1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GCMetadata.h" 26 #include "llvm/CodeGen/GCStrategy.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MachineValueType.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <iterator> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "statepoint-lowering" 59 60 STATISTIC(NumSlotsAllocatedForStatepoints, 61 "Number of stack slots allocated for statepoints"); 62 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 63 STATISTIC(StatepointMaxSlotsRequired, 64 "Maximum number of stack slots required for a singe statepoint"); 65 66 cl::opt<bool> UseRegistersForDeoptValues( 67 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 68 cl::desc("Allow using registers for non pointer deopt args")); 69 70 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 71 SelectionDAGBuilder &Builder, uint64_t Value) { 72 SDLoc L = Builder.getCurSDLoc(); 73 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 74 MVT::i64)); 75 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 76 } 77 78 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 79 // Consistency check 80 assert(PendingGCRelocateCalls.empty() && 81 "Trying to visit statepoint before finished processing previous one"); 82 Locations.clear(); 83 NextSlotToAllocate = 0; 84 // Need to resize this on each safepoint - we need the two to stay in sync and 85 // the clear patterns of a SelectionDAGBuilder have no relation to 86 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 87 AllocatedStackSlots.clear(); 88 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 89 } 90 91 void StatepointLoweringState::clear() { 92 Locations.clear(); 93 AllocatedStackSlots.clear(); 94 assert(PendingGCRelocateCalls.empty() && 95 "cleared before statepoint sequence completed"); 96 } 97 98 SDValue 99 StatepointLoweringState::allocateStackSlot(EVT ValueType, 100 SelectionDAGBuilder &Builder) { 101 NumSlotsAllocatedForStatepoints++; 102 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 103 104 unsigned SpillSize = ValueType.getStoreSize(); 105 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 106 107 // First look for a previously created stack slot which is not in 108 // use (accounting for the fact arbitrary slots may already be 109 // reserved), or to create a new stack slot and use it. 110 111 const size_t NumSlots = AllocatedStackSlots.size(); 112 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 113 114 assert(AllocatedStackSlots.size() == 115 Builder.FuncInfo.StatepointStackSlots.size() && 116 "Broken invariant"); 117 118 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 119 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 120 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 121 if (MFI.getObjectSize(FI) == SpillSize) { 122 AllocatedStackSlots.set(NextSlotToAllocate); 123 // TODO: Is ValueType the right thing to use here? 124 return Builder.DAG.getFrameIndex(FI, ValueType); 125 } 126 } 127 } 128 129 // Couldn't find a free slot, so create a new one: 130 131 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 132 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 133 MFI.markAsStatepointSpillSlotObjectIndex(FI); 134 135 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 136 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 137 assert(AllocatedStackSlots.size() == 138 Builder.FuncInfo.StatepointStackSlots.size() && 139 "Broken invariant"); 140 141 StatepointMaxSlotsRequired.updateMax( 142 Builder.FuncInfo.StatepointStackSlots.size()); 143 144 return SpillSlot; 145 } 146 147 /// Utility function for reservePreviousStackSlotForValue. Tries to find 148 /// stack slot index to which we have spilled value for previous statepoints. 149 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 150 static Optional<int> findPreviousSpillSlot(const Value *Val, 151 SelectionDAGBuilder &Builder, 152 int LookUpDepth) { 153 // Can not look any further - give up now 154 if (LookUpDepth <= 0) 155 return None; 156 157 // Spill location is known for gc relocates 158 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 159 const auto &SpillMap = 160 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 161 162 auto It = SpillMap.find(Relocate->getDerivedPtr()); 163 if (It == SpillMap.end()) 164 return None; 165 166 return It->second; 167 } 168 169 // Look through bitcast instructions. 170 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 171 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 172 173 // Look through phi nodes 174 // All incoming values should have same known stack slot, otherwise result 175 // is unknown. 176 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 177 Optional<int> MergedResult = None; 178 179 for (auto &IncomingValue : Phi->incoming_values()) { 180 Optional<int> SpillSlot = 181 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 182 if (!SpillSlot.hasValue()) 183 return None; 184 185 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 186 return None; 187 188 MergedResult = SpillSlot; 189 } 190 return MergedResult; 191 } 192 193 // TODO: We can do better for PHI nodes. In cases like this: 194 // ptr = phi(relocated_pointer, not_relocated_pointer) 195 // statepoint(ptr) 196 // We will return that stack slot for ptr is unknown. And later we might 197 // assign different stack slots for ptr and relocated_pointer. This limits 198 // llvm's ability to remove redundant stores. 