1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/SelectionDAGNodes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGenTypes/MachineValueType.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/GCStrategy.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <iterator> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "statepoint-lowering" 58 59 STATISTIC(NumSlotsAllocatedForStatepoints, 60 "Number of stack slots allocated for statepoints"); 61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 62 STATISTIC(StatepointMaxSlotsRequired, 63 "Maximum number of stack slots required for a singe statepoint"); 64 65 static cl::opt<bool> UseRegistersForDeoptValues( 66 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 67 cl::desc("Allow using registers for non pointer deopt args")); 68 69 static cl::opt<bool> UseRegistersForGCPointersInLandingPad( 70 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false), 71 cl::desc("Allow using registers for gc pointer in landing pad")); 72 73 static cl::opt<unsigned> MaxRegistersForGCPointers( 74 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 75 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 76 77 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 78 79 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 80 SelectionDAGBuilder &Builder, uint64_t Value) { 81 SDLoc L = Builder.getCurSDLoc(); 82 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 83 MVT::i64)); 84 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 85 } 86 87 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 88 // Consistency check 89 assert(PendingGCRelocateCalls.empty() && 90 "Trying to visit statepoint before finished processing previous one"); 91 Locations.clear(); 92 NextSlotToAllocate = 0; 93 // Need to resize this on each safepoint - we need the two to stay in sync and 94 // the clear patterns of a SelectionDAGBuilder have no relation to 95 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 96 AllocatedStackSlots.clear(); 97 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 98 } 99 100 void StatepointLoweringState::clear() { 101 Locations.clear(); 102 AllocatedStackSlots.clear(); 103 assert(PendingGCRelocateCalls.empty() && 104 "cleared before statepoint sequence completed"); 105 } 106 107 SDValue 108 StatepointLoweringState::allocateStackSlot(EVT ValueType, 109 SelectionDAGBuilder &Builder) { 110 NumSlotsAllocatedForStatepoints++; 111 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 112 113 unsigned SpillSize = ValueType.getStoreSize(); 114 assert((SpillSize * 8) == 115 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8. 116 "Size not in bytes?"); 117 118 // First look for a previously created stack slot which is not in 119 // use (accounting for the fact arbitrary slots may already be 120 // reserved), or to create a new stack slot and use it. 121 122 const size_t NumSlots = AllocatedStackSlots.size(); 123 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 124 125 assert(AllocatedStackSlots.size() == 126 Builder.FuncInfo.StatepointStackSlots.size() && 127 "Broken invariant"); 128 129 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 130 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 131 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 132 if (MFI.getObjectSize(FI) == SpillSize) { 133 AllocatedStackSlots.set(NextSlotToAllocate); 134 // TODO: Is ValueType the right thing to use here? 135 return Builder.DAG.getFrameIndex(FI, ValueType); 136 } 137 } 138 } 139 140 // Couldn't find a free slot, so create a new one: 141 142 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 143 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 144 MFI.markAsStatepointSpillSlotObjectIndex(FI); 145 146 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 147 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 148 assert(AllocatedStackSlots.size() == 149 Builder.FuncInfo.StatepointStackSlots.size() && 150 "Broken invariant"); 151 152 StatepointMaxSlotsRequired.updateMax( 153 Builder.FuncInfo.StatepointStackSlots.size()); 154 155 return SpillSlot; 156 } 157 158 /// Utility function for reservePreviousStackSlotForValue. Tries to find 159 /// stack slot index to which we have spilled value for previous statepoints. 160 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 161 static std::optional<int> findPreviousSpillSlot(const Value *Val, 162 SelectionDAGBuilder &Builder, 163 int LookUpDepth) { 164 // Can not look any further - give up now 165 if (LookUpDepth <= 0) 166 return std::nullopt; 167 168 // Spill location is known for gc relocates 169 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 170 const Value *Statepoint = Relocate->getStatepoint(); 171 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) && 172 "GetStatepoint must return one of two types"); 173 if (isa<UndefValue>(Statepoint)) 174 return std::nullopt; 175 176 const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps 177 [cast<GCStatepointInst>(Statepoint)]; 178 179 auto It = RelocationMap.find(Relocate); 180 if (It == RelocationMap.end()) 181 return std::nullopt; 182 183 auto &Record = It->second; 184 if (Record.type != RecordType::Spill) 185 return std::nullopt; 186 187 return Record.payload.FI; 188 } 189 190 // Look through bitcast instructions. 191 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 192 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 193 194 // Look through phi nodes 195 // All incoming values should have same known stack slot, otherwise result 196 // is unknown. 197 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 198 std::optional<int> MergedResult; 199 200 for (const auto &IncomingValue : Phi->incoming_values()) { 201 std::optional<int> SpillSlot = 202 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 203 if (!SpillSlot) 204 return std::nullopt; 205 206 if (MergedResult && *MergedResult != *SpillSlot) 207 return std::nullopt; 208 209 MergedResult = SpillSlot; 210 } 211 return MergedResult; 212 } 213 214 // TODO: We can do better for PHI nodes. In cases like this: 215 // ptr = phi(relocated_pointer, not_relocated_pointer) 216 // statepoint(ptr) 217 // We will return that stack slot for ptr is unknown. And later we might 218 // assign different stack slots for ptr and relocated_pointer. This limits 219 // llvm's ability to remove redundant stores. 