1 //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the spill code placement analysis. 10 // 11 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on 12 // basic blocks are weighted by the block frequency and added to become the node 13 // bias. 14 // 15 // Transparent basic blocks have the variable live through, but don't care if it 16 // is spilled or in a register. These blocks become connections in the Hopfield 17 // network, again weighted by block frequency. 18 // 19 // The Hopfield network minimizes (possibly locally) its energy function: 20 // 21 // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) 22 // 23 // The energy function represents the expected spill code execution frequency, 24 // or the cost of spilling. This is a Lyapunov function which never increases 25 // when a node is updated. It is guaranteed to converge to a local minimum. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "SpillPlacement.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/SparseSet.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/Passes.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/BlockFrequency.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstdint> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "spill-code-placement" 51 52 char SpillPlacement::ID = 0; 53 54 char &llvm::SpillPlacementID = SpillPlacement::ID; 55 56 INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE, 57 "Spill Code Placement Analysis", true, true) 58 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 59 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 60 INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE, 61 "Spill Code Placement Analysis", true, true) 62 63 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { 64 AU.setPreservesAll(); 65 AU.addRequired<MachineBlockFrequencyInfo>(); 66 AU.addRequiredTransitive<EdgeBundles>(); 67 AU.addRequiredTransitive<MachineLoopInfo>(); 68 MachineFunctionPass::getAnalysisUsage(AU); 69 } 70 71 /// Node - Each edge bundle corresponds to a Hopfield node. 72 /// 73 /// The node contains precomputed frequency data that only depends on the CFG, 74 /// but Bias and Links are computed each time placeSpills is called. 75 /// 76 /// The node Value is positive when the variable should be in a register. The 77 /// value can change when linked nodes change, but convergence is very fast 78 /// because all weights are positive. 79 struct SpillPlacement::Node { 80 /// BiasN - Sum of blocks that prefer a spill. 81 BlockFrequency BiasN; 82 83 /// BiasP - Sum of blocks that prefer a register. 84 BlockFrequency BiasP; 85 86 /// Value - Output value of this node computed from the Bias and links. 87 /// This is always on of the values {-1, 0, 1}. A positive number means the 88 /// variable should go in a register through this bundle. 89 int Value; 90 91 using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>; 92 93 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other 94 /// bundles. The weights are all positive block frequencies. 95 LinkVector Links; 96 97 /// SumLinkWeights - Cached sum of the weights of all links + ThresHold. 98 BlockFrequency SumLinkWeights; 99 100 /// preferReg - Return true when this node prefers to be in a register. 101 bool preferReg() const { 102 // Undecided nodes (Value==0) go on the stack. 103 return Value > 0; 104 } 105 106 /// mustSpill - Return True if this node is so biased that it must spill. 107 bool mustSpill() const { 108 // We must spill if Bias < -sum(weights) or the MustSpill flag was set. 109 // BiasN is saturated when MustSpill is set, make sure this still returns 110 // true when the RHS saturates. Note that SumLinkWeights includes Threshold. 