199 // Unfortunately it's hard to accomplish in current infrastructure. 200 // We use this function to eliminate spill store completely, while 201 // in example we still need to emit store, but instead of any location 202 // we need to use special "preferred" location. 203 204 // TODO: handle simple updates. If a value is modified and the original 205 // value is no longer live, it would be nice to put the modified value in the 206 // same slot. This allows folding of the memory accesses for some 207 // instructions types (like an increment). 208 // statepoint (i) 209 // i1 = i+1 210 // statepoint (i1) 211 // However we need to be careful for cases like this: 212 // statepoint(i) 213 // i1 = i+1 214 // statepoint(i, i1) 215 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 216 // put handling of simple modifications in this function like it's done 217 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 218 // which we visit values is unspecified. 219 220 // Don't know any information about this instruction 221 return None; 222 } 223 224 225 /// Return true if-and-only-if the given SDValue can be lowered as either a 226 /// constant argument or a stack reference. The key point is that the value 227 /// doesn't need to be spilled or tracked as a vreg use. 228 static bool willLowerDirectly(SDValue Incoming) { 229 // We are making an unchecked assumption that the frame size <= 2^16 as that 230 // is the largest offset which can be encoded in the stackmap format. 231 if (isa<FrameIndexSDNode>(Incoming)) 232 return true; 233 234 // The largest constant describeable in the StackMap format is 64 bits. 235 // Potential Optimization: Constants values are sign extended by consumer, 236 // and thus there are many constants of static type > 64 bits whose value 237 // happens to be sext(Con64) and could thus be lowered directly. 238 if (Incoming.getValueType().getSizeInBits() > 64) 239 return false; 240 241 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 242 Incoming.isUndef()); 243 } 244 245 246 /// Try to find existing copies of the incoming values in stack slots used for 247 /// statepoint spilling. If we can find a spill slot for the incoming value, 248 /// mark that slot as allocated, and reuse the same slot for this safepoint. 249 /// This helps to avoid series of loads and stores that only serve to reshuffle 250 /// values on the stack between calls. 251 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 252 SelectionDAGBuilder &Builder) { 253 SDValue Incoming = Builder.getValue(IncomingValue); 254 255 // If we won't spill this, we don't need to check for previously allocated 256 // stack slots. 257 if (willLowerDirectly(Incoming)) 258 return; 259 260 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 261 if (OldLocation.getNode()) 262 // Duplicates in input 263 return; 264 265 const int LookUpDepth = 6; 266 Optional<int> Index = 267 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 268 if (!Index.hasValue()) 269 return; 270 271 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 272 273 auto SlotIt = find(StatepointSlots, *Index); 274 assert(SlotIt != StatepointSlots.end() && 275 "Value spilled to the unknown stack slot"); 276 277 // This is one of our dedicated lowering slots 278 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 279 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 280 // stack slot already assigned to someone else, can't use it! 281 // TODO: currently we reserve space for gc arguments after doing 282 // normal allocation for deopt arguments. We should reserve for 283 // _all_ deopt and gc arguments, then start allocating. This 284 // will prevent some moves being inserted when vm state changes, 285 // but gc state doesn't between two calls. 286 return; 287 } 288 // Reserve this stack slot 289 Builder.StatepointLowering.reserveStackSlot(Offset); 290 291 // Cache this slot so we find it when going through the normal 292 // assignment loop. 293 SDValue Loc = 294 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 295 Builder.StatepointLowering.setLocation(Incoming, Loc); 296 } 297 298 /// Extract call from statepoint, lower it and return pointer to the 299 /// call node. Also update NodeMap so that getValue(statepoint) will 300 /// reference lowered call result 301 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 302 SelectionDAGBuilder::StatepointLoweringInfo &SI, 303 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 304 SDValue ReturnValue, CallEndVal; 305 std::tie(ReturnValue, CallEndVal) = 306 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 307 SDNode *CallEnd = CallEndVal.getNode(); 308 309 // Get a call instruction from the call sequence chain. Tail calls are not 310 // allowed. The following code is essentially reverse engineering X86's 311 // LowerCallTo. 