220 // Unfortunately it's hard to accomplish in current infrastructure. 221 // We use this function to eliminate spill store completely, while 222 // in example we still need to emit store, but instead of any location 223 // we need to use special "preferred" location. 224 225 // TODO: handle simple updates. If a value is modified and the original 226 // value is no longer live, it would be nice to put the modified value in the 227 // same slot. This allows folding of the memory accesses for some 228 // instructions types (like an increment). 229 // statepoint (i) 230 // i1 = i+1 231 // statepoint (i1) 232 // However we need to be careful for cases like this: 233 // statepoint(i) 234 // i1 = i+1 235 // statepoint(i, i1) 236 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 237 // put handling of simple modifications in this function like it's done 238 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 239 // which we visit values is unspecified. 240 241 // Don't know any information about this instruction 242 return std::nullopt; 243 } 244 245 /// Return true if-and-only-if the given SDValue can be lowered as either a 246 /// constant argument or a stack reference. The key point is that the value 247 /// doesn't need to be spilled or tracked as a vreg use. 248 static bool willLowerDirectly(SDValue Incoming) { 249 // We are making an unchecked assumption that the frame size <= 2^16 as that 250 // is the largest offset which can be encoded in the stackmap format. 251 if (isa<FrameIndexSDNode>(Incoming)) 252 return true; 253 254 // The largest constant describeable in the StackMap format is 64 bits. 255 // Potential Optimization: Constants values are sign extended by consumer, 256 // and thus there are many constants of static type > 64 bits whose value 257 // happens to be sext(Con64) and could thus be lowered directly. 258 if (Incoming.getValueType().getSizeInBits() > 64) 259 return false; 260 261 return isIntOrFPConstant(Incoming) || Incoming.isUndef(); 262 } 263 264 /// Try to find existing copies of the incoming values in stack slots used for 265 /// statepoint spilling. If we can find a spill slot for the incoming value, 266 /// mark that slot as allocated, and reuse the same slot for this safepoint. 267 /// This helps to avoid series of loads and stores that only serve to reshuffle 268 /// values on the stack between calls. 269 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 270 SelectionDAGBuilder &Builder) { 271 SDValue Incoming = Builder.getValue(IncomingValue); 272 273 // If we won't spill this, we don't need to check for previously allocated 274 // stack slots. 275 if (willLowerDirectly(Incoming)) 276 return; 277 278 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 279 if (OldLocation.getNode()) 280 // Duplicates in input 281 return; 282 283 const int LookUpDepth = 6; 284 std::optional<int> Index = 285 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 286 if (!Index) 287 return; 288 289 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 290 291 auto SlotIt = find(StatepointSlots, *Index); 292 assert(SlotIt != StatepointSlots.end() && 293 "Value spilled to the unknown stack slot"); 294 295 // This is one of our dedicated lowering slots 296 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 297 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 298 // stack slot already assigned to someone else, can't use it! 299 // TODO: currently we reserve space for gc arguments after doing 300 // normal allocation for deopt arguments. We should reserve for 301 // _all_ deopt and gc arguments, then start allocating. This 302 // will prevent some moves being inserted when vm state changes, 303 // but gc state doesn't between two calls. 304 return; 305 } 306 // Reserve this stack slot 307 Builder.StatepointLowering.reserveStackSlot(Offset); 308 309 // Cache this slot so we find it when going through the normal 310 // assignment loop. 311 SDValue Loc = 312 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 313 Builder.StatepointLowering.setLocation(Incoming, Loc); 314 } 315 316 /// Extract call from statepoint, lower it and return pointer to the 317 /// call node. Also update NodeMap so that getValue(statepoint) will 318 /// reference lowered call result 319 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 320 SelectionDAGBuilder::StatepointLoweringInfo &SI, 321 SelectionDAGBuilder &Builder) { 322 SDValue ReturnValue, CallEndVal; 323 std::tie(ReturnValue, CallEndVal) = 324 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 325 SDNode *CallEnd = CallEndVal.getNode(); 326 327 // Get a call instruction from the call sequence chain. Tail calls are not 328 // allowed. The following code is essentially reverse engineering X86's 329 // LowerCallTo. 330 // 331 // We are expecting DAG to have the following form: 332 // 333 // ch = eh_label (only in case of invoke statepoint) 334 // ch, glue = callseq_start ch 335 // ch, glue = X86::Call ch, glue 336 // ch, glue = callseq_end ch, glue 337 // get_return_value ch, glue 338 // 339 // get_return_value can either be a sequence of CopyFromReg instructions 340 // to grab the return value from the return register(s), or it can be a LOAD 341 // to load a value returned by reference via a stack slot. 342 343 if (CallEnd->getOpcode() == ISD::EH_LABEL) 344 CallEnd = CallEnd->getOperand(0).getNode(); 345 346 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 347 if (HasDef) { 348 if (CallEnd->getOpcode() == ISD::LOAD) 349 CallEnd = CallEnd->getOperand(0).getNode(); 350 else 351 while (CallEnd->getOpcode() == ISD::CopyFromReg) 352 CallEnd = CallEnd->getOperand(0).getNode(); 353 } 354 355 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 356 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 357 } 358 359 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 360 FrameIndexSDNode &FI) { 361 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 362 auto MMOFlags = MachineMemOperand::MOStore | 363 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 364 auto &MFI = MF.getFrameInfo(); 365 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 366 MFI.getObjectSize(FI.getIndex()), 367 MFI.getObjectAlign(FI.getIndex())); 368 } 369 370 /// Spill a value incoming to the statepoint. It might be either part of 371 /// vmstate 