *ParentVNI = S.valno; 1142 // RegAssign has holes where RegIdx 0 should be used. 1143 SlotIndex Start = S.start; 1144 AssignI.advanceTo(Start); 1145 do { 1146 unsigned RegIdx; 1147 SlotIndex End = S.end; 1148 if (!AssignI.valid()) { 1149 RegIdx = 0; 1150 } else if (AssignI.start() <= Start) { 1151 RegIdx = AssignI.value(); 1152 if (AssignI.stop() < End) { 1153 End = AssignI.stop(); 1154 ++AssignI; 1155 } 1156 } else { 1157 RegIdx = 0; 1158 End = std::min(End, AssignI.start()); 1159 } 1160 1161 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1162 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1163 << printReg(Edit->get(RegIdx)) << ')'); 1164 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1165 1166 // Check for a simply defined value that can be blitted directly. 1167 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1168 if (VNInfo *VNI = VFP.getPointer()) { 1169 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1170 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1171 Start = End; 1172 continue; 1173 } 1174 1175 // Skip values with forced recomputation. 1176 if (VFP.getInt()) { 1177 LLVM_DEBUG(dbgs() << "(recalc)"); 1178 Skipped = true; 1179 Start = End; 1180 continue; 1181 } 1182 1183 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1184 1185 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1186 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1187 // LiveInBlocks. 1188 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1189 SlotIndex BlockStart, BlockEnd; 1190 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1191 1192 // The first block may be live-in, or it may have its own def. 1193 if (Start != BlockStart) { 1194 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1195 assert(VNI && "Missing def for complex mapped value"); 1196 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1197 // MBB has its own def. Is it also live-out? 1198 if (BlockEnd <= End) 1199 LIC.setLiveOutValue(&*MBB, VNI); 1200 1201 // Skip to the next block for live-in. 1202 ++MBB; 1203 BlockStart = BlockEnd; 1204 } 1205 1206 // Handle the live-in blocks covered by [Start;End). 1207 assert(Start <= BlockStart && "Expected live-in block"); 1208 while (BlockStart < End) { 1209 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1210 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1211 if (BlockStart == ParentVNI->def) { 1212 // This block has the def of a parent PHI, so it isn't live-in. 1213 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1214 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1215 assert(VNI && "Missing def for complex mapped parent PHI"); 1216 if (End >= BlockEnd) 1217 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1218 } else { 1219 // This block needs a live-in value. The last block covered may not 1220 // be live-out. 1221 if (End < BlockEnd) 1222 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1223 else { 1224 // Live-through, and we don't know the value. 1225 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1226 LIC.setLiveOutValue(&*MBB, nullptr); 1227 } 1228 } 1229 BlockStart = BlockEnd; 1230 ++MBB; 1231 } 1232 Start = End; 1233 } while (Start != S.end); 1234 LLVM_DEBUG(dbgs() << '\n'); 1235 } 1236 1237 LICalc[0].calculateValues(); 1238 if (SpillMode) 1239 LICalc[1].calculateValues(); 1240 1241 return Skipped; 1242 } 1243 1244 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1245 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1246 if (Seg == nullptr) 1247 return true; 1248 if (Seg->end != Def.getDeadSlot()) 1249 return false; 1250 // This is a dead PHI. Remove it. 1251 LR.removeSegment(*Seg, true); 1252 return true; 1253 } 1254 1255 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1256 LiveRange &LR, LaneBitmask LM, 1257 ArrayRef<SlotIndex> Undefs) { 1258 for (MachineBasicBlock *P : B.predecessors()) { 1259 SlotIndex End = LIS.getMBBEndIdx(P); 1260 SlotIndex LastUse = End.getPrevSlot(); 1261 // The predecessor may not have a live-out value. That is OK, like an 1262 // undef PHI operand. 1263 const LiveInterval &PLI = Edit->getParent(); 1264 // Need the cast because the inputs to ?: would otherwise be deemed 1265 // "incompatible": SubRange vs LiveInterval. 1266 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1267 : static_cast<const LiveRange &>(PLI); 1268 if (PSR.liveAt(LastUse)) 1269 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1270 } 1271 } 1272 1273 void SplitEditor::extendPHIKillRanges() { 1274 // Extend live ranges to be live-out for successor PHI values. 