111 return BiasN >= BiasP + SumLinkWeights; 112 } 113 114 /// clear - Reset per-query data, but preserve frequencies that only depend on 115 /// the CFG. 116 void clear(const BlockFrequency &Threshold) { 117 BiasN = BiasP = Value = 0; 118 SumLinkWeights = Threshold; 119 Links.clear(); 120 } 121 122 /// addLink - Add a link to bundle b with weight w. 123 void addLink(unsigned b, BlockFrequency w) { 124 // Update cached sum. 125 SumLinkWeights += w; 126 127 // There can be multiple links to the same bundle, add them up. 128 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) 129 if (I->second == b) { 130 I->first += w; 131 return; 132 } 133 // This must be the first link to b. 134 Links.push_back(std::make_pair(w, b)); 135 } 136 137 /// addBias - Bias this node. 138 void addBias(BlockFrequency freq, BorderConstraint direction) { 139 switch (direction) { 140 default: 141 break; 142 case PrefReg: 143 BiasP += freq; 144 break; 145 case PrefSpill: 146 BiasN += freq; 147 break; 148 case MustSpill: 149 BiasN = BlockFrequency::getMaxFrequency(); 150 break; 151 } 152 } 153 154 /// update - Recompute Value from Bias and Links. Return true when node 155 /// preference changes. 156 bool update(const Node nodes[], const BlockFrequency &Threshold) { 157 // Compute the weighted sum of inputs. 158 BlockFrequency SumN = BiasN; 159 BlockFrequency SumP = BiasP; 160 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) { 161 if (nodes[I->second].Value == -1) 162 SumN += I->first; 163 else if (nodes[I->second].Value == 1) 164 SumP += I->first; 165 } 166 167 // Each weighted sum is going to be less than the total frequency of the 168 // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we 169 // will add a dead zone around 0 for two reasons: 170 // 171 // 1. It avoids arbitrary bias when all links are 0 as is possible during 172 // initial iterations. 173 // 2. It helps tame rounding errors when the links nominally sum to 0. 174 // 175 bool Before = preferReg(); 176 if (SumN >= SumP + Threshold) 177 Value = -1; 178 else if (SumP >= SumN + Threshold) 179 Value = 1; 180 else 181 Value = 0; 182 return Before != preferReg(); 183 } 184 185 void getDissentingNeighbors(SparseSet<unsigned> &List, 186 const Node nodes[]) const { 187 for (const auto &Elt : Links) { 188 unsigned n = Elt.second; 189 // Neighbors that already have the same value are not going to 190 // change because of this node changing. 191 if (Value != nodes[n].Value) 192 List.insert(n); 193 } 194 } 195 }; 196 197 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { 198 MF = &mf; 199 bundles = &getAnalysis<EdgeBundles>(); 200 loops = &getAnalysis<MachineLoopInfo>(); 201 202 assert(!nodes && "Leaking node array"); 203 nodes = new Node[bundles->getNumBundles()]; 204 TodoList.clear(); 205 TodoList.setUniverse(bundles->getNumBundles()); 206 207 // Compute total ingoing and outgoing block frequencies for all bundles. 208 BlockFrequencies.resize(mf.getNumBlockIDs()); 209 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 210 setThreshold(MBFI->getEntryFreq()); 211 for (auto &I : mf) { 212 unsigned Num = I.getNumber(); 213 BlockFrequencies[Num] = MBFI->getBlockFreq(&I); 214 } 215 216 // We never change the function. 217 return false; 218 } 219 220 void SpillPlacement::releaseMemory() { 221 delete[] nodes; 222 nodes = nullptr; 223 TodoList.clear(); 224 } 225 226 /// activate - mark node n as active if it wasn't already. 227 void SpillPlacement::activate(unsigned n) { 228 TodoList.insert(n); 229 if (ActiveNodes->test(n)) 230 return; 231 ActiveNodes->set(n); 232 nodes[n].clear(Threshold); 233 234 // Very large bundles usually come from big switches, indirect branches, 235 // landing pads, or loops with many 'continue' statements. It is difficult to 236 // allocate registers when so many different blocks are involved. 237 // 238 // Give a small negative bias to large bundles such that a substantial 239 // fraction of the connected blocks need to be interested before we consider 240 // expanding the region through the bundle. This helps compile time by 241 // limiting the number of blocks visited and the number of links in the 242 // Hopfield network. 243 if (bundles->getBlocks(n).size() > 100) { 244 nodes[n].BiasP = 0; 245 nodes[n].BiasN = (MBFI->getEntryFreq() / 16); 246 } 247 } 248 249 /// Set the threshold for a given entry frequency. 250 /// 251 /// Set the threshold relative to \c Entry. Since the threshold is used as a 252 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum 253 /// threshold. 