312 // 313 // We are expecting DAG to have the following form: 314 // 315 // ch = eh_label (only in case of invoke statepoint) 316 // ch, glue = callseq_start ch 317 // ch, glue = X86::Call ch, glue 318 // ch, glue = callseq_end ch, glue 319 // get_return_value ch, glue 320 // 321 // get_return_value can either be a sequence of CopyFromReg instructions 322 // to grab the return value from the return register(s), or it can be a LOAD 323 // to load a value returned by reference via a stack slot. 324 325 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 326 if (HasDef) { 327 if (CallEnd->getOpcode() == ISD::LOAD) 328 CallEnd = CallEnd->getOperand(0).getNode(); 329 else 330 while (CallEnd->getOpcode() == ISD::CopyFromReg) 331 CallEnd = CallEnd->getOperand(0).getNode(); 332 } 333 334 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 335 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 336 } 337 338 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 339 FrameIndexSDNode &FI) { 340 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 341 auto MMOFlags = MachineMemOperand::MOStore | 342 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 343 auto &MFI = MF.getFrameInfo(); 344 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 345 MFI.getObjectSize(FI.getIndex()), 346 MFI.getObjectAlign(FI.getIndex())); 347 } 348 349 /// Spill a value incoming to the statepoint. It might be either part of 350 /// vmstate 351 /// or gcstate. In both cases unconditionally spill it on the stack unless it 352 /// is a null constant. Return pair with first element being frame index 353 /// containing saved value and second element with outgoing chain from the 354 /// emitted store 355 static std::tuple<SDValue, SDValue, MachineMemOperand*> 356 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 357 SelectionDAGBuilder &Builder) { 358 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 359 MachineMemOperand* MMO = nullptr; 360 361 // Emit new store if we didn't do it for this ptr before 362 if (!Loc.getNode()) { 363 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 364 Builder); 365 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 366 // We use TargetFrameIndex so that isel will not select it into LEA 367 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 368 369 // Right now we always allocate spill slots that are of the same 370 // size as the value we're about to spill (the size of spillee can 371 // vary since we spill vectors of pointers too). At some point we 372 // can consider allowing spills of smaller values to larger slots 373 // (i.e. change the '==' in the assert below to a '>='). 374 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 375 assert((MFI.getObjectSize(Index) * 8) == 376 (int64_t)Incoming.getValueSizeInBits() && 377 "Bad spill: stack slot does not match!"); 378 379 // Note: Using the alignment of the spill slot (rather than the abi or 380 // preferred alignment) is required for correctness when dealing with spill 381 // slots with preferred alignments larger than frame alignment.. 382 auto &MF = Builder.DAG.getMachineFunction(); 383 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 384 auto *StoreMMO = MF.getMachineMemOperand( 385 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 386 MFI.getObjectAlign(Index)); 387 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 388 StoreMMO); 389 390 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 391 392 Builder.StatepointLowering.setLocation(Incoming, Loc); 393 } 394 395 assert(Loc.getNode()); 396 return std::make_tuple(Loc, Chain, MMO); 397 } 398 399 /// Lower a single value incoming to a statepoint node. This value can be 400 /// either a deopt value or a gc value, the handling is the same. We special 401 /// case constants and allocas, then fall back to spilling if required. 402 static void 403 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 404 SmallVectorImpl<SDValue> &Ops, 405 SmallVectorImpl<MachineMemOperand *> &MemRefs, 406 SelectionDAGBuilder &Builder) { 407 408 if (willLowerDirectly(Incoming)) { 409 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 410 // This handles allocas as arguments to the statepoint (this is only 411 // really meaningful for a deopt value. For GC, we'd be trying to 412 // relocate the address of the alloca itself?) 413 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 414 "Incoming value is a frame index!"); 415 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 416 Builder.getFrameIndexTy())); 417 418 auto &MF = Builder.DAG.getMachineFunction(); 419 auto *MMO = getMachineMemOperand(MF, *FI); 420 MemRefs.push_back(MMO); 421 return; 422 } 423 424 assert(Incoming.getValueType().getSizeInBits() <= 64); 425 426 if (Incoming.isUndef()) { 427 // Put an easily recognized constant that's unlikely to be a valid 428 // value so that uses of undef by the consumer of the stackmap is 429 // easily recognized. This is legal since the compiler is always 430 // allowed to chose an arbitrary value for undef. 431 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 432 return; 433 } 434 435 // If the original value was a constant, make sure it gets recorded as 436 // such in the stackmap. This is required so that the consumer can 437 // parse any internal format to the deopt state. It also handles null 438 // pointers and other constant pointers in GC states. 