1275 1276 // Visit each PHI def slot in the parent live interval. If the def is dead, 1277 // remove it. Otherwise, extend the live interval to reach the end indexes 1278 // of all predecessor blocks. 1279 1280 const LiveInterval &ParentLI = Edit->getParent(); 1281 for (const VNInfo *V : ParentLI.valnos) { 1282 if (V->isUnused() || !V->isPHIDef()) 1283 continue; 1284 1285 unsigned RegIdx = RegAssign.lookup(V->def); 1286 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1287 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1288 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1289 if (!removeDeadSegment(V->def, LI)) 1290 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1291 } 1292 1293 SmallVector<SlotIndex, 4> Undefs; 1294 LiveIntervalCalc SubLIC; 1295 1296 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) { 1297 for (const VNInfo *V : PS.valnos) { 1298 if (V->isUnused() || !V->isPHIDef()) 1299 continue; 1300 unsigned RegIdx = RegAssign.lookup(V->def); 1301 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1302 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1303 if (removeDeadSegment(V->def, S)) 1304 continue; 1305 1306 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1307 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1308 &LIS.getVNInfoAllocator()); 1309 Undefs.clear(); 1310 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1311 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1312 } 1313 } 1314 } 1315 1316 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1317 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1318 struct ExtPoint { 1319 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1320 : MO(O), RegIdx(R), Next(N) {} 1321 1322 MachineOperand MO; 1323 unsigned RegIdx; 1324 SlotIndex Next; 1325 }; 1326 1327 SmallVector<ExtPoint,4> ExtPoints; 1328 1329 for (MachineOperand &MO : 1330 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1331 MachineInstr *MI = MO.getParent(); 1332 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1333 if (MI->isDebugValue()) { 1334 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1335 MO.setReg(0); 1336 continue; 1337 } 1338 1339 // <undef> operands don't really read the register, so it doesn't matter 1340 // which register we choose. When the use operand is tied to a def, we must 1341 // use the same register as the def, so just do that always. 1342 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1343 if (MO.isDef() || MO.isUndef()) 1344 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1345 1346 // Rewrite to the mapped register at Idx. 1347 unsigned RegIdx = RegAssign.lookup(Idx); 1348 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1349 MO.setReg(LI.reg()); 1350 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1351 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1352 1353 // Extend liveness to Idx if the instruction reads reg. 1354 if (!ExtendRanges || MO.isUndef()) 1355 continue; 1356 1357 // Skip instructions that don't read Reg. 1358 if (MO.isDef()) { 1359 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1360 continue; 1361 // We may want to extend a live range for a partial redef, or for a use 1362 // tied to an early clobber. 1363 if (!Edit->getParent().liveAt(Idx.getPrevSlot())) 1364 continue; 1365 } else { 1366 assert(MO.isUse()); 1367 bool IsEarlyClobber = false; 1368 if (MO.isTied()) { 1369 // We want to extend a live range into `e` slot rather than `r` slot if 1370 // tied-def is early clobber, because the `e` slot already contained 1371 // in the live range of early-clobber tied-def operand, give an example 1372 // here: 1373 // 0 %0 = ... 1374 // 16 early-clobber %0 = Op %0 (tied-def 0), ... 1375 // 32 ... = Op %0 1376 // Before extend: 1377 // %0 = [0r, 0d) [16e, 32d) 1378 // The point we want to extend is 0d to 16e not 16r in this case, but if 1379 // we use 16r here we will extend nothing because that already contained 1380 // in [16e, 32d). 