1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "RegAllocPriorityAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/CodeGen/CalcSpillWeights.h" 32 #include "llvm/CodeGen/EdgeBundles.h" 33 #include "llvm/CodeGen/LiveDebugVariables.h" 34 #include "llvm/CodeGen/LiveInterval.h" 35 #include "llvm/CodeGen/LiveIntervalUnion.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveRangeEdit.h" 38 #include "llvm/CodeGen/LiveRegMatrix.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineLoopInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/RegAllocRegistry.h" 52 #include "llvm/CodeGen/RegisterClassInfo.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/Spiller.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/CodeGen/VirtRegMap.h" 59 #include "llvm/IR/DebugInfoMetadata.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/InitializePasses.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/BlockFrequency.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "regalloc" 80 81 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 82 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 83 STATISTIC(NumEvicted, "Number of interferences evicted"); 84 85 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 86 "split-spill-mode", cl::Hidden, 87 cl::desc("Spill mode for splitting live ranges"), 88 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 89 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 90 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 91 cl::init(SplitEditor::SM_Speed)); 92 93 static cl::opt<unsigned> 94 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 95 cl::desc("Last chance recoloring max depth"), 96 cl::init(5)); 97 98 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 99 "lcr-max-interf", cl::Hidden, 100 cl::desc("Last chance recoloring maximum number of considered" 101 " interference at a time"), 102 cl::init(8)); 103 104 static cl::opt<bool> ExhaustiveSearch( 105 "exhaustive-register-search", cl::NotHidden, 106 cl::desc("Exhaustive Search for registers bypassing the depth " 107 "and interference cutoffs of last chance recoloring"), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableDeferredSpilling( 111 "enable-deferred-spilling", cl::Hidden, 112 cl::desc("Instead of spilling a variable right away, defer the actual " 113 "code insertion to the end of the allocation. That way the " 114 "allocator might still find a suitable coloring for this " 115 "variable because of other evicted variables."), 116 cl::init(false)); 117 118 // FIXME: Find a good default for this flag and remove the flag. 119 static cl::opt<unsigned> 120 CSRFirstTimeCost("regalloc-csr-first-time-cost", 121 cl::desc("Cost for first time use of callee-saved register."), 122 cl::init(0), cl::Hidden); 123 124 static cl::opt<unsigned long> GrowRegionComplexityBudget( 125 "grow-region-complexity-budget", 126 cl::desc("growRegion() does not scale with the number of BB edges, so " 127 "limit its budget and bail out once we reach the limit."), 128 cl::init(10000), cl::Hidden); 129 130 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 131 "greedy-regclass-priority-trumps-globalness", 132 cl::desc("Change the greedy register allocator's live range priority " 133 "calculation to make the AllocationPriority of the register class " 134 "more important then whether the range is global"), 135 cl::Hidden); 136 137 static cl::opt<bool> GreedyReverseLocalAssignment( 138 "greedy-reverse-local-assignment", 139 cl::desc("Reverse allocation order of local live ranges, such that " 140 "shorter local live ranges will tend to be allocated first"), 141 cl::Hidden); 142 143 static cl::opt<unsigned> SplitThresholdForRegWithHint( 144 "split-threshold-for-reg-with-hint", 145 cl::desc("The threshold for splitting a virtual register with a hint, in " 146 "percentate"), 147 cl::init(75), cl::Hidden); 148 149 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 150 createGreedyRegisterAllocator); 151 152 char RAGreedy::ID = 0; 153 char &llvm::RAGreedyID = RAGreedy::ID; 154 155 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 156 "Greedy Register Allocator", false, false) 157 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 158 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 159 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 160 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 161 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 162 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 163 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 165 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 166 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 167 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 168 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 169 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 170 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 171 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis) 172 INITIALIZE_PASS_END(RAGreedy, "greedy", 173 "Greedy Register Allocator", false, false) 174 175 #ifndef NDEBUG 176 const char *const RAGreedy::StageName[] = { 177 "RS_New", 178 "RS_Assign", 179 "RS_Split", 180 "RS_Split2", 181 "RS_Spill", 182 "RS_Memory", 183 "RS_Done" 184 }; 185 #endif 186 187 // Hysteresis to use when comparing floats. 188 // This helps stabilize decisions based on float comparisons. 189 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 190 191 FunctionPass* llvm::createGreedyRegisterAllocator() { 192 return new RAGreedy(); 193 } 194 195 FunctionPass *llvm::createGreedyRegisterAllocator(RegAllocFilterFunc Ftor) { 196 return new RAGreedy(Ftor); 197 } 198 199 RAGreedy::RAGreedy(RegAllocFilterFunc F) 200 : MachineFunctionPass(ID), RegAllocBase(F) {} 201 202 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 203 AU.setPreservesCFG(); 204 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 205 AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); 206 AU.addRequired<LiveIntervalsWrapperPass>(); 207 AU.addPreserved<LiveIntervalsWrapperPass>(); 208 AU.addRequired<SlotIndexesWrapperPass>(); 209 AU.addPreserved<SlotIndexesWrapperPass>(); 210 AU.addRequired<LiveDebugVariables>(); 211 AU.addPreserved<LiveDebugVariables>(); 212 AU.addRequired<LiveStacks>(); 213 AU.addPreserved<LiveStacks>(); 214 AU.addRequired<MachineDominatorTreeWrapperPass>(); 215 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 216 AU.addRequired<MachineLoopInfoWrapperPass>(); 217 AU.addPreserved<MachineLoopInfoWrapperPass>(); 218 AU.addRequired<VirtRegMap>(); 219 AU.addPreserved<VirtRegMap>(); 220 AU.addRequired<LiveRegMatrix>(); 221 AU.addPreserved<LiveRegMatrix>(); 222 AU.addRequired<EdgeBundles>(); 223 AU.addRequired<SpillPlacement>(); 224 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 225 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 226 AU.addRequired<RegAllocPriorityAdvisorAnalysis>(); 227 MachineFunctionPass::getAnalysisUsage(AU); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // LiveRangeEdit delegate methods 232 //===----------------------------------------------------------------------===// 233 234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 235 LiveInterval &LI = LIS->getInterval(VirtReg); 236 if (VRM->hasPhys(VirtReg)) { 237 Matrix->unassign(LI); 238 aboutToRemoveInterval(LI); 239 return true; 240 } 241 // Unassigned virtreg is probably in the priority queue. 242 // RegAllocBase will erase it after dequeueing. 243 // Nonetheless, clear the live-range so that the debug 244 // dump will show the right state for that VirtReg. 245 LI.clear(); 246 return false; 247 } 248 249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 250 if (!VRM->hasPhys(VirtReg)) 251 return; 252 253 // Register is assigned, put it back on the queue for reassignment. 254 LiveInterval &LI = LIS->getInterval(VirtReg); 255 Matrix->unassign(LI); 256 RegAllocBase::enqueue(&LI); 257 } 258 259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 260 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 261 } 262 263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 264 // Cloning a register we haven't even heard about yet? Just ignore it. 265 if (!Info.inBounds(Old)) 266 return; 267 268 // LRE may clone a virtual register because dead code elimination causes it to 269 // be split into connected components. The new components are much smaller 270 // than the original, so they should get a new chance at being assigned. 271 // same stage as the parent. 272 Info[Old].Stage = RS_Assign; 273 Info.grow(New.id()); 274 Info[New] = Info[Old]; 275 } 276 277 void RAGreedy::releaseMemory() { 278 SpillerInstance.reset(); 279 GlobalCand.clear(); 280 } 281 282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 283 284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 285 // Prioritize live ranges by size, assigning larger ranges first. 286 // The queue holds (size, reg) pairs. 287 const Register Reg = LI->reg(); 288 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 289 290 auto Stage = ExtraInfo->getOrInitStage(Reg); 291 if (Stage == RS_New) { 292 Stage = RS_Assign; 293 ExtraInfo->setStage(Reg, Stage); 294 } 295 296 unsigned Ret = PriorityAdvisor->getPriority(*LI); 297 298 // The virtual register number is a tie breaker for same-sized ranges. 299 // Give lower vreg numbers higher priority to assign them first. 300 CurQueue.push(std::make_pair(Ret, ~Reg)); 301 } 302 303 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const { 304 const unsigned Size = LI.getSize(); 305 const Register Reg = LI.reg(); 306 unsigned Prio; 307 LiveRangeStage Stage = RA.getExtraInfo().getStage(LI); 308 309 if (Stage == RS_Split) { 310 // Unsplit ranges that couldn't be allocated immediately are deferred until 311 // everything else has been allocated. 312 Prio = Size; 313 } else if (Stage == RS_Memory) { 314 // Memory operand should be considered last. 315 // Change the priority such that Memory operand are assigned in 316 // the reverse order that they came in. 317 // TODO: Make this a member variable and probably do something about hints. 318 static unsigned MemOp = 0; 319 Prio = MemOp++; 320 } else { 321 // Giant live ranges fall back to the global assignment heuristic, which 322 // prevents excessive spilling in pathological cases. 323 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 324 bool ForceGlobal = RC.GlobalPriority || 325 (!ReverseLocalAssignment && 326 (Size / SlotIndex::InstrDist) > 327 (2 * RegClassInfo.getNumAllocatableRegs(&RC))); 328 unsigned GlobalBit = 0; 329 330 if (Stage == RS_Assign && !ForceGlobal && !LI.empty() && 331 LIS->intervalIsInOneMBB(LI)) { 332 // Allocate original local ranges in linear instruction order. Since they 333 // are singly defined, this produces optimal coloring in the absence of 334 // global interference and other constraints. 335 if (!ReverseLocalAssignment) 336 Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex()); 337 else { 338 // Allocating bottom up may allow many short LRGs to be assigned first 339 // to one of the cheap registers. This could be much faster for very 340 // large blocks on targets with many physical registers. 341 Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex()); 342 } 343 } else { 344 // Allocate global and split ranges in long->short order. Long ranges that 345 // don't fit should be spilled (or split) ASAP so they don't create 346 // interference. Mark a bit to prioritize global above local ranges. 347 Prio = Size; 348 GlobalBit = 1; 349 } 350 351 // Priority bit layout: 352 // 31 RS_Assign priority 353 // 30 Preference priority 354 // if (RegClassPriorityTrumpsGlobalness) 355 // 29-25 AllocPriority 356 // 24 GlobalBit 357 // else 358 // 29 Global bit 359 // 28-24 AllocPriority 360 // 0-23 Size/Instr distance 361 362 // Clamp the size to fit with the priority masking scheme 363 Prio = std::min(Prio, (unsigned)maxUIntN(24)); 364 assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow"); 365 366 if (RegClassPriorityTrumpsGlobalness) 367 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 368 else 369 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 370 371 // Mark a higher bit to prioritize global and local above RS_Split. 372 Prio |= (1u << 31); 373 374 // Boost ranges that have a physical register hint. 375 if (VRM->hasKnownPreference(Reg)) 376 Prio |= (1u << 30); 377 } 378 379 return Prio; 380 } 381 382 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 383 384 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 385 if (CurQueue.empty()) 386 return nullptr; 387 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 388 CurQueue.pop(); 389 return LI; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // Direct Assignment 394 //===----------------------------------------------------------------------===// 395 396 /// tryAssign - Try to assign VirtReg to an available register. 