439 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 440 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 441 return; 442 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 443 pushStackMapConstant(Ops, Builder, 444 C->getValueAPF().bitcastToAPInt().getZExtValue()); 445 return; 446 } 447 448 llvm_unreachable("unhandled direct lowering case"); 449 } 450 451 452 453 if (!RequireSpillSlot) { 454 // If this value is live in (not live-on-return, or live-through), we can 455 // treat it the same way patchpoint treats it's "live in" values. We'll 456 // end up folding some of these into stack references, but they'll be 457 // handled by the register allocator. Note that we do not have the notion 458 // of a late use so these values might be placed in registers which are 459 // clobbered by the call. This is fine for live-in. For live-through 460 // fix-up pass should be executed to force spilling of such registers. 461 Ops.push_back(Incoming); 462 } else { 463 // Otherwise, locate a spill slot and explicitly spill it so it can be 464 // found by the runtime later. Note: We know all of these spills are 465 // independent, but don't bother to exploit that chain wise. DAGCombine 466 // will happily do so as needed, so doing it here would be a small compile 467 // time win at most. 468 SDValue Chain = Builder.getRoot(); 469 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 470 Ops.push_back(std::get<0>(Res)); 471 if (auto *MMO = std::get<2>(Res)) 472 MemRefs.push_back(MMO); 473 Chain = std::get<1>(Res);; 474 Builder.DAG.setRoot(Chain); 475 } 476 477 } 478 479 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 480 /// lowering is described in lowerIncomingStatepointValue. This function is 481 /// responsible for lowering everything in the right position and playing some 482 /// tricks to avoid redundant stack manipulation where possible. On 483 /// completion, 'Ops' will contain ready to use operands for machine code 484 /// statepoint. The chain nodes will have already been created and the DAG root 485 /// will be set to the last value spilled (if any were). 486 static void 487 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 488 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 489 SelectionDAGBuilder &Builder) { 490 // Lower the deopt and gc arguments for this statepoint. Layout will be: 491 // deopt argument length, deopt arguments.., gc arguments... 492 #ifndef NDEBUG 493 if (auto *GFI = Builder.GFI) { 494 // Check that each of the gc pointer and bases we've gotten out of the 495 // safepoint is something the strategy thinks might be a pointer (or vector 496 // of pointers) into the GC heap. This is basically just here to help catch 497 // errors during statepoint insertion. TODO: This should actually be in the 498 // Verifier, but we can't get to the GCStrategy from there (yet). 499 GCStrategy &S = GFI->getStrategy(); 500 for (const Value *V : SI.Bases) { 501 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 502 if (Opt.hasValue()) { 503 assert(Opt.getValue() && 504 "non gc managed base pointer found in statepoint"); 505 } 506 } 507 for (const Value *V : SI.Ptrs) { 508 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 509 if (Opt.hasValue()) { 510 assert(Opt.getValue() && 511 "non gc managed derived pointer found in statepoint"); 512 } 513 } 514 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 515 } else { 516 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 517 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 518 } 519 #endif 520 521 // Figure out what lowering strategy we're going to use for each part 522 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 523 // as "live-through". A "live-through" variable is one which is "live-in", 524 // "live-out", and live throughout the lifetime of the call (i.e. we can find 525 // it from any PC within the transitive callee of the statepoint). In 526 // particular, if the callee spills callee preserved registers we may not 527 // be able to find a value placed in that register during the call. This is 528 // fine for live-out, but not for live-through. If we were willing to make 529 // assumptions about the code generator producing the callee, we could 530 // potentially allow live-through values in callee saved registers. 531 const bool LiveInDeopt = 532 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 533 534 auto isGCValue = [&](const Value *V) { 535 auto *Ty = V->getType(); 536 if (!Ty->isPtrOrPtrVectorTy()) 537 return false; 538 if (auto *GFI = Builder.GFI) 539 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 540 return *IsManaged; 541 return true; // conservative 542 }; 543 544 auto requireSpillSlot = [&](const Value *V) { 545 return !(LiveInDeopt || UseRegistersForDeoptValues) || isGCValue(V); 546 }; 547 548 // Before we actually start lowering (and allocating spill slots for values), 549 // reserve any stack slots which we judge to be profitable to reuse for a 550 // particular value. This is purely an optimization over the code below and 551 // doesn't change semantics at all. It is important for performance that we 552 // reserve slots for both deopt and gc values before lowering either. 