1381 unsigned OpIdx = MO.getOperandNo(); 1382 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx); 1383 const MachineOperand &DefOp = MI->getOperand(DefOpIdx); 1384 IsEarlyClobber = DefOp.isEarlyClobber(); 1385 } 1386 1387 Idx = Idx.getRegSlot(IsEarlyClobber); 1388 } 1389 1390 SlotIndex Next = Idx; 1391 if (LI.hasSubRanges()) { 1392 // We have to delay extending subranges until we have seen all operands 1393 // defining the register. This is because a <def,read-undef> operand 1394 // will create an "undef" point, and we cannot extend any subranges 1395 // until all of them have been accounted for. 1396 if (MO.isUse()) 1397 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1398 } else { 1399 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1400 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1401 } 1402 } 1403 1404 for (ExtPoint &EP : ExtPoints) { 1405 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1406 assert(LI.hasSubRanges()); 1407 1408 LiveIntervalCalc SubLIC; 1409 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1410 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1411 : MRI.getMaxLaneMaskForVReg(Reg); 1412 for (LiveInterval::SubRange &S : LI.subranges()) { 1413 if ((S.LaneMask & LM).none()) 1414 continue; 1415 // The problem here can be that the new register may have been created 1416 // for a partially defined original register. For example: 1417 // %0:subreg_hireg<def,read-undef> = ... 1418 // ... 1419 // %1 = COPY %0 1420 if (S.empty()) 1421 continue; 1422 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1423 &LIS.getVNInfoAllocator()); 1424 SmallVector<SlotIndex, 4> Undefs; 1425 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1426 SubLIC.extend(S, EP.Next, 0, Undefs); 1427 } 1428 } 1429 1430 for (Register R : *Edit) { 1431 LiveInterval &LI = LIS.getInterval(R); 1432 if (!LI.hasSubRanges()) 1433 continue; 1434 LI.clear(); 1435 LI.removeEmptySubRanges(); 1436 LIS.constructMainRangeFromSubranges(LI); 1437 } 1438 } 1439 1440 void SplitEditor::deleteRematVictims() { 1441 SmallVector<MachineInstr*, 8> Dead; 1442 for (const Register &R : *Edit) { 1443 LiveInterval *LI = &LIS.getInterval(R); 1444 for (const LiveRange::Segment &S : LI->segments) { 1445 // Dead defs end at the dead slot. 1446 if (S.end != S.valno->def.getDeadSlot()) 1447 continue; 1448 if (S.valno->isPHIDef()) 1449 continue; 1450 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1451 assert(MI && "Missing instruction for dead def"); 1452 MI->addRegisterDead(LI->reg(), &TRI); 1453 1454 if (!MI->allDefsAreDead()) 1455 continue; 1456 1457 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1458 Dead.push_back(MI); 1459 } 1460 } 1461 1462 if (Dead.empty()) 1463 return; 1464 1465 Edit->eliminateDeadDefs(Dead, std::nullopt); 1466 } 1467 1468 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1469 // Fast-path for common case. 1470 if (!ParentVNI.isPHIDef()) { 1471 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1472 forceRecompute(I, ParentVNI); 1473 return; 1474 } 1475 1476 // Trace value through phis. 1477 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1478 SmallVector<const VNInfo *, 4> WorkList; 1479 Visited.insert(&ParentVNI); 1480 WorkList.push_back(&ParentVNI); 1481 1482 const LiveInterval &ParentLI = Edit->getParent(); 1483 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1484 do { 1485 const VNInfo &VNI = *WorkList.back(); 1486 WorkList.pop_back(); 1487 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1488 forceRecompute(I, VNI); 1489 if (!VNI.isPHIDef()) 1490 continue; 1491 1492 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1493 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1494 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1495 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1496 assert(PredVNI && "Value available in PhiVNI predecessor"); 1497 if (Visited.insert(PredVNI).second) 1498 WorkList.push_back(PredVNI); 1499 } 1500 } while(!WorkList.empty()); 1501 } 1502 1503 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1504 ++NumFinished; 1505 1506 // At this point, the live intervals in Edit contain VNInfos corresponding to 1507 // the inserted copies. 1508 1509 // Add the original defs from the parent interval. 1510 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1511 if (ParentVNI->isUnused()) 1512 continue; 1513 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1514 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1515 1516 // Force rematted values to be recomputed everywhere. 1517 // The new live ranges may be truncated. 