397 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 398 AllocationOrder &Order, 399 SmallVectorImpl<Register> &NewVRegs, 400 const SmallVirtRegSet &FixedRegisters) { 401 MCRegister PhysReg; 402 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 403 assert(*I); 404 if (!Matrix->checkInterference(VirtReg, *I)) { 405 if (I.isHint()) 406 return *I; 407 else 408 PhysReg = *I; 409 } 410 } 411 if (!PhysReg.isValid()) 412 return PhysReg; 413 414 // PhysReg is available, but there may be a better choice. 415 416 // If we missed a simple hint, try to cheaply evict interference from the 417 // preferred register. 418 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 419 if (Order.isHint(Hint)) { 420 MCRegister PhysHint = Hint.asMCReg(); 421 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 422 423 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 424 FixedRegisters)) { 425 evictInterference(VirtReg, PhysHint, NewVRegs); 426 return PhysHint; 427 } 428 429 // We can also split the virtual register in cold blocks. 430 if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order)) 431 return 0; 432 433 // Record the missed hint, we may be able to recover 434 // at the end if the surrounding allocation changed. 435 SetOfBrokenHints.insert(&VirtReg); 436 } 437 438 // Try to evict interference from a cheaper alternative. 439 uint8_t Cost = RegCosts[PhysReg]; 440 441 // Most registers have 0 additional cost. 442 if (!Cost) 443 return PhysReg; 444 445 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 446 << (unsigned)Cost << '\n'); 447 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 448 return CheapReg ? CheapReg : PhysReg; 449 } 450 451 //===----------------------------------------------------------------------===// 452 // Interference eviction 453 //===----------------------------------------------------------------------===// 454 455 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 456 MCRegister FromReg) const { 457 auto HasRegUnitInterference = [&](MCRegUnit Unit) { 458 // Instantiate a "subquery", not to be confused with the Queries array. 459 LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]); 460 return SubQ.checkInterference(); 461 }; 462 463 for (MCRegister Reg : 464 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) { 465 if (Reg == FromReg) 466 continue; 467 // If no units have interference, reassignment is possible. 468 if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) { 469 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 470 << printReg(FromReg, TRI) << " to " 471 << printReg(Reg, TRI) << '\n'); 472 return true; 473 } 474 } 475 return false; 476 } 477 478 /// evictInterference - Evict any interferring registers that prevent VirtReg 479 /// from being assigned to Physreg. This assumes that canEvictInterference 480 /// returned true. 481 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 482 MCRegister PhysReg, 483 SmallVectorImpl<Register> &NewVRegs) { 484 // Make sure that VirtReg has a cascade number, and assign that cascade 485 // number to every evicted register. These live ranges than then only be 486 // evicted by a newer cascade, preventing infinite loops. 487 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 488 489 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 490 << " interference: Cascade " << Cascade << '\n'); 491 492 // Collect all interfering virtregs first. 493 SmallVector<const LiveInterval *, 8> Intfs; 494 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 495 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); 496 // We usually have the interfering VRegs cached so collectInterferingVRegs() 497 // should be fast, we may need to recalculate if when different physregs 498 // overlap the same register unit so we had different SubRanges queried 499 // against it. 500 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 501 Intfs.append(IVR.begin(), IVR.end()); 502 } 503 504 // Evict them second. This will invalidate the queries. 505 for (const LiveInterval *Intf : Intfs) { 506 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 507 if (!VRM->hasPhys(Intf->reg())) 508 continue; 509 510 Matrix->unassign(*Intf); 511 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 512 VirtReg.isSpillable() < Intf->isSpillable()) && 513 "Cannot decrease cascade number, illegal eviction"); 514 ExtraInfo->setCascade(Intf->reg(), Cascade); 515 ++NumEvicted; 516 NewVRegs.push_back(Intf->reg()); 517 } 518 } 519 520 /// Returns true if the given \p PhysReg is a callee saved register and has not 521 /// been used for allocation yet. 522 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 523 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 524 if (!CSR) 525 return false; 526 527 return !Matrix->isPhysRegUsed(PhysReg); 528 } 529 530 std::optional<unsigned> 531 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 532 const AllocationOrder &Order, 533 unsigned CostPerUseLimit) const { 534 unsigned OrderLimit = Order.getOrder().size(); 535 536 if (CostPerUseLimit < uint8_t(~0u)) { 537 // Check of any registers in RC are below CostPerUseLimit. 538 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 539 uint8_t MinCost = RegClassInfo.getMinCost(RC); 540 if (MinCost >= CostPerUseLimit) { 541 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 542 << MinCost << ", no cheaper registers to be found.\n"); 543 return std::nullopt; 544 } 545 546 // It is normal for register classes to have a long tail of registers with 547 // the same cost. We don't need to look at them if they're too expensive. 548 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 549 OrderLimit = RegClassInfo.getLastCostChange(RC); 550 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 551 << " regs.\n"); 552 } 553 } 554 return OrderLimit; 555 } 556 557 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 558 MCRegister PhysReg) const { 559 if (RegCosts[PhysReg] >= CostPerUseLimit) 560 return false; 561 // The first use of a callee-saved register in a function has cost 1. 562 // Don't start using a CSR when the CostPerUseLimit is low. 563 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 564 LLVM_DEBUG( 565 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 566 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 567 << '\n'); 568 return false; 569 } 570 return true; 571 } 572 573 /// tryEvict - Try to evict all interferences for a physreg. 574 /// @param VirtReg Currently unassigned virtual register. 575 /// @param Order Physregs to try. 576 /// @return Physreg to assign VirtReg, or 0. 577 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 578 AllocationOrder &Order, 579 SmallVectorImpl<Register> &NewVRegs, 580 uint8_t CostPerUseLimit, 581 const SmallVirtRegSet &FixedRegisters) { 582 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 583 TimePassesIsEnabled); 584 585 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 586 VirtReg, Order, CostPerUseLimit, FixedRegisters); 587 if (BestPhys.isValid()) 588 evictInterference(VirtReg, BestPhys, NewVRegs); 589 return BestPhys; 590 } 591 592 //===----------------------------------------------------------------------===// 593 // Region Splitting 594 //===----------------------------------------------------------------------===// 595 596 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 597 /// interference pattern in Physreg and its aliases. Add the constraints to 598 /// SpillPlacement and return the static cost of this split in Cost, assuming 599 /// that all preferences in SplitConstraints are met. 600 /// Return false if there are no bundles with positive bias. 601 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 602 BlockFrequency &Cost) { 603 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 604 605 // Reset interference dependent info. 606 SplitConstraints.resize(UseBlocks.size()); 607 BlockFrequency StaticCost = BlockFrequency(0); 608 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 609 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 610 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 611 612 BC.Number = BI.MBB->getNumber(); 613 Intf.moveToBlock(BC.Number); 614 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 615 BC.Exit = (BI.LiveOut && 616 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 617 ? SpillPlacement::PrefReg 618 : SpillPlacement::DontCare; 619 BC.ChangesValue = BI.FirstDef.isValid(); 620 621 if (!Intf.hasInterference()) 622 continue; 623 624 // Number of spill code instructions to insert. 625 unsigned Ins = 0; 626 627 // Interference for the live-in value. 628 if (BI.LiveIn) { 629 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 630 BC.Entry = SpillPlacement::MustSpill; 631 ++Ins; 632 } else if (Intf.first() < BI.FirstInstr) { 633 BC.Entry = SpillPlacement::PrefSpill; 634 ++Ins; 635 } else if (Intf.first() < BI.LastInstr) { 636 ++Ins; 637 } 638 639 // Abort if the spill cannot be inserted at the MBB' start 640 if (((BC.Entry == SpillPlacement::MustSpill) || 641 (BC.Entry == SpillPlacement::PrefSpill)) && 642 SlotIndex::isEarlierInstr(BI.FirstInstr, 643 SA->getFirstSplitPoint(BC.Number))) 644 return false; 645 } 646 647 // Interference for the live-out value. 648 if (BI.LiveOut) { 649 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 650 BC.Exit = SpillPlacement::MustSpill; 651 ++Ins; 652 } else if (Intf.last() > BI.LastInstr) { 653 BC.Exit = SpillPlacement::PrefSpill; 654 ++Ins; 655 } else if (Intf.last() > BI.FirstInstr) { 656 ++Ins; 657 } 658 } 659 660 // Accumulate the total frequency of inserted spill code. 661 while (Ins--) 662 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 663 } 664 Cost = StaticCost; 665 666 // Add constraints for use-blocks. Note that these are the only constraints 667 // that may add a positive bias, it is downhill from here. 668 SpillPlacer->addConstraints(SplitConstraints); 669 return SpillPlacer->scanActiveBundles(); 670 } 671 672 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 673 /// live-through blocks in Blocks. 674 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 675 ArrayRef<unsigned> Blocks) { 676 const unsigned GroupSize = 8; 677 SpillPlacement::BlockConstraint BCS[GroupSize]; 678 unsigned TBS[GroupSize]; 679 unsigned B = 0, T = 0; 680 681 for (unsigned Number : Blocks) { 682 Intf.moveToBlock(Number); 683 684 if (!Intf.hasInterference()) { 685 assert(T < GroupSize && "Array overflow"); 686 TBS[T] = Number; 687 if (++T == GroupSize) { 688 SpillPlacer->addLinks(ArrayRef(TBS, T)); 689 T = 0; 690 } 691 continue; 692 } 693 694 assert(B < GroupSize && "Array overflow"); 695 BCS[B].Number = Number; 696 697 // Abort if the spill cannot be inserted at the MBB' start 698 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 699 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 700 if (FirstNonDebugInstr != MBB->end() && 701 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 702 SA->getFirstSplitPoint(Number))) 703 return false; 704 // Interference for the live-in value. 705 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 706 BCS[B].Entry = SpillPlacement::MustSpill; 707 else 708 BCS[B].Entry = SpillPlacement::PrefSpill; 709 710 // Interference for the live-out value. 711 if (Intf.last() >= SA->getLastSplitPoint(Number)) 712 BCS[B].Exit = SpillPlacement::MustSpill; 713 else 714 BCS[B].Exit = SpillPlacement::PrefSpill; 715 716 if (++B == GroupSize) { 717 SpillPlacer->addConstraints(ArrayRef(BCS, B)); 718 B = 0; 719 } 720 } 721 722 SpillPlacer->addConstraints(ArrayRef(BCS, B)); 723 SpillPlacer->addLinks(ArrayRef(TBS, T)); 724 return true; 725 } 726 727 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 728 // Keep track of through blocks that have not been added to SpillPlacer. 729 BitVector Todo = SA->getThroughBlocks(); 730 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 731 unsigned AddedTo = 0; 732 #ifndef NDEBUG 733 unsigned Visited = 0; 734 #endif 735 736 unsigned long Budget = GrowRegionComplexityBudget; 737 while (true) { 738 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 739 // Find new through blocks in the periphery of PrefRegBundles. 740 for (unsigned Bundle : NewBundles) { 741 // Look at all blocks connected to Bundle in the full graph. 