372 /// or gcstate. In both cases unconditionally spill it on the stack unless it 373 /// is a null constant. Return pair with first element being frame index 374 /// containing saved value and second element with outgoing chain from the 375 /// emitted store 376 static std::tuple<SDValue, SDValue, MachineMemOperand*> 377 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 378 SelectionDAGBuilder &Builder) { 379 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 380 MachineMemOperand* MMO = nullptr; 381 382 // Emit new store if we didn't do it for this ptr before 383 if (!Loc.getNode()) { 384 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 385 Builder); 386 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 387 // We use TargetFrameIndex so that isel will not select it into LEA 388 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 389 390 // Right now we always allocate spill slots that are of the same 391 // size as the value we're about to spill (the size of spillee can 392 // vary since we spill vectors of pointers too). At some point we 393 // can consider allowing spills of smaller values to larger slots 394 // (i.e. change the '==' in the assert below to a '>='). 395 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 396 assert((MFI.getObjectSize(Index) * 8) == 397 (-8 & (7 + // Round up modulo 8. 398 (int64_t)Incoming.getValueSizeInBits())) && 399 "Bad spill: stack slot does not match!"); 400 401 // Note: Using the alignment of the spill slot (rather than the abi or 402 // preferred alignment) is required for correctness when dealing with spill 403 // slots with preferred alignments larger than frame alignment.. 404 auto &MF = Builder.DAG.getMachineFunction(); 405 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 406 auto *StoreMMO = MF.getMachineMemOperand( 407 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 408 MFI.getObjectAlign(Index)); 409 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 410 StoreMMO); 411 412 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 413 414 Builder.StatepointLowering.setLocation(Incoming, Loc); 415 } 416 417 assert(Loc.getNode()); 418 return std::make_tuple(Loc, Chain, MMO); 419 } 420 421 /// Lower a single value incoming to a statepoint node. This value can be 422 /// either a deopt value or a gc value, the handling is the same. We special 423 /// case constants and allocas, then fall back to spilling if required. 424 static void 425 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 426 SmallVectorImpl<SDValue> &Ops, 427 SmallVectorImpl<MachineMemOperand *> &MemRefs, 428 SelectionDAGBuilder &Builder) { 429 430 if (willLowerDirectly(Incoming)) { 431 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 432 // This handles allocas as arguments to the statepoint (this is only 433 // really meaningful for a deopt value. For GC, we'd be trying to 434 // relocate the address of the alloca itself?) 435 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 436 "Incoming value is a frame index!"); 437 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 438 Builder.getFrameIndexTy())); 439 440 auto &MF = Builder.DAG.getMachineFunction(); 441 auto *MMO = getMachineMemOperand(MF, *FI); 442 MemRefs.push_back(MMO); 443 return; 444 } 445 446 assert(Incoming.getValueType().getSizeInBits() <= 64); 447 448 if (Incoming.isUndef()) { 449 // Put an easily recognized constant that's unlikely to be a valid 450 // value so that uses of undef by the consumer of the stackmap is 451 // easily recognized. This is legal since the compiler is always 452 // allowed to chose an arbitrary value for undef. 453 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 454 return; 455 } 456 457 // If the original value was a constant, make sure it gets recorded as 458 // such in the stackmap. This is required so that the consumer can 459 // parse any internal format to the deopt state. It also handles null 460 // pointers and other constant pointers in GC states. 461 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 462 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 463 return; 464 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 465 pushStackMapConstant(Ops, Builder, 466 C->getValueAPF().bitcastToAPInt().getZExtValue()); 467 return; 468 } 469 470 llvm_unreachable("unhandled direct lowering case"); 471 } 472 473 474 475 if (!RequireSpillSlot) { 476 // If this value is live in (not live-on-return, or live-through), we can 477 // treat it the same way patchpoint treats it's "live in" values. We'll 478 // end up folding some of these into stack references, but they'll be 479 // handled by the register allocator. Note that we do not have the notion 480 // of a late use so these values might be placed in registers which are 481 // clobbered by the call. This is fine for live-in. For live-through 482 // fix-up pass should be executed to force spilling of such registers. 483 Ops.push_back(Incoming); 484 } else { 485 // Otherwise, locate a spill slot and explicitly spill it so it can be 486 // found by the runtime later. Note: We know all of these spills are 487 // independent, but don't bother to exploit that chain wise. DAGCombine 488 // will happily do so as needed, so doing it here would be a small compile 489 // time win at most. 490 SDValue Chain = Builder.getRoot(); 491 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 492 Ops.push_back(std::get<0>(Res)); 493 if (auto *MMO = std::get<2>(Res)) 494 MemRefs.push_back(MMO); 495 Chain = std::get<1>(Res); 496 Builder.DAG.setRoot(Chain); 497 } 498 499 } 500 501 /// Return true if value V represents the GC value. The behavior is conservative 502 /// in case it is not sure that value is not GC the function returns true. 503 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) { 504 auto *Ty = V->getType(); 505 if (!Ty->isPtrOrPtrVectorTy()) 506 return false; 507 if (auto *GFI = Builder.GFI) 508 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 509 return *IsManaged; 510 return true; // conservative 511 } 512 513 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 514 /// lowering is described in lowerIncomingStatepointValue. This function is 515 /// responsible for lowering everything in the right position and playing some 516 /// tricks to avoid redundant stack manipulation where possible. On 517 /// completion, 'Ops' will contain ready to use operands for machine code 518 /// statepoint. The chain nodes will have already been created and the DAG root 519 /// will be set to the last value spilled (if any were). 