1518 if (Edit->didRematerialize(ParentVNI)) 1519 forceRecomputeVNI(*ParentVNI); 1520 } 1521 1522 // Hoist back-copies to the complement interval when in spill mode. 1523 switch (SpillMode) { 1524 case SM_Partition: 1525 // Leave all back-copies as is. 1526 break; 1527 case SM_Size: 1528 case SM_Speed: 1529 // hoistCopies will behave differently between size and speed. 1530 hoistCopies(); 1531 } 1532 1533 // Transfer the simply mapped values, check if any are skipped. 1534 bool Skipped = transferValues(); 1535 1536 // Rewrite virtual registers, possibly extending ranges. 1537 rewriteAssigned(Skipped); 1538 1539 if (Skipped) 1540 extendPHIKillRanges(); 1541 else 1542 ++NumSimple; 1543 1544 // Delete defs that were rematted everywhere. 1545 if (Skipped) 1546 deleteRematVictims(); 1547 1548 // Get rid of unused values and set phi-kill flags. 1549 for (Register Reg : *Edit) { 1550 LiveInterval &LI = LIS.getInterval(Reg); 1551 LI.removeEmptySubRanges(); 1552 LI.RenumberValues(); 1553 } 1554 1555 // Provide a reverse mapping from original indices to Edit ranges. 1556 if (LRMap) { 1557 auto Seq = llvm::seq<unsigned>(0, Edit->size()); 1558 LRMap->assign(Seq.begin(), Seq.end()); 1559 } 1560 1561 // Now check if any registers were separated into multiple components. 1562 ConnectedVNInfoEqClasses ConEQ(LIS); 1563 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1564 // Don't use iterators, they are invalidated by create() below. 1565 Register VReg = Edit->get(i); 1566 LiveInterval &LI = LIS.getInterval(VReg); 1567 SmallVector<LiveInterval*, 8> SplitLIs; 1568 LIS.splitSeparateComponents(LI, SplitLIs); 1569 Register Original = VRM.getOriginal(VReg); 1570 for (LiveInterval *SplitLI : SplitLIs) 1571 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1572 1573 // The new intervals all map back to i. 1574 if (LRMap) 1575 LRMap->resize(Edit->size(), i); 1576 } 1577 1578 // Calculate spill weight and allocation hints for new intervals. 1579 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1580 1581 assert(!LRMap || LRMap->size() == Edit->size()); 1582 } 1583 1584 //===----------------------------------------------------------------------===// 1585 // Single Block Splitting 1586 //===----------------------------------------------------------------------===// 1587 1588 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1589 bool SingleInstrs) const { 1590 // Always split for multiple instructions. 1591 if (!BI.isOneInstr()) 1592 return true; 1593 // Don't split for single instructions unless explicitly requested. 1594 if (!SingleInstrs) 1595 return false; 1596 // Splitting a live-through range always makes progress. 1597 if (BI.LiveIn && BI.LiveOut) 1598 return true; 1599 // No point in isolating a copy. It has no register class constraints. 1600 MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr); 1601 bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg(); 1602 if (copyLike) 1603 return false; 1604 // Finally, don't isolate an end point that was created by earlier splits. 1605 return isOriginalEndpoint(BI.FirstInstr); 1606 } 1607 1608 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1609 openIntv(); 1610 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1611 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1612 LastSplitPoint)); 1613 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1614 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1615 } else { 1616 // The last use is after the last valid split point. 1617 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1618 useIntv(SegStart, SegStop); 1619 overlapIntv(SegStop, BI.LastInstr); 1620 } 1621 } 1622 1623 //===----------------------------------------------------------------------===// 1624 // Global Live Range Splitting Support 1625 //===----------------------------------------------------------------------===// 1626 1627 // These methods support a method of global live range splitting that uses a 1628 // global algorithm to decide intervals for CFG edges. They will insert split 1629 // points and color intervals in basic blocks while avoiding interference. 1630 // 1631 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1632 // are on the stack. 