742 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 743 // Limit compilation time by bailing out after we use all our budget. 744 if (Blocks.size() >= Budget) 745 return false; 746 Budget -= Blocks.size(); 747 for (unsigned Block : Blocks) { 748 if (!Todo.test(Block)) 749 continue; 750 Todo.reset(Block); 751 // This is a new through block. Add it to SpillPlacer later. 752 ActiveBlocks.push_back(Block); 753 #ifndef NDEBUG 754 ++Visited; 755 #endif 756 } 757 } 758 // Any new blocks to add? 759 if (ActiveBlocks.size() == AddedTo) 760 break; 761 762 // Compute through constraints from the interference, or assume that all 763 // through blocks prefer spilling when forming compact regions. 764 auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo); 765 if (Cand.PhysReg) { 766 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 767 return false; 768 } else { 769 // Providing that the variable being spilled does not look like a loop 770 // induction variable, which is expensive to spill around and better 771 // pushed into a condition inside the loop if possible, provide a strong 772 // negative bias on through blocks to prevent unwanted liveness on loop 773 // backedges. 774 bool PrefSpill = true; 775 if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) { 776 // Check that the current bundle is adding a Header + start+end of 777 // loop-internal blocks. If the block is indeed a header, don't make 778 // the NewBlocks as PrefSpill to allow the variable to be live in 779 // Header<->Latch. 780 MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0])); 781 if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] && 782 all_of(NewBlocks.drop_front(), [&](unsigned Block) { 783 return L == Loops->getLoopFor(MF->getBlockNumbered(Block)); 784 })) 785 PrefSpill = false; 786 } 787 if (PrefSpill) 788 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 789 } 790 AddedTo = ActiveBlocks.size(); 791 792 // Perhaps iterating can enable more bundles? 793 SpillPlacer->iterate(); 794 } 795 LLVM_DEBUG(dbgs() << ", v=" << Visited); 796 return true; 797 } 798 799 /// calcCompactRegion - Compute the set of edge bundles that should be live 800 /// when splitting the current live range into compact regions. Compact 801 /// regions can be computed without looking at interference. They are the 802 /// regions formed by removing all the live-through blocks from the live range. 803 /// 804 /// Returns false if the current live range is already compact, or if the 805 /// compact regions would form single block regions anyway. 806 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 807 // Without any through blocks, the live range is already compact. 808 if (!SA->getNumThroughBlocks()) 809 return false; 810 811 // Compact regions don't correspond to any physreg. 812 Cand.reset(IntfCache, MCRegister::NoRegister); 813 814 LLVM_DEBUG(dbgs() << "Compact region bundles"); 815 816 // Use the spill placer to determine the live bundles. GrowRegion pretends 817 // that all the through blocks have interference when PhysReg is unset. 818 SpillPlacer->prepare(Cand.LiveBundles); 819 820 // The static split cost will be zero since Cand.Intf reports no interference. 821 BlockFrequency Cost; 822 if (!addSplitConstraints(Cand.Intf, Cost)) { 823 LLVM_DEBUG(dbgs() << ", none.\n"); 824 return false; 825 } 826 827 if (!growRegion(Cand)) { 828 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 829 return false; 830 } 831 832 SpillPlacer->finish(); 833 834 if (!Cand.LiveBundles.any()) { 835 LLVM_DEBUG(dbgs() << ", none.\n"); 836 return false; 837 } 838 839 LLVM_DEBUG({ 840 for (int I : Cand.LiveBundles.set_bits()) 841 dbgs() << " EB#" << I; 842 dbgs() << ".\n"; 843 }); 844 return true; 845 } 846 847 /// calcSpillCost - Compute how expensive it would be to split the live range in 848 /// SA around all use blocks instead of forming bundle regions. 849 BlockFrequency RAGreedy::calcSpillCost() { 850 BlockFrequency Cost = BlockFrequency(0); 851 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 852 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 853 unsigned Number = BI.MBB->getNumber(); 854 // We normally only need one spill instruction - a load or a store. 855 Cost += SpillPlacer->getBlockFrequency(Number); 856 857 // Unless the value is redefined in the block. 858 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 859 Cost += SpillPlacer->getBlockFrequency(Number); 860 } 861 return Cost; 862 } 863 864 /// calcGlobalSplitCost - Return the global split cost of following the split 865 /// pattern in LiveBundles. This cost should be added to the local cost of the 866 /// interference pattern in SplitConstraints. 867 /// 868 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 869 const AllocationOrder &Order) { 870 BlockFrequency GlobalCost = BlockFrequency(0); 871 const BitVector &LiveBundles = Cand.LiveBundles; 872 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 873 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 874 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 875 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 876 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 877 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 878 unsigned Ins = 0; 879 880 Cand.Intf.moveToBlock(BC.Number); 881 882 if (BI.LiveIn) 883 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 884 if (BI.LiveOut) 885 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 886 while (Ins--) 887 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 888 } 889 890 for (unsigned Number : Cand.ActiveBlocks) { 891 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 892 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 893 if (!RegIn && !RegOut) 894 continue; 895 if (RegIn && RegOut) { 896 // We need double spill code if this block has interference. 897 Cand.Intf.moveToBlock(Number); 898 if (Cand.Intf.hasInterference()) { 899 GlobalCost += SpillPlacer->getBlockFrequency(Number); 900 GlobalCost += SpillPlacer->getBlockFrequency(Number); 901 } 902 continue; 903 } 904 // live-in / stack-out or stack-in live-out. 905 GlobalCost += SpillPlacer->getBlockFrequency(Number); 906 } 907 return GlobalCost; 908 } 909 910 /// splitAroundRegion - Split the current live range around the regions 911 /// determined by BundleCand and GlobalCand. 912 /// 913 /// Before calling this function, GlobalCand and BundleCand must be initialized 914 /// so each bundle is assigned to a valid candidate, or NoCand for the 915 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 916 /// objects must be initialized for the current live range, and intervals 917 /// created for the used candidates. 918 /// 919 /// @param LREdit The LiveRangeEdit object handling the current split. 920 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 921 /// must appear in this list. 922 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 923 ArrayRef<unsigned> UsedCands) { 924 // These are the intervals created for new global ranges. We may create more 925 // intervals for local ranges. 926 const unsigned NumGlobalIntvs = LREdit.size(); 927 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 928 << " globals.\n"); 929 assert(NumGlobalIntvs && "No global intervals configured"); 930 931 // Isolate even single instructions when dealing with a proper sub-class. 932 // That guarantees register class inflation for the stack interval because it 933 // is all copies. 934 Register Reg = SA->getParent().reg(); 935 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 936 937 // First handle all the blocks with uses. 938 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 939 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 940 unsigned Number = BI.MBB->getNumber(); 941 unsigned IntvIn = 0, IntvOut = 0; 942 SlotIndex IntfIn, IntfOut; 943 if (BI.LiveIn) { 944 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 945 if (CandIn != NoCand) { 946 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 947 IntvIn = Cand.IntvIdx; 948 Cand.Intf.moveToBlock(Number); 949 IntfIn = Cand.Intf.first(); 950 } 951 } 952 if (BI.LiveOut) { 953 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 954 if (CandOut != NoCand) { 955 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 956 IntvOut = Cand.IntvIdx; 957 Cand.Intf.moveToBlock(Number); 958 IntfOut = Cand.Intf.last(); 959 } 960 } 961 962 // Create separate intervals for isolated blocks with multiple uses. 963 if (!IntvIn && !IntvOut) { 964 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 965 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 966 SE->splitSingleBlock(BI); 967 continue; 968 } 969 970 if (IntvIn && IntvOut) 971 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 972 else if (IntvIn) 973 SE->splitRegInBlock(BI, IntvIn, IntfIn); 974 else 975 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 976 } 977 978 // Handle live-through blocks. The relevant live-through blocks are stored in 979 // the ActiveBlocks list with each candidate. We need to filter out 980 // duplicates. 981 BitVector Todo = SA->getThroughBlocks(); 982 for (unsigned UsedCand : UsedCands) { 983 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 984 for (unsigned Number : Blocks) { 985 if (!Todo.test(Number)) 986 continue; 987 Todo.reset(Number); 988 989 unsigned IntvIn = 0, IntvOut = 0; 990 SlotIndex IntfIn, IntfOut; 991 992 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 993 if (CandIn != NoCand) { 994 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 995 IntvIn = Cand.IntvIdx; 996 Cand.Intf.moveToBlock(Number); 997 IntfIn = Cand.Intf.first(); 998 } 999 1000 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1001 if (CandOut != NoCand) { 1002 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1003 IntvOut = Cand.IntvIdx; 1004 Cand.Intf.moveToBlock(Number); 1005 IntfOut = Cand.Intf.last(); 1006 } 1007 if (!IntvIn && !IntvOut) 1008 continue; 1009 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1010 } 1011 } 1012 1013 ++NumGlobalSplits; 1014 1015 SmallVector<unsigned, 8> IntvMap; 1016 SE->finish(&IntvMap); 1017 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1018 1019 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1020 1021 // Sort out the new intervals created by splitting. We get four kinds: 1022 // - Remainder intervals should not be split again. 1023 // - Candidate intervals can be assigned to Cand.PhysReg. 1024 // - Block-local splits are candidates for local splitting. 1025 // - DCE leftovers should go back on the queue. 1026 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1027 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1028 1029 // Ignore old intervals from DCE. 1030 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1031 continue; 1032 1033 // Remainder interval. Don't try splitting again, spill if it doesn't 1034 // allocate. 1035 if (IntvMap[I] == 0) { 1036 ExtraInfo->setStage(Reg, RS_Spill); 1037 continue; 1038 } 1039 1040 // Global intervals. Allow repeated splitting as long as the number of live 1041 // blocks is strictly decreasing. 1042 if (IntvMap[I] < NumGlobalIntvs) { 1043 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1044 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1045 << " blocks as original.\n"); 1046 // Don't allow repeated splitting as a safe guard against looping. 1047 ExtraInfo->setStage(Reg, RS_Split2); 1048 } 1049 continue; 1050 } 1051 1052 // Other intervals are treated as new. This includes local intervals created 1053 // for blocks with multiple uses, and anything created by DCE. 1054 } 1055 1056 if (VerifyEnabled) 1057 MF->verify(this, "After splitting live range around region"); 1058 } 1059 1060 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1061 AllocationOrder &Order, 1062 SmallVectorImpl<Register> &NewVRegs) { 1063 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1064 return MCRegister::NoRegister; 1065 unsigned NumCands = 0; 1066 BlockFrequency SpillCost = calcSpillCost(); 1067 BlockFrequency BestCost; 1068 1069 // Check if we can split this live range around a compact region. 1070 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1071 if (HasCompact) { 1072 // Yes, keep GlobalCand[0] as the compact region candidate. 1073 NumCands = 1; 1074 BestCost = BlockFrequency::max(); 1075 } else { 1076 // No benefit from the compact region, our fallback will be per-block 1077 // splitting. Make sure we find a solution that is cheaper than spilling. 