553 for (const Value *V : SI.DeoptState) { 554 if (requireSpillSlot(V)) 555 reservePreviousStackSlotForValue(V, Builder); 556 } 557 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 558 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 559 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 560 } 561 562 // First, prefix the list with the number of unique values to be 563 // lowered. Note that this is the number of *Values* not the 564 // number of SDValues required to lower them. 565 const int NumVMSArgs = SI.DeoptState.size(); 566 pushStackMapConstant(Ops, Builder, NumVMSArgs); 567 568 // The vm state arguments are lowered in an opaque manner. We do not know 569 // what type of values are contained within. 570 for (const Value *V : SI.DeoptState) { 571 SDValue Incoming; 572 // If this is a function argument at a static frame index, generate it as 573 // the frame index. 574 if (const Argument *Arg = dyn_cast<Argument>(V)) { 575 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 576 if (FI != INT_MAX) 577 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 578 } 579 if (!Incoming.getNode()) 580 Incoming = Builder.getValue(V); 581 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 582 Builder); 583 } 584 585 // Finally, go ahead and lower all the gc arguments. There's no prefixed 586 // length for this one. After lowering, we'll have the base and pointer 587 // arrays interwoven with each (lowered) base pointer immediately followed by 588 // it's (lowered) derived pointer. i.e 589 // (base[0], ptr[0], base[1], ptr[1], ...) 590 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 591 const Value *Base = SI.Bases[i]; 592 lowerIncomingStatepointValue(Builder.getValue(Base), 593 /*RequireSpillSlot*/ true, Ops, MemRefs, 594 Builder); 595 596 const Value *Ptr = SI.Ptrs[i]; 597 lowerIncomingStatepointValue(Builder.getValue(Ptr), 598 /*RequireSpillSlot*/ true, Ops, MemRefs, 599 Builder); 600 } 601 602 // If there are any explicit spill slots passed to the statepoint, record 603 // them, but otherwise do not do anything special. These are user provided 604 // allocas and give control over placement to the consumer. In this case, 605 // it is the contents of the slot which may get updated, not the pointer to 606 // the alloca 607 for (Value *V : SI.GCArgs) { 608 SDValue Incoming = Builder.getValue(V); 609 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 610 // This handles allocas as arguments to the statepoint 611 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 612 "Incoming value is a frame index!"); 613 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 614 Builder.getFrameIndexTy())); 615 616 auto &MF = Builder.DAG.getMachineFunction(); 617 auto *MMO = getMachineMemOperand(MF, *FI); 618 MemRefs.push_back(MMO); 619 } 620 } 621 622 // Record computed locations for all lowered values. 623 // This can not be embedded in lowering loops as we need to record *all* 624 // values, while previous loops account only values with unique SDValues. 625 const Instruction *StatepointInstr = SI.StatepointInstr; 626 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 627 628 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 629 const Value *V = Relocate->getDerivedPtr(); 630 SDValue SDV = Builder.getValue(V); 631 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 632 633 if (Loc.getNode()) { 634 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 635 } else { 636 // Record value as visited, but not spilled. This is case for allocas 637 // and constants. For this values we can avoid emitting spill load while 638 // visiting corresponding gc_relocate. 639 // Actually we do not need to record them in this map at all. 640 // We do this only to check that we are not relocating any unvisited 641 // value. 642 SpillMap[V] = None; 643 644 // Default llvm mechanisms for exporting values which are used in 645 // different basic blocks does not work for gc relocates. 646 // Note that it would be incorrect to teach llvm that all relocates are 647 // uses of the corresponding values so that it would automatically 648 // export them. Relocates of the spilled values does not use original 649 // value. 650 if (Relocate->getParent() != StatepointInstr->getParent()) 651 Builder.ExportFromCurrentBlock(V); 652 } 653 } 654 } 655 656 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 657 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 658 // The basic scheme here is that information about both the original call and 659 // the safepoint is encoded in the CallInst. We create a temporary call and 660 // lower it, then reverse engineer the calling sequence. 661 662 NumOfStatepoints++; 663 // Clear state 664 StatepointLowering.startNewStatepoint(*this); 665 assert(SI.Bases.size() == SI.Ptrs.size() && 666 SI.Ptrs.size() <= SI.GCRelocates.size()); 667 668 #ifndef NDEBUG 669 for (auto *Reloc : SI.GCRelocates) 670 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 671 StatepointLowering.scheduleRelocCall(*Reloc); 672 #endif 673 674 // Lower statepoint vmstate and gcstate arguments 675 SmallVector<SDValue, 10> LoweredMetaArgs; 676 SmallVector<MachineMemOperand*, 16> MemRefs; 677 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 678 679 // Now that we've emitted the spills, we need to update the root so that the 680 // call sequence is ordered correctly. 