1633 1634 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1635 unsigned IntvIn, SlotIndex LeaveBefore, 1636 unsigned IntvOut, SlotIndex EnterAfter){ 1637 SlotIndex Start, Stop; 1638 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1639 1640 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1641 << ") intf " << LeaveBefore << '-' << EnterAfter 1642 << ", live-through " << IntvIn << " -> " << IntvOut); 1643 1644 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1645 1646 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1647 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1648 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1649 1650 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1651 1652 if (!IntvOut) { 1653 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1654 // 1655 // <<<<<<<<< Possible LeaveBefore interference. 1656 // |-----------| Live through. 1657 // -____________ Spill on entry. 1658 // 1659 selectIntv(IntvIn); 1660 SlotIndex Idx = leaveIntvAtTop(*MBB); 1661 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1662 (void)Idx; 1663 return; 1664 } 1665 1666 if (!IntvIn) { 1667 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1668 // 1669 // >>>>>>> Possible EnterAfter interference. 1670 // |-----------| Live through. 1671 // ___________-- Reload on exit. 1672 // 1673 selectIntv(IntvOut); 1674 SlotIndex Idx = enterIntvAtEnd(*MBB); 1675 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1676 (void)Idx; 1677 return; 1678 } 1679 1680 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1681 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1682 // 1683 // |-----------| Live through. 1684 // ------------- Straight through, same intv, no interference. 1685 // 1686 selectIntv(IntvOut); 1687 useIntv(Start, Stop); 1688 return; 1689 } 1690 1691 // We cannot legally insert splits after LSP. 1692 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1693 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1694 1695 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1696 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1697 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1698 // 1699 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1700 // |-----------| Live through. 1701 // ------======= Switch intervals between interference. 1702 // 1703 selectIntv(IntvOut); 1704 SlotIndex Idx; 1705 if (LeaveBefore && LeaveBefore < LSP) { 1706 Idx = enterIntvBefore(LeaveBefore); 1707 useIntv(Idx, Stop); 1708 } else { 1709 Idx = enterIntvAtEnd(*MBB); 1710 } 1711 selectIntv(IntvIn); 1712 useIntv(Start, Idx); 1713 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1714 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1715 return; 1716 } 1717 1718 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1719 // 1720 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1721 // |-----------| Live through. 1722 // ==---------== Switch intervals before/after interference. 1723 // 1724 assert(LeaveBefore <= EnterAfter && "Missed case"); 1725 1726 selectIntv(IntvOut); 1727 SlotIndex Idx = enterIntvAfter(EnterAfter); 1728 useIntv(Idx, Stop); 1729 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1730 1731 selectIntv(IntvIn); 1732 Idx = leaveIntvBefore(LeaveBefore); 1733 useIntv(Start, Idx); 1734 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1735 } 1736 1737 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1738 unsigned IntvIn, SlotIndex LeaveBefore) { 1739 SlotIndex Start, Stop; 1740 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1741 1742 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1743 << Stop << "), uses " << BI.FirstInstr << '-' 1744 << BI.LastInstr << ", reg-in " << IntvIn 1745 << ", leave before " << LeaveBefore 1746 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1747 1748 assert(IntvIn && "Must have register in"); 1749 assert(BI.LiveIn && "Must be live-in"); 1750 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1751 1752 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1753 LLVM_DEBUG(dbgs() << " before interference.\n"); 1754 // 1755 // <<< Interference after kill. 1756 // |---o---x | Killed in block. 1757 // ========= Use IntvIn everywhere. 1758 // 1759 selectIntv(IntvIn); 1760 useIntv(Start, BI.LastInstr); 1761 return; 1762 } 1763 1764 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1765 1766 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1767 // 1768 // <<< Possible interference after last use. 1769 // |---o---o---| Live-out on stack. 1770 // =========____ Leave IntvIn after last use. 1771 // 1772 // < Interference after last use. 1773 // |---o---o--o| Live-out on stack, late last use. 1774 // ============ Copy to stack after LSP, overlap IntvIn. 