1078 BestCost = SpillCost; 1079 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = " 1080 << printBlockFreq(*MBFI, BestCost) << '\n'); 1081 } 1082 1083 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1084 NumCands, false /*IgnoreCSR*/); 1085 1086 // No solutions found, fall back to single block splitting. 1087 if (!HasCompact && BestCand == NoCand) 1088 return MCRegister::NoRegister; 1089 1090 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1091 } 1092 1093 unsigned 1094 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg, 1095 AllocationOrder &Order, 1096 BlockFrequency &BestCost, 1097 unsigned &NumCands, 1098 unsigned &BestCand) { 1099 // Discard bad candidates before we run out of interference cache cursors. 1100 // This will only affect register classes with a lot of registers (>32). 1101 if (NumCands == IntfCache.getMaxCursors()) { 1102 unsigned WorstCount = ~0u; 1103 unsigned Worst = 0; 1104 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1105 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1106 continue; 1107 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1108 if (Count < WorstCount) { 1109 Worst = CandIndex; 1110 WorstCount = Count; 1111 } 1112 } 1113 --NumCands; 1114 GlobalCand[Worst] = GlobalCand[NumCands]; 1115 if (BestCand == NumCands) 1116 BestCand = Worst; 1117 } 1118 1119 if (GlobalCand.size() <= NumCands) 1120 GlobalCand.resize(NumCands+1); 1121 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1122 Cand.reset(IntfCache, PhysReg); 1123 1124 SpillPlacer->prepare(Cand.LiveBundles); 1125 BlockFrequency Cost; 1126 if (!addSplitConstraints(Cand.Intf, Cost)) { 1127 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1128 return BestCand; 1129 } 1130 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 1131 << "\tstatic = " << printBlockFreq(*MBFI, Cost)); 1132 if (Cost >= BestCost) { 1133 LLVM_DEBUG({ 1134 if (BestCand == NoCand) 1135 dbgs() << " worse than no bundles\n"; 1136 else 1137 dbgs() << " worse than " 1138 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1139 }); 1140 return BestCand; 1141 } 1142 if (!growRegion(Cand)) { 1143 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1144 return BestCand; 1145 } 1146 1147 SpillPlacer->finish(); 1148 1149 // No live bundles, defer to splitSingleBlocks(). 1150 if (!Cand.LiveBundles.any()) { 1151 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1152 return BestCand; 1153 } 1154 1155 Cost += calcGlobalSplitCost(Cand, Order); 1156 LLVM_DEBUG({ 1157 dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles"; 1158 for (int I : Cand.LiveBundles.set_bits()) 1159 dbgs() << " EB#" << I; 1160 dbgs() << ".\n"; 1161 }); 1162 if (Cost < BestCost) { 1163 BestCand = NumCands; 1164 BestCost = Cost; 1165 } 1166 ++NumCands; 1167 1168 return BestCand; 1169 } 1170 1171 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1172 AllocationOrder &Order, 1173 BlockFrequency &BestCost, 1174 unsigned &NumCands, 1175 bool IgnoreCSR) { 1176 unsigned BestCand = NoCand; 1177 for (MCPhysReg PhysReg : Order) { 1178 assert(PhysReg); 1179 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1180 continue; 1181 1182 calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands, 1183 BestCand); 1184 } 1185 1186 return BestCand; 1187 } 1188 1189 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1190 bool HasCompact, 1191 SmallVectorImpl<Register> &NewVRegs) { 1192 SmallVector<unsigned, 8> UsedCands; 1193 // Prepare split editor. 1194 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1195 SE->reset(LREdit, SplitSpillMode); 1196 1197 // Assign all edge bundles to the preferred candidate, or NoCand. 1198 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1199 1200 // Assign bundles for the best candidate region. 1201 if (BestCand != NoCand) { 1202 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1203 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1204 UsedCands.push_back(BestCand); 1205 Cand.IntvIdx = SE->openIntv(); 1206 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1207 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1208 (void)B; 1209 } 1210 } 1211 1212 // Assign bundles for the compact region. 1213 if (HasCompact) { 1214 GlobalSplitCandidate &Cand = GlobalCand.front(); 1215 assert(!Cand.PhysReg && "Compact region has no physreg"); 1216 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1217 UsedCands.push_back(0); 1218 Cand.IntvIdx = SE->openIntv(); 1219 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1220 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1221 (void)B; 1222 } 1223 } 1224 1225 splitAroundRegion(LREdit, UsedCands); 1226 return 0; 1227 } 1228 1229 // VirtReg has a physical Hint, this function tries to split VirtReg around 1230 // Hint if we can place new COPY instructions in cold blocks. 1231 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint, 1232 const LiveInterval &VirtReg, 1233 SmallVectorImpl<Register> &NewVRegs, 1234 AllocationOrder &Order) { 1235 // Split the VirtReg may generate COPY instructions in multiple cold basic 1236 // blocks, and increase code size. So we avoid it when the function is 1237 // optimized for size. 1238 if (MF->getFunction().hasOptSize()) 1239 return false; 1240 1241 // Don't allow repeated splitting as a safe guard against looping. 1242 if (ExtraInfo->getStage(VirtReg) >= RS_Split2) 1243 return false; 1244 1245 BlockFrequency Cost = BlockFrequency(0); 1246 Register Reg = VirtReg.reg(); 1247 1248 // Compute the cost of assigning a non Hint physical register to VirtReg. 1249 // We define it as the total frequency of broken COPY instructions to/from 1250 // Hint register, and after split, they can be deleted. 1251 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 1252 if (!TII->isFullCopyInstr(Instr)) 1253 continue; 1254 Register OtherReg = Instr.getOperand(1).getReg(); 1255 if (OtherReg == Reg) { 1256 OtherReg = Instr.getOperand(0).getReg(); 1257 if (OtherReg == Reg) 1258 continue; 1259 // Check if VirtReg interferes with OtherReg after this COPY instruction. 1260 if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot())) 1261 continue; 1262 } 1263 MCRegister OtherPhysReg = 1264 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 1265 if (OtherPhysReg == Hint) 1266 Cost += MBFI->getBlockFreq(Instr.getParent()); 1267 } 1268 1269 // Decrease the cost so it will be split in colder blocks. 1270 BranchProbability Threshold(SplitThresholdForRegWithHint, 100); 1271 Cost *= Threshold; 1272 if (Cost == BlockFrequency(0)) 1273 return false; 1274 1275 unsigned NumCands = 0; 1276 unsigned BestCand = NoCand; 1277 SA->analyze(&VirtReg); 1278 calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand); 1279 if (BestCand == NoCand) 1280 return false; 1281 1282 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 1283 return true; 1284 } 1285 1286 //===----------------------------------------------------------------------===// 1287 // Per-Block Splitting 1288 //===----------------------------------------------------------------------===// 1289 1290 /// tryBlockSplit - Split a global live range around every block with uses. This 1291 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1292 /// they don't allocate. 1293 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1294 AllocationOrder &Order, 1295 SmallVectorImpl<Register> &NewVRegs) { 1296 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1297 Register Reg = VirtReg.reg(); 1298 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1299 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1300 SE->reset(LREdit, SplitSpillMode); 1301 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1302 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1303 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1304 SE->splitSingleBlock(BI); 1305 } 1306 // No blocks were split. 1307 if (LREdit.empty()) 1308 return 0; 1309 1310 // We did split for some blocks. 1311 SmallVector<unsigned, 8> IntvMap; 1312 SE->finish(&IntvMap); 1313 1314 // Tell LiveDebugVariables about the new ranges. 1315 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1316 1317 // Sort out the new intervals created by splitting. The remainder interval 1318 // goes straight to spilling, the new local ranges get to stay RS_New. 1319 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1320 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1321 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1322 ExtraInfo->setStage(LI, RS_Spill); 1323 } 1324 1325 if (VerifyEnabled) 1326 MF->verify(this, "After splitting live range around basic blocks"); 1327 return 0; 1328 } 1329 1330 //===----------------------------------------------------------------------===// 1331 // Per-Instruction Splitting 1332 //===----------------------------------------------------------------------===// 1333 1334 /// Get the number of allocatable registers that match the constraints of \p Reg 1335 /// on \p MI and that are also in \p SuperRC. 1336 static unsigned getNumAllocatableRegsForConstraints( 1337 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1338 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1339 const RegisterClassInfo &RCI) { 1340 assert(SuperRC && "Invalid register class"); 1341 1342 const TargetRegisterClass *ConstrainedRC = 1343 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1344 /* ExploreBundle */ true); 1345 if (!ConstrainedRC) 1346 return 0; 1347 return RCI.getNumAllocatableRegs(ConstrainedRC); 1348 } 1349 1350 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI, 1351 const TargetRegisterInfo &TRI, 1352 const MachineInstr &FirstMI, 1353 Register Reg) { 1354 LaneBitmask Mask; 1355 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 1356 (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops); 1357 1358 for (auto [MI, OpIdx] : Ops) { 1359 const MachineOperand &MO = MI->getOperand(OpIdx); 1360 assert(MO.isReg() && MO.getReg() == Reg); 1361 unsigned SubReg = MO.getSubReg(); 1362 if (SubReg == 0 && MO.isUse()) { 1363 if (MO.isUndef()) 1364 continue; 1365 return MRI.getMaxLaneMaskForVReg(Reg); 1366 } 1367 1368 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg); 1369 if (MO.isDef()) { 1370 if (!MO.isUndef()) 1371 Mask |= ~SubRegMask; 1372 } else 1373 Mask |= SubRegMask; 1374 } 1375 1376 return Mask; 1377 } 1378 1379 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p 1380 /// VirtReg. 1381 static bool readsLaneSubset(const MachineRegisterInfo &MRI, 1382 const MachineInstr *MI, const LiveInterval &VirtReg, 1383 const TargetRegisterInfo *TRI, SlotIndex Use, 1384 const TargetInstrInfo *TII) { 1385 // Early check the common case. Beware of the semi-formed bundles SplitKit 1386 // creates by setting the bundle flag on copies without a matching BUNDLE. 1387 1388 auto DestSrc = TII->isCopyInstr(*MI); 1389 if (DestSrc && !MI->isBundled() && 1390 DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg()) 1391 return false; 1392 1393 // FIXME: We're only considering uses, but should be consider defs too? 1394 LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg()); 1395 1396 LaneBitmask LiveAtMask; 1397 for (const LiveInterval::SubRange &S : VirtReg.subranges()) { 1398 if (S.liveAt(Use)) 1399 LiveAtMask |= S.LaneMask; 1400 } 1401 1402 // If the live lanes aren't different from the lanes used by the instruction, 1403 // this doesn't help. 1404 return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any(); 1405 } 1406 1407 /// tryInstructionSplit - Split a live range around individual instructions. 1408 /// This is normally not worthwhile since the spiller is doing essentially the 1409 /// same thing. However, when the live range is in a constrained register 1410 /// class, it may help to insert copies such that parts of the live range can 1411 /// be moved to a larger register class. 1412 /// 1413 /// This is similar to spilling to a larger register class. 1414 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1415 AllocationOrder &Order, 1416 SmallVectorImpl<Register> &NewVRegs) { 1417 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1418 // There is no point to this if there are no larger sub-classes. 1419 1420 bool SplitSubClass = true; 1421 if (!RegClassInfo.isProperSubClass(CurRC)) { 1422 if (!VirtReg.hasSubRanges()) 1423 return 0; 1424 SplitSubClass = false; 1425 } 1426 1427 // Always enable split spill mode, since we're effectively spilling to a 1428 // register. 1429 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1430 SE->reset(LREdit, SplitEditor::SM_Size); 1431 1432 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1433 if (Uses.size() <= 1) 1434 return 0; 1435 1436 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1437 << " individual instrs.