681 SI.CLI.setChain(getRoot()); 682 683 // Get call node, we will replace it later with statepoint 684 SDValue ReturnVal; 685 SDNode *CallNode; 686 std::tie(ReturnVal, CallNode) = 687 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 688 689 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 690 // nodes with all the appropriate arguments and return values. 691 692 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 693 SDValue Chain = CallNode->getOperand(0); 694 695 SDValue Glue; 696 bool CallHasIncomingGlue = CallNode->getGluedNode(); 697 if (CallHasIncomingGlue) { 698 // Glue is always last operand 699 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 700 } 701 702 // Build the GC_TRANSITION_START node if necessary. 703 // 704 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 705 // order in which they appear in the call to the statepoint intrinsic. If 706 // any of the operands is a pointer-typed, that operand is immediately 707 // followed by a SRCVALUE for the pointer that may be used during lowering 708 // (e.g. to form MachinePointerInfo values for loads/stores). 709 const bool IsGCTransition = 710 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 711 (uint64_t)StatepointFlags::GCTransition; 712 if (IsGCTransition) { 713 SmallVector<SDValue, 8> TSOps; 714 715 // Add chain 716 TSOps.push_back(Chain); 717 718 // Add GC transition arguments 719 for (const Value *V : SI.GCTransitionArgs) { 720 TSOps.push_back(getValue(V)); 721 if (V->getType()->isPointerTy()) 722 TSOps.push_back(DAG.getSrcValue(V)); 723 } 724 725 // Add glue if necessary 726 if (CallHasIncomingGlue) 727 TSOps.push_back(Glue); 728 729 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 730 731 SDValue GCTransitionStart = 732 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 733 734 Chain = GCTransitionStart.getValue(0); 735 Glue = GCTransitionStart.getValue(1); 736 } 737 738 // TODO: Currently, all of these operands are being marked as read/write in 739 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 740 // and flags to be read-only. 741 SmallVector<SDValue, 40> Ops; 742 743 // Add the <id> and <numBytes> constants. 744 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 745 Ops.push_back( 746 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 747 748 // Calculate and push starting position of vmstate arguments 749 // Get number of arguments incoming directly into call node 750 unsigned NumCallRegArgs = 751 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 752 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 753 754 // Add call target 755 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 756 Ops.push_back(CallTarget); 757 758 // Add call arguments 759 // Get position of register mask in the call 760 SDNode::op_iterator RegMaskIt; 761 if (CallHasIncomingGlue) 762 RegMaskIt = CallNode->op_end() - 2; 763 else 764 RegMaskIt = CallNode->op_end() - 1; 765 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 766 767 // Add a constant argument for the calling convention 768 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 769 770 // Add a constant argument for the flags 771 uint64_t Flags = SI.StatepointFlags; 772 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 773 "Unknown flag used"); 774 pushStackMapConstant(Ops, *this, Flags); 775 776 // Insert all vmstate and gcstate arguments 777 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 778 779 // Add register mask from call node 780 Ops.push_back(*RegMaskIt); 781 782 // Add chain 783 Ops.push_back(Chain); 784 785 // Same for the glue, but we add it only if original call had it 786 if (Glue.getNode()) 787 Ops.push_back(Glue); 788 789 // Compute return values. Provide a glue output since we consume one as 790 // input. This allows someone else to chain off us as needed. 791 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 792 793 MachineSDNode *StatepointMCNode = 794 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 795 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 796 797 SDNode *SinkNode = StatepointMCNode; 798 799 // Build the GC_TRANSITION_END node if necessary. 800 // 801 // See the comment above regarding GC_TRANSITION_START for the layout of 802 // the operands to the GC_TRANSITION_END node. 803 if (IsGCTransition) { 804 SmallVector<SDValue, 8> TEOps; 805 806 // Add chain 807 TEOps.push_back(SDValue(StatepointMCNode, 0)); 808 809 // Add GC transition arguments 810 for (const Value *V : SI.GCTransitionArgs) { 811 TEOps.push_back(getValue(V)); 812 if (V->getType()->isPointerTy()) 813 TEOps.push_back(DAG.getSrcValue(V)); 814 } 815 816 // Add glue 817 TEOps.push_back(SDValue(StatepointMCNode, 1)); 818 819 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 820 821 SDValue GCTransitionStart = 822 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 823 824 SinkNode = GCTransitionStart.getNode(); 825 } 826 827 // Replace original call 828 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 829 // Remove original call node 830 DAG.DeleteNode(CallNode); 831 832 // DON'T set the root - under the assumption that it's already set past the 833 // inserted node we created. 