254 void SpillPlacement::setThreshold(const BlockFrequency &Entry) { 255 // Apparently 2 is a good threshold when Entry==2^14, but we need to scale 256 // it. Divide by 2^13, rounding as appropriate. 257 uint64_t Freq = Entry.getFrequency(); 258 uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12)); 259 Threshold = std::max(UINT64_C(1), Scaled); 260 } 261 262 /// addConstraints - Compute node biases and weights from a set of constraints. 263 /// Set a bit in NodeMask for each active node. 264 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { 265 for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(), 266 E = LiveBlocks.end(); I != E; ++I) { 267 BlockFrequency Freq = BlockFrequencies[I->Number]; 268 269 // Live-in to block? 270 if (I->Entry != DontCare) { 271 unsigned ib = bundles->getBundle(I->Number, false); 272 activate(ib); 273 nodes[ib].addBias(Freq, I->Entry); 274 } 275 276 // Live-out from block? 277 if (I->Exit != DontCare) { 278 unsigned ob = bundles->getBundle(I->Number, true); 279 activate(ob); 280 nodes[ob].addBias(Freq, I->Exit); 281 } 282 } 283 } 284 285 /// addPrefSpill - Same as addConstraints(PrefSpill) 286 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { 287 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 288 I != E; ++I) { 289 BlockFrequency Freq = BlockFrequencies[*I]; 290 if (Strong) 291 Freq += Freq; 292 unsigned ib = bundles->getBundle(*I, false); 293 unsigned ob = bundles->getBundle(*I, true); 294 activate(ib); 295 activate(ob); 296 nodes[ib].addBias(Freq, PrefSpill); 297 nodes[ob].addBias(Freq, PrefSpill); 298 } 299 } 300 301 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { 302 for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E; 303 ++I) { 304 unsigned Number = *I; 305 unsigned ib = bundles->getBundle(Number, false); 306 unsigned ob = bundles->getBundle(Number, true); 307 308 // Ignore self-loops. 309 if (ib == ob) 310 continue; 311 activate(ib); 312 activate(ob); 313 BlockFrequency Freq = BlockFrequencies[Number]; 314 nodes[ib].addLink(ob, Freq); 315 nodes[ob].addLink(ib, Freq); 316 } 317 } 318 319 bool SpillPlacement::scanActiveBundles() { 320 RecentPositive.clear(); 321 for (unsigned n : ActiveNodes->set_bits()) { 322 update(n); 323 // A node that must spill, or a node without any links is not going to 324 // change its value ever again, so exclude it from iterations. 325 if (nodes[n].mustSpill()) 326 continue; 327 if (nodes[n].preferReg()) 328 RecentPositive.push_back(n); 329 } 330 return !RecentPositive.empty(); 331 } 332 333 bool SpillPlacement::update(unsigned n) { 334 if (!nodes[n].update(nodes, Threshold)) 335 return false; 336 nodes[n].getDissentingNeighbors(TodoList, nodes); 337 return true; 338 } 339 340 /// iterate - Repeatedly update the Hopfield nodes until stability or the 341 /// maximum number of iterations is reached. 342 void SpillPlacement::iterate() { 343 // We do not need to push those node in the todolist. 344 // They are already been proceeded as part of the previous iteration. 345 RecentPositive.clear(); 346 347 // Since the last iteration, the todolist have been augmented by calls 348 // to addConstraints, addLinks, and co. 349 // Update the network energy starting at this new frontier. 350 // The call to ::update will add the nodes that changed into the todolist. 351 unsigned Limit = bundles->getNumBundles() * 10; 352 while(Limit-- > 0 && !TodoList.empty()) { 353 unsigned n = TodoList.pop_back_val(); 354 if (!update(n)) 355 continue; 356 if (nodes[n].preferReg()) 357 RecentPositive.push_back(n); 358 } 359 } 360 361 void SpillPlacement::prepare(BitVector &RegBundles) { 362 RecentPositive.clear(); 363 TodoList.clear(); 364 // Reuse RegBundles as our ActiveNodes vector. 365 ActiveNodes = &RegBundles; 366 ActiveNodes->clear(); 367 ActiveNodes->resize(bundles->getNumBundles()); 368 } 369 370 bool 371 SpillPlacement::finish() { 372 assert(ActiveNodes && "Call prepare() first"); 373 374 // Write preferences back to ActiveNodes. 375 bool Perfect = true; 376 for (unsigned n : ActiveNodes->set_bits()) 377 if (!nodes[n].preferReg()) { 378 ActiveNodes->reset(n); 379 Perfect = false; 380 } 381 ActiveNodes = nullptr; 382 return Perfect; 383 } 384