\n"); 1438 1439 const TargetRegisterClass *SuperRC = 1440 TRI->getLargestLegalSuperClass(CurRC, *MF); 1441 unsigned SuperRCNumAllocatableRegs = 1442 RegClassInfo.getNumAllocatableRegs(SuperRC); 1443 // Split around every non-copy instruction if this split will relax 1444 // the constraints on the virtual register. 1445 // Otherwise, splitting just inserts uncoalescable copies that do not help 1446 // the allocation. 1447 for (const SlotIndex Use : Uses) { 1448 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) { 1449 if (TII->isFullCopyInstr(*MI) || 1450 (SplitSubClass && 1451 SuperRCNumAllocatableRegs == 1452 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1453 TII, TRI, RegClassInfo)) || 1454 // TODO: Handle split for subranges with subclass constraints? 1455 (!SplitSubClass && VirtReg.hasSubRanges() && 1456 !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) { 1457 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1458 continue; 1459 } 1460 } 1461 SE->openIntv(); 1462 SlotIndex SegStart = SE->enterIntvBefore(Use); 1463 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1464 SE->useIntv(SegStart, SegStop); 1465 } 1466 1467 if (LREdit.empty()) { 1468 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1469 return 0; 1470 } 1471 1472 SmallVector<unsigned, 8> IntvMap; 1473 SE->finish(&IntvMap); 1474 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1475 // Assign all new registers to RS_Spill. This was the last chance. 1476 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1477 return 0; 1478 } 1479 1480 //===----------------------------------------------------------------------===// 1481 // Local Splitting 1482 //===----------------------------------------------------------------------===// 1483 1484 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1485 /// in order to use PhysReg between two entries in SA->UseSlots. 1486 /// 1487 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1488 /// 1489 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1490 SmallVectorImpl<float> &GapWeight) { 1491 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1492 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1493 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1494 const unsigned NumGaps = Uses.size()-1; 1495 1496 // Start and end points for the interference check. 1497 SlotIndex StartIdx = 1498 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1499 SlotIndex StopIdx = 1500 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1501 1502 GapWeight.assign(NumGaps, 0.0f); 1503 1504 // Add interference from each overlapping register. 1505 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1506 if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit) 1507 .checkInterference()) 1508 continue; 1509 1510 // We know that VirtReg is a continuous interval from FirstInstr to 1511 // LastInstr, so we don't need InterferenceQuery. 1512 // 1513 // Interference that overlaps an instruction is counted in both gaps 1514 // surrounding the instruction. The exception is interference before 1515 // StartIdx and after StopIdx. 1516 // 1517 LiveIntervalUnion::SegmentIter IntI = 1518 Matrix->getLiveUnions()[Unit].find(StartIdx); 1519 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1520 // Skip the gaps before IntI. 1521 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1522 if (++Gap == NumGaps) 1523 break; 1524 if (Gap == NumGaps) 1525 break; 1526 1527 // Update the gaps covered by IntI. 1528 const float weight = IntI.value()->weight(); 1529 for (; Gap != NumGaps; ++Gap) { 1530 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1531 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1532 break; 1533 } 1534 if (Gap == NumGaps) 1535 break; 1536 } 1537 } 1538 1539 // Add fixed interference. 1540 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1541 const LiveRange &LR = LIS->getRegUnit(Unit); 1542 LiveRange::const_iterator I = LR.find(StartIdx); 1543 LiveRange::const_iterator E = LR.end(); 1544 1545 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1546 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1547 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1548 if (++Gap == NumGaps) 1549 break; 1550 if (Gap == NumGaps) 1551 break; 1552 1553 for (; Gap != NumGaps; ++Gap) { 1554 GapWeight[Gap] = huge_valf; 1555 if (Uses[Gap+1].getBaseIndex() >= I->end) 1556 break; 1557 } 1558 if (Gap == NumGaps) 1559 break; 1560 } 1561 } 1562 } 1563 1564 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1565 /// basic block. 1566 /// 1567 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1568 AllocationOrder &Order, 1569 SmallVectorImpl<Register> &NewVRegs) { 1570 // TODO: the function currently only handles a single UseBlock; it should be 1571 // possible to generalize. 1572 if (SA->getUseBlocks().size() != 1) 1573 return 0; 1574 1575 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1576 1577 // Note that it is possible to have an interval that is live-in or live-out 1578 // while only covering a single block - A phi-def can use undef values from 1579 // predecessors, and the block could be a single-block loop. 1580 // We don't bother doing anything clever about such a case, we simply assume 1581 // that the interval is continuous from FirstInstr to LastInstr. We should 1582 // make sure that we don't do anything illegal to such an interval, though. 1583 1584 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1585 if (Uses.size() <= 2) 1586 return 0; 1587 const unsigned NumGaps = Uses.size()-1; 1588 1589 LLVM_DEBUG({ 1590 dbgs() << "tryLocalSplit: "; 1591 for (const auto &Use : Uses) 1592 dbgs() << ' ' << Use; 1593 dbgs() << '\n'; 1594 }); 1595 1596 // If VirtReg is live across any register mask operands, compute a list of 1597 // gaps with register masks. 1598 SmallVector<unsigned, 8> RegMaskGaps; 1599 if (Matrix->checkRegMaskInterference(VirtReg)) { 1600 // Get regmask slots for the whole block. 1601 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1602 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1603 // Constrain to VirtReg's live range. 1604 unsigned RI = 1605 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1606 unsigned RE = RMS.size(); 1607 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1608 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1609 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1610 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1611 continue; 1612 // Skip a regmask on the same instruction as the last use. It doesn't 1613 // overlap the live range. 1614 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1615 break; 1616 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1617 << Uses[I + 1]); 1618 RegMaskGaps.push_back(I); 1619 // Advance ri to the next gap. A regmask on one of the uses counts in 1620 // both gaps. 1621 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1622 ++RI; 1623 } 1624 LLVM_DEBUG(dbgs() << '\n'); 1625 } 1626 1627 // Since we allow local split results to be split again, there is a risk of 1628 // creating infinite loops. It is tempting to require that the new live 1629 // ranges have less instructions than the original. That would guarantee 1630 // convergence, but it is too strict. A live range with 3 instructions can be 1631 // split 2+3 (including the COPY), and we want to allow that. 1632 // 1633 // Instead we use these rules: 1634 // 1635 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1636 // noop split, of course). 1637 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1638 // the new ranges must have fewer instructions than before the split. 1639 // 3. New ranges with the same number of instructions are marked RS_Split2, 1640 // smaller ranges are marked RS_New. 1641 // 1642 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1643 // excessive splitting and infinite loops. 1644 // 1645 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1646 1647 // Best split candidate. 1648 unsigned BestBefore = NumGaps; 1649 unsigned BestAfter = 0; 1650 float BestDiff = 0; 1651 1652 const float blockFreq = 1653 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1654 (1.0f / MBFI->getEntryFreq().getFrequency()); 1655 SmallVector<float, 8> GapWeight; 1656 1657 for (MCPhysReg PhysReg : Order) { 1658 assert(PhysReg); 1659 // Keep track of the largest spill weight that would need to be evicted in 1660 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1661 calcGapWeights(PhysReg, GapWeight); 1662 1663 // Remove any gaps with regmask clobbers. 1664 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1665 for (unsigned Gap : RegMaskGaps) 1666 GapWeight[Gap] = huge_valf; 1667 1668 // Try to find the best sequence of gaps to close. 1669 // The new spill weight must be larger than any gap interference. 1670 1671 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1672 unsigned SplitBefore = 0, SplitAfter = 1; 1673 1674 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1675 // It is the spill weight that needs to be evicted. 1676 float MaxGap = GapWeight[0]; 1677 1678 while (true) { 1679 // Live before/after split? 1680 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1681 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1682 1683 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1684 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1685 1686 // Stop before the interval gets so big we wouldn't be making progress. 1687 if (!LiveBefore && !LiveAfter) { 1688 LLVM_DEBUG(dbgs() << " all\n"); 1689 break; 1690 } 1691 // Should the interval be extended or shrunk? 1692 bool Shrink = true; 1693 1694 // How many gaps would the new range have? 1695 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1696 1697 // Legally, without causing looping? 1698 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1699 1700 if (Legal && MaxGap < huge_valf) { 1701 // Estimate the new spill weight. Each instruction reads or writes the 1702 // register. Conservatively assume there are no read-modify-write 1703 // instructions. 1704 // 1705 // Try to guess the size of the new interval. 1706 const float EstWeight = normalizeSpillWeight( 1707 blockFreq * (NewGaps + 1), 1708 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1709 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1710 1); 1711 // Would this split be possible to allocate? 1712 // Never allocate all gaps, we wouldn't be making progress. 1713 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1714 if (EstWeight * Hysteresis >= MaxGap) { 1715 Shrink = false; 1716 float Diff = EstWeight - MaxGap; 1717 if (Diff > BestDiff) { 1718 LLVM_DEBUG(dbgs() << " (best)"); 1719 BestDiff = Hysteresis * Diff; 1720 BestBefore = SplitBefore; 1721 BestAfter = SplitAfter; 1722 } 1723 } 1724 } 1725 1726 // Try to shrink. 1727 if (Shrink) { 1728 if (++SplitBefore < SplitAfter) { 1729 LLVM_DEBUG(dbgs() << " shrink\n"); 1730 // Recompute the max when necessary. 1731 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1732 MaxGap = GapWeight[SplitBefore]; 1733 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1734 MaxGap = std::max(MaxGap, GapWeight[I]); 1735 } 1736 continue; 1737 } 1738 MaxGap = 0; 1739 } 1740 1741 // Try to extend the interval. 1742 if (SplitAfter >= NumGaps) { 1743 LLVM_DEBUG(dbgs() << " end\n"); 1744 break; 1745 } 1746 1747 LLVM_DEBUG(dbgs() << " extend\n"); 1748 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1749 } 1750 } 1751 1752 // Didn't find any candidates? 1753 if (BestBefore == NumGaps) 1754 return 0; 1755 1756 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1757 << Uses[BestAfter] << ", " << BestDiff << ", " 1758 << (BestAfter - BestBefore + 1) << " instrs\n"); 1759 1760 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1761 SE->reset(LREdit); 1762 1763 SE->openIntv(); 1764 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1765 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1766 SE->useIntv(SegStart, SegStop); 1767 SmallVector<unsigned, 8> IntvMap; 1768 SE->finish(&IntvMap); 1769 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1770 // If the new range has the same number of instructions as before, mark it as 1771 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1772 // leave the new intervals as RS_New so they can compete. 