834 835 // TODO: A better future implementation would be to emit a single variable 836 // argument, variable return value STATEPOINT node here and then hookup the 837 // return value of each gc.relocate to the respective output of the 838 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 839 // to actually be possible today. 840 841 return ReturnVal; 842 } 843 844 void 845 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 846 const BasicBlock *EHPadBB /*= nullptr*/) { 847 assert(I.getCallingConv() != CallingConv::AnyReg && 848 "anyregcc is not supported on statepoints!"); 849 850 #ifndef NDEBUG 851 // Check that the associated GCStrategy expects to encounter statepoints. 852 assert(GFI->getStrategy().useStatepoints() && 853 "GCStrategy does not expect to encounter statepoints"); 854 #endif 855 856 SDValue ActualCallee; 857 SDValue Callee = getValue(I.getActualCalledOperand()); 858 859 if (I.getNumPatchBytes() > 0) { 860 // If we've been asked to emit a nop sequence instead of a call instruction 861 // for this statepoint then don't lower the call target, but use a constant 862 // `undef` instead. Not lowering the call target lets statepoint clients 863 // get away without providing a physical address for the symbolic call 864 // target at link time. 865 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 866 } else { 867 ActualCallee = Callee; 868 } 869 870 StatepointLoweringInfo SI(DAG); 871 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 872 I.getNumCallArgs(), ActualCallee, 873 I.getActualReturnType(), false /* IsPatchPoint */); 874 875 // There may be duplication in the gc.relocate list; such as two copies of 876 // each relocation on normal and exceptional path for an invoke. We only 877 // need to spill once and record one copy in the stackmap, but we need to 878 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 879 // handled as a CSE problem elsewhere.) 880 // TODO: There a couple of major stackmap size optimizations we could do 881 // here if we wished. 882 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 883 // record {B,B} if it's seen later. 884 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 885 // given that, we could change the format to record base pointer relocations 886 // separately with half the space. This would require a format rev and a 887 // fairly major rework of the STATEPOINT node though. 888 SmallSet<SDValue, 8> Seen; 889 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 890 SI.GCRelocates.push_back(Relocate); 891 892 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 893 if (Seen.insert(DerivedSD).second) { 894 SI.Bases.push_back(Relocate->getBasePtr()); 895 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 896 } 897 } 898 899 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 900 SI.StatepointInstr = &I; 901 SI.ID = I.getID(); 902 903 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 904 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 905 I.gc_transition_args_end()); 906 907 SI.StatepointFlags = I.getFlags(); 908 SI.NumPatchBytes = I.getNumPatchBytes(); 909 SI.EHPadBB = EHPadBB; 910 911 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 912 913 // Export the result value if needed 914 const GCResultInst *GCResult = I.getGCResult(); 915 Type *RetTy = I.getActualReturnType(); 916 917 if (RetTy->isVoidTy() || !GCResult) { 918 // The return value is not needed, just generate a poison value. 919 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 920 return; 921 } 922 923 if (GCResult->getParent() == I.getParent()) { 924 // Result value will be used in a same basic block. Don't export it or 925 // perform any explicit register copies. The gc_result will simply grab 926 // this value. 927 setValue(&I, ReturnValue); 928 return; 929 } 930 931 // Result value will be used in a different basic block so we need to export 932 // it now. Default exporting mechanism will not work here because statepoint 933 // call has a different type than the actual call. It means that by default 934 // llvm will create export register of the wrong type (always i32 in our 935 // case). So instead we need to create export register with correct type 936 // manually. 937 // TODO: To eliminate this problem we can remove gc.result intrinsics 938 // completely and make statepoint call to return a tuple. 939 unsigned Reg = FuncInfo.CreateRegs(RetTy); 940 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 941 DAG.getDataLayout(), Reg, RetTy, 942 I.getCallingConv()); 943 SDValue Chain = DAG.getEntryNode(); 944 945 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 946 PendingExports.push_back(Chain); 947 FuncInfo.ValueMap[&I] = Reg; 948 } 949 950 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 951 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 952 bool VarArgDisallowed, bool ForceVoidReturnTy) { 953 StatepointLoweringInfo SI(DAG); 954 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 955 populateCallLoweringInfo( 956 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 957 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 958 false); 959 if (!VarArgDisallowed) 960 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 961 962 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 963 964 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 965 966 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 967 SI.ID = SD.StatepointID.getValueOr(DefaultID); 968 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 969 970 SI.DeoptState = 971 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 972 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 973 SI.EHPadBB = EHPadBB; 974 975 // NB! The GC arguments are deliberately left empty. 