520 static void 521 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 522 SmallVectorImpl<MachineMemOperand *> &MemRefs, 523 SmallVectorImpl<SDValue> &GCPtrs, 524 DenseMap<SDValue, int> &LowerAsVReg, 525 SelectionDAGBuilder::StatepointLoweringInfo &SI, 526 SelectionDAGBuilder &Builder) { 527 // Lower the deopt and gc arguments for this statepoint. Layout will be: 528 // deopt argument length, deopt arguments.., gc arguments... 529 530 // Figure out what lowering strategy we're going to use for each part 531 // Note: It is conservatively correct to lower both "live-in" and "live-out" 532 // as "live-through". A "live-through" variable is one which is "live-in", 533 // "live-out", and live throughout the lifetime of the call (i.e. we can find 534 // it from any PC within the transitive callee of the statepoint). In 535 // particular, if the callee spills callee preserved registers we may not 536 // be able to find a value placed in that register during the call. This is 537 // fine for live-out, but not for live-through. If we were willing to make 538 // assumptions about the code generator producing the callee, we could 539 // potentially allow live-through values in callee saved registers. 540 const bool LiveInDeopt = 541 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 542 543 // Decide which deriver pointers will go on VRegs 544 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 545 546 // Pointers used on exceptional path of invoke statepoint. 547 // We cannot assing them to VRegs. 548 SmallSet<SDValue, 8> LPadPointers; 549 if (!UseRegistersForGCPointersInLandingPad) 550 if (const auto *StInvoke = 551 dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 552 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 553 for (const auto *Relocate : SI.GCRelocates) 554 if (Relocate->getOperand(0) == LPI) { 555 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 556 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 557 } 558 } 559 560 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 561 562 // List of unique lowered GC Pointer values. 563 SmallSetVector<SDValue, 16> LoweredGCPtrs; 564 // Map lowered GC Pointer value to the index in above vector 565 DenseMap<SDValue, unsigned> GCPtrIndexMap; 566 567 unsigned CurNumVRegs = 0; 568 569 auto canPassGCPtrOnVReg = [&](SDValue SD) { 570 if (SD.getValueType().isVector()) 571 return false; 572 if (LPadPointers.count(SD)) 573 return false; 574 return !willLowerDirectly(SD); 575 }; 576 577 auto processGCPtr = [&](const Value *V) { 578 SDValue PtrSD = Builder.getValue(V); 579 if (!LoweredGCPtrs.insert(PtrSD)) 580 return; // skip duplicates 581 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 582 583 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 584 if (LowerAsVReg.size() == MaxVRegPtrs) 585 return; 586 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 587 "IR and SD types disagree"); 588 if (!canPassGCPtrOnVReg(PtrSD)) { 589 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 590 return; 591 } 592 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 593 LowerAsVReg[PtrSD] = CurNumVRegs++; 594 }; 595 596 // Process derived pointers first to give them more chance to go on VReg. 597 for (const Value *V : SI.Ptrs) 598 processGCPtr(V); 599 for (const Value *V : SI.Bases) 600 processGCPtr(V); 601 602 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 603 604 auto requireSpillSlot = [&](const Value *V) { 605 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal( 606 Builder.getValue(V).getValueType())) 607 return true; 608 if (isGCValue(V, Builder)) 609 return !LowerAsVReg.count(Builder.getValue(V)); 610 return !(LiveInDeopt || UseRegistersForDeoptValues); 611 }; 612 613 // Before we actually start lowering (and allocating spill slots for values), 614 // reserve any stack slots which we judge to be profitable to reuse for a 615 // particular value. This is purely an optimization over the code below and 616 // doesn't change semantics at all. It is important for performance that we 617 // reserve slots for both deopt and gc values before lowering either. 618 for (const Value *V : SI.DeoptState) { 619 if (requireSpillSlot(V)) 620 reservePreviousStackSlotForValue(V, Builder); 621 } 622 623 for (const Value *V : SI.Ptrs) { 624 SDValue SDV = Builder.getValue(V); 625 if (!LowerAsVReg.count(SDV)) 626 reservePreviousStackSlotForValue(V, Builder); 627 } 628 629 for (const Value *V : SI.Bases) { 630 SDValue SDV = Builder.getValue(V); 631 if (!LowerAsVReg.count(SDV)) 632 reservePreviousStackSlotForValue(V, Builder); 633 } 634 635 // First, prefix the list with the number of unique values to be 636 // lowered. Note that this is the number of *Values* not the 637 // number of SDValues required to lower them. 638 const int NumVMSArgs = SI.DeoptState.size(); 639 pushStackMapConstant(Ops, Builder, NumVMSArgs); 640 641 // The vm state arguments are lowered in an opaque manner. We do not know 642 // what type of values are contained within. 643 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 644 for (const Value *V : SI.DeoptState) { 645 SDValue Incoming; 646 // If this is a function argument at a static frame index, generate it as 647 // the frame index. 648 if (const Argument *Arg = dyn_cast<Argument>(V)) { 649 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 650 if (FI != INT_MAX) 651 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 652 } 653 if (!Incoming.getNode()) 654 Incoming = Builder.getValue(V); 655 LLVM_DEBUG(dbgs() << "Value " << *V 656 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 657 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 658 Builder); 659 } 660 661 // Finally, go ahead and lower all the gc arguments. 662 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 663 for (SDValue SDV : LoweredGCPtrs) 664 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 665 Builder); 666 667 // Copy to out vector. LoweredGCPtrs will be empty after this point. 668 GCPtrs = LoweredGCPtrs.takeVector(); 669 670 // If there are any explicit spill slots passed to the statepoint, record 671 // them, but otherwise do not do anything special. These are user provided 672 // allocas and give control over placement to the consumer. In this case, 673 // it is the contents of the slot which may get updated, not the pointer to 674 // the alloca 675 SmallVector<SDValue, 4> Allocas; 676 for (Value *V : SI.GCArgs) { 677 SDValue Incoming = Builder.getValue(V); 678 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 679 // This handles allocas as arguments to the statepoint 680 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 681 "Incoming value is a frame index!"); 682 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 683 FI->getIndex(), Builder.getFrameIndexTy())); 684 685 auto &MF = Builder.DAG.getMachineFunction(); 686 auto *MMO = getMachineMemOperand(MF, *FI); 687 MemRefs.push_back(MMO); 688 } 689 } 690 pushStackMapConstant(Ops, Builder, Allocas.size()); 691 Ops.append(Allocas.begin(), Allocas.end()); 692 693 // Now construct GC base/derived map; 694 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 695 SDLoc L = Builder.getCurSDLoc(); 696 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 697 SDValue Base = Builder.getValue(SI.Bases[i]); 698 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 699 Ops.push_back( 700 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 701 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 702 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 703 Ops.push_back( 704 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 705 } 706 } 707 708 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 709 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 710 // The basic scheme here is that information about both the original call and 711 // the safepoint is encoded in the CallInst. We create a temporary call and 712 // lower it, then reverse engineer the calling sequence. 713 714 NumOfStatepoints++; 715 // Clear state 716 StatepointLowering.startNewStatepoint(*this); 717 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 718 assert((GFI || SI.Bases.empty()) && 719 "No gc specified, so cannot relocate pointers!"); 720 721 LLVM_DEBUG(if (SI.StatepointInstr) dbgs() 722 << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 723 #ifndef NDEBUG 724 for (const auto *Reloc : SI.GCRelocates) 725 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 726 StatepointLowering.scheduleRelocCall(*Reloc); 727 #endif 728 729 // Lower statepoint vmstate and gcstate arguments 730 731 // All lowered meta args. 732 SmallVector<SDValue, 10> LoweredMetaArgs; 733 // Lowered GC pointers (subset of above). 734 SmallVector<SDValue, 16> LoweredGCArgs; 735 SmallVector<MachineMemOperand*, 16> MemRefs; 736 // Maps derived pointer SDValue to statepoint result of relocated pointer. 737 DenseMap<SDValue, int> LowerAsVReg; 738 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 739 SI, *this); 740 741 // Now that we've emitted the spills, we need to update the root so that the 742 // call sequence is ordered correctly. 743 SI.CLI.setChain(getRoot()); 744 745 // Get call node, we will replace it later with statepoint 746 SDValue ReturnVal; 747 SDNode *CallNode; 748 std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this); 749 750 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 751 // nodes with all the appropriate arguments and return values. 752 753 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 754 SDValue Chain = CallNode->getOperand(0); 755 756 SDValue Glue; 757 bool CallHasIncomingGlue = CallNode->getGluedNode(); 758 if (CallHasIncomingGlue) { 759 // Glue is always last operand 760 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 761 } 762 763 // Build the GC_TRANSITION_START node if necessary. 764 // 765 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 766 // order in which they appear in the call to the statepoint intrinsic. If 767 // any of the operands is a pointer-typed, that operand is immediately 768 // followed by a SRCVALUE for the pointer that may be used during lowering 769 // (e.g. to form MachinePointerInfo values for loads/stores). 770 const bool IsGCTransition = 771 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 772 (uint64_t)StatepointFlags::GCTransition; 773 if (IsGCTransition) { 774 SmallVector<SDValue, 8> TSOps; 775 776 // Add chain 777 TSOps.push_back(Chain); 778 779 // Add GC transition arguments 780 for (const Value *V : SI.GCTransitionArgs) { 781 TSOps.push_back(getValue(V)); 782 if (V->getType()->isPointerTy()) 783 TSOps.push_back(DAG.getSrcValue(V)); 784 } 785 786 // Add glue if necessary 787 if (CallHasIncomingGlue) 788 TSOps.push_back(Glue); 789 790 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 791 792 SDValue GCTransitionStart = 793 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 794 795 Chain = GCTransitionStart.getValue(0); 796 Glue = GCTransitionStart.getValue(1); 797 } 798 799 // TODO: Currently, all of these operands are being marked as read/write in 800 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 801 // and flags to be read-only. 802 SmallVector<SDValue, 40> Ops; 803 804 // Add the <id> and <numBytes> constants. 805 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 806 Ops.push_back( 807 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 808 809 // Calculate and push starting position of vmstate arguments 810 // Get number of arguments incoming directly into call node 811 unsigned NumCallRegArgs = 812 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 813 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 814 815 // Add call target 816 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 817 Ops.push_back(CallTarget); 818 819 // Add call arguments 820 // Get position of register mask in the call 821 SDNode::op_iterator RegMaskIt; 822 if (CallHasIncomingGlue) 823 RegMaskIt = CallNode->op_end() - 2; 824 else 825 RegMaskIt = CallNode->op_end() - 1; 826 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 827 828 // Add a constant argument for the calling convention 829 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 830 831 // Add a constant argument for the flags 832 uint64_t Flags = SI.StatepointFlags; 833 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 834 "Unknown flag used"); 835 pushStackMapConstant(Ops, *this, Flags); 836 837 // Insert all vmstate and gcstate arguments 838 llvm::append_range(Ops, LoweredMetaArgs); 839 840 // Add register mask from call node 841 Ops.push_back(*RegMaskIt); 842 843 // Add chain 844 Ops.push_back(Chain); 845 846 // Same for the glue, but we add it only if original call had it 847 if (Glue.getNode()) 848 Ops.push_back(Glue); 849 850 // Compute return values. Provide a glue output since we consume one as 851 // input. This allows someone else to chain off us as needed. 