1773 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1774 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1775 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1776 if (NewGaps >= NumGaps) { 1777 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1778 assert(!ProgressRequired && "Didn't make progress when it was required."); 1779 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1780 if (IntvMap[I] == 1) { 1781 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1782 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1783 } 1784 LLVM_DEBUG(dbgs() << '\n'); 1785 } 1786 ++NumLocalSplits; 1787 1788 return 0; 1789 } 1790 1791 //===----------------------------------------------------------------------===// 1792 // Live Range Splitting 1793 //===----------------------------------------------------------------------===// 1794 1795 /// trySplit - Try to split VirtReg or one of its interferences, making it 1796 /// assignable. 1797 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1798 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1799 SmallVectorImpl<Register> &NewVRegs, 1800 const SmallVirtRegSet &FixedRegisters) { 1801 // Ranges must be Split2 or less. 1802 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1803 return 0; 1804 1805 // Local intervals are handled separately. 1806 if (LIS->intervalIsInOneMBB(VirtReg)) { 1807 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1808 TimerGroupDescription, TimePassesIsEnabled); 1809 SA->analyze(&VirtReg); 1810 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1811 if (PhysReg || !NewVRegs.empty()) 1812 return PhysReg; 1813 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1814 } 1815 1816 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1817 TimerGroupDescription, TimePassesIsEnabled); 1818 1819 SA->analyze(&VirtReg); 1820 1821 // First try to split around a region spanning multiple blocks. RS_Split2 1822 // ranges already made dubious progress with region splitting, so they go 1823 // straight to single block splitting. 1824 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1825 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1826 if (PhysReg || !NewVRegs.empty()) 1827 return PhysReg; 1828 } 1829 1830 // Then isolate blocks. 1831 return tryBlockSplit(VirtReg, Order, NewVRegs); 1832 } 1833 1834 //===----------------------------------------------------------------------===// 1835 // Last Chance Recoloring 1836 //===----------------------------------------------------------------------===// 1837 1838 /// Return true if \p reg has any tied def operand. 1839 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1840 for (const MachineOperand &MO : MRI->def_operands(reg)) 1841 if (MO.isTied()) 1842 return true; 1843 1844 return false; 1845 } 1846 1847 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1848 /// same, as \p PhysReg. 1849 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1850 const VirtRegMap &VRM, 1851 MCRegister PhysReg, 1852 const LiveInterval &Intf) { 1853 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1854 if (PhysReg == AssignedReg) 1855 return false; 1856 return TRI.regsOverlap(PhysReg, AssignedReg); 1857 } 1858 1859 /// mayRecolorAllInterferences - Check if the virtual registers that 1860 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1861 /// recolored to free \p PhysReg. 1862 /// When true is returned, \p RecoloringCandidates has been augmented with all 1863 /// the live intervals that need to be recolored in order to free \p PhysReg 1864 /// for \p VirtReg. 1865 /// \p FixedRegisters contains all the virtual registers that cannot be 1866 /// recolored. 1867 bool RAGreedy::mayRecolorAllInterferences( 1868 MCRegister PhysReg, const LiveInterval &VirtReg, 1869 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1870 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1871 1872 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1873 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); 1874 // If there is LastChanceRecoloringMaxInterference or more interferences, 1875 // chances are one would not be recolorable. 1876 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1877 LastChanceRecoloringMaxInterference && 1878 !ExhaustiveSearch) { 1879 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1880 CutOffInfo |= CO_Interf; 1881 return false; 1882 } 1883 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1884 // If Intf is done and sits on the same register class as VirtReg, it 1885 // would not be recolorable as it is in the same state as 1886 // VirtReg. However there are at least two exceptions. 1887 // 1888 // If VirtReg has tied defs and Intf doesn't, then 1889 // there is still a point in examining if it can be recolorable. 1890 // 1891 // Additionally, if the register class has overlapping tuple members, it 1892 // may still be recolorable using a different tuple. This is more likely 1893 // if the existing assignment aliases with the candidate. 1894 // 1895 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1896 MRI->getRegClass(Intf->reg()) == CurRC && 1897 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1898 !(hasTiedDef(MRI, VirtReg.reg()) && 1899 !hasTiedDef(MRI, Intf->reg()))) || 1900 FixedRegisters.count(Intf->reg())) { 1901 LLVM_DEBUG( 1902 dbgs() << "Early abort: the interference is not recolorable.\n"); 1903 return false; 1904 } 1905 RecoloringCandidates.insert(Intf); 1906 } 1907 } 1908 return true; 1909 } 1910 1911 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1912 /// its interferences. 1913 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1914 /// virtual register that was using it. The recoloring process may recursively 1915 /// use the last chance recoloring. Therefore, when a virtual register has been 1916 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1917 /// be last-chance-recolored again during this recoloring "session". 1918 /// E.g., 1919 /// Let 1920 /// vA can use {R1, R2 } 1921 /// vB can use { R2, R3} 1922 /// vC can use {R1 } 1923 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1924 /// instance) and they all interfere. 1925 /// 1926 /// vA is assigned R1 1927 /// vB is assigned R2 1928 /// vC tries to evict vA but vA is already done. 1929 /// Regular register allocation fails. 1930 /// 1931 /// Last chance recoloring kicks in: 1932 /// vC does as if vA was evicted => vC uses R1. 1933 /// vC is marked as fixed. 1934 /// vA needs to find a color. 1935 /// None are available. 1936 /// vA cannot evict vC: vC is a fixed virtual register now. 1937 /// vA does as if vB was evicted => vA uses R2. 1938 /// vB needs to find a color. 1939 /// R3 is available. 1940 /// Recoloring => vC = R1, vA = R2, vB = R3 1941 /// 1942 /// \p Order defines the preferred allocation order for \p VirtReg. 1943 /// \p NewRegs will contain any new virtual register that have been created 1944 /// (split, spill) during the process and that must be assigned. 1945 /// \p FixedRegisters contains all the virtual registers that cannot be 1946 /// recolored. 1947 /// 1948 /// \p RecolorStack tracks the original assignments of successfully recolored 1949 /// registers. 1950 /// 1951 /// \p Depth gives the current depth of the last chance recoloring. 1952 /// \return a physical register that can be used for VirtReg or ~0u if none 1953 /// exists. 1954 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1955 AllocationOrder &Order, 1956 SmallVectorImpl<Register> &NewVRegs, 1957 SmallVirtRegSet &FixedRegisters, 1958 RecoloringStack &RecolorStack, 1959 unsigned Depth) { 1960 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1961 return ~0u; 1962 1963 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1964 1965 const ssize_t EntryStackSize = RecolorStack.size(); 1966 1967 // Ranges must be Done. 1968 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1969 "Last chance recoloring should really be last chance"); 1970 // Set the max depth to LastChanceRecoloringMaxDepth. 1971 // We may want to reconsider that if we end up with a too large search space 1972 // for target with hundreds of registers. 1973 // Indeed, in that case we may want to cut the search space earlier. 1974 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1975 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1976 CutOffInfo |= CO_Depth; 1977 return ~0u; 1978 } 1979 1980 // Set of Live intervals that will need to be recolored. 1981 SmallLISet RecoloringCandidates; 1982 1983 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1984 // this recoloring "session". 1985 assert(!FixedRegisters.count(VirtReg.reg())); 1986 FixedRegisters.insert(VirtReg.reg()); 1987 SmallVector<Register, 4> CurrentNewVRegs; 1988 1989 for (MCRegister PhysReg : Order) { 1990 assert(PhysReg.isValid()); 1991 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1992 << printReg(PhysReg, TRI) << '\n'); 1993 RecoloringCandidates.clear(); 1994 CurrentNewVRegs.clear(); 1995 1996 // It is only possible to recolor virtual register interference. 1997 if (Matrix->checkInterference(VirtReg, PhysReg) > 1998 LiveRegMatrix::IK_VirtReg) { 1999 LLVM_DEBUG( 2000 dbgs() << "Some interferences are not with virtual registers.\n"); 2001 2002 continue; 2003 } 2004 2005 // Early give up on this PhysReg if it is obvious we cannot recolor all 2006 // the interferences. 2007 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2008 FixedRegisters)) { 2009 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2010 continue; 2011 } 2012 2013 // RecoloringCandidates contains all the virtual registers that interfere 2014 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 2015 // recoloring and perform the actual recoloring. 2016 PQueue RecoloringQueue; 2017 for (const LiveInterval *RC : RecoloringCandidates) { 2018 Register ItVirtReg = RC->reg(); 2019 enqueue(RecoloringQueue, RC); 2020 assert(VRM->hasPhys(ItVirtReg) && 2021 "Interferences are supposed to be with allocated variables"); 2022 2023 // Record the current allocation. 2024 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 2025 2026 // unset the related struct. 2027 Matrix->unassign(*RC); 2028 } 2029 2030 // Do as if VirtReg was assigned to PhysReg so that the underlying 2031 // recoloring has the right information about the interferes and 2032 // available colors. 2033 Matrix->assign(VirtReg, PhysReg); 2034 2035 // Save the current recoloring state. 2036 // If we cannot recolor all the interferences, we will have to start again 2037 // at this point for the next physical register. 2038 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2039 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2040 FixedRegisters, RecolorStack, Depth)) { 2041 // Push the queued vregs into the main queue. 2042 for (Register NewVReg : CurrentNewVRegs) 2043 NewVRegs.push_back(NewVReg); 2044 // Do not mess up with the global assignment process. 2045 // I.e., VirtReg must be unassigned. 2046 Matrix->unassign(VirtReg); 2047 return PhysReg; 2048 } 2049 2050 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2051 << printReg(PhysReg, TRI) << '\n'); 2052 2053 // The recoloring attempt failed, undo the changes. 2054 FixedRegisters = SaveFixedRegisters; 2055 Matrix->unassign(VirtReg); 2056 2057 // For a newly created vreg which is also in RecoloringCandidates, 2058 // don't add it to NewVRegs because its physical register will be restored 2059 // below. Other vregs in CurrentNewVRegs are created by calling 2060 // selectOrSplit and should be added into NewVRegs. 2061 for (Register R : CurrentNewVRegs) { 2062 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2063 continue; 2064 NewVRegs.push_back(R); 2065 } 2066 2067 // Roll back our unsuccessful recoloring. Also roll back any successful 2068 // recolorings in any recursive recoloring attempts, since it's possible 2069 // they would have introduced conflicts with assignments we will be 2070 // restoring further up the stack. Perform all unassignments prior to 2071 // reassigning, since sub-recolorings may have conflicted with the registers 2072 // we are going to restore to their original assignments. 2073 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 2074 const LiveInterval *LI; 2075 MCRegister PhysReg; 2076 std::tie(LI, PhysReg) = RecolorStack[I]; 2077 2078 if (VRM->hasPhys(LI->reg())) 2079 Matrix->unassign(*LI); 2080 } 2081 2082 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 2083 const LiveInterval *LI; 2084 MCRegister PhysReg; 2085 std::tie(LI, PhysReg) = RecolorStack[I]; 2086 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) 2087 Matrix->assign(*LI, PhysReg); 2088 } 2089 2090 // Pop the stack of recoloring attempts. 2091 RecolorStack.resize(EntryStackSize); 2092 } 2093 2094 // Last chance recoloring did not worked either, give up. 2095 return ~0u; 2096 } 2097 2098 /// tryRecoloringCandidates - Try to assign a new color to every register 2099 /// in \RecoloringQueue. 