1775 // \_____ Stack interval is live-out. 1776 // 1777 if (BI.LastInstr < LSP) { 1778 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1779 selectIntv(IntvIn); 1780 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1781 useIntv(Start, Idx); 1782 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1783 } else { 1784 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1785 selectIntv(IntvIn); 1786 SlotIndex Idx = leaveIntvBefore(LSP); 1787 overlapIntv(Idx, BI.LastInstr); 1788 useIntv(Start, Idx); 1789 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1790 } 1791 return; 1792 } 1793 1794 // The interference is overlapping somewhere we wanted to use IntvIn. That 1795 // means we need to create a local interval that can be allocated a 1796 // different register. 1797 unsigned LocalIntv = openIntv(); 1798 (void)LocalIntv; 1799 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1800 1801 if (!BI.LiveOut || BI.LastInstr < LSP) { 1802 // 1803 // <<<<<<< Interference overlapping uses. 1804 // |---o---o---| Live-out on stack. 1805 // =====----____ Leave IntvIn before interference, then spill. 1806 // 1807 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1808 SlotIndex From = enterIntvBefore(LeaveBefore); 1809 useIntv(From, To); 1810 selectIntv(IntvIn); 1811 useIntv(Start, From); 1812 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1813 return; 1814 } 1815 1816 // <<<<<<< Interference overlapping uses. 1817 // |---o---o--o| Live-out on stack, late last use. 1818 // =====------- Copy to stack before LSP, overlap LocalIntv. 1819 // \_____ Stack interval is live-out. 1820 // 1821 SlotIndex To = leaveIntvBefore(LSP); 1822 overlapIntv(To, BI.LastInstr); 1823 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1824 useIntv(From, To); 1825 selectIntv(IntvIn); 1826 useIntv(Start, From); 1827 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1828 } 1829 1830 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1831 unsigned IntvOut, SlotIndex EnterAfter) { 1832 SlotIndex Start, Stop; 1833 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1834 1835 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1836 << Stop << "), uses " << BI.FirstInstr << '-' 1837 << BI.LastInstr << ", reg-out " << IntvOut 1838 << ", enter after " << EnterAfter 1839 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1840 1841 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1842 1843 assert(IntvOut && "Must have register out"); 1844 assert(BI.LiveOut && "Must be live-out"); 1845 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1846 1847 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1848 LLVM_DEBUG(dbgs() << " after interference.\n"); 1849 // 1850 // >>>> Interference before def. 1851 // | o---o---| Defined in block. 1852 // ========= Use IntvOut everywhere. 1853 // 1854 selectIntv(IntvOut); 1855 useIntv(BI.FirstInstr, Stop); 1856 return; 1857 } 1858 1859 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1860 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1861 // 1862 // >>>> Interference before def. 1863 // |---o---o---| Live-through, stack-in. 1864 // ____========= Enter IntvOut before first use. 1865 // 1866 selectIntv(IntvOut); 1867 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1868 useIntv(Idx, Stop); 1869 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1870 return; 1871 } 1872 1873 // The interference is overlapping somewhere we wanted to use IntvOut. That 1874 // means we need to create a local interval that can be allocated a 1875 // different register. 1876 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1877 // 1878 // >>>>>>> Interference overlapping uses. 1879 // |---o---o---| Live-through, stack-in. 1880 // ____---====== Create local interval for interference range. 1881 // 1882 selectIntv(IntvOut); 1883 SlotIndex Idx = enterIntvAfter(EnterAfter); 1884 useIntv(Idx, Stop); 1885 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1886 1887 openIntv(); 1888 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1889 useIntv(From, Idx); 1890 } 1891 1892 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1893 OS << "{" << printMBBReference(*MBB) << ", " 1894 << "uses " << FirstInstr << " to " << LastInstr << ", " 1895 << "1st def " << FirstDef << ", " 1896 << (LiveIn ? "live in" : "dead in") << ", " 1897 << (LiveOut ? "live out" : "dead out") << "}"; 1898 } 1899 1900 void SplitAnalysis::BlockInfo::dump() const { 1901 print(dbgs()); 1902 dbgs() << "\n"; 1903 } 1904