852 SmallVector<EVT, 8> NodeTys; 853 for (auto SD : LoweredGCArgs) { 854 if (!LowerAsVReg.count(SD)) 855 continue; 856 NodeTys.push_back(SD.getValueType()); 857 } 858 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 859 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 860 NodeTys.push_back(MVT::Other); 861 NodeTys.push_back(MVT::Glue); 862 863 unsigned NumResults = NodeTys.size(); 864 MachineSDNode *StatepointMCNode = 865 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 866 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 867 868 // For values lowered to tied-defs, create the virtual registers if used 869 // in other blocks. For local gc.relocate record appropriate statepoint 870 // result in StatepointLoweringState. 871 DenseMap<SDValue, Register> VirtRegs; 872 for (const auto *Relocate : SI.GCRelocates) { 873 Value *Derived = Relocate->getDerivedPtr(); 874 SDValue SD = getValue(Derived); 875 if (!LowerAsVReg.count(SD)) 876 continue; 877 878 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 879 880 // Handle local relocate. Note that different relocates might 881 // map to the same SDValue. 882 if (SI.StatepointInstr->getParent() == Relocate->getParent()) { 883 SDValue Res = StatepointLowering.getLocation(SD); 884 if (Res) 885 assert(Res == Relocated); 886 else 887 StatepointLowering.setLocation(SD, Relocated); 888 continue; 889 } 890 891 // Handle multiple gc.relocates of the same input efficiently. 892 if (VirtRegs.count(SD)) 893 continue; 894 895 auto *RetTy = Relocate->getType(); 896 Register Reg = FuncInfo.CreateRegs(RetTy); 897 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 898 DAG.getDataLayout(), Reg, RetTy, std::nullopt); 899 SDValue Chain = DAG.getRoot(); 900 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 901 PendingExports.push_back(Chain); 902 903 VirtRegs[SD] = Reg; 904 } 905 906 // Record for later use how each relocation was lowered. This is needed to 907 // allow later gc.relocates to mirror the lowering chosen. 908 const Instruction *StatepointInstr = SI.StatepointInstr; 909 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 910 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 911 const Value *V = Relocate->getDerivedPtr(); 912 SDValue SDV = getValue(V); 913 SDValue Loc = StatepointLowering.getLocation(SDV); 914 915 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent()); 916 917 RecordType Record; 918 if (IsLocal && LowerAsVReg.count(SDV)) { 919 // Result is already stored in StatepointLowering 920 Record.type = RecordType::SDValueNode; 921 } else if (LowerAsVReg.count(SDV)) { 922 Record.type = RecordType::VReg; 923 assert(VirtRegs.count(SDV)); 924 Record.payload.Reg = VirtRegs[SDV]; 925 } else if (Loc.getNode()) { 926 Record.type = RecordType::Spill; 927 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 928 } else { 929 Record.type = RecordType::NoRelocate; 930 // If we didn't relocate a value, we'll essentialy end up inserting an 931 // additional use of the original value when lowering the gc.relocate. 932 // We need to make sure the value is available at the new use, which 933 // might be in another block. 934 if (Relocate->getParent() != StatepointInstr->getParent()) 935 ExportFromCurrentBlock(V); 936 } 937 RelocationMap[Relocate] = Record; 938 } 939 940 941 942 SDNode *SinkNode = StatepointMCNode; 943 944 // Build the GC_TRANSITION_END node if necessary. 945 // 946 // See the comment above regarding GC_TRANSITION_START for the layout of 947 // the operands to the GC_TRANSITION_END node. 948 if (IsGCTransition) { 949 SmallVector<SDValue, 8> TEOps; 950 951 // Add chain 952 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 953 954 // Add GC transition arguments 955 for (const Value *V : SI.GCTransitionArgs) { 956 TEOps.push_back(getValue(V)); 957 if (V->getType()->isPointerTy()) 958 TEOps.push_back(DAG.getSrcValue(V)); 959 } 960 961 // Add glue 962 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 963 964 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 965 966 SDValue GCTransitionStart = 967 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 968 969 SinkNode = GCTransitionStart.getNode(); 970 } 971 972 // Replace original call 973 // Call: ch,glue = CALL ... 974 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 975 unsigned NumSinkValues = SinkNode->getNumValues(); 976 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 977 SDValue(SinkNode, NumSinkValues - 1)}; 978 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 979 // Remove original call node 980 DAG.DeleteNode(CallNode); 981 982 // Since we always emit CopyToRegs (even for local relocates), we must 983 // update root, so that they are emitted before any local uses. 984 (void)getControlRoot(); 985 986 // TODO: A better future implementation would be to emit a single variable 987 // argument, variable return value STATEPOINT node here and then hookup the 988 // return value of each gc.relocate to the respective output of the 989 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 990 // to actually be possible today. 991 992 return ReturnVal; 993 } 994 995 /// Return two gc.results if present. First result is a block local 996 /// gc.result, second result is a non-block local gc.result. Corresponding 997 /// entry will be nullptr if not present. 998 static std::pair<const GCResultInst*, const GCResultInst*> 999 getGCResultLocality(const GCStatepointInst &S) { 1000 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr); 1001 for (const auto *U : S.users()) { 1002 auto *GRI = dyn_cast<GCResultInst>(U); 1003 if (!GRI) 1004 continue; 1005 if (GRI->getParent() == S.getParent()) 1006 Res.first = GRI; 1007 else 1008 Res.second = GRI; 1009 } 1010 return Res; 1011 } 1012 1013 void 1014 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 1015 const BasicBlock *EHPadBB /*= nullptr*/) { 1016 assert(I.getCallingConv() != CallingConv::AnyReg && 1017 "anyregcc is not supported on statepoints!"); 1018 1019 #ifndef NDEBUG 1020 // Check that the associated GCStrategy expects to encounter statepoints. 