2100 /// \p NewRegs will contain any new virtual register created during the 2101 /// recoloring process. 2102 /// \p FixedRegisters[in/out] contains all the registers that have been 2103 /// recolored. 2104 /// \return true if all virtual registers in RecoloringQueue were successfully 2105 /// recolored, false otherwise. 2106 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2107 SmallVectorImpl<Register> &NewVRegs, 2108 SmallVirtRegSet &FixedRegisters, 2109 RecoloringStack &RecolorStack, 2110 unsigned Depth) { 2111 while (!RecoloringQueue.empty()) { 2112 const LiveInterval *LI = dequeue(RecoloringQueue); 2113 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2114 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 2115 RecolorStack, Depth + 1); 2116 // When splitting happens, the live-range may actually be empty. 2117 // In that case, this is okay to continue the recoloring even 2118 // if we did not find an alternative color for it. Indeed, 2119 // there will not be anything to color for LI in the end. 2120 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2121 return false; 2122 2123 if (!PhysReg) { 2124 assert(LI->empty() && "Only empty live-range do not require a register"); 2125 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2126 << " succeeded. Empty LI.\n"); 2127 continue; 2128 } 2129 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2130 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2131 2132 Matrix->assign(*LI, PhysReg); 2133 FixedRegisters.insert(LI->reg()); 2134 } 2135 return true; 2136 } 2137 2138 //===----------------------------------------------------------------------===// 2139 // Main Entry Point 2140 //===----------------------------------------------------------------------===// 2141 2142 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 2143 SmallVectorImpl<Register> &NewVRegs) { 2144 CutOffInfo = CO_None; 2145 LLVMContext &Ctx = MF->getFunction().getContext(); 2146 SmallVirtRegSet FixedRegisters; 2147 RecoloringStack RecolorStack; 2148 MCRegister Reg = 2149 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 2150 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2151 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2152 if (CutOffEncountered == CO_Depth) 2153 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2154 "reached. Use -fexhaustive-register-search to skip " 2155 "cutoffs"); 2156 else if (CutOffEncountered == CO_Interf) 2157 Ctx.emitError("register allocation failed: maximum interference for " 2158 "recoloring reached. Use -fexhaustive-register-search " 2159 "to skip cutoffs"); 2160 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2161 Ctx.emitError("register allocation failed: maximum interference and " 2162 "depth for recoloring reached. Use " 2163 "-fexhaustive-register-search to skip cutoffs"); 2164 } 2165 return Reg; 2166 } 2167 2168 /// Using a CSR for the first time has a cost because it causes push|pop 2169 /// to be added to prologue|epilogue. Splitting a cold section of the live 2170 /// range can have lower cost than using the CSR for the first time; 2171 /// Spilling a live range in the cold path can have lower cost than using 2172 /// the CSR for the first time. Returns the physical register if we decide 2173 /// to use the CSR; otherwise return 0. 2174 MCRegister RAGreedy::tryAssignCSRFirstTime( 2175 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 2176 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 2177 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2178 // We choose spill over using the CSR for the first time if the spill cost 2179 // is lower than CSRCost. 2180 SA->analyze(&VirtReg); 2181 if (calcSpillCost() >= CSRCost) 2182 return PhysReg; 2183 2184 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2185 // we will not use a callee-saved register in tryEvict. 2186 CostPerUseLimit = 1; 2187 return 0; 2188 } 2189 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2190 // We choose pre-splitting over using the CSR for the first time if 2191 // the cost of splitting is lower than CSRCost. 2192 SA->analyze(&VirtReg); 2193 unsigned NumCands = 0; 2194 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2195 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2196 NumCands, true /*IgnoreCSR*/); 2197 if (BestCand == NoCand) 2198 // Use the CSR if we can't find a region split below CSRCost. 2199 return PhysReg; 2200 2201 // Perform the actual pre-splitting. 2202 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2203 return 0; 2204 } 2205 return PhysReg; 2206 } 2207 2208 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2209 // Do not keep invalid information around. 2210 SetOfBrokenHints.remove(&LI); 2211 } 2212 2213 void RAGreedy::initializeCSRCost() { 2214 // We use the larger one out of the command-line option and the value report 2215 // by TRI. 2216 CSRCost = BlockFrequency( 2217 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2218 if (!CSRCost.getFrequency()) 2219 return; 2220 2221 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2222 uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency(); 2223 if (!ActualEntry) { 2224 CSRCost = BlockFrequency(0); 2225 return; 2226 } 2227 uint64_t FixedEntry = 1 << 14; 2228 if (ActualEntry < FixedEntry) 2229 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2230 else if (ActualEntry <= UINT32_MAX) 2231 // Invert the fraction and divide. 2232 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2233 else 2234 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2235 CSRCost = 2236 BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry)); 2237 } 2238 2239 /// Collect the hint info for \p Reg. 2240 /// The results are stored into \p Out. 2241 /// \p Out is not cleared before being populated. 2242 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2243 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2244 if (!TII->isFullCopyInstr(Instr)) 2245 continue; 2246 // Look for the other end of the copy. 2247 Register OtherReg = Instr.getOperand(0).getReg(); 2248 if (OtherReg == Reg) { 2249 OtherReg = Instr.getOperand(1).getReg(); 2250 if (OtherReg == Reg) 2251 continue; 2252 } 2253 // Get the current assignment. 2254 MCRegister OtherPhysReg = 2255 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2256 // Push the collected information. 2257 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2258 OtherPhysReg)); 2259 } 2260 } 2261 2262 /// Using the given \p List, compute the cost of the broken hints if 2263 /// \p PhysReg was used. 2264 /// \return The cost of \p List for \p PhysReg. 2265 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2266 MCRegister PhysReg) { 2267 BlockFrequency Cost = BlockFrequency(0); 2268 for (const HintInfo &Info : List) { 2269 if (Info.PhysReg != PhysReg) 2270 Cost += Info.Freq; 2271 } 2272 return Cost; 2273 } 2274 2275 /// Using the register assigned to \p VirtReg, try to recolor 2276 /// all the live ranges that are copy-related with \p VirtReg. 2277 /// The recoloring is then propagated to all the live-ranges that have 2278 /// been recolored and so on, until no more copies can be coalesced or 2279 /// it is not profitable. 2280 /// For a given live range, profitability is determined by the sum of the 2281 /// frequencies of the non-identity copies it would introduce with the old 2282 /// and new register. 2283 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2284 // We have a broken hint, check if it is possible to fix it by 2285 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2286 // some register and PhysReg may be available for the other live-ranges. 2287 SmallSet<Register, 4> Visited; 2288 SmallVector<unsigned, 2> RecoloringCandidates; 2289 HintsInfo Info; 2290 Register Reg = VirtReg.reg(); 2291 MCRegister PhysReg = VRM->getPhys(Reg); 2292 // Start the recoloring algorithm from the input live-interval, then 2293 // it will propagate to the ones that are copy-related with it. 2294 Visited.insert(Reg); 2295 RecoloringCandidates.push_back(Reg); 2296 2297 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2298 << '(' << printReg(PhysReg, TRI) << ")\n"); 2299 2300 do { 2301 Reg = RecoloringCandidates.pop_back_val(); 2302 2303 // We cannot recolor physical register. 2304 if (Reg.isPhysical()) 2305 continue; 2306 2307 // This may be a skipped register. 2308 if (!VRM->hasPhys(Reg)) { 2309 assert(!shouldAllocateRegister(Reg) && 2310 "We have an unallocated variable which should have been handled"); 2311 continue; 2312 } 2313 2314 // Get the live interval mapped with this virtual register to be able 2315 // to check for the interference with the new color. 2316 LiveInterval &LI = LIS->getInterval(Reg); 2317 MCRegister CurrPhys = VRM->getPhys(Reg); 2318 // Check that the new color matches the register class constraints and 2319 // that it is free for this live range. 2320 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2321 Matrix->checkInterference(LI, PhysReg))) 2322 continue; 2323 2324 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2325 << ") is recolorable.\n"); 2326 2327 // Gather the hint info. 2328 Info.clear(); 2329 collectHintInfo(Reg, Info); 2330 // Check if recoloring the live-range will increase the cost of the 2331 // non-identity copies. 2332 if (CurrPhys != PhysReg) { 2333 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2334 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2335 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2336 LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost) 2337 << "\nNew Cost: " 2338 << printBlockFreq(*MBFI, NewCopiesCost) << '\n'); 2339 if (OldCopiesCost < NewCopiesCost) { 2340 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2341 continue; 2342 } 2343 // At this point, the cost is either cheaper or equal. If it is 2344 // equal, we consider this is profitable because it may expose 2345 // more recoloring opportunities. 2346 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2347 // Recolor the live-range. 2348 Matrix->unassign(LI); 2349 Matrix->assign(LI, PhysReg); 2350 } 2351 // Push all copy-related live-ranges to keep reconciling the broken 2352 // hints. 2353 for (const HintInfo &HI : Info) { 2354 if (Visited.insert(HI.Reg).second) 2355 RecoloringCandidates.push_back(HI.Reg); 2356 } 2357 } while (!RecoloringCandidates.empty()); 2358 } 2359 2360 /// Try to recolor broken hints. 2361 /// Broken hints may be repaired by recoloring when an evicted variable 2362 /// freed up a register for a larger live-range. 2363 /// Consider the following example: 2364 /// BB1: 2365 /// a = 2366 /// b = 2367 /// BB2: 2368 /// ... 2369 /// = b 2370 /// = a 2371 /// Let us assume b gets split: 2372 /// BB1: 2373 /// a = 2374 /// b = 2375 /// BB2: 2376 /// c = b 2377 /// ... 2378 /// d = c 2379 /// = d 2380 /// = a 2381 /// Because of how the allocation work, b, c, and d may be assigned different 2382 /// colors. Now, if a gets evicted later: 2383 /// BB1: 2384 /// a = 2385 /// st a, SpillSlot 2386 /// b = 2387 /// BB2: 2388 /// c = b 2389 /// ... 2390 /// d = c 2391 /// = d 2392 /// e = ld SpillSlot 2393 /// = e 2394 /// This is likely that we can assign the same register for b, c, and d, 2395 /// getting rid of 2 copies. 2396 void RAGreedy::tryHintsRecoloring() { 2397 for (const LiveInterval *LI : SetOfBrokenHints) { 2398 assert(LI->reg().isVirtual() && 2399 "Recoloring is possible only for virtual registers"); 2400 // Some dead defs may be around (e.g., because of debug uses). 2401 // Ignore those. 2402 if (!VRM->hasPhys(LI->reg())) 2403 continue; 2404 tryHintRecoloring(*LI); 2405 } 2406 } 2407 2408 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2409 SmallVectorImpl<Register> &NewVRegs, 2410 SmallVirtRegSet &FixedRegisters, 2411 RecoloringStack &RecolorStack, 2412 unsigned Depth) { 2413 uint8_t CostPerUseLimit = uint8_t(~0u); 2414 // First try assigning a free register. 2415 auto Order = 2416 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2417 if (MCRegister PhysReg = 2418 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2419 // When NewVRegs is not empty, we may have made decisions such as evicting 2420 // a virtual register, go with the earlier decisions and use the physical 2421 // register. 2422 if (CSRCost.getFrequency() && 2423 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2424 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2425 CostPerUseLimit, NewVRegs); 2426 if (CSRReg || !NewVRegs.empty()) 2427 // Return now if we decide to use a CSR or create new vregs due to 2428 // pre-splitting. 