976 977 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 978 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 979 setValue(Call, ReturnVal); 980 } 981 } 982 983 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 984 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 985 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 986 /* VarArgDisallowed = */ false, 987 /* ForceVoidReturnTy = */ false); 988 } 989 990 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 991 // The result value of the gc_result is simply the result of the actual 992 // call. We've already emitted this, so just grab the value. 993 const GCStatepointInst *SI = CI.getStatepoint(); 994 995 if (SI->getParent() == CI.getParent()) { 996 setValue(&CI, getValue(SI)); 997 return; 998 } 999 // Statepoint is in different basic block so we should have stored call 1000 // result in a virtual register. 1001 // We can not use default getValue() functionality to copy value from this 1002 // register because statepoint and actual call return types can be 1003 // different, and getValue() will use CopyFromReg of the wrong type, 1004 // which is always i32 in our case. 1005 Type *RetTy = SI->getActualReturnType(); 1006 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1007 1008 assert(CopyFromReg.getNode()); 1009 setValue(&CI, CopyFromReg); 1010 } 1011 1012 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1013 #ifndef NDEBUG 1014 // Consistency check 1015 // We skip this check for relocates not in the same basic block as their 1016 // statepoint. It would be too expensive to preserve validation info through 1017 // different basic blocks. 1018 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 1019 StatepointLowering.relocCallVisited(Relocate); 1020 1021 auto *Ty = Relocate.getType()->getScalarType(); 1022 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1023 assert(*IsManaged && "Non gc managed pointer relocated!"); 1024 #endif 1025 1026 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1027 SDValue SD = getValue(DerivedPtr); 1028 1029 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1030 // Lowering relocate(undef) as arbitrary constant. Current constant value 1031 // is chosen such that it's unlikely to be a valid pointer. 1032 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1033 return; 1034 } 1035 1036 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 1037 auto SlotIt = SpillMap.find(DerivedPtr); 1038 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 1039 Optional<int> DerivedPtrLocation = SlotIt->second; 1040 1041 // We didn't need to spill these special cases (constants and allocas). 1042 // See the handling in spillIncomingValueForStatepoint for detail. 1043 if (!DerivedPtrLocation) { 1044 setValue(&Relocate, SD); 1045 return; 1046 } 1047 1048 unsigned Index = *DerivedPtrLocation; 1049 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1050 1051 // All the reloads are independent and are reading memory only modified by 1052 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1053 // this this let's CSE kick in for free and allows reordering of instructions 1054 // if possible. The lowering for statepoint sets the root, so this is 1055 // ordering all reloads with the either a) the statepoint node itself, or b) 1056 // the entry of the current block for an invoke statepoint. 1057 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1058 1059 auto &MF = DAG.getMachineFunction(); 1060 auto &MFI = MF.getFrameInfo(); 1061 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1062 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1063 MFI.getObjectSize(Index), 1064 MFI.getObjectAlign(Index)); 1065 1066 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1067 Relocate.getType()); 1068 1069 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1070 SpillSlot, LoadMMO); 1071 PendingLoads.push_back(SpillLoad.getValue(1)); 1072 1073 assert(SpillLoad.getNode()); 1074 setValue(&Relocate, SpillLoad); 1075 } 1076 1077 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1078 const auto &TLI = DAG.getTargetLoweringInfo(); 1079 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1080 TLI.getPointerTy(DAG.getDataLayout())); 1081 1082 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1083 // call. We also do not lower the return value to any virtual register, and 1084 // change the immediately following return to a trap instruction. 1085 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1086 /* VarArgDisallowed = */ true, 1087 /* ForceVoidReturnTy = */ true); 1088 } 1089 1090 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1091 // We do not lower the return value from llvm.deoptimize to any virtual 1092 // register, and change the immediately following return to a trap 1093 // instruction. 1094 if (DAG.getTarget().Options.TrapUnreachable) 1095 DAG.setRoot( 1096 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1097 } 1098