1021 assert(GFI->getStrategy().useStatepoints() && 1022 "GCStrategy does not expect to encounter statepoints"); 1023 #endif 1024 1025 SDValue ActualCallee; 1026 SDValue Callee = getValue(I.getActualCalledOperand()); 1027 1028 if (I.getNumPatchBytes() > 0) { 1029 // If we've been asked to emit a nop sequence instead of a call instruction 1030 // for this statepoint then don't lower the call target, but use a constant 1031 // `undef` instead. Not lowering the call target lets statepoint clients 1032 // get away without providing a physical address for the symbolic call 1033 // target at link time. 1034 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1035 } else { 1036 ActualCallee = Callee; 1037 } 1038 1039 const auto GCResultLocality = getGCResultLocality(I); 1040 AttributeSet retAttrs; 1041 if (GCResultLocality.first) 1042 retAttrs = GCResultLocality.first->getAttributes().getRetAttrs(); 1043 1044 StatepointLoweringInfo SI(DAG); 1045 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1046 I.getNumCallArgs(), ActualCallee, 1047 I.getActualReturnType(), retAttrs, 1048 /*IsPatchPoint=*/false); 1049 1050 // There may be duplication in the gc.relocate list; such as two copies of 1051 // each relocation on normal and exceptional path for an invoke. We only 1052 // need to spill once and record one copy in the stackmap, but we need to 1053 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1054 // handled as a CSE problem elsewhere.) 1055 // TODO: There a couple of major stackmap size optimizations we could do 1056 // here if we wished. 1057 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1058 // record {B,B} if it's seen later. 1059 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1060 // given that, we could change the format to record base pointer relocations 1061 // separately with half the space. This would require a format rev and a 1062 // fairly major rework of the STATEPOINT node though. 1063 SmallSet<SDValue, 8> Seen; 1064 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1065 SI.GCRelocates.push_back(Relocate); 1066 1067 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1068 if (Seen.insert(DerivedSD).second) { 1069 SI.Bases.push_back(Relocate->getBasePtr()); 1070 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1071 } 1072 } 1073 1074 // If we find a deopt value which isn't explicitly added, we need to 1075 // ensure it gets lowered such that gc cycles occurring before the 1076 // deoptimization event during the lifetime of the call don't invalidate 1077 // the pointer we're deopting with. Note that we assume that all 1078 // pointers passed to deopt are base pointers; relaxing that assumption 1079 // would require relatively large changes to how we represent relocations. 1080 for (Value *V : I.deopt_operands()) { 1081 if (!isGCValue(V, *this)) 1082 continue; 1083 if (Seen.insert(getValue(V)).second) { 1084 SI.Bases.push_back(V); 1085 SI.Ptrs.push_back(V); 1086 } 1087 } 1088 1089 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1090 SI.StatepointInstr = &I; 1091 SI.ID = I.getID(); 1092 1093 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1094 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1095 I.gc_transition_args_end()); 1096 1097 SI.StatepointFlags = I.getFlags(); 1098 SI.NumPatchBytes = I.getNumPatchBytes(); 1099 SI.EHPadBB = EHPadBB; 1100 1101 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1102 1103 // Export the result value if needed 1104 if (!GCResultLocality.first && !GCResultLocality.second) { 1105 // The return value is not needed, just generate a poison value. 1106 // Note: This covers the void return case. 1107 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1108 return; 1109 } 1110 1111 if (GCResultLocality.first) { 1112 // Result value will be used in a same basic block. Don't export it or 1113 // perform any explicit register copies. The gc_result will simply grab 1114 // this value. 1115 setValue(&I, ReturnValue); 1116 } 1117 1118 if (!GCResultLocality.second) 1119 return; 1120 // Result value will be used in a different basic block so we need to export 1121 // it now. Default exporting mechanism will not work here because statepoint 1122 // call has a different type than the actual call. It means that by default 1123 // llvm will create export register of the wrong type (always i32 in our 1124 // case). So instead we need to create export register with correct type 1125 // manually. 1126 // TODO: To eliminate this problem we can remove gc.result intrinsics 1127 // completely and make statepoint call to return a tuple. 1128 Type *RetTy = GCResultLocality.second->getType(); 1129 Register Reg = FuncInfo.CreateRegs(RetTy); 1130 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1131 DAG.getDataLayout(), Reg, RetTy, 1132 I.getCallingConv()); 1133 SDValue Chain = DAG.getEntryNode(); 1134 1135 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1136 PendingExports.push_back(Chain); 1137 FuncInfo.ValueMap[&I] = Reg; 1138 } 1139 1140 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1141 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1142 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1143 StatepointLoweringInfo SI(DAG); 1144 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1145 populateCallLoweringInfo( 1146 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee, 1147 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1148 Call->getAttributes().getRetAttrs(), /*IsPatchPoint=*/false); 1149 if (!VarArgDisallowed) 1150 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1151 1152 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1153 1154 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1155 1156 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1157 SI.ID = SD.StatepointID.value_or(DefaultID); 1158 SI.NumPatchBytes = SD.NumPatchBytes.value_or(0); 1159 1160 SI.DeoptState = 1161 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1162 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1163 SI.EHPadBB = EHPadBB; 1164 1165 // NB! The GC arguments are deliberately left empty. 1166 1167 LLVM_DEBUG(dbgs() << "Lowering call with deopt bundle " << *Call << "\n"); 1168 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1169 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1170 setValue(Call, ReturnVal); 1171 } 1172 } 1173 1174 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1175 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1176 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1177 /* VarArgDisallowed = */ false, 1178 /* ForceVoidReturnTy = */ false); 1179 } 1180 1181 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1182 // The result value of the gc_result is simply the result of the actual 1183 // call. We've already emitted this, so just grab the value. 1184 const Value *SI = CI.getStatepoint(); 1185 assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) && 1186 "GetStatepoint must return one of two types"); 1187 if (isa<UndefValue>(SI)) 1188 return; 1189 1190 if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) { 1191 setValue(&CI, getValue(SI)); 1192 return; 1193 } 1194 // Statepoint is in different basic block so we should have stored call 1195 // result in a virtual register. 1196 // We can not use default getValue() functionality to copy value from this 1197 // register because statepoint and actual call return types can be 1198 // different, and getValue() will use CopyFromReg of the wrong type, 1199 // which is always i32 in our case. 1200 Type *RetTy = CI.getType(); 1201 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1202 1203 assert(CopyFromReg.getNode()); 1204 setValue(&CI, CopyFromReg); 1205 } 1206 1207 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1208 const Value *Statepoint = Relocate.getStatepoint(); 1209 #ifndef NDEBUG 1210 // Consistency check 1211 // We skip this check for relocates not in the same basic block as their 1212 // statepoint. It would be too expensive to preserve validation info through 1213 // different basic blocks. 1214 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) && 1215 "GetStatepoint must return one of two types"); 1216 if (isa<UndefValue>(Statepoint)) 1217 return; 1218 1219 if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent()) 1220 StatepointLowering.relocCallVisited(Relocate); 1221 #endif 1222 1223 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1224 auto &RelocationMap = 1225 FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)]; 1226 auto SlotIt = RelocationMap.find(&Relocate); 1227 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1228 const RecordType &Record = SlotIt->second; 1229 1230 // If relocation was done via virtual register.. 1231 if (Record.type == RecordType::SDValueNode) { 1232 assert(cast<GCStatepointInst>(Statepoint)->getParent() == 1233 Relocate.getParent() && 1234 "Nonlocal gc.relocate mapped via SDValue"); 1235 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr)); 1236 assert(SDV.getNode() && "empty SDValue"); 1237 setValue(&Relocate, SDV); 1238 return; 1239 } 1240 if (Record.type == RecordType::VReg) { 1241 Register InReg = Record.payload.Reg; 1242 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1243 DAG.getDataLayout(), InReg, Relocate.getType(), 1244 std::nullopt); // This is not an ABI copy. 1245 // We generate copy to/from regs even for local uses, hence we must 1246 // chain with current root to ensure proper ordering of copies w.r.t. 1247 // statepoint. 1248 SDValue Chain = DAG.getRoot(); 1249 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1250 Chain, nullptr, nullptr); 1251 setValue(&Relocate, Relocation); 1252 return; 1253 } 1254 1255 if (Record.type == RecordType::Spill) { 1256 unsigned Index = Record.payload.FI; 1257 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1258 1259 // All the reloads are independent and are reading memory only modified by 1260 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1261 // this lets CSE kick in for free and allows reordering of 1262 // instructions if possible. The lowering for statepoint sets the root, 1263 // so this is ordering all reloads with the either 1264 // a) the statepoint node itself, or 1265 // b) the entry of the current block for an invoke statepoint. 1266 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1267 1268 auto &MF = DAG.getMachineFunction(); 1269 auto &MFI = MF.getFrameInfo(); 1270 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1271 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1272 MFI.getObjectSize(Index), 1273 MFI.getObjectAlign(Index)); 1274 1275 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1276 Relocate.getType()); 1277 1278 SDValue SpillLoad = 1279 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO); 1280 PendingLoads.push_back(SpillLoad.getValue(1)); 1281 1282 assert(SpillLoad.getNode()); 1283 setValue(&Relocate, SpillLoad); 1284 return; 1285 } 1286 1287 assert(Record.type == RecordType::NoRelocate); 1288 SDValue SD = getValue(DerivedPtr); 1289 1290 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1291 // Lowering relocate(undef) as arbitrary constant. Current constant value 1292 // is chosen such that it's unlikely to be a valid pointer. 1293 setValue(&Relocate, DAG.getConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1294 return; 1295 } 1296 1297 // We didn't need to spill these special cases (constants and allocas). 1298 // See the handling in spillIncomingValueForStatepoint for detail. 1299 setValue(&Relocate, SD); 1300 } 1301 1302 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1303 const auto &TLI = DAG.getTargetLoweringInfo(); 1304 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1305 TLI.getPointerTy(DAG.getDataLayout())); 1306 1307 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1308 // call. We also do not lower the return value to any virtual register, and 1309 // change the immediately following return to a trap instruction. 1310 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1311 /* VarArgDisallowed = */ true, 1312 /* ForceVoidReturnTy = */ true); 1313 } 1314 1315 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1316 // We do not lower the return value from llvm.deoptimize to any virtual 1317 // register, and change the immediately following return to a trap 1318 // instruction. 1319 if (DAG.getTarget().Options.TrapUnreachable) 1320 DAG.setRoot( 1321 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1322 } 1323