2429 return CSRReg; 2430 } else 2431 return PhysReg; 2432 } 2433 // Non emtpy NewVRegs means VirtReg has been split. 2434 if (!NewVRegs.empty()) 2435 return 0; 2436 2437 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2438 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2439 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2440 2441 // Try to evict a less worthy live range, but only for ranges from the primary 2442 // queue. The RS_Split ranges already failed to do this, and they should not 2443 // get a second chance until they have been split. 2444 if (Stage != RS_Split) 2445 if (Register PhysReg = 2446 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2447 FixedRegisters)) { 2448 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2449 // If VirtReg has a hint and that hint is broken record this 2450 // virtual register as a recoloring candidate for broken hint. 2451 // Indeed, since we evicted a variable in its neighborhood it is 2452 // likely we can at least partially recolor some of the 2453 // copy-related live-ranges. 2454 if (Hint && Hint != PhysReg) 2455 SetOfBrokenHints.insert(&VirtReg); 2456 return PhysReg; 2457 } 2458 2459 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2460 2461 // The first time we see a live range, don't try to split or spill. 2462 // Wait until the second time, when all smaller ranges have been allocated. 2463 // This gives a better picture of the interference to split around. 2464 if (Stage < RS_Split) { 2465 ExtraInfo->setStage(VirtReg, RS_Split); 2466 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2467 NewVRegs.push_back(VirtReg.reg()); 2468 return 0; 2469 } 2470 2471 if (Stage < RS_Spill) { 2472 // Try splitting VirtReg or interferences. 2473 unsigned NewVRegSizeBefore = NewVRegs.size(); 2474 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2475 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2476 return PhysReg; 2477 } 2478 2479 // If we couldn't allocate a register from spilling, there is probably some 2480 // invalid inline assembly. The base class will report it. 2481 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2482 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2483 RecolorStack, Depth); 2484 } 2485 2486 // Finally spill VirtReg itself. 2487 if ((EnableDeferredSpilling || 2488 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2489 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2490 // TODO: This is experimental and in particular, we do not model 2491 // the live range splitting done by spilling correctly. 2492 // We would need a deep integration with the spiller to do the 2493 // right thing here. Anyway, that is still good for early testing. 2494 ExtraInfo->setStage(VirtReg, RS_Memory); 2495 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2496 NewVRegs.push_back(VirtReg.reg()); 2497 } else { 2498 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2499 TimerGroupDescription, TimePassesIsEnabled); 2500 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2501 spiller().spill(LRE); 2502 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2503 2504 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2505 // the new regs are kept in LDV (still mapping to the old register), until 2506 // we rewrite spilled locations in LDV at a later stage. 2507 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2508 2509 if (VerifyEnabled) 2510 MF->verify(this, "After spilling"); 2511 } 2512 2513 // The live virtual register requesting allocation was spilled, so tell 2514 // the caller not to allocate anything during this round. 2515 return 0; 2516 } 2517 2518 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2519 using namespace ore; 2520 if (Spills) { 2521 R << NV("NumSpills", Spills) << " spills "; 2522 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2523 } 2524 if (FoldedSpills) { 2525 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2526 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2527 << " total folded spills cost "; 2528 } 2529 if (Reloads) { 2530 R << NV("NumReloads", Reloads) << " reloads "; 2531 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2532 } 2533 if (FoldedReloads) { 2534 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2535 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2536 << " total folded reloads cost "; 2537 } 2538 if (ZeroCostFoldedReloads) 2539 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2540 << " zero cost folded reloads "; 2541 if (Copies) { 2542 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2543 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2544 } 2545 } 2546 2547 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2548 RAGreedyStats Stats; 2549 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2550 int FI; 2551 2552 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2553 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2554 A->getPseudoValue())->getFrameIndex()); 2555 }; 2556 auto isPatchpointInstr = [](const MachineInstr &MI) { 2557 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2558 MI.getOpcode() == TargetOpcode::STACKMAP || 2559 MI.getOpcode() == TargetOpcode::STATEPOINT; 2560 }; 2561 for (MachineInstr &MI : MBB) { 2562 auto DestSrc = TII->isCopyInstr(MI); 2563 if (DestSrc) { 2564 const MachineOperand &Dest = *DestSrc->Destination; 2565 const MachineOperand &Src = *DestSrc->Source; 2566 Register SrcReg = Src.getReg(); 2567 Register DestReg = Dest.getReg(); 2568 // Only count `COPY`s with a virtual register as source or destination. 2569 if (SrcReg.isVirtual() || DestReg.isVirtual()) { 2570 if (SrcReg.isVirtual()) { 2571 SrcReg = VRM->getPhys(SrcReg); 2572 if (SrcReg && Src.getSubReg()) 2573 SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg()); 2574 } 2575 if (DestReg.isVirtual()) { 2576 DestReg = VRM->getPhys(DestReg); 2577 if (DestReg && Dest.getSubReg()) 2578 DestReg = TRI->getSubReg(DestReg, Dest.getSubReg()); 2579 } 2580 if (SrcReg != DestReg) 2581 ++Stats.Copies; 2582 } 2583 continue; 2584 } 2585 2586 SmallVector<const MachineMemOperand *, 2> Accesses; 2587 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2588 ++Stats.Reloads; 2589 continue; 2590 } 2591 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2592 ++Stats.Spills; 2593 continue; 2594 } 2595 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2596 llvm::any_of(Accesses, isSpillSlotAccess)) { 2597 if (!isPatchpointInstr(MI)) { 2598 Stats.FoldedReloads += Accesses.size(); 2599 continue; 2600 } 2601 // For statepoint there may be folded and zero cost folded stack reloads. 2602 std::pair<unsigned, unsigned> NonZeroCostRange = 2603 TII->getPatchpointUnfoldableRange(MI); 2604 SmallSet<unsigned, 16> FoldedReloads; 2605 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2606 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2607 MachineOperand &MO = MI.getOperand(Idx); 2608 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2609 continue; 2610 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2611 FoldedReloads.insert(MO.getIndex()); 2612 else 2613 ZeroCostFoldedReloads.insert(MO.getIndex()); 2614 } 2615 // If stack slot is used in folded reload it is not zero cost then. 2616 for (unsigned Slot : FoldedReloads) 2617 ZeroCostFoldedReloads.erase(Slot); 2618 Stats.FoldedReloads += FoldedReloads.size(); 2619 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2620 continue; 2621 } 2622 Accesses.clear(); 2623 if (TII->hasStoreToStackSlot(MI, Accesses) && 2624 llvm::any_of(Accesses, isSpillSlotAccess)) { 2625 Stats.FoldedSpills += Accesses.size(); 2626 } 2627 } 2628 // Set cost of collected statistic by multiplication to relative frequency of 2629 // this basic block. 2630 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2631 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2632 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2633 Stats.SpillsCost = RelFreq * Stats.Spills; 2634 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2635 Stats.CopiesCost = RelFreq * Stats.Copies; 2636 return Stats; 2637 } 2638 2639 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2640 RAGreedyStats Stats; 2641 2642 // Sum up the spill and reloads in subloops. 2643 for (MachineLoop *SubLoop : *L) 2644 Stats.add(reportStats(SubLoop)); 2645 2646 for (MachineBasicBlock *MBB : L->getBlocks()) 2647 // Handle blocks that were not included in subloops. 2648 if (Loops->getLoopFor(MBB) == L) 2649 Stats.add(computeStats(*MBB)); 2650 2651 if (!Stats.isEmpty()) { 2652 using namespace ore; 2653 2654 ORE->emit([&]() { 2655 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2656 L->getStartLoc(), L->getHeader()); 2657 Stats.report(R); 2658 R << "generated in loop"; 2659 return R; 2660 }); 2661 } 2662 return Stats; 2663 } 2664 2665 void RAGreedy::reportStats() { 2666 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2667 return; 2668 RAGreedyStats Stats; 2669 for (MachineLoop *L : *Loops) 2670 Stats.add(reportStats(L)); 2671 // Process non-loop blocks. 2672 for (MachineBasicBlock &MBB : *MF) 2673 if (!Loops->getLoopFor(&MBB)) 2674 Stats.add(computeStats(MBB)); 2675 if (!Stats.isEmpty()) { 2676 using namespace ore; 2677 2678 ORE->emit([&]() { 2679 DebugLoc Loc; 2680 if (auto *SP = MF->getFunction().getSubprogram()) 2681 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2682 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2683 &MF->front()); 2684 Stats.report(R); 2685 R << "generated in function"; 2686 return R; 2687 }); 2688 } 2689 } 2690 2691 bool RAGreedy::hasVirtRegAlloc() { 2692 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2693 Register Reg = Register::index2VirtReg(I); 2694 if (MRI->reg_nodbg_empty(Reg)) 2695 continue; 2696 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2697 if (!RC) 2698 continue; 2699 if (shouldAllocateRegister(Reg)) 2700 return true; 2701 } 2702 2703 return false; 2704 } 2705 2706 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2707 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2708 << "********** Function: " << mf.getName() << '\n'); 2709 2710 MF = &mf; 2711 TII = MF->getSubtarget().getInstrInfo(); 2712 2713 if (VerifyEnabled) 2714 MF->verify(this, "Before greedy register allocator"); 2715 2716 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2717 getAnalysis<LiveIntervalsWrapperPass>().getLIS(), 2718 getAnalysis<LiveRegMatrix>()); 2719 2720 // Early return if there is no virtual register to be allocated to a 2721 // physical register. 2722 if (!hasVirtRegAlloc()) 2723 return false; 2724 2725 Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); 2726 // Renumber to get accurate and consistent results from 2727 // SlotIndexes::getApproxInstrDistance. 2728 Indexes->packIndexes(); 2729 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 2730 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 2731 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2732 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 2733 Bundles = &getAnalysis<EdgeBundles>(); 2734 SpillPlacer = &getAnalysis<SpillPlacement>(); 2735 DebugVars = &getAnalysis<LiveDebugVariables>(); 2736 2737 initializeCSRCost(); 2738 2739 RegCosts = TRI->getRegisterCosts(*MF); 2740 RegClassPriorityTrumpsGlobalness = 2741 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2742 ? GreedyRegClassPriorityTrumpsGlobalness 2743 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2744 2745 ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences() 2746 ? GreedyReverseLocalAssignment 2747 : TRI->reverseLocalAssignment(); 2748 2749 ExtraInfo.emplace(); 2750 EvictAdvisor = 2751 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2752 PriorityAdvisor = 2753 getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this); 2754 2755 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2756 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2757 2758 VRAI->calculateSpillWeightsAndHints(); 2759 2760 LLVM_DEBUG(LIS->dump()); 2761 2762 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2763 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2764 2765 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2766 GlobalCand.resize(32); // This will grow as needed. 2767 SetOfBrokenHints.clear(); 2768 2769 allocatePhysRegs(); 2770 tryHintsRecoloring(); 2771 2772 if (VerifyEnabled) 2773 MF->verify(this, "Before post optimization"); 2774 postOptimization(); 2775 reportStats(); 2776 